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ABSTRACT 

 Episodic iron input from natural sources (e.g., riverine input, dust deposition, and 

mesoscale eddies) plays an important role in dictating phytoplankton growth, physiology, and 

community structure in the high-nitrate low-chlorophyll (HNLC) waters of the Northern Gulf of 

Alaska (NGA). Iron addition experiments utilizing the synthetic iron source, FeCl3, have been 

performed in all major HNLC regions and have resulted in diatom blooms with significant 

implications for ecosystem productivity and resilience. If FeCl3 and natural iron sources differ in 

bioavailability, and hence potential phytoplankton production, re-interpretation of these results is 

warranted. To test the hypothesis that natural and synthetic iron sources are differentially 

bioavailable, we performed a deck-board iron addition experiment in the summer of 2019. We 

exposed the NGA HNLC phytoplankton community to three iron sources: FeCl3, the Copper 

River plume, and an HNLC control and assessed net growth, photosynthetic efficiency, 

community composition, and nutrient use over a 5 d incubation. Addition of the FeCl3 and 

Copper River plume iron sources alleviated iron stress for the total phytoplankton community, 

yet the bioavailability of these two iron sources was size-dependent. Cells > 20 µm responded 

differently to all three iron sources, with net growth rates and photosynthetic efficiency being 

highest in the FeCl3 treatment and intermediate in the Copper River plume treatment. In contrast 

to cells > 20 µm, phytoplankton < 20 µm responded similarly to the Copper River plume and 

FeCl3 treatments. Consistent with previous experiments, FeCl3 addition promoted diatom 

growth. However, the Copper River plume iron source primarily increased the production and 

turnover of cells < 20 µm. We conclude that diatom growth and physiology measured in 

previous iron addition experiments in response to FeCl3 do not directly translate to fluvial iron 

sources. We also suggest that fluvial iron input is critical to maintaining ultraplankton in NGA 
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HNLC waters and that it may aid the rapid transport of biomass into secondary production with 

the addition of more highly bioavailable iron sources. 
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INTRODUCTION 

 

The Northern Gulf of Alaska (NGA) as a Hotspot for Biological Productivity 

 

The NGA is a rich ecoregion of the world’s oceans in which seasonal cycles in resource 

availability drive blooms of microscopic algae called phytoplankton (Lagerloef 1995; Stabeno et 

al. 2004). Superimposed on this seasonality is high interannual variability associated with global 

forcing events (e.g., El Niño). NGA phytoplankton productivity forms the base of the marine 

food web, affects distributions of critical prey species (e.g., copepods and capelin; Liu et al. 

2005; Shultz et al. 2009), and supports economically important fisheries (Anderson and Piatt 

1999; Sumaila et al. 2011). Therefore, factors affecting phytoplankton growth and physiology 

are critical to understanding the high productivity of the NGA ecosystem.  

Seasonal cycles in resource availability contribute to large-scale spatiotemporal 

variability in phytoplankton biomass and community composition in the NGA (Brickley and 

Thomas 2004; Strom et al. 2006; Waite and Mueter 2013). In the spring, when downwelling-

favorable winds are strong and promote vertical mixing, phytoplankton blooms are dominated by 

large-celled diatoms (e.g. Thalassiosira and Chaetoceros; Strom et al. 2016). In summer, with 

the onset of stratification and nutrient depletion at depths < 20 m, communities become 

dominated by Synechococcus sp., a photosynthetic bacteria, as well as flagellates < 10 µm in size 

(Strom, unpublished data). Fall communities are often dominated by these small algae and 

diatom abundance becomes highly variable. During all seasons, phytoplankton distributions 

across the shelf follow gradients in dissolved nutrients, particularly iron (Strom et al. 2006; Wu 

et al. 2009). Despite general seasonality in phytoplankton biomass, interannual temporal-spatial 

variability exists with respect to bloom
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 timing, intensity, duration, and resource utilization (Henson 2007; Waite and Mueter 2013). 

Because of environmental heterogeneity, phytoplankton blooms are controlled by a variety of 

bottom-up (growth rate limiting) and top-down (biomass eliminating) regulatory processes that 

remain incompletely characterized.  

Iron availability is one of the most important mechanisms controlling primary production 

in the NGA (e.g. Martin et al. 1989; Boyd et al. 2004). Off the continental shelf, the oceanic 

waters of the NGA have been classified as high-nitrate low-chlorophyll (HNLC), and 

phytoplankton blooms are less common in this region due to iron limitation (Martin and 

Fitzwater 1988; Hutchins and Bruland 1998; Boyd et al. 2004). However, the nature of this 

limitation is complex due to episodic iron input across the region. Atmospheric dust and 

anthropogenic aerosol deposition may be the primary allochthonous source of the oceanic North 

Pacific’s iron (Moore et al. 1984; Duce 1986; Duce and Tindale 1991a; Aguilar-Islas et al. 

2010). A single dust event in 2006 deposited 25 – 80 ktons of Fe into the NGA, of which 30 – 

200 tons was soluble (Crusius et al. 2011). During atmospheric transport, aerosolized Fe(III) 

complexes may be reduced to labile forms by photochemical processes (Donaghay et al. 1991; 

Duce and Tindale 1991b), contributing to the bioavailability of terrigenous iron to phytoplankton 

(Young et al. 1991; Mackey et al. 2012; Achterberg et al. 2013). Freshwater input from large 

point sources (e.g. the Copper River; Aguilar-Islas et al. 2016) and glacial discharge (Lippiatt et 

al. 2010) peaks between June and September and carries with it large suspended sediment loads 

(> 70 x 106 tons yr-1; Milliman and Syvitski 1992). Iron constitutes ~ 4 % of the sediment load, 

by weight, making freshwater input a major source of allochthonous iron to the NGA (Wu et al. 

2009). Despite large concentrations of iron flowing into the NGA, the Alaska Coastal Current 

constrains much of the fluvial iron input to coastal waters (Wu et al. 2009) and establishes cross-
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shelf gradients in dissolved iron concentrations. Cross-shelf gradients in phytoplankton 

distribution in the NGA are expected to be correlated with the distribution of dissolved iron 

(Strom et al. 2006), but the bioavailability of fluvial iron inputs and their role in dictating 

phytoplankton community composition remain incompletely characterized. In summer when the 

downwelling winds relax, inflow of deep offshore waters charges coastal waters with nutrients, 

including iron. Upwelling events infrequently occur during summer, but when they do, they may 

sporadically deliver subsurface iron to the euphotic zone (Stabeno et al. 2004; Whitney et al. 

2005; Ladd et al. 2005). Finally, mesoscale eddy propagation across the NGA shelf break may 

enhance phytoplankton growth in HNLC waters. Eddies originating near Sitka and Yakutat 

promote upwelling on their leading and trailing edges, entrain and transport iron-rich coastal 

water to the HNLC region, and promote cross-shelf exchange (Okkonen et al. 2003; Lippiatt et 

al. 2010). Iron sourced to the HNLC waters from eddies can persist for several years and 

contribute sporadically to phytoplankton productivity (Whitney et al. 2005).  

Iron availability acts as an important bottom-up regulator of phytoplankton productivity. 

The relative bioavailability of the terrigenous, subsurface (i.e. deep shelf), and synthetic iron 

sources has not been established. Different iron sources may differentially influence 

phytoplankton growth rates and primary production in the NGA. In this way, both the amount 

and source of iron act as bottom up regulators of phytoplankton and dictate NGA phytoplankton 

community composition and the magnitude of phytoplankton blooms. 
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Bottom-up Bloom Regulation: Proximal Physiological Effects of Iron Limitation 

 

The reduction-oxidation reactivity of inorganic iron makes it a versatile and necessary 

component of many metabolic pathways (Morel et al. 1991). Iron is vital for cofactors, cellular 

respiration, photosynthesis and associated light- harvesting pigments, and reactive oxygen 

species (ROS) regulation (Morel et al. 1991; Geider and La Roche 1994). Given the importance 

of iron in mediating metabolism in plants, iron limitation in the NGA phytoplankton community 

is expected to have significant effects on primary production.  

 Phytoplankton show great plasticity in biochemical composition, nutrient utilization, and 

photosynthetic efficiencies (Morel et al. 1991), yet iron limitation elicits sustained physiological 

harm to phytoplankton cells. Chlorosis, a decrease in cellular chlorophyll a content, has been 

documented for both Synechococcus sp. and eukaryotic phytoplankton exposed to limiting iron 

(Rueter and Ades 1987; Doucette and Harrison 1990; Greene et al. 1991, 1992). Essential 

pigment-binding proteins, cytochromes, and D1 proteins (a key protein in the photosystem II 

reaction center) also decrease in these phytoplankton (Glover 1977; Guikema and Sherman 

1983). Damage to the photosynthetic apparatus, diagnosed by declines in photosynthetic 

efficiency, occurs in iron limited phytoplankton both in culture and in situ. Photosynthetic 

efficiency is a measure of how well photosystem II transfers electrons in the photosynthetic 

pathway and reflects the ability of phytoplankton cells to harvest light for carbon fixation 

(Krause and Weis 1984). Declines in photosynthetic efficiency have been documented for many 

iron-starved phytoplankton in culture including Synechococcus sp. (Guikema and Sherman 

1983), chlorophytes (Rueter and Ades 1987; Greene et al. 1992), and diatoms (Greene et al. 

1991, 1992; Allen et al. 2008; Sunda and Huntsman 2011). Iron addition to phytoplankton 

communities in the Southern Ocean (Olson et al. 2000; Boyd et al. 2004) and equatorial Pacific 
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(Behrenfeld et al. 1996) resulted in increases in photosynthetic efficiency over the course of 

several days, indicating widespread iron limitation in these HNLC regions. After iron was added 

to starved cultures of Dunaliella tertiolecta, photosynthetic recovery occurred in three stages 

over a period of > 18 h (Greene et al. 1992), indicating that iron starvation may have significant 

effects on HNLC phytoplankton production.  

ROS also acts as a bottom-up regulator of phytoplankton growth during iron limitation. 

The production of ROS (e.g., superoxide (●O2
-), hydrogen peroxide (H2O2), and hydroxyl radical 

(●OH)) occurs during cellular respiration, photo-oxidation of photosystem II reaction centers, or 

via the Mehler reaction (Salin 1988). ROS are vital components of intracellular signaling 

cascades, gene regulation pathways, and antiviral defenses (Apel and Hirt 2004; Liu et al. 2007). 

However, left unchecked, ROS can degrade lipid bilayers, alter protein structures, and mutate 

DNA (Lesser 2006). Phytoplankton naturally regulate ROS by synthesizing scavenging 

antioxidants such as Fe-superoxide dismutase, catalase, and peroxidase (Canini et al. 1992; 

Geider and La Roche 1994; Martínez 2007) and by synthesizing non-enzymatic anti-oxidants 

(e.g. ascorbate, various pigments; Mallick and Mohn 2000). Under iron-limiting conditions, 

production of iron-containing antioxidants is impaired and the ability of cells to quench ROS is 

reduced. As a result, increases in programmed cell death and reductions in population growth 

rate have been documented for iron- starved cells (Geider and La Roche 1994).  

 

HNLC Phytoplankton Adaptations to Iron Limitation 

 

Given the importance of dissolved and reduced iron to phytoplankton physiology, some 

phytoplankton groups have evolved adaptations to permit growth in the HNLC regions of the 

world’s oceans. One way to reduce cellular iron quotas is to decrease cell size. The increased 
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surface area to volume ratio that characterizes smaller cells increases the efficiency of iron 

acquisition. Indeed, the observation that HNLC regions are consistently populated by 

phytoplankton < 5 μm (henceforth termed ultraplankton; Booth 1988; Chavez 1989) suggests 

that these small cells may be adapted to the iron-limiting environments of the NGA.  

Another way to adapt to iron-limiting conditions is to increase acquisition of bioavailable 

iron. Both coastal and HNLC Synechococcus sp. synthesize siderophores that are released into 

the phycosphere, bind dissolved Fe(III), and are returned to the cell via membrane-bound 

transport proteins (Berube et al. 2018; Ahlgren et al. 2019).  In addition to scavenging 

siderophore-bound iron (Kazamia et al. 2018), eukaryotic phytoplankton may also synthesize 

their own extracellular ligands (e.g., domoic acid produced by Pseudo-nitzschia spp.; Hopkinson 

and Morel 2009). In response to iron limitation, eukaryotic phytoplankton also increase the 

concentration of membrane- bound iron receptors and reductases, and/or substitute non-iron-

containing proteins to carry out essential metabolic functions (McKay et al. 1999; Erdner and 

Anderson 1999). Conversely, Fe3+ receptor, and Fe3+ reductase production decrease in iron- 

replete conditions (Hudson and Morel 1990; Reid and Butler 1991), suggesting that these 

proteins are an evolutionary adaptation that increases phytoplankton fitness during persistent iron 

limitation. 

 

Addressing the Unknowns of Iron Limitation in the NGA 

 

Iron limitation contributes to bottom-up regulation of primary productivity in the NGA 

(Martin and Fitzwater 1988; Martin et al. 1989; Boyd et al. 2004). Phytoplankton community 

responses to iron addition result from complex interactions between iron inputs potentially 

differing in bioavailability and phytoplankton adaptations to HNLC conditions. The level of 
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complexity and high degree of variability of these interactions makes iron limitation a critical 

aspect of study to understand phytoplankton community structure and the productivity of the 

NGA. Previous deckboard incubation and in situ iron fertilization experiments have used 

synthetic FeCl3 as an iron source to classify the Pacific subarctic as an HNLC ecoregion (Martin 

and Fitzwater 1988; Martin et al. 1989; Boyd et al. 1996, 2004). However, the bioavailability of 

FeCl3 relative to natural sources has yet to be established. If bioavailability of FeCl3 differs 

significantly from natural sources, previous empirical results will require reinterpretation. To 

address these unknowns, and to better understand factors regulating phytoplankton growth and 

physiology in the NGA’s HNLC region, we sought to quantify the growth, community 

composition, and physiological responses of HNLC phytoplankton to terrigenous iron sourced 

via the Copper River, one of the largest point sources of iron in the NGA (Aguilar-Islas et al. 

2016) compared with the synthetic source, FeCl3. The primary goal of the study was to perform a 

5 d grow-out iron addition experiment in which iron and macronutrient concentrations, 

chlorophyll a, community composition, and phytoplankton physiology were regularly assessed to 

test the following hypotheses:  

 

1. Iron limitation is a strong bottom-up regulator of HNLC diatom growth and 

physiology. 

a. Cells > 20 µm exposed to FeCl3 and the Copper River plume iron source 

will have higher net growth rates relative to the control 

b. Cells > 20 µm exposed to FeCl3 and the Copper River plume iron source 

will have higher photosynthetic efficiency relative to the control 
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2. Phytoplankton < 5 µm are uniquely adapted to iron-limited conditions in the NGA 

HNLC region. 

a. Net growth rates for cells < 5 um will be similar for cells exposed to 

FeCl3, Copper River plume, and control iron sources 

b. Photosynthetic efficiencies for cells < 5 um will be similar for cells 

exposed to FeCl3, Copper River plume, and control iron sources 

c. Phycoerythrin (Synechococcus sp.) and chlorophyll a (pico- and 

nanoeukaryote) concentrations will be similar for cells exposed to FeCl3, 

Copper River plume, and control iron sources 

d. Intracellular ROS concentrations will be similar for Synechococcus sp. and 

pico- and nanoeukaryotes exposed to FeCl3, Copper River plume, and 

control iron sources 

3. FeCl3 will be more bioavailable to phytoplankton, relative to natural sources. 

Here, we define bioavailability as the ability of an iron source to improve 

phytoplankton physiology and increase chlorophyll a production efficiency.  

a. Phytoplankton net growth rates and production efficiencies (∆ chlorophyll 

a: ∆ dFe) will be higher for the total phytoplankton community exposed to 

FeCl3, relative to those exposed to the Copper River plume and control 

iron sources 

b. Nitrate utilization ratios (∆N: ∆dFe) will be higher for the total 

phytoplankton community exposed to FeCl3 than those exposed to the 

Copper River plume and control iron sources 
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Hecky and Kilham (1988) argue that deckboard iron addition experiments are speculative 

without ecosystem-scale corroboration. Chlorophyll a concentrations in bottle experiments often 

surpass those of in-situ experiments (Banse 1990; de Baar et al. 1990; Helbling et al. 1991), 

suggesting that no true control exists in deckboard experiments. Moreover, chlorophyll a 

accumulation can be initially similar for control and FeCl3 treatments (Price et al. 1991), 

suggesting that bottle effects strongly influence phytoplankton response to iron addition. To 

address Hecky and Kilham’s concerns, a secondary goal of the current study was to provide 

context to the iron addition experiment by characterizing  phytoplankton community 

composition and physiology on an ecosystem scale. We, therefore, separately sampled the 

ambient phytoplankton communities along three transects in the summer of 2019 (Figure 1) to 

quantify chlorophyll a biomass, photosynthetic efficiency, and the abundance and physiology of 

cells < 5 µm. Given strong cross-shelf gradients in phytoplankton community composition and 

physiology observed in the NGA, sampling these transects provided a wide range of natural 

responses to which the phytoplankton responses in our iron addition experiment were compared.    

 

 

 

 

 

 

 

 

 



10 
 

METHODS 

 

Study Site 

 

To investigate the growth and physiology of HNLC phytoplankton exposed to different 

sources of iron-rich seawater, a 5 d deckboard incubation experiment was performed aboard the 

R/V Sikuliaq in conjunction with the NGA Long-Term Ecological Research (LTER) program. 

The NGA LTER study site is composed of three transects, including the historically sampled 

Seward Line, and extends southwestward from Middleton Island west of the Copper River to 

Kodiak Island (Figure 1). The site covers an area approximately 2.2 x 105 km2 in size. Though 

the Seward Line has been episodically sampled since the 1970s and systematically since 1998 

(Janout et al. 2010), sampling of the additional LTER transects started in Spring of 2018. The 

following iron addition experiment and associated environmental sampling was conducted 

during a process cruise from 25 June to 15 July 2019.  

 

Water Collection 

 

The iron addition experiment utilized near-surface seawater (~ 1.5 m) collected from two 

distinct regions of the NGA: The Copper River plume and the HNLC region. Water was 

collected from the Copper River plume near 60° 11.49’ N, 145° 33.00’ W on 04 July 2019. The 

HNLC sampling site was identified prior to sampling using the R/V Sikuliaq under-way system 

(Nitrate ~ 3.5 µM; Salinity ~ 32.2 psu) and sampled near 57° 21.05’ N, 145° 42.80’ W on 08 

July 2019. Water was collected using a trace-metal-clean pumping system consisting of Teflon™ 

tubing attached to the outside of a bathythermograph towed 5 m away from the side of the ship to 

avoid contamination from the ship (Bruland et al. 2005; Aguilar-Islas and Bruland 2006). Water 
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was filtered in-line through a 0.2 µm Supor filter capsule (AcroPak™ 200) to remove all 

particles. In addition to the two filtered seawater (FSW) sources, an additional unfiltered sample 

from the HNLC site was collected and gently pre-screened through a 200 µm Nitex mesh to 

remove large zooplankton. This water, containing the intact HNLC community < 200 µm and 

referred to hereafter as HNLC200, served as the source of HNLC phytoplankton. All water 

samples were stored in acid-washed, low-density polyethylene carboys in darkness at 13 °C until 

use in the experiment.  

 

Experimental Setup 

 

The experimental setup is diagrammed in Figure 2. All experimental processing was 

carried out under positive pressure inside a plastic enclosure built inside the ship using trace 

metal clean techniques. Three treatments were created by mixing FSW 1:3 with HNLC200 in 

separate acid-washed carboys (referred to hereafter as “mixed carboys”). A 1:3 FSW: HNLC200 

ratio was chosen to reduce dilution of the HNLC phytoplankton community and to maintain a 

salinity ~ 32.2 psu in experimental bottles. For the control treatment, a mixture of 8 L HNLC 

FSW and 17 L HNLC200 was created and dispensed into ten 2.3 L polycarbonate bottles. To 

allow comparisons of natural iron sources to sources used in previous iron addition experiments 

in the NGA, another HNLC FSW:HNLC200 mixture was combined in a 1:3 ratio and spiked with 

FeCl3 to a final Fe concentration of 4.56 nM. This mixture constituted the “FeCl3” treatment and 

was used to fill an additional ten 2.3 L polycarbonate bottles. To prepare the “river plume” 

treatment, 7.0 L of Copper River plume FSW was first diluted with 1.0 L of HNLC FSW to 

maintain a salinity of ~ 27 psu in the Copper River plume FSW:HNLC200 mixture and limit 

changes in HNLC phytoplankton physiology due to salinity stress. Seventeen liters of HNLC200 
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was then added to this diluted Copper River FSW. This combined mixture constituted the “river 

plume” treatment and was used to fill a final ten 2.3 L polycarbonate bottles.  

 To avoid iron contamination during the incubation period, each replicate bottle (N= 30) 

was capped, sealed with Parafilm and electrical tape and placed in two plastic Ziploc® bags 

tightly secured using electrical tape. Filled bottles were stored in darkness at 13 °C until all 

treatments were mixed and all replicate bottles filled.  

 

Incubation and Sampling- Replicate bottles were incubated on-deck over the course of five days 

in two plexiglass incubators. Placement of replicate bottles within incubators was haphazard. 

Incubation temperature was maintained using an under-way flow through system and averaged 

14.5 ± 0.1  °C throughout the experiment. Photosynthetically active radiation (PAR) was 

controlled to the 50 % ambient light level using a single layer of neutral density screen around 

each bottle. A Li-Cor 2π quantum sensor secured to the ship’s superstructure collected incident 

PAR data.  

Experimental bottles from each treatment were sacrificially sampled at regular intervals 

to quantify phytoplankton biomass, community composition, physiology, and nutrient use. Initial 

bottles (n= 1) were sampled immediately after the start of incubation at 21:30 on 08 July 2020. 

Two bottles per treatment were sampled at 48 h, 72 h, and 96 h, while three bottles per treatment 

were sampled at 120 h. This unbalanced experimental design represented a compromise between 

the logistic feasibility of performing a large iron addition experiment and the desire to replicate 

measurements at each time point. Specific sampling techniques are described in further detail 

below.  
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Size-fractionated Chlorophyll a and Fv/Fm 

 

Chlorophyll a concentrations were obtained for phytoplankton > 20 µm, 5- 20 µm, and < 

5 µm and used as a proxy for biomass. 75 mL aliquots were vacuum-filtered in parallel through 

20- and 5 µm (25 mm) PCTE filters (Thomas Scientific) and a 0.7 µm (25 mm) glass fiber filter 

(VWR International). Pigments were then extracted in 90 % acetone over 24 h (dark; -20 °C) and 

red autofluorescence was measured on a Turner 10-AU fluorometer following the acidification 

method of Holm-Hansen et al. (1965).   

Size-fractionated and total community measurements of photosynthetic efficiency 

(Fv/Fm) were used as an indicator of photosystem II stress (Krause and Weis 1984; Greene et al. 

1992). 50 mL aliquots were gravity-filtered through 20- and 5 µm (25 mm) PCTE filters 

(Thomas Scientific). Cells were then resuspended from the 20 µm filter into 25 mL of FSW 

following Cermeño et al. (2005) to isolate cells > 20 µm. Filtrate from the 5 µm filter was 

collected and used to determine the Fv/Fm of phytoplankton < 5 µm. 5 mL subsamples (in 

triplicate) were taken from the resuspension, the filtrate, and the incubation bottle (to 

characterize the total community). All subsamples were dark acclimated at ~ 13 °C  for 20 min 

(as determined by preliminary tests; data not shown) before Fv/Fm was measured on a WALZ 

Water-PAM fluorometer (Alderkamp et al. 2010).  

 

Flow Cytometric Analysis of Phytoplankton < 20 µm 

 

Two types of flow cytometry samples were used to characterize the physiology and 

abundance of Synechococcus sp. and pico- and nanoeukaryotes. “Community composition” 

samples (2.0 mL, in duplicate) were filtered through a 20 µm (25 mm) PCTE filter (Thomas 
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Scientific) and used to quantify cell abundance and qualitatively assess cell size and 

photosynthetic pigment content (Dubelaar and Jonker 2000).  

Oxidative stress was qualitatively assessed with the CellROX™ Green intracellular probe 

(Cheloni et al. 2014). The probe was obtained from ThermoFisher Scientific and prepared by 

diluting 50 µL aliquots of CellROX™ Green in 150 µL of pre-filtered (0.2 µm) DMSO. To 

prevent degradation of the probe, it was stored in darkness at – 20 °C until use in the experiment. 

Duplicate “ROS” samples (1.0 mL), pre-filtered through a 20 µm filter, were treated with 

CellROX™ Green to a final concentration of 5 µM. All flow cytometry samples were dark- 

incubated for 60 minutes at 13 °C before being fixed with pre-filtered (0.2 µm) 

paraformaldehyde (0.5 % v/v) and flash frozen in liquid nitrogen. Samples were stored in 

darkness at – 80 °C for flow cytometric analysis onshore.  

Samples were thawed immediately before they were run on a Becton-Dickson 

FACSCalibur equipped with a 15 mW 488 nm argon laser. Each flow cytometry sample was run 

twice in succession at a medium flow rate for 120 s. Prior to running samples on the flow 

cytometer, a bead solution of known concentration (4.12 x 105 beads mL-1) was made using 

Yellow-Green Fluoresbrite® microspheres (1 µm, Polysciences Inc.). A 50 µL aliquot of this 

bead solution was added to each flow cytometry sample. The inclusion of beads in each sample 

served as an internal standard to normalize fluorescence properties and was used to establish 

analysis volumes for each flow cytometry run (Dubelaar and Jonker 2000; Collier and Palenik 

2003). Analysis volumes were calculated as the number of beads detected, relative to the 

concentration of beads in each sample. Synechococcus sp. and pico- and nanoeukaryote 

abundances were then calculated based on the analysis volume of each run.  
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Listmode files (FSC 2.0 format) containing forward light scatter (FSC), red (FL3) and 

orange (FL2) autofluorescence, and green fluorescence (FL1) for each event recorded by the 

flow cytometer were acquired using CellQuest Pro (Table 1). FlowJo (v. 10; BD Life Sciences) 

was used to import FSC files and visually gate Synechococcus sp. and pico- and nanoeukaryote 

populations (Figure S1). To avoid the inclusion of debris particles and cell aggregates in data 

analysis, Synechococcus sp. and pico- and nanoeukaryote populations were further refined by 

analyzing relative frequency distributions of FSC (bin width 2 and 10, respectively). Particles in 

bins with a relative frequency of < 5 % were identified as outliers and eliminated from 

Synechococcus sp. and pico- and nanoeukaryote population estimates. Microscopy based 

estimates at 0 h and 120 h of the iron addition experiment and a subset of LTER transect stations 

suggested that flow cytometry under-estimated Synechococcus sp. abundance. Underestimation 

of Synechococcus sp. was likely due to clumping of cells and the removal of these aggregates 

from the Synechococcus sp. population. We determined that the average offset for 

Synechococcus sp. in the iron addition experiment and LTER transect stations was 44 % and 33 

%, respectively (e.g., Figure S2), and counts were adjusted accordingly. Once Synechococcus sp. 

and pico- and nanoeukaryote populations were refined, FL1, FL2, and FL3 for each cell in each 

run were normalized to the median of the respective bead parameter.  

Levels of green fluorescence observed in “ROS” samples derive from two major sources: 

endogenous green fluorescence after aldehyde fixation (Vaulot et al. 1989) and the activation of 

the CellROX™ Green probe by metabolic production of intracellular ROS (Salin 1988). To 

control for background (i.e. endogenous) levels of green fluorescence, the bead-normalized FL1 

signal of each Synechococcus sp. and pico- and nanoeukaryote cell in “probed” ROS samples 

was normalized again to the mean bead-normalized FL1 signal for the corresponding population 



16 
 

in “un-probed” community composition samples. The normalized FL1 ratio for a given cell is 

given by Equation (1).  

 

 𝐹𝐿1 𝑟𝑎𝑡𝑖𝑜𝐶𝑒𝑙𝑙  𝑖𝑛 𝑅𝑂𝑆 𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝐵𝑒𝑎𝑑 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝐿1 𝐶𝑒𝑙𝑙 𝑖𝑛 𝑅𝑂𝑆 𝑠𝑎𝑚𝑝𝑙𝑒

𝑚𝑒𝑎𝑛 (𝐵𝑒𝑎𝑑 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝐿1𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 𝐶𝑜𝑚𝑚.  𝐶𝑜𝑚𝑝.  𝑠𝑎𝑚𝑝𝑙𝑒)
                      (1) 

 

If ROS production decreases with the addition of iron, the FL1 ratio should be lower in the river 

plume and iron chloride treatments, relative to the control.   

 

Microscopic Analysis of Diatom Community Composition 

 

To quantify changes in the diatom community composition during the incubation, 250 

mL samples were fixed with 4.4 mL borate-buffered formalin at the initial (0 h) and final (120 h) 

time points. Samples were settled using the Utermöhl method (Lund et al. 1958) for ≥ 12 h 

before diatoms were enumerated under inverted microscopy (magnification 125X and 250X). 

Diatoms were identified at the genus level, enumerated, and measured using a digitizing system 

and the MicroBiota program (Roff and Hopcroft 1986). Since a 2D focal plane restricted the 

ability to measure diatom depth, Microbiota utilized a taxa-specific depth assumption, defined as 

a fraction of cell width, to estimate the depth of each cell measured. Estimates of biovolume for 

each diatom cell were delivered by Microbiota based on the relationship between depth 

assumption and taxa-specific shape (Table S1). Biovolumes were then converted to biomass 

estimates using a C: volume relationship for diatoms established by Menden-Deuer and Lessard 

(2000). Diatom biomass estimates were partitioned by taxon to assess changes in diatom 

community composition across treatments and aggregated to obtain total diatom biomass for 

each treatment.   
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Nutrient Analysis 

 

All nutrient samples were collected by Dr. Ana Aguilar-Islas and analyzed at the 

University of Alaska-Fairbanks in the Nutrient Analytical Facility. Macronutrient (nitrate, nitrite, 

phosphate, and silicic acid) analyses were performed on a Seal Analytical continuous-flow 

QuAAtro39 AutoAnalyzer using methods derived from Armstrong et al. (1967; nitrate, nitrite, 

silicic acid) and Murphy and Riley (1962; phosphate). Micronutrient (e.g., dissolved Fe (dFe) 

and dissolved Copper (dCu)) concentrations were measured following protocols outlined in 

Aguilar-Islas et al. (2016). 

 

Contextualizing the Iron Addition Experiment 

 

To provide environmental context to the iron addition experiment, phytoplankton 

communities in the iron addition experiment were compared to ambient phytoplankton 

communities at 23 stations along three LTER transects (Figure 1). Surface water (< 4 m depth) 

was obtained from Niskin bottles on a Seabird SBE 9/11 Plus CTD at each station sampled. 

Water for flow cytometry samples was filtered in-line through a 50 µm mesh. Measurements of 

size-fractionated chlorophyll a, Fv/Fm (Total, < 5 µm, and > 5 µm), and flow cytometric 

properties (including intracellular ROS content) for Synechococcus sp. and pico- and 

nanoeukaryotes were obtained using methods described above.  

 

Data Analysis 

 

All statistical analyses were performed in R (v. 3.6.2). Given the variability in natural 

phytoplankton communities, the inability to distinguish the majority of phytoplankton species, 
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and divergent growth in replicate bottles, alpha was set to 0.10 for all statistical analyses unless 

otherwise noted.  

  Net growth rates for phytoplankton were derived from the ordinary least squares 

regression coefficients of ln-transformed chlorophyll a versus time for 48 h -96 h. Differences in 

net growth rates across treatments were determined using Tukey’s pairwise contrasts.  

Differences in size fractionated Fv/Fm and in Synechococcus sp. and pico- and 

nanoeukaryote flow cytometric measurements across treatment and time were determined using 

a full or reduced Generalized Least Squares Model (Equation 2). Where treatment: time 

interaction was not significant, a reduced model was used (see below). In cases where the 

treatment:time interaction was significant, Tukey’s pairwise contrasts were used to compare 

slopes across treatment. 

 

                   𝑌 =  𝛽0 + 𝛽1(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝛽2 (𝑇𝑖𝑚𝑒) + 𝛽3(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)(𝑇𝑖𝑚𝑒) + 𝜀         (2) 

 

In cases where no significant treatment:time interaction was observed, a reduced GLS model 

(Equation 3), followed by Tukey’s pairwise contrasts, was used to test differences across 

treatment means. 

 

                    𝑌 =  𝛽0 + 𝛽1 (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝛽2 (𝑇𝑖𝑚𝑒) + 𝜀                                               (3) 

 

In all cases, models were visually validated by plotting residuals and checking for normality and 

homoscedasticity. The residuals for pico- and nanoeukaryote abundance were not normally 
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distributed, and this variable was analyzed using a Generalized Linear Mixed Model (nlme 

package) that accounted for flow cytometer run, replicate, and experimental bottle.  

 A multiple algorithm approach, combining Ward’s hierarchical classification on principal 

components and K-means aggregation, was used to contextualize the phytoplankton 

communities in the iron addition experiment within the ambient communities sampled on the 

NGA transects (Ben-Hur and Guyon 2003; Argüelles et al. 2014). Total chlorophyll a and Fv/Fm 

measurements were highly correlated with size-fractioned values (Pearson’s r = 0.91 and 0.92, 

respectively). Therefore, only chlorophyll a and Fv/Fm measurements for the total 

phytoplankton community, along with all flow cytometric measurements for Synechococcus sp. 

and pico- and nanoeukaryotes, for each iron treatment or station were used in principal 

components analysis. A scaled and centered principal components analysis was run using the 

prcomp function in R. Euclidean distance and Ward’s minimum variance method were then used 

to cluster the first 8 (of 10) principal components.1 

 After the hierarchical clustering of principal components was performed, K-means 

aggregation was used to identify regional groupings. Optimization of K-means mobile centers 

was performed using the “elbow” method (Bholowalia and Kumar 2014; Yuan and Yang 2019) 

and indicated clusters could be split into three regional groups. This multiple algorithm method 

generated a dendrogram with clusters containing both iron addition and LTER transect samples 

nested within three robust regional groups. 

 

 
1 Ben-Hur and Guyon (2003) recommend using the minimum number of principal components that generate stable 
clusters in the final dendrogram presented in publication. Preliminary clustering analysis of principal components 
(data not shown) indicated that the inclusion of 8 components met this requirement.  
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RESULTS 

 

Growth and Physiology of the Total Phytoplankton Community 

 

The NGA HNLC phytoplankton community responded differentially to the iron 

treatments. After a 48-h lag, total chlorophyll a biomass increased rapidly in the FeCl3 treatment 

(specific net growth rate = 0.78 d-1) and more slowly in the river plume (0.47 d-1) and control 

treatments (0.31 d-1; Table 2). Total chlorophyll a peaked at 2.82 ± 0.12 µg L-1 (mean ± 1 sd) 

for cells exposed to FeCl3 at 96 h before leveling off (Figure 3A). Leveling off of total 

chlorophyll a biomass occurred only in the FeCl3 treatment after 96 h and coincided with near 

exhaustion of nitrate and silicic acid (Figures 4A, 4D).  

 The addition of the FeCl3 and river plume iron sources increased photosynthetic 

efficiency for the total phytoplankton community. Average Fv/Fm for the total phytoplankton 

community ranged from 0.40 ± 0.01 to 0.53 ± 0.01 and was consistently highest in the FeCl3 

treatment (Figure 5A; Table 3). With the exception of a slight decrease from 0 h – 48 h in the 

control, Fv/Fm remained consistent over the duration of the experiment and averaged 0.40 ± 

0.04, 0.49 ± 0.02, and 0.53 ± 0.04 in control, river plume, and FeCl3 treatment, respectively 

(Table 3). The response of phytoplankton > 20 µm mirrored that of the total community, 

responding uniquely to each of the three iron sources, while cells < 20 µm responded similarly to 

the river plume and FeCl3 

 

Growth and Physiology of Cells > 20 µm 

 

The addition of FeCl3 stimulated a diatom bloom, indicated by an increase in the 

chlorophyll a > 20 µm concentrations (Figure 3D) and the fraction of total chlorophyll a > 20 
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µm (Figure 3E), that was less pronounced in the control and river plume treatments. Net growth 

rates of cells > 20 µm were ≥ 2X higher in the FeCl3 treatment than in the control and river 

plume treatments (Table 2). Though control and FeCl3 treatments contained the same dominant 

diatom species, diatom biomass (z = 2.66, p= 0.022) and abundances (z= 11.49, p < 0.0001) were 

higher in the FeCl3 treatment at the end of the experiment (Figures 6, 7). The pennate diatom 

Pseudo-nitzschia spp. (e.g. P. multiseries, P. delicatissima, and P. pungens) and centric diatom 

Thalassiosira spp. (e.g. T. pacifica, T. eccentrica, and T. nordenskioeldii) dominated the diatom 

community in these two treatments and together comprised over 92 % of total cells (Figure 7) 

and 45 % of total diatom biomass (Figure 6). 

In contrast to the FeCl3 treatment, the river plume treatment produced only marginally 

more chlorophyll a > 20 µm and diatom biomass (z= 0.88, p= 0.66) than the control (Figures 3D, 

6). However, increased drawdown of dFe in the first 48 hours (Figure 8A) and higher 

chlorophyll a > 20 µm biomass in the river plume treatment (Figure 3D) suggest that the iron in 

the river plume treatment was more bioavailable than that in the control. Pseudo-nitzschia spp. 

and Thalassiosira spp. were present in the river plume treatment at much lower concentrations 

than those observed in the control or FeCl3 treatments and constituted only ~ 21 % of total 

diatom biomass (Figure 6). Small chain-forming Rhizosolenia spp. (comprised of cells < 100 µm 

in length), rarely observed in the control and FeCl3 treatment, averaged 4.78 x 104 ± 3.26 x 104 

cells L-1 in the river plume treatment. These cells comprised ~ 30 % of total diatom abundance 

(Figure 7) and almost 13 % of total diatom biomass. Large Rhizosolenia spp. (single cells > 100 

µm in length) were also more abundant in the river plume treatment than in the control and FeCl3 

treatments and constituted nearly 30 % of total diatom biomass (Figure 6). In all treatments, a 
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mixture of dominant chain-forming species and a minority of large, single-celled species 

constituted total diatom biomass (Tables S2, S3). 

   

 Photosynthetic efficiency for cells > 20 µm was consistently highest in the FeCl3 

treatment, intermediate in the river plume treatment, and lowest in the control (Table 3). Fv/Fm 

was elevated in the FeCl3 treatment even at 0 h, indicating a rapid response to FeCl3 addition 

during experimental setup. After 0 h, Fv/Fm for cells > 20 µm diverged in all treatments, 

remaining low in the control. A precipitous decrease in Fv/Fm from 0.45 ± 0.10 to 0.08 ± 0.04 

occurred in the control phytoplankton community in the first 48 h. After 48 h, the Fv/Fm of the 

control phytoplankton community increased, averaging 0.28 ± 0.06 for the remainder of the 

experiment (Figure 5C). Despite similar total diatom biomass in the control and river plume 

treatments, Fv/Fm was elevated in the river plume treatment, further supporting differential 

bioavailability of this iron source.  

 

Growth and Physiology of Cells < 20 µm 

 

In contrast to diatoms, which showed differential community composition and 

physiological responses to all three iron sources, the response of phytoplankton < 20 µm 

suggested that some of these cells responded similarly to the river plume and FeCl3 iron sources. 

Net growth rates from chlorophyll a were lowest for cells < 5 µm, reaching only 0.15 d-1, 0.39 d-

1, and 0.55 d-1 for the control, river plume, and FeCl3 treatments, respectively (Table 2). 

Chlorophyll a < 5 µm was highest in the FeCl3 treatment and diverged from the control after 48 

h (Figure 3B). Net growth rates for cells 5- 20 µm were higher than those of the smallest cells, 

reaching 0.53 d-1, 0.66 d-1, and 0.71 d-1 in the control, river plume, and FeCl3 treatments, 
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respectively (Table 2). Chlorophyll a in the 5- 20 µm size fraction was highly variable but 

closely mirrored that of cells < 5 µm (Figure 3C). 

Both the river plume and FeCl3 iron sources increased Synechococcus sp. abundance 

similarly, relative to the control. Synechococcus sp. abundance increased rapidly in all treatments 

for the first 72 h before growth tapered in the control (Figure 9A). Synechococcus sp. abundance 

was higher in the river plume and FeCl3 treatments than in the control after 48 h and increased at 

an average rate of 2,165 and 2,101 cells d-1, respectively. At the end of the experiment, 

Synechococcus sp. abundances in the river plume and FeCl3 treatments were nearly identical, 

reaching 2X those of the control (Figure 9A; Table 4).  

The addition of the FeCl3 and river plume iron sources enabled Synechococcus sp. cells 

to increase in size, relative to the control. On average, cells were largest in the FeCl3 treatment 

and intermediate in the river plume treatment. Synechococcus sp. FSC increased throughout the 

experiment for Synechococcus sp. in the river plume and FeCl3 treatments at equal rates (Table 

4) but remained nearly constant in the control (Figure 9B).  

Pico- and nanoeukaryote abundance remained constant in all treatments within the first 

72 h, averaging 67,000 ± 3,200  cells mL-1 (Figure 10A) before decreasing precipitously. After 

72 h, concentrations decreased at equal rates in all treatments (Table 4). Final pico- and 

nanoeukaryote abundances ranged from 46,000 cells mL-1 to 53,000 cells mL-1, representing a ~ 

25 % decrease in pico- and nanoeukaryote abundance in all treatments.  

As with Synechococcus sp., pico- and nanoeukaryotes were largest, on average, in the 

FeCl3 and river plume treatments. Average pico- and nanoeukaryote FSC increased rapidly in all 

treatments during the first 48 h. After 48 h, treatments diverged, with pico- and nanoeukaryotes 
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in the river plume and FeCl3 treatments becoming larger than those in the control treatment 

(Figure 10B, Table 4).  

The FeCl3 and river plume iron sources increased photosynthetic pigment content, 

relative to the control, and did so to equal extents for both Synechococcus sp. and pico- and 

nanoeukaryote cells. Phycoerythrin content per cell (FL2) increased in all treatments throughout 

the experiment but remained similar between the river plume and FeCl3 treatments (Figure 9C, 

Table 4). Synechococcus sp. chlorophyll a content was also highest in the FeCl3 and river plume 

treatments (Figure 9D). Trends in pico- and nanoeukaryote chlorophyll a content closely 

matched those of Synechococcus sp., with average chlorophyll a per cell (FL3) remaining nearly 

identical in the FeCl3 and river plume treatments, but higher than in the control (Figure 10C, 

Table 4). In contrast to Synechococcus sp. which did not exhibit an ROS response (Figure 9E, 

Table 4), intracellular ROS concentrations (FL1 ratio) for pico- and nanoeukaryotes were highest 

in the control (with the exception of the 72 h time point), intermediate in the river plume 

treatment, and lowest in the FeCl3 treatment (Figure 10D, Table 4). 

Fv/Fm values remained nearly identical between the river plume and FeCl3 treatments for 

cells < 5 µm, yet Fv/Fm in both treatments were consistently higher than in the control (Figure 

5B, Table 3). Fv/Fm decreased during the first 48 h for the control treatment, reaching a 

minimum of 0.31 ± 0.01 before gradually increasing to 0.41 ± 0.01 by 96 h.  

 

Macro- and Micronutrient Dynamics 

 

Macronutrient (nitrite, nitrate, phosphate, and silicic acid) drawdown was commensurate 

with diatom growth in all treatments (Figure 4). The addition of the river plume water to the 

HNLC sample nearly doubled initial Si concentrations while decreasing the available N and P. 
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However, N and P concentrations at 0 h were well above limiting levels for phytoplankton in all 

treatments. Throughout the incubation, drawdown of silicic acid was observed in the river plume 

and FeCl3 treatments and was accompanied by slower drawdown of nitrate. Si(OH)4:N 

utilization ratios remained well above the expected 1:1 ratio in the river plume and FeCl3 

treatments (Table 5). Residual Si(OH)4 at 120 h after N depletion, coupled with increasing N:P 

ratios (Table S4) in control and FeCl3 treatments indicate that diatom growth was likely N-

limited by the end of the experiment.  

Dissolved iron drawdown was also commensurate with phytoplankton growth in all 

treatments. Dissolved iron was ~ 3.5 nM higher in the FeCl3 treatment, relative to the river 

plume treatment and control at 0 h (Figure 8). Maximum dFe drawdown occurred in all 

treatments within the first 48 h and was steepest in the FeCl3 treatment. dFe concentrations were 

highest in the FeCl3 treatment throughout the entire incubation but were indistinguishable 

between the control and river plume treatments from 48 h – 120 h (Figure 8). Nitrate utilization 

ratios and total phytoplankton chlorophyll a production efficiencies, with respect to dFe, were ~ 

2.5X and ~ 1.5X higher in the river plume treatment, respectively, than in either the control or 

FeCl3 treatment (Table 5).  

 

Contextualizing the Iron Addition Experiment 

 

During the summer of 2019, total chlorophyll a biomass in surface waters of the NGA 

remained low (< 2.0 µg L-1) on all three transects and, like the communities in the control and 

river plume treatments, was dominated by cells < 5 µm. Total chlorophyll a biomass in the 

control and river plume treatments at 120 h fall well within the range measured in ambient 
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phytoplankton communities, while chlorophyll a biomass in the FeCl3 treatment (2.74 µg L-1) 

slightly exceeded the highest levels observed in the NGA (Figure 11).    

   Elevated chlorophyll a concentrations were observed at select stations and often 

coincided with suspected sources of iron. Chlorophyll a concentrations > 1.0 µg L-1 were 

observed at both MID 6 and KOD 5. These stations are among the shallowest on the shelf (~ 60 

m depth) and subsurface iron is likely sourced to surface waters by intense tidal mixing. Elevated 

chlorophyll a > 20 µm was also observed in eddy- influenced waters at the end of the MID Line, 

at GAK 15, at KOD 5, and in the center of a mesoscale eddy (EATJ) sampled at the end of the 

KOD Line ~ 200 nmi offshore (Figure 11). Though chlorophyll a > 20 µm was elevated at these 

discrete sites, chlorophyll a > 20 um constituted a maximum of 24 % of total chlorophyll a 

biomass.  

 Total photosynthetic efficiencies measured in the iron addition experiment agreed well 

with ambient phytoplankton communities on NGA transects. Total photosynthetic efficiency for 

communities on the MID and KOD lines remained consistently high (> 0.4) and was similar to 

total Fv/Fm in the river plume and FeCl3 treatments of the iron addition experiment (Figure 12). 

In contrast to the high Fv/Fm values observed on the MID and KOD lines, total Fv/Fm for 

ambient phytoplankton communities on the GAK line decreased across the shelf (Figure 12A). 

Phytoplankton offshore at GAK 15 had photosynthetic efficiencies approaching 0.2 and were 

most similar to the control in the iron addition experiment, which averaged 0.35. Fv/Fm < 5 µm 

(Figure 12B) tracked total Fv/Fm closely, while Fv/Fm > 5 µm (Figure 12C) was more variable 

and ranged from 0.13 to 0.60.    

 Nano- and picoeukaryote abundances, cell size, and chlorophyll a content were similar 

between ambient communities and those in the iron addition experiment at 120 h. Pico- and 
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nanoeukaryote abundances in ambient communities averaged 5.1 x 104 ± 1.2 x 105 cells mL-1 

(mean ± range) and were lowest on the middle of the KOD Line (Figure 13A). In contrast to the 

low abundances of pico- and nanoeukaryotes observed on the KOD Line, pico- and 

nanoeukaryotes bloomed on the inner MID Line and at GAK 5. Abundances at 120 h in the iron 

addition experiments closely matched those of ambient communities on all transects and were 

particularly similar to communities sampled at the beginning of the MID Line (Figure 13A). 

Pico- and nanoeukaryotes were largest on the GAK line and averaged 39.82 ± 21.78 (mean ± 

range) across all transects (Figure 13B). Though pico- and nanoeukaryotes at 120 h in the iron 

addition experiment were larger, on average, than those observed in the ambient community, 

FSC of these cells fell within the range of the natural communities observed in the NGA. 

Chlorophyll a content for pico- and nanoeukaryotes peaked on the middle of all three LTER 

transects (Figure 13C) and agreed with chlorophyll a content observed for cells in the iron 

addition experiment at all stations sampled. Nano- and picoeukaryote FL1 ratios were similar for 

communities on all three transects and averaged 1.81 ± 0.73 across the shelf. ROS content was 

elevated for in situ nano- and picoeukaryote cells, relative to cells in the iron addition treatment 

(Figure 13D).  

 In contrast to the pico- and nanoeukaryotes, Synechococcus sp. in the iron addition 

experiment did not agree as well with ambient communities. Synechococcus sp. abundance 

averaged 1.1 x 105 ± 3.1 x 105 cells mL-1 across all transects and was notably highest on the 

MID Line (Figure 14A). While Synechococcus sp. abundances were, on average, 1-2 orders of 

magnitude higher in ambient communities than in the iron addition experiment, low abundances 

at the end of the GAK Line (i.e., GAK 11 and GAK 13) were similar to final Synechococcus sp. 

abundances in the river plume and FeCl3 treatments (Figure 14A). Synechococcus sp. were 
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largest in the coastal waters on the GAK Line; cell size decreased in offshore waters on the GAK 

and MID Lines (Figure 14B). Synechococcus sp. in situ remained smaller, on average, than cells 

measured in the river plume and FeCl3 treatments of the iron addition experiment (Figure 14B). 

Phycoerythrin content (FL2) in ambient Synechococcus sp. communities averaged 0.31 ± 1.19 

(mean ± range) across all transects (Figure 14C) and was consistently highest on the KOD Line. 

FL2 was similar for Synechococcus sp. in ambient phytoplankton communities and cells 

measured in the iron addition experiment. FL1 ratios for Synechococcus sp. cells was highly 

variable across transects but was generally highest on the inner MID Line (Figure 14D). ROS 

content for Synechococcus sp. in our experiment was lower, on average, than that of the ambient 

communities in the NGA.  

 Multivariate clustering of LTER and iron addition experiments resulted in nested groups 

of samples in three distinct regions based on similarity (Figure 15). As expected, initial 

phytoplankton communities in each experimental treatment clustered tightly together and were 

most similar to potentially Fe-limited offshore stations (GAK 11, GAK 15, EATJ, and MID 10) 

and one mid-shelf station (GAK 5; Figure 15). Phytoplankton communities in the control 

remained clustered with offshore stations at 120 h, while those of the river plume and FeCl3 

treatments were most similar to stations on the mid- and inner shelf (e.g., KOD 5, KOD 9, MID 

6). These stations were among the most productive sampled in the NGA, with chlorophyll a 

biomass ranging from 0.51- 1.64 µg L-1 and Fv/Fm ranging from 0.44- 0.59.  

 While ambient phytoplankton communities in the NGA and those of the iron addition 

experiment clustered predictably, ROS content of pico- and nanoeukaryotes in the control 

treatment was generally higher than on LTER transects and was similar to ambient communities 

with Fv/Fm ≤ 0.4. In contrast, ROS content of Synechococcus sp. were generally lower than 
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communities on LTER transects. These results suggest that pico- and nanoeukaryotes were more 

stressed- and Synechococcus sp. less stressed- in the control of our experiment than in situ. 
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DISCUSSION 

 

Overview 

 

Though iron limitation of phytoplankton in HNLC regions is well established (Martin and 

Fitzwater 1988; Behrenfeld et al. 1996; Boyd et al. 2004), we are among the first to directly 

compare the bioavailability of natural and synthetic iron sources. Our study yields several 

insights regarding the bioavailability of iron to the NGA HNLC phytoplankton community. 

Firstly, the physiological response of phytoplankton > 20 µm to FeCl3 addition aligns well with 

previous iron addition experiments and confirms that NGA diatom biomass is regulated by iron 

limitation in offshore waters. Secondly, shifts in diatom physiology and community composition 

indicate that the FeCl3, the control, and river plume iron sources represent distinct pools of iron, 

each differing in bioavailability to phytoplankton > 20 µm. Thirdly, despite the proposed benefits 

of increased surface area:volume ratios, the physiological response of pico- and nanoeukaryotes 

to iron addition indicates that these cells were stressed by low iron availability in situ. Finally, 

differences in nutrient use and chlorophyll a production efficiencies for total phytoplankton 

communities highlight divergent ecological fates of the FeCl3 and the river plume iron sources. 

We urge the re-interpretation of previous iron addition experiments utilizing FeCl3 to model 

diatom growth and highlight the importance of fluvial iron input in maintaining HNLC 

ultraplankton communities. 

 

Growth and Physiology of Cells > 20 µm 

 

All physiological indicators confirm that iron addition from either source alleviated iron 

stress for cells > 20 µm (Table 6). Iron concentrations were elevated in the HNLC 
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FSW:HNLC200 carboy (0.8 nM) compared to the ambient HNLC water (0.08 nM), indicating 

contamination of the control treatment during collection or subsampling by an unknown iron 

source. This contamination resulted in initial control dFe concentrations nearly matching those of 

the river plume treatment (~ 1 nM). Despite similar concentrations of initial dFe in these two 

treatments, increased net growth rates and photosynthetic efficiency in the river plume treatment 

indicate that fluvial iron input can reduce photo-oxidative stress in cells > 20 µm. These 

observations suggest that the fluvial iron source is more bioavailable than the HNLC source.  

Fv/Fm between the FeCl3 and control treatments differed at 0 h, indicating a rapid 

increase in photosynthetic efficiency (< 5 h response time) with the introduction of FeCl3 during 

experimental setup. Immediate increases (< 6 h response time) in photosynthetic efficiency in 

response to FeCl3 addition have been documented for Pseudo-nitzschia spp. in culture (Marchetti 

et al. 2009) and for the total phytoplankton community in the IronEx II fertilization experiment 

performed in the equatorial Pacific (Behrenfeld et al. 1996). When considering the range of 

Fv/Fm measurements taken in iron fertilization experiments around the globe (0.3 – 0.65), the 

photosynthetic efficiency of cells > 20 µm in our FeCl3 treatment approaches the theoretical 

maximum for diatoms (Suzuki et al. 2009). High photosynthetic efficiency of diatoms, coupled 

with net growth rates approaching theoretical maxima for diatoms at 10 °C (Eppley 1972; Boyd 

et al. 1996), not only indicate that FeCl3 is more bioavailable than the HNLC and river plume 

iron sources, but also confirm iron limitation as a bottom-up regulator of large-celled 

phytoplankton in the offshore NGA.  

Decreased abundance of Pseudo-nitzschia spp. in the river plume treatment reflects 

differential bioavailability of the river plume and FeCl3 iron sources and is notable, given that 

Pseudo-nitzschia spp. dominated diatom blooms in multiple iron addition experiments 
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(Cavender-Bares et al. 1999; Landry et al. 2000a; b; Assmy 2004; Boyd et al. 2007; Marchetti et 

al. 2009). There are several non-mutually exclusive hypotheses that may explain decreased 

Pseudo-nitzschia sp. abundance in the river plume treatment. Salinity stress may have inhibited 

the growth of Pseudo-nitzschia spp. in the river plume treatment, although we believe this is 

unlikely given that P. multiseries, P. delicatissima, and P. pungens are globally distributed 

(Trainer et al. 2012) and that Pseudo-nitzschia spp. grow well at salinities ranging from 15 – 40 

psu (Lundholm et al. 1997; Thessen et al. 2005). 

Trace metal toxicity may have also reduced Pseudo-nitzschia spp. growth in the river 

plume treatment, where total dissolved copper was twice as high as in other treatments (Figure 

8B). The detrimental effects of high copper concentration on phytoplankton growth and 

physiology are well established (Brand; Sunda 1975); however, we measured total dissolved 

copper, and do not know the concentration of inorganic copper, the toxic copper species. 

Nonetheless, even if a large fraction of the total dissolved copper in the river plume treatment 

was inorganic copper, diatoms appear to be resistant to copper at ambient concentrations 

exceeding those observed in our experiment (i.e., 3.9 nM; Brand 1986; Coale 1991). Moreover, 

comparative studies of Pseudo-nitzschia spp. demonstrate that both P. multiseries and P. 

delicatissima grow well at copper concentrations < 96 µg L-1 (~ 1500 nM; Lelong et al. 2012, 

2013), possibly due to the use of copper in iron acquisition systems (Rue and Bruland 2001; see 

below). While the toxicity of other trace metals (or deleterious synergies between copper and 

other trace metals) cannot be eliminated, it is unlikely that dissolved copper concentrations ~ 3 

nM alone inhibited Pseudo-nitzschia spp. growth in our experiment.  

Top-down regulation of diatom communities has been observed in a few iron addition 

experiments (Landry et al. 2000a; b; Coale et al. 2004), suggesting that grazing pressure could 
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have regulated Pseudo-nitzschia spp. abundance in the iron addition treatments. It is generally 

thought that diatoms are too large to be grazed upon by microzooplankton. Yet, significant 

control of diatom biomass by ciliate and dinoflagellate grazing has been observed in multiple 

iron addition experiments (Landry et al. 2000b; a; Coale et al. 2004; Saito et al. 2005). Net 

growth rates of diatoms in the FeCl3 treatment reached 0.94 d-1, suggesting that grazing could not 

keep up with diatom growth in this treatment. Net growth rates were lower (0.47 d-1) and the 

biomass of ciliates 20- 29 µm (including tintinnids) higher in the river plume treatment (Figure 

16; data obtained from Suzanne Strom). Unless these ciliates preferentially grazed Pseudo-

nitzschia spp., it is unlikely that top-down regulation drove diatom community composition in 

the river plume treatment because Pseudo-nitzschia spp. and small, chain forming Rhizosolenia 

spp. were of similar size.  

A more tenable hypothesis is that reduced Pseudo-nitzschia spp. abundance in the river 

plume treatment directly results from differences in the acquisition, storage, and/or utilization of 

the FeCl3 and the river plume iron source.  Iron acquisition and storage strategies vary across 

diatom species. It is possible that the Copper River plume iron source favored the acquisition 

strategies of Rhizosolenia spp. over those of Pseudo-nitzschia spp. and gave Rhizosolenia spp. a 

competitive advantage in the river plume treatment. Alternatively, detriments to iron acquisition 

strategies utilized by Pseudo-nitzschia spp. could explain its low abundance in the river plume 

treatment. Marchetti et al. (2009) suggest that the success of Pseudo-nitzschia spp. in iron 

addition experiments may be due to the production of the iron storage protein, ferritin. Ferritin 

genes are upregulated under iron-replete conditions, allowing Pseudo-nitzschia spp. to store 

more iron than centric diatoms (e.g., Thalassiosira spp.). In order for ferritin to store iron, iron 

must first be removed from bound ligands (likely through reduction mechanisms) and oxidized 
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to Fe(III) at the cell wall (Pfaffen et al. 2013). If the added FeCl3 was bound by weaker organic 

ligands, relative to the fluvial source, or incompletely bound to strong ligands, then this iron may 

have been more accessible to Pseudo-nitzschia spp. than the fluvial source. In this way, ferritin 

production may have given Pseudo-nitzschia spp. a competitive advantage over centric diatoms 

in the FeCl3 treatment, while conferring no advantage in the river plume treatment.  

Competitive exclusion of Pseudo-nitzschia spp. by bacterio-plankton may have also 

reduced Pseudo-nitzschia spp. abundance in the river plume treatment. Domoic acid production 

by toxigenic Pseudo-nitzschia spp. acts as an organic ligand to give Pseudo-nitzschia spp. a 

competitive advantage in iron-limiting environments (Rue and Bruland 2001). It also plays a key 

role in chelating Cu for use in the unique high-affinity iron uptake system employed by Pseudo-

nitzschia spp. This uptake system utilizes a Cu-dependent oxidase to re-oxidize Fe(II) 

reductively removed from ambient ligands back to Fe(III) immediately prior to intracellular 

transport and is most successful in conditions with high copper concentrations (Wells et al. 

2005). However, in an assemblage of plankton, siderophores produced by bacterio-plankton to 

bind iron and copper (Wilhelm and Trick 1994; Moffett and Brand 1996) may competitively 

inhibit iron uptake by Pseudo-nitzschia spp. in environments rich in copper. With elevated 

copper concentrations in the river plume treatment, it is possible that Pseudo-nitzschia spp. 

growth was inhibited by decreased access to strongly complexed iron. Overall, diatom 

community composition in the river plume treatment was likely dictated primarily by bottom-up 

regulation stemming from trace metal toxicity and/or iron availability related to synergies 

between dissolved iron and copper (or other trace metals), taxon-specific iron acquisition 

strategies, and differences in the lability of iron chemical species (e.g., iron size speciation and 

ligand binding strength).  
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Growth and Physiology of Cells < 20 µm 

 

 It is hypothesized that cells < 5 µm are adapted to HNLC regions due to their large 

surface area: volume ratio (Morel et al. 1991). Previous iron addition experiments support this 

hypothesis and demonstrate minimal response in cells of this size class (de Baar 2005). In our 

experiment, increased net growth rates and photosynthetic efficiency for cells < 5 µm in response 

to the FeCl3 and Copper River plume iron sources suggest repair of photosynthetic apparati, 

including de novo synthesis of proteins in the photosynthetic pathway (Greene et al. 1994), 

enhanced C fixation, and the overall amelioration of photo-oxidative stress for small cells. 

Increases in cell size and photosynthetic pigment content for cells < 5 µm in response to iron 

addition (Table 6) further support the notion that pico- and nanoeukaryotes were iron stressed in 

situ. In contrast to phytoplankton > 20 µm, the FeCl3 and river plume iron sources were able to 

ameliorate this iron stress to equal extents.  

Under iron limitation, iron-containing antioxidants are downregulated, allowing greater 

ROS damage to the photosynthetic apparatus of phytoplankton (Canini et al. 1992; Martínez 

2007). Under iron-replete conditions, it is reasonable to expect decreases in intracellular ROS 

content in association with increased photosynthetic efficiency. This relationship was observed 

for pico- and nanoeukaryotes in response to both the FeCl3 and the river plume iron source, but 

not for Synechococcus sp. Both iron sources promoted increased net growth, cell size, and 

phycoerythrin production in the absence of oxidative stress, suggesting that Synechococcus sp. 

may have been constrained by iron availability but not iron- stressed in situ. Because our study 

failed to differentiate between the photo-physiology of Synechococcus sp. and pico- and 

nanoeukaryotes, it is difficult to ascertain relationships between taxon-specific ROS production 

and photosynthetic efficiency. Since pico- and nanoeukaryotes outnumbered Synechococcus sp. 
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nearly 10:1, changes in photosynthetic efficiency across treatment primarily reflect the altered 

physiology of pico- and nanoeukaryotes in response to iron addition. However, the 

photosynthetic efficiency for cells < 5 µm were similar between the FeCl3 and control treatments 

at 0 h, suggesting that these cells may not have been particularly iron stressed in situ. Further 

studies to isolate changes in photosynthetic efficiency and specific growth rates for 

Synechococcus sp. in response to iron addition will help confirm whether these cells can 

experience iron stress in HNLC waters. Even with uncertainty regarding iron- stressed 

Synechococcus sp., the results of our study refute the hypothesis that all cells with small surface 

area: volume ratios are ideally adapted to HNLC regions and highlight differences in the 

response to iron addition across major ultraplankton groups.  

 The lack of oxidative stress in Synechococcus sp. suggests that Synechococcus sp. are 

well adapted to acquire iron in the HNLC regions of the NGA. Both experimental and modeling 

approaches have determined that complexation to organic ligands is necessary to maintain iron in 

solution, and thus increase its residence time in surface seawaters and its availability to biota 

(Chen et al. 2004; Tagliabue and Arrigo 2006). There is recent evidence that both coastal and 

HNLC Synechococcus sp. produce siderophores that bind dissolved iron and return it to the cell 

(Berube et al. 2018; Ahlgren et al. 2019). Under iron limited regimes, Synechococcus sp. 

increase production of multiple siderophores with high affinity for iron (Wilhelm and Trick 

1994). Diatoms also produce organic ligands (Hopkinson and Morel 2009), but to date, ligand 

production has not been observed in nanoflagellates. There is evidence suggesting that pico- and 

nanoeukaryotes can obtain iron from organic ligands via a direct reduction mechanism. 

However, Hutchins et al. (1999) suggest that the bioavailability of siderophore-bound iron to 

small eukaryotes is very low. Siderophore production was not directly measured in our study, but 
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it is possible that these ligands conferred a competitive advantage to Synechococcus sp., 

eliminating any ROS response to iron addition. 

Despite the amelioration of iron stress for pico- and nanoeukaryotes, net growth rates for 

cells < 5 µm remained lower in all treatments, relative to cells > 20 µm, indicating a top-down 

mechanism regulated these populations. As abundance increased during the first 72 h, pico- and 

nanoeukaryotes likely exerted a strong grazing pressure on Synechococcus sp. The majority of 

pico- and nanoeukaryotes < 10 µm are mixotrophic, combining photosynthesis with 

heterotrophy, and can ingest Synechococcus sp. (Hana Busse, unpublished data). It is likely that 

mixotrophs also played a role in regulating Synechococcus sp. (see below). Grazer biomass 

(dinoflagellates < 30 µm and ciliates 20- 39 µm) increased throughout the incubation (Figure 16) 

and also likely regulated Synechococcus sp. Decreased pico- and nanoeukaryote abundance 

coincided with a bloom of tintinnid ciliates (Figure 16), suggesting that tintinnids may have 

regulated small eukaryotes in the current study. Trophic cascades involving microzooplankton, 

pico- and nanoeukaryotes, and their Synechococcus sp. prey have been observed in nearly all 

previous iron addition experiments (see de Baar 2005 and references therein). Microzooplankton 

grazing also facilitates iron remineralization (Hutchins and Bruland 1994; Barbeau et al. 2001; 

Dalbec and Twining 2009) and may have provided cells < 5 µm in the control with a source of 

bioavailable iron, reducing photo-oxidative stress at 72 h. While bottom-up regulation (i.e. iron 

availability) strongly influenced the physiology of phytoplankton < 5 µm, top-down regulation 

likely dictated ultraplankton abundance and community composition in our experiment.  
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Contextualizing the Iron Addition Experiment 

 

 Pico- and nanoeukaryotes were more stressed in our experiment than in situ. Increased 

stress in pico- and nanoeukaryote cells in the experiment was likely caused by synergies 

involving reduced iron availability and deleterious bottle effects (i.e., reduced PAR and 

decreased mixing).  

Fv/Fm decreased in the control during the first 48 h and coincided with increasing pico- 

and nanoeukaryote chlorophyll a content. Fv/Fm also decreased precipitously for cells > 20 µm 

in the first 48 h. Decreased PAR in screened bottles, relative to in situ, and a variable light 

regime (Figure S2) likely contributed to this photo-physiological response. The average 

attenuation coefficient for surface waters in the NGA with chlorophyll a biomass ~ 0.27 µg L-1 

(0 h chlorophyll a biomass in the control) was 0.17 m-1, corresponding to a 50 % PAR depth of 

4.0 m. Intense summer stratification throughout the NGA often inhibits the mixing of surface 

waters to depths below ~ 15- 20 m. As a result, phytoplankton collected from the surface, and 

adapted to surface-level PAR, likely received less PAR in screened bottles than they did in situ. 

Daily PAR in the first 48 h of the experiment also varied more per hour than it did in the days 

leading up to sample collection (Figure S2). These observations suggest that cells < 5 µm and > 

20 µm were light-stressed during the beginning of the incubation. Though the plastic response of 

phytoplankton to low-light regimes might have allowed for photo-acclimation under iron-replete 

conditions, intracellular iron requirements of phytoplankton increase under low-light conditions 

(Maldonado et al. 1999). Without a readily available source of iron, pico- and nanoeukaryotes 

and diatoms in the control likely experienced iron-light colimitation leading to photo-oxidative 

stress and decreased photosynthetic efficiencies within the first 48 h. After 48 h, photosynthetic 

efficiency partially recovered, indicating that the HNLC phytoplankton community may have 
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photo-acclimated to the new light regime with the recycling of dissolved iron or that the variable 

light regime selected for species tolerant of low light.   

  In contrast to pico- and nanoeukaryotes, Synechococcus sp. were less stressed in the 

control treatment than in situ on LTER transect stations. These results indicate that offshore 

Synechococcus sp. may be better adapted to oligotrophic waters than their coastal counterparts. 

Further study is needed to better characterize cross-shelf Synechococcus sp. communities and 

their resilience to macronutrient and Fe limitation, but these results corroborate those of the iron 

addition experiment and suggest that Synechococcus sp. may be more adapted to Fe limitation 

than to N limitation.  

 

Iron Bioavailability in the NGA Ecosystem 

 

 Multiple iron addition experiments in all major HNLC regions demonstrate that large 

diatoms requiring 0.2 – 1.2 nM iron to bloom are highly dependent on iron input from dust 

deposition (Duce and Tindale 1991a; Jickells and Spokes 2001), oceanic fronts (de Baar 1995), 

eddy-induced upwelling (Lippiatt et al. 2011), or freshwater input and subsequent cross-shelf 

exchange (Gerringa et al. 2012). Despite the importance of iron to diatom productivity, iron 

addition experiments have yet to consider differences in the bioavailability of FeCl3 and 

freshwater iron sources as a driver of phytoplankton community structure and ecosystem 

productivity. Despite the ability of the FeCl3 and river plume iron sources to alleviate iron stress 

for phytoplankton in both the > 20- and < 20 µm size classes, differences in nutrient utilization 

and productivity efficiencies highlight fundamentally different ecological fates for these two iron 

sources. Total chlorophyll a production efficiencies (∆ Total Chlorophyll a: ∆ dFe) and N:dFe 

utilization ratios were highest in the river plume treatment, indicating that the Copper River 
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plume iron source stimulated more new production than did FeCl3. While new production in the 

FeCl3 treatment was shunted directly into diatom biomass, new production in the river plume 

treatment, where chlorophyll a > 20 µm comprised only 29 % of total biomass (Figure 3E), was 

predominantly retained in the < 5 µm size class. Trends in Si:N utilization ratios also reflect 

changes in total community composition dictated by iron source. Average Si:N utilization ratios 

in both the river plume and FeCl3 treatment were above the expected 1:1 Redfield-Brzezinski 

ratio (Brzezinski 2004), indicating decoupling of Si and N use. This decoupling could result from 

changes in diatom physiology, larger N drawdown by small phytoplankton than by diatoms, and/ 

or a heavy silification of diatoms (Franck et al. 2005). Decoupling of Si and N use in the FeCl3 

treatment was likely driven by thickening of diatom frustules in response to environmental stress 

(e.g. macronutrient depletion) and/or by a diatom community dominated by heavily silicified 

cells (Franck et al. 2005). In contrast, Si:N utilization ratios in the river plume treatment were 

likely dictated by increased N utilization by small phytoplankton, relative to diatoms. These 

results demonstrate that FeCl3 and fluvial iron input result in divergent phytoplankton 

community structures with implications for phytoplankton ecology in the NGA HNLC region.  

 Huge annual suspended sediment loads (~ 4 % of which is iron, by weight) are sourced to 

the NGA from the surrounding glaciers through freshwater inputs (Milliman and Syvitski 1992; 

Wu et al. 2009). Stabeno et al. (2004) hypothesize that offshore transport of fluvial iron is the 

major driver of iron input to the NGA HNLC region in summer and Lam et al. (2006) indicate 

that the North Pacific is primed for lateral transport of coastal waters into the open subarctic due 

to a permanent pycnocline at ~ 150 m. Though diatom blooms have been documented in North 

Pacific HNLC regions and have been linked to natural iron fertilization by iron from the 

continental shelf (Johnson et al. 1999; Lam et al. 2006), it seems unlikely that iron from the 
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Copper River plume is capable of producing similar diatom blooms in the HNLC waters of the 

NGA. While diatoms were less stressed when exposed to the river plume iron source, indicating 

an increased capacity for growth (Krause and Weis 1984), the fluvial iron source favored the 

production of small cell biomass, at least over the 5 d period of our incubation experiment. 

Results of this experiment suggest that diatom physiology and growth measured in previous iron 

addition experiments in response to FeCl3 do not directly translate to natural iron sources, in 

particular glacier river sources. Diatom productivity has significant implications for food web 

structure and secondary productivity in the NGA (Strom et al. 2016). To understand the 

variability in primary and secondary productivity in the NGA, it is imperative that iron limitation 

of diatoms be modeled not only as a function of spatio-temporal variability in dissolved iron 

concentrations, but also differential source-dependent bioavailability across both cell size (as in 

Fiechter et al. 2009) and taxa.  

  High turnover of phytoplankton < 5 µm production via grazing has significant 

implications for NGA food web dynamics. Grazing of Synechococcus sp. was likely dominated 

by nanoflagellates. Mixotrophy has been documented in nearly all nanoflagellates (2- 10 µm) in 

the NGA (Hana Busse, unpublished data). Nanoflagellates are known to readily ingest 

Synechococcus sp. and bacterial (including cyanobacterial) ingestion has been hypothesized as 

an iron-acquisition strategy for some of these small eukaryotes (Maranger et al. 1998). Because 

of their ability to reduce nutrient export and increase nutrient turnover in surface waters, 

mixotrophic nanoflagellates can increase productivity in oligotrophic regions (Hartmann et al. 

2012). Pico- and nanoeukaryotes were grazed upon, likely by dinoflagellates < 30 µm and a 

variety of ciliates. The role of large micrograzers in the transfer of primary production has been 

well documented in the NGA and in open oceans (Calbet and Landry 2004; Strom et al. 2007; 
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Calbet 2008). Through its benefits on ultraplankton productivity and subsequent predator-prey 

dynamics, episodic input from the Copper River may contribute to the persistent presence of 

ultraplankton and help stabilize the community in HNLC waters. Fluvial iron input may also 

prime the rapid transport of biomass into secondary production through micrograzer 

intermediates upon the introduction of highly bioavailable iron. In this way, iron from the 

Copper River plume represents an important contributor to the characteristic variability of 

primary production in the NGA despite its relatively low bioavailability to diatoms.  
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Table 1. Summary of flow cytometric parameters measured for Synechococcus sp. and pico- and 

nanoeukaryotes. 

 

Parameter Measurement Normalized? Biological Interpretation 

FSC 

(Forward Scatter) 

Detected by FSC 

diode in- line with 

the flow of cells 

after light passes 

through a 488 nm 

bandpass filter 

No 

Proxy for cell size; typically, larger 

cells have larger FSC, though FSC 

may not scale linearly with cell size 

FL1 

(Green Fluorescence) 

Detected by a 

photomultiplier at  

λ= 530 nm 

Yes, to median bead 

FL1 and again to 

mean “Community 

Composition” FL1 

Detected the fluorescence of 

CellROX™ Green ROS probe. 

Higher FL1 indicated more ROS 

content per cell. 

FL2 

(Yellow-Orange 

Fluorescence) 

Detected by a 

photomultiplier at 

λ= 585 nm 

Yes, to median bead 

FL2 

Proxy for Synechococcus sp. 

phycoerythrin content 

 

FL3 

(Red Fluorescence) 

Detected by a 

photomultiplier at 

λ= 670 nm 

Yes, to median bead 

FL3 

Proxy for Synechococcus sp. and 

nano- and picoeukaryote 

chlorophyll a content 
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Table 2. Size- fractionated phytoplankton net growth rates. Chlorophyll concentrations from hours 

48- 96 were ln-transformed before net growth rates were estimated from ordinary least squares 

regression coefficients. Exponents indicate treatment groupings at α = 0.10 based on Tukey HSD 

pairwise contrasts. In cases where growth rates differ across treatments (C: Control, I: Iron Chloride, 

R: River Plume), t-values (df) and p-values are provided. 

 

Size Fraction Treatment Net Growth Rate (d-1) p- value 

Total 

Control 0.31A 

tC,I (12)  = -5.86, p = 0.0002 

tR,I (12) = 3.87 ; p = 0.0058 
FeCl3 0.78 B 

River 0.47A 

> 20 um 

Control 0.36A 

tC,I (12) = -3.59, p = 0.0095 

tR,I (12) =  2.94, p = 0.031 
FeCl3 0.94B 

River 0.47A 

5-20 um 

Control 0.53A 

N.S. FeCl3 0.71A 

River 0.66A 

< 5 µm 

Control 0.15A 

tC,I (12) = -2.533, p= 0.063 

 
FeCl3 0.55B 

River 0.39AB 
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Table 3. Size-fractionated photosynthetic efficiency (Fv/Fm). Exponents indicate treatment 

groupings at 𝛼 = 0.10. With the exception of the control from 0- 48 h, Fv/Fm did not 

change in any size fraction. In cases where average Fv/Fm differed across treatments (C: 

Control, I: Iron chloride; R: River plume), p-values are provided.  

 

Size Fraction Treatment Average Fv/Fm p-value 

Total 

Control 0.40A 

tC,I (26) = 6.25, p < 0.0001 

tC,R (26) = 4.05, p= 0.0004 

tI,R (26) = -2.21, p=0.036 
FeCl3 0.53B 

River Plume 0.49C 

> 20 um 

Control 0.25A 

tC,I (25) = 8.15, p < 0.0001 

tC,R (25) = 4.00, p= 0.0005 

tI,R = 4.25, p= 0.0003 

FeCl3 0.56B 

River Plume 0.39C 

< 5 µm 

Control 0.35A 

tC,I (26) = 7.01, p < 0.0001 

tC,R (26) = 6.95, p < 0.0001 
FeCl3 0.46B 

River Plume 0.46B 
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Table 4. Results of Generalized Least Squares (GLS) Modeling. Bold p-values indicate 

significance at 𝛼 = 0.10. Tukey’s pairwise contrasts (𝛼= 0.10) were run using treatment 

slopes where significant Treatment: Time interactions existed, or treatment means in the 

absence of significant Treatment: Time interactions. Letters in parentheses indicate 

groupings for each treatment (Control, FeCl3, River Plume) based on pairwise contrasts. 

 
  Treatment Time Treatment: Time 

Fv/Fm 

Total 

F2,24 = 19.01 

p < 0.0001 

(A,B,C) 

 

F1,24 = 0.68 

p= 0.42 

 

 

F2,24 = 0.28 

p= 0.75 

 

 

< 5 µm 

F2,24 = 31.00 

p < 0.0001 

(A,B,B) 

 

 F1,24 = 2.00 

p= 0.17 

 

 

F2,24 = 0.40 

p= 0.67 

 

 

> 20 µm 

F2,23 = 31.14 

p < 0.0001 

(A,B,C) 

 

F1,23 = 0.046 

p= 0.83 

 

 

F2,23 = 0.62 

p= 0.55 

 

 

FSC 

Synechococcus sp. 

F2,24  = 35.44 

p < 0.0001 

 

 

F1,24 = 60.56 

p < 0.0001 

 

 

F2,24 = 7.83 

p= 0.024 

(A,B,B) 

 

Nano- and picoeukaryotes 

F2,24 = 4.77 

p= 0.018 

(A,B,B) 

 

F1,24 = 26.46 

p < 0.0001 

 

 

F2,24 = 1.94 

p= 0.16 

 

 

Abundance 

Synechococcus sp. 

F2,24 = 41.05 

p < 0.0001 

 

 

F1,24 = 223.20 

p < 0.0001 

 

 

F2,24 = 21.38 

p < 0.0001 

(A,B,B) 

 

Pico- and 

nanoeukaryotes* 

F2,114 = 0.80 

p= 0.45 

 

F1,114 = 81.06 

p < 0.0001 

 

F2,114 = 0.90 

p= 0.41 

 

FL2 Synechococcus sp. 

F2,24 = 14.77 

p= 0.0001 

(A,B,B) 

 

F1,24 = 10.08 

p= 0.0041 

 

 

F2,24 = 0.91 

p= 0.42 

 

 

FL3 Pico- and nanoeukaryotes 

F2,24 = 4.03 

p= 0.031 

(A,B,B) 

 

F1,24 = 12.34 

p= 0.0018 

 

 

F2,24 = 1.29 

p= 0.29 

 

 

FL1 Ratio 

 

 

 

 

 

Synechococcus sp. 

F2,23 = 1.48 

p= 0.25 

 

 

F1,23 = 1.41 

p= 0.25 

 

 

F2,23 = 0.08 

p= 0.92 

 

Pico- and nanoeukaryotes 

F2,24 = 3.18 

p < 0.0001 

 

F1,24 = 0.12 

p = 0.73 

 

F2,24 = 3.08 

p= 0.064 

(A,B,AB) 
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Table 5. Nutrient utilization and chlorophyll a net production efficiency (∆ Total Chlorophyll 

a: ∆ dFe), estimated for the 0 h – 120 h time interval.  

Treatment Si(OH)4: N N: dFe N: P Total Chl. a: dFe 

Control 0.83 1.85 6.23 0.62 

FeCl3 1.99 1.75 13.01 0.69 

River Plume 1.47 4.48 10.64 1.05 
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Table 6. Synthesized results. The phytoplankton community response to the control, FeCl3, and 

river plume iron sources are described for communities > 20 µm and < 20 µm. Phytoplankton < 

20 µm are further differentiated into Synechococcus sp. and pico- and nanoeukaryotes. 

Italicized statements indicate changes in phytoplankton growth or physiology in direct response 

to iron addition. 

 

Size Fraction Synthesized Results 

>  20 µm 

 

1. Net growth rate and final chlorophyll a 2X to 5X higher in FeCl3 

than in other treatments 

2. Rapid Fv/Fm increase after FeCl3 addition; average Fv/Fm 

remained highest in FeCl3 treatment 

3. River plume iron source also increased Fv/Fm 

4. Diatom biomass at 120 h highest in FeCl3 treatment 

5. Diatom composition similar in FeCl3 and control treatments 

(Pseudo-nitzschia spp. dominant), while different in the river plume 

treatment (Rhizosolenia spp. dominant) 

 

< 20 µm 

 

1. Net growth rate for cells 5- 20 µm similar across treatments 

2. Net growth rate for cells < 5 µm 3X higher in FeCl3 and river 

plume treatments than in control 

3. Fv/Fm higher in FeCl3 and river plume treatments than in control 

4. < 20 µm chlorophyll a comprised more of the total in river plume 

and control treatments 

 

Synechococcus 

sp. 

 

1. FeCl3 and river plume iron sources increased abundance to ~ 2X 

that of the control 

2. FeCl3 and river plume iron sources increased cell size relative to 

control 

3. Phycoerythrin per cell highest in FeCl3 treatment, intermediate in 

river plume treatment 

4. No ROS response to any iron source 

 

Pico- and 

Nanoeukaryotes 

 

1. Abundance similar across all treatments; decreased 25 % over time  

2. Cells larger in FeCl3 and river plume treatment; lowest in control 

treatment 

3. Chlorophyll a per cell concentration higher in FeCl3 and river 

plume treatments than in control 

4. ROS production higher in control than in FeCl3 or river plume 

treatments 
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Table S1. Diatom shape and depth assumptions. The shape and depth assumption for every 

diatom taxon observed in settled samples is provided below. Exponents refer to references used 

to estimate the depth assumption for a given taxa. NOTE: The depth assumption is defined as 

cell depth: cell length. If a diatom was approximated as a lateral cylinder with a circular cross 

section, d=1 and no reference was used to estimate d.  

 

Taxon Shape Name Depth Assumption (d) 

Actinoptychus senarius Circular Cylinder 0.51 

Asterionellopsis spp. Cone 0.61 

Chaetoceros contortus Chain of Lateral Cylinders 0.71 

Chaetoceros convolutus Chain of Lateral Cylinders 0.71 

Chaetoceros danicus Circular Cylinder 0.71 

Chaetoceros diadema Chain of Lateral Cylinders 0.71 

Chaetoceros laciniosus Chain of Lateral Cylinders 0.71 

Chaetoceros teres Chain of Lateral Cylinders 0.71 

Corethron hystrix Cylinder, Prolate Spheroid* 1NA 

Coscinodiscus granii Circular Cylinder 0.61 

Coscinodiscus marginatus Circular Cylinder 0.61 

Cylindrotheca closterium Prolate Spheroid 1NA 

Ditylum brightwellii Cylinder, Prolate Spheroid† 1 NA 

Fragilariopsis pacifica Elliptical Cylinder 0.12 

Leptocylindrus spp. Chain of Lateral Cylinders 1 NA 

Navicula spp. Elliptical Cylinder 0.21 

Odontella spp. Chain of Lateral Cylinders 1 NA 

Paralia spp. Chain of Lateral Cylinders 1 NA 

Pleurosigma spp. Elliptical Cylinder 0.73 

Pseudo-nitzschia delicatissima Chain of Prolate Spheroids 0.91 

Pseudo-nitzschia multiseries Chain of Prolate Spheroids 0.91 

Pseudo-nitzschia rotula Chain of Prolate Spheroids 0.91 

Rhizosolenia spp. Chain of Lateral Cylinders 1 NA 

Skeletonema costatum Chain of Lateral Cylinders 1 NA 
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Table S1 Continued… 

Taxon Shape Name Depth Assumption (d) 

Tabularia investiens Elliptical Cylinder 0.64 

Thalassiosira rotula Circular Cylinder 0.51 

Thalassiosira eccentrica Circular Cylinder 0.51 

Thalassiosira gravida Circular Cylinder 0.51 

Thalassiosira nordenskioeldii Circular Cylinder 0.51 

Thalassiosira pacifica Circular Cylinder 0.51 

Large Thalassiosira spp. Circular Cylinder 0.51 

Small Thalassiosira  spp. Circular Cylinder 0.51 

Tropidoneis lepidoptera Rectangular Box 0.44 

Misc. Diatom‡ Circular Cylinder 0.51 

Diatom B Elliptical Cylinder 0.21 
1Ivanochko 2012; 2Lundholm and Hasle 2010; Figure 63-74; 65 and 71; 3Poulin et al. 2004; 

4Kaczmarska 2001 

* A Cylinder and prolate spheroid shape was used to approximate the true shape of Corethron 

hystrix. Measurements were altered post-collection to more accurately approximate Corethron 

sp. as a cylinder with a half prolate spheroid on either end  

†The cylinder and prolate spheroid shape was only used to measure Ditylum brightwellii to allow 

for three (measurements. Measurements were altered post-collection to approximate Ditylum 

brightwellii more accurately as a triangular prism. 

‡ Diatom B was an unidentified “pill” shaped pennate diatom most similar to Fragilariopsis 

spp., though it was shorter and wider than Fragilariopsis pacifica  
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Table S2. Taxon-specific diatom biomass. Average biomass (ug L-1) is provided for each 
diatom taxon observed in samples at the initial (0 h; n=3) and final (120 h; n=3) time points.  
 

   Final 

 Initial S.D. Control S.D FeCl3 S.D. River S.D. 

Total Community 9.77 1.80 17.98 2.95 43.62 14.13 26.44 18.17 

Actinoptychus spp. 0.02 0.01 0.09 0.06 0.25 0.11 0.13 0.10 

Asterionella spp. 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00 

Chaetoceros spp. 0.45 0.47 0.81 0.66 1.11 0.27 0.94 0.68 

C. contortus 0.29 0.44 0.03 0.04 0.43 0.36 0.01 0.68 

C. convolutus 0.11 0.03 0.68 0.59 0.58 0.48 0.54 0.71 

C. danica 0.01 0.01 0.01 0.02 0.07 0.08 0.03 0.06 

C. diadema 0.00 0.00 0.05 0.05 0.00 0.00 0.03 0.05 

C. laciniosus 0.02 0.02 0.01 0.02 0.00 0.00 0.15 0.18 

C. teres 0.02 0.03 0.02 0.02 0.02 0.04 0.14 0.11 

Corethron spp. 2.93 0.32 3.31 1.73 5.33 6.22 4.22 2.32 

Coscinodiscus spp. 1.07 0.98 0.43 0.49 0.35 0.61 0.54 0.83 

C. granii 0.06 0.10 0.43 0.49 0.35 0.61 0.19 0.22 

C. marginatus 1.01 0.88 0.00 0.00 0.00 0.00 0.35 0.61 

C. closterium 0.01 0.01 0.08 0.03 0.22 0.06 0.19 0.13 

D. brightwellii 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

F. pacifica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Leptocylindrus spp. 0.09 0.12 0.65 1.06 0.77 0.63 1.70 2.65 

Navicula spp. 0.00 0.01 0.00 0.01 0.48 0.81 0.01 0.01 

Odontella spp. 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 

Paralia spp. 0.01 0.01 0.00 0.00 0.08 0.14 0.72 1.25 

Pleurosigma spp. 0.00 0.00 0.01 0.01 0.23 0.39 0.01 0.02 

Pseudo-nitzschia spp. 0.46 0.04 4.49 0.85 18.86 3.81 2.96 0.89 

P. delicatissima 0.03 0.01 0.20 0.01 2.76 2.83 0.20 0.18 

P. multiseries 0.42 0.02 4.07 0.80 14.96 6.64 2.08 0.11 

P. rotula 0.02 0.01 0.22 0.08 1.10 0.38 0.68 0.61 

Rhizoselenia spp. 3.28 2.32 1.28 0.89 4.88 4.54 11.14 13.28 

> 100 µm 3.12 2.40 1.23 0.88 4.78 4.62 7.79 10.92 

< 100 µm 0.16 0.21 0.05 0.03 0.10 0.18 3.35 2.38 

S. costatum 0.07 0.06 0.40 0.32 0.60 0.36 0.47 0.40 

T. investiens 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 

Thalassiosira spp. 0.83 0.38 3.66 1.33 6.82 1.21 2.72 1.55 

T. rotula 0.02 0.02 0.17 0.21 0.12 0.12 0.05 0.06 

T. eccentrica 0.50 0.46 2.01 0.49 3.22 0.53 0.80 0.33 

T. gravida 0.00 0.00 0.00 0.00 0.22 0.38 0.00 0.00 

T. nordenskioeldii 0.00 0.00 0.09 0.10 0.16 0.15 0.01 0.02 

T. pacifica 0.20 0.07 0.69 0.87 1.14 0.39 0.44 0.30 

Large Thalassiosira 0.00 0.00 0.00 0.00 0.02 0.03 0.02 0.02 

Small Thalassiosira 0.10 0.02 0.72 0.11 1.92 0.70 1.32 1.47 

Misc. Diatom 0.05 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

Diatom b 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
T. lepidoptera 0.48 0.40 2.73 1.26 2.46 1.85 0.69 0.49 
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Table S3. Taxon-specific diatom abundance. Average diatom concentration (cells L-1) is provided 
for each diatom taxon observed in samples at the initial (0 h; n=3) and final (120 h; n=3) time points.  
 

   Final 

 Initial S.D. Control S.D FeCl3 S.D. River S.D. 

Total Community 26,639 5,206 126,085 31,893 564,316 97,544 150,967 29,345 

Actinoptychus spp. 249 207 1,066 732 3,053 1,479 1,967 782 
Asterionella spp. 45 39 48 84 113 196 0 0 
Chaetoceros spp. 1,063 171 3,392 588 7,236 783 5,778 1,001 
C. contortus 158 39 388 303 3,166 2,500 68 118 
C. convolutus 611 68 1,841 968 3,392 1,223 3,132 231 
C. danica 68 68 48 84 339 339 452 518 
C. diadema 23 39 242 222 0 0 68 118 
C. laciniosus 113 141 97 168 0 0 882 1,044 
C. teres 113 196 97 84 339 588 1,063 274 
Corethron spp. 950 118 1,260 550 1,696 1,795 2,058 645 
Coscinodiscus spp. 136 68 97 84 113 196 384 409 
C. granii 23 39 97 84 113 196 317 306 
C. marginatus 113 39 0 0 0 0 68 118 
C. closterium 520 104 1,551 801 4,297 1,603 5,744 2,981 
D. brightwellii 0 0 0 0 0 0 34 59 
F. pacifica 226 78 242 168 0 0 452 783 
Leptocylindrus spp. 724 341 1,163 291 4,070 6,171 2,861 3,104 
Navicula spp. 90 104 97 168 452 392 181 171 
Odontella spp. 0 0 48 84 0 0 0 0 
Paralia spp. 68 118 0 0 452 783 916 1,586 
Pleurosigma spp. 23 39 48 84 113 196 113 196 
Pseudo-nitzschia spp. 14,473 2,308 102,051 43,722 492,179 96,454 49,953 9,000 
P. delicatissima 1,945 659 12,357 2,340 126,182 81,756 7,892 7,499 
P. multiseries 11,985 2,181 84,800 38,243 335,017 176,959 32,009 8,804 
P. rotula 520 282 4,894 3,987 30,980 5,302 10,052 9,399 
Rhizoselenia spp. 2,058 652 1,502 888 2,714 2,446 52,135 38,576 
> 100 µm 837 481 533 550 1,244 706 4,308 6,026 
< 100 µm 1,199 553 969 366 1,470 2,546 47,827 32,643 
S. costatum 1,153 1,658 4,943 634 6,671 5,259 5,800 5,443 
T. investiens 226 104 145 0 0 0 0 0 
Thalassiosira spp. 3,957 577 13,520 2,035 38,443 9,260 21,811 1,055 
T. rotula 158 171 194 84 678 897 294 348 
T. eccentrica 565 196 1,308 145 3,731 897 1,809 196 
T. gravida 0 0 0 0 565 979 0 0 
T. nordenskioeldii 23 39 339 303 791 196 407 538 
T. pacifica 769 78 2,181 1,098 3,957 783 2,793 901 
Large Thalassiosira 0 0 0 0 113 196 181 171 
Small Thalassiosira 2,442 413 9,498 1,021 28,606 8,590 16,327 875 
Misc. Diatom 23 39 0 0 0 0 0 0 
Diatom b 226 141 145 0 113 196 226 392 
T. lepidoptera 407 179 1,599 145 2,261 1,371 848 449 

  



68 
 

Table S4. Daily nutrient utilization ratios and growth efficiencies. Utilization ratios and 

phytoplankton growth efficiency, with respect to dFe, for each time interval are provided 

for each treatment. Note: Growth efficiency was not calculated for time intervals in which 

total chlorophyll a decreased.  

 

Treatment Time Interval 

(Hour) 
Si(OH)4: N N: dFe N: P Total Chl. a: dFe 

Control 

0-48 1.16 1.00 2.93 NA 

48-72 0.73 2.71 26.87 1.91 

72-96 8.26 1.60 84.91 0.72 

96-120 4.37 2.28 7.07 0.54 

FeCl3 

0-48 0.50 0.31 1.35 0.11 

48-72 2.01 1.26 13.43 1.59 

72-96 1.47 14.14 14.09 12.39 

96-120 13.11 0.63 2.00 NA 

River Plume 

0-48 1.62 1.22 10.39 0.15 

48-72 1.71 9.37 11.32 5.37 

72-96 1.14 19.40 14.71 9.40 

96-120 1.40 12.74 6.52 4.10 
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Figure 1. NGA LTER study site. Three transects comprise the NGA LTER study site. The site 

extends from just west of the Copper River Delta to the west of Cook Inlet (Kodiak Island Line) 

and from 10 nmi to 150 nm offshore to cover an area roughly 2.3 x 105 km2. Note: Stations are 

identified numerically (e.g. GAK 1) based on distance offshore. Water for the iron addition 

experiment was sourced from the Copper River Plume and the HNLC region (red stars). 

Ambient phytoplankton communities from stations indicated by yellow symbols were used to 

contextualize the iron addition experiment within the NGA.   
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Figure 2. Schematic of iron addition experiment setup. Note only one replicate per treatment is 

shown, though ten bottles per treatment were sampled during the course of the experiment. 
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Figure 3. Changes in size-fractionated chlorophyll a concentrations (A, Total; B, < 5 µm; C, 5- 

20 µm; D, > 20 µm; E, Fraction of total chlorophyll a > 20 µm) in control and iron addition 

treatments. Points represent mean ± 1 standard deviation and in some cases are smaller than the 

graphed point. Note different y-axis scales between size-fractions.  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 48 72 96 120

T
o

ta
l 

C
h

l.
 a

(µ
g
 L

-1
)

Hour

A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 48 72 96 120

C
h

l.
 a

<
 5

 µ
m

 (
µ

g
 L

-1
)

Hour

B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 48 72 96 120

F
ra

ct
io

n
 T

o
ta

l 
C

h
l.

 a
>

 2
0

 µ
m

Hour

E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 48 72 96 120

C
h

l.
 a

5
-2

0
 µ

m
 (

µ
g
 L

-1
)

Hour

C

0.0

0.5

1.0

1.5

2.0

2.5

0 48 72 96 120

C
h

l.
 a

>
 2

0
 µ

m
 (

µ
g
 L

-1
)

Hour

D



72 
 

Figure 4. Changes in macronutrient (A, Nitrate; B, Nitrite; C, Phosphate; D, Silicic Acid) in 

control and iron addition treatments. Values represent the average of experimental bottles (n= 1 

at Hour 0; n= 2 at Hours 48-96; n= 3 at Hour 120). Error bars represent ± 1 standard deviation 

and are smaller than plotted points in some cases. 
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Figure 5. Mean Fv/Fm for cells of different sizes (A, Total; B, < 5 µm; C, > 20 µm) in control and iron addition treatments. Values 

represent the average of experimental bottles (n= 1 at Hour 0; n= 2 at Hours 48-96; n= 3 at Hour 120). Error bars represent ± 1 

standard deviation and are smaller than plotted points in some cases.  
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Figure 6. Taxon-specific changes in diatom biomass for control and iron addition treatments at 

initial (0 h) and final (120 h) time points. Values represent averages of replicate bottles (n =3); 

error bars represent ± 1 standard deviation for total diatom biomass.
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Figure 7. Taxon-specific changes in diatom abundance for control and iron addition treatments 

at initial (0 h) and final (120 h) time points. Values represent averages of replicate bottles (n= 3); 

error bars represent ± 1 standard deviation for total diatom abundance. 
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Figure 8. Changes in dFe and dCu concentrations in control and iron addition treatments. Values 

represent the average of experimental bottles (n= 1 at 0 h; n= 2 at Hours 48- 96 h; n= 3 at 120 h). 

Error bars represent ± 1 standard deviation and are smaller than plotted points in some cases.  
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Figure 9. Flow cytometric measurements (A, Abundance; B, Forward Scatter; C, Yellow-orange 

fluorescence (FL2); D, Red fluorescence (FL3); E, Green fluorescence (FL1 ratio)) of 

Synechococcus sp. in control and iron addition treatments. Values represent the average of 

experimental bottles (n= 1 at Hour 0; n= 2 at Hours 48-96; n= 3 at Hour 120). Error bars 

represent ± 1 standard deviation and are smaller than plotted points in some cases. Note different 

y-axis scales across measurements.  
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Figure 10. Flow cytometric measurements (A, Abundance; B, Forward Scatter; C, Red 

Fluorescence (FL3); D, Green fluorescence (FL1 ratio)) for pico- and nanoeukaryotes in control 

and iron addition treatments. Values represent the average of experimental bottles (n= 1 at 0 h; 

n= 2 at 49- 96 h; n= 3 at 120 h). Error bars represent ± 1 standard deviation and are smaller than 

plotted points in some cases. Note different y-axis scales across measurements.  
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Figure 11. Size-fractionated chlorophyll a concentrations (A, Total; B, < 5 µm; C, > 20 µm) 

measured for ambient phytoplankton communities on LTER transects at 0 m. Ranges of 

chlorophyll a measured in iron addition treatments are provided to facilitate intercomparison of 

experimental and ambient phytoplankton communities. Note different y-axis scales across size 

fractions.  
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Figure 12. Size-fractionated Fv/Fm (A, Total; B, < 5 µm; C, > 5 µm) measured for ambient 

phytoplankton communities on LTER transects at 0 m. Values represent mean ± 1 sd for 

triplicate subsamples. Where appropriate, ranges of Fv/Fm values measured in iron addition 

treatments are provided to facilitate the intercomparison of experimental and ambient 

phytoplankton communities.  
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Figure 13. Flow cytometric properties (A, Abundance; B, FSC; C, FL3; D, FL1 ratio) for pico- 

and nanoeukaryotes on LTER transects sampled at 0 m. Values represent mean ± 1 standard 

deviation of duplicate samples. Ranges of each property measured in iron addition treatments are 

provided to facilitate intercomparison of experimental and ambient phytoplankton communities. 

Note different y-axes across properties. Note different y-axis scales across properties.  
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Figure 14. Flow cytometric properties (A, Abundance; B, FSC; C, FL3; D, FL1 ratio) for 

Synechococcus sp. on LTER transects sampled at 0 m. Values represent mean ± 1 standard 

deviation of duplicate samples. Ranges of each property measured in iron addition treatments are 

provided to facilitate intercomparison of experimental and ambient phytoplankton communities. 

Note different y-axes across properties. Note different y-axis scales across properties.  
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Figure 15. Clustering results of iron addition experiment samples within NGA LTER samples. 

Labels on the x-axis indicate specific LTER stations that were sampled during the July 2019 

process cruise. The blue rectangle emphasizes the cluster of initial iron addition experiment 

samples (0 h; C: Control; F: FeCl3; R: River plume). Arrows note the position of iron addition 

experiment samples at the final time point (120 h). The red dotted line represents approximate 

delineation of three regional groups, determined by K-Means analysis. 
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Figure 16. Size-specific changes in micrograzer abundance for control and iron addition 

treatments at initial (0 h) and final (120 h) time points. Values represent averages of replicate 

bottles (n= 3). Error bars represent ± 1 standard deviation for total micrograzer biomass. Note: 

Micrograzer biomass estimates were obtained from Lugol’s preserved samples counted by Celia 

Ross (Strom Lab) and were not directly part of this thesis’ sampling effort.   
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Figure S1. (A) Example pico- and nanoeukaryote and (B) Synechococcus sp. regions defined on 

FL2 v. FL3 and FL2 v. FL1 cytograms, respectively. Beads used to standardize fluorescence 

values and determine cell concentrations are shown in blue. Note debris in the bottom left corner 

of the plots, extending from bottom-left to top-right.  
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Figure S2. Correction of Synechococcus sp. abundances measured on LTER transects. LTER 

samples are shown in red, while iron addition samples are shown in orange. Linear regression of 

Synechococcus sp. abundances derived from flow cytometry and microscopy indicates that flow 

cytometry underestimated abundance. The regression slope was used to correct Synechococcus 

sp. abundances for LTER (shown here) and flow cytometry estimates (not shown).  
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Figure S3. Incident PAR (µmol photons m-2  h-1) before and during the iron addition experiment. 

The shaded box highlights PAR during the 5 d incubation.  
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