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Abstract 

 
Bacterial sortases are cysteine transpeptidases that anchor virulence factors to the surface of 

bacterial cells. Sortases are a powerful tool utilized for protein engineering that allow researchers 

to modify proteins at the protein level, not the DNA level. However, important limitations to 

utilization of sortases for engineering purposes exist; namely, SrtA from S. aureus is a relatively 

modest enzyme compared to other SrtA enzymes and is very specific for the LPXTG motif. 

Previous work from our collaborators and others revealed that sortases from different species can 

recognize alternative sequences and that activities can vary widely. We were curious about how 

natural sequence variation in class A sortases affects activity and selectivity. To that end, a 

principle component analysis revealed that the structurally conserved b7-b8 substrate-interacting 

loop region may be a key component in substrate recognition and activity.  We investigated this in 

two ways, by engineering eight S. pneumoniae b7-b8 loop variants with loop sequences from 

different bacterial species and by performing ancestral sequence reconstruction on extant class A 

sortase sequences. We then assayed all of our variants and found a SrtA construct, SPSfaec (S. 

pneumoniae core with a b7-b8 substrate-interacting loop from E. faecalis) which not only 

possessed an enhanced substrate promiscuity profile, recognizing seven 5th position substrates 

LPATGG, LPATSG, LPATAG, LPATVG, LPATTG, LPATNG, and LPATFG, but also displayed 

improved catalytic efficiency for all six of these substrates compared to the WT enzymes SrtA 

from S. aureus and SrtA from S. pneumoniae. Overall our engineered constructs provide further 

insight into the role of this b7-b8 substrate-interacting loop in class A sortases and provide 

additional framework for the design of sortases for future engineering purposes. 
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Introduction 
 

Sortase Enzymes 

Sortase enzymes, membrane associated cysteine transpeptidases, are a major contributor to 

the surface chemistry of live bacterial cells. Surface proteins play a number of key roles in 

bacterial virulence, including: promoting bacterial adhesion to host tissues, resistance to killing 

by phagocytic killing, essential nutrient uptake, and host cell invasion (1–5). For example, SrtA 

is required for virulence of S. aureus (MRSA). This bacterial infection is responsible for several 

difficult to treat infections in hospital settings which can lead to severe bloodstream infections 

and pneumoniae (6). Sortase enzymes can be organized into classes A-F, where each class plays 

a unique role on the cellular surface and can exhibit different substrate preferences. For example, 

class A sortase enzymes act as ‘housekeeping 

enzymes’ anchoring surface proteins to the 

cell wall recognizing a LPXTG motif while 

class B and C sortases assist with heme iron 

uptake and pilus polymerization recognizing 

the NPQTN and QVPTG motifs respectively 

(7). Class D and E sortases are involved in 

spore formation and aid with pilus attachment 

and aerial hyphae formation and in addition, 

have been shown to also act as ‘housekeeping 

enzymes’. The role of class F sortase enzymes is suggested to also be as a ‘housekeeping 

enzyme’ (8, 9). Class A sortases have been primarily studied due to their ability to act as drug 

targets, clinically relevant pathogenic bacteria such as S. aureus use class A SrtA enzymes to 

Figure I-1. Sortase structure. Solution structure of 
sortase A-substrate structure from S. aureus solved via 
solution NMR (PDB 2KID). 
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display virulence factors on the cell surface. Previous research has also indicated that knocking 

out the SrtA gene reduces the bacterial virulence (8). The NMR structure of SrtA reveals a b-

barrel core structure, in which the conserved active site is made up of Cys, Arg, and His residues 

which uniquely position Cys towards the incoming canonical sortase A sorting signal, LPXTG, 

in order to facilitate a ligation mechanism (Figure I-1)(10).  

 

Sortase, Inteins, and Protein Ligation Schemes 

A variety of protein ligation methodologies exist currently, with prominent examples 

including sortase-mediated ligation and intein-based methods. More specifically sortase A (SrtA, 

see List of Abbreviations in the Appendix) is able to ligate a LPXTG tagged construct to any 

number of oligoglycine-containing structures in a process known as sortase-mediated ligation 

(SML). SML has a wide variety of uses such as in vitro site-specific modification of proteins and 

controlled attachment of proteins and peptides to live cells and solid supports as well as the 

ability to site specifically conjugate antibody drug conjugates with cytotoxic payloads (5, 11, 

12). In addition, this technique opens up new routes for the creation of novel anti-infective 

agents, a necessity for contending against global spread of antibiotic resistant bacteria (7). 

A second biochemical tool that is frequently used for protein ligation is inteins. Inteins 

are proteins that play a crucial role in protein splicing by removing themselves from a larger 

polypeptide chain by use of a ligation scheme. Inteins have been primarily used for protein 

expressed protein ligation, which in turn has a number of applications such as segmental isotopic 

labeling of proteins, or controlled expression of toxic proteins (13).  

Class A sortase enzymes are able to ligate proteins containing the cell wall sorting signal 

to an amino group, displaying proteins on the cell wall. In vitro, SrtA recognizes and is able to 
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ligate a specific, C-terminal five amino acid ‘sorting motif’, LPXTG, to any number of 

oligoglycine-containing structures in a process known as sortase mediated ligation. SML has a 

wide variety of uses such as in vitro site-specific modification of proteins and controlled 

attachment of proteins and peptides to live cells and solid supports (5). On the surface of the cell, 

this sorting signal is bound to a segment of hydrophobic amino acids spanning the lipid 

membrane, and has a tail composed of positively charged residues, which initially localizes it to 

the cell membrane (Figure I-2)(3).  

The SML ligation reaction scheme includes, first, recognition of the sorting motif by the 

membrane associated sortase. Then, cleavage occurs between the threonine and glycine residues 

in the LPXTG motif (positions 4 and 5 respectively) via an attack by the sulfhydryl group 

originating from the active site Cys residue in SrtA, in turn forming an labile thioester-linked 

acyl enzyme intermediate which is then resolved by a nucleophilic attack from the aminoglycine 

nucleophile, generating a site specifically ligated acyl donor and acceptor (Figure 1-3)(3).  

 

 
Figure I-2. Illustration of Sortase A structure and sorting signal motif at the bacterial 
cell wall. The cell wall sorting signal is adjacent to a stretch of hydrophobic residues and a 
group of positively charged amino acids anchoring the sorting signal to the cell membrane. 
This complex will interact with the sortase enzyme illustrated to the right as part of the 
sortase ligation scheme. 
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Sortase enzymes can be used for the in vitro modification of live cells, solid supports, proteins, 

or synthetic peptides (5). Previous engineering studies have primarily focused on altering the 

substrate specificity of SrtAstaph, improving the modest kinetics of SrtAstaph, measured by kcat/Km 

and reducing the need for a Ca2+ cofactor, leading to the development of a number of variants, 

including the so-called “pentamutant” and “heptamutant” SrtA enzyme (11, 14–16). Chen et al., 

by use of yeast display, were able to evolve a SrtA enzyme with improved catalytic efficiency. 

This pentamutant has five mutations (P94R/D160N/D165A/K190E/K196T) which yielded a 

120-fold improvement in kcat/Km (aka catalytic efficiency) in comparison to the original WT 

Figure I-3. Sortase Mediated Ligation (SML) 
scheme. The sorting motif, LPXTG (acyl 
acceptor)(X denotes any amino acid) is cleaved 
between the Thr and Gly residues by the catalytic 
cysteine in SrtA, this in turn forms a thioester 
intermediate which is immediately attacked by 
the aminoglycine nucleophile (acyl acceptor), 
forming a new amide linkage, ligating the sorting 
signal to acyl acceptor.  
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SrtAstaph construct (14). Though a rate increase was observed for this pentamutant, its reliance on 

a Ca2+ cofactor makes it difficult to use in environments with a low Ca2+ concentration or in the 

presence of Ca2+ binding constructs, leading to the development of a heptamutant SrtA enzyme. 

This heptamutant added two additional mutations (E105K/E108A) which eliminated the need for 

Ca2+ as a cofactor for the engineered SrtAstaph construct (14). This exclusion of the Ca2+ cofactor 

is useful for in vivo studies where Ca2+ concentrations are usually lower than observed in in vitro 

studies (15). These engineered constructs prove useful for many studies which utilize SrtAstaph 

and require rate enhancement or the elimination of the Ca2+ cofactor. 

Engineering changes in the overall specificity profile of SrtAstaph can be accomplished in 

many ways. Dorr, et al., were able to utilize a bond-forming enzyme screening system which 

allowed for the evolution of a SrtA variant with a mutated b6-b7 loop which possessed an altered 

substrate specificity profile, recognizing LPXSG or LAXTG substrates with around a 51,000 

fold change in overall substrate specificity and minimal reduction in catalytic efficiency (11). In 

addition, the Schwarzer group reported a second generation sortase library utilizing a 

randomized b6-b7 loop. They screened this library for sortase mutants that accepted the LPXTG 

and the FPXTG motifs. These screens yielded multiple mutants that displayed the desired 

substrate specificity, the F-21 mutant was the most promising out of their study, accepting the 

LPXTG and the FPXTG motifs and displaying improved catalytic activity (17). 

 

Protein Engineering 

Proteins, such as sortases, are a desired drug target due to their ability to catalyze highly 

specific reactions as well as taking regio- and stereoselectivity into account (18). To understand 



 

 6 

the structure-function relationships of proteins and develop specialized pharmaceuticals, 

researchers may utilize a technique commonly known as protein engineering.  

Protein engineering involves the design of new polypeptides, not found in nature, by 

either mutation of existing native proteins or the de novo production of new structures. By 

engineering these proteins, researchers are able to produce functional changes or which shape the 

overall usage of these proteins (19). Protein engineering can be accomplished by many different 

strategies; some examples of these are knowledge-based mutagenesis (KBM), computational 

protein design (CPD), directed evolution (DE), and sortase based modification (19). For the 

purposes of this project we will only be focusing on the use of KBM. KBM involves the 

utilization of biochemical knowledge to identify key components of a protein structure that when 

mutated, can impact the functional profile of the protein, such as mutating peptide-agonist 

binding sites to determine potential pharmaceutical targets (20). Researchers are able to utilize 

KBM to identify and further modulate protein tools that may be utilized for protein ligation 

schemes, specifically those from bacterial sortases. 

 

Structural Components of Class A Sortases  

As described, the canonic catalytic domain structure of sortases is composed of an eight-stranded 

b-barrel fold, the ‘sortase fold’ (21). The archetypal sortase, sortase A, derived from S. aureus 

(SrtAstaph) was the first solved sortase structure, determined by the Clubb and Schneewind groups 

with nuclear magnetic resonance (NMR) spectroscopy (Figure I-4)(21). This structure provided 

researchers the ability to investigate fundamental structural components of the class A sortase 
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family. Notable conserved structural 

components of class A sortases include 

the presence of multiple substrate 

interacting loops, these being the b7-

b8, b6-b7, and b4-b5 loops are near or 

adjacent to the substrate binding 

groove. Though these loops vary 

widely in length and identity there are 

key conserved residues in each loop 

and modulation of these residues can 

result in a decrease in catalysis and 

substrate promiscuity (11, 22). Another conserved structural component is the ‘catalytic triad,’ 

containing a catalytically active Cys, His, and Arg residues (Figure I-5)(4, 23). Cys acts as the 

catalytic cysteine, required for the first step of the sortase-mediated ligation reaction, cleaving 

between the Thr and Gly residues in the LPXTG sorting motif. His acts as a general acid/base 

(24, 25), while Arg may help create a stabilizing oxyanion hole in correlation with the amide 

from the backbone of the b7-b8 loop (Figure I-5)(7, 10, 26). The RMSD values for this 

alignment of the main chain atoms of S. pyogenes and other SrtA enzymes was between .506 and 

1.691 Angstroms over roughly 400 main chain atoms (Figure I-5). In addition, in WT SrtAstaph a 

residue in the b7-b8 loop, Trp-194 partially shields active site residues from the solvent in an 

apo state, possibly playing a role in catalysis (4). 

Figure I-4. NMR solution structure of Sortase A. 
Derived from Staphylococcus aureus. The protein is 
shown in cartoon representation and colored grey. The 
active site b7-b8 loop is adjacent to the substrate binding 
groove and colored cyan (PDB 1IJA).  
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Calcium binding in WT SrtAstaph is also indicated by structural NMR studies. Ca2+ 

binding occurs in an ordered pocket formed by the b3-b4 and the b7-b8 loops and is required for 

catalytic activity of SrtAstaph (26). Calcium is thought to promote substrate binding due to 

bacteria commonly encountering Ca2+ ions at sites of infection due to the high concentrations of 

Ca2+ in the extracellular fluid (21). Ca2+ ion binding allosterically controls enzymatic activity in 

SrtAstaph by influencing the b6-b7 loop dynamics, allowing for adaptive recognition of the 

LPXTG substrate by modulation of the b6-b7 loop (27). Ca2+ dependence is specific to SrtA 

from S. aureus and in some cases, Ca2+ actually inhibits the activity of sortases such as SrtA 

from S. pyogenes  (7). 

 

Figure I-5. Catalytic active site of class A sortases. Catalytic residue side chains 
are shown in stick representation and labeled. Grey= S. aureus, Cyan= S. pyogenes, 
Magenta= B. anthracis, Green= L. monocytogenes. Cys is the catalytic cysteine 
cleaving in between the Thr and Gly residues of the archetypal LPXTG motif. His 
acts as a general acid/base. Arg may help stabilize the oxyanions generated during  
acyl enzyme intermediate formation and the subsequent attack by amine 
nucleophiles (PBD 2KID, 3FN5, 2KW8, and 5HU4).  
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Sorting Signal Binding 

In class A sortases the LPXTG substrate binds in a ‘binding pocket’ formed by a matrix of b 

sheets, surface loops, and a helices. The base of the pocket is comprised of residues from the b4 

and b7 loops, directly interacting with the proline (Pro) residue of the LPXTG substrate (Figure 

I-6). This proline residue is said to play an ‘architectural’ role by producing a kink in the middle 

of the substrate, so that, when bound, the kinked L-shape substrate orients the C-terminus of the 

sorting motif towards the catalytically active cysteine (26). The walls lining the binding pocket 

are comprised of residues that form the surface loops. These loops originate from the b6-b7 

strands, b3-b4 strands, and the b2 strands-a2 helix (Figure I-6)(26). Binding of the LPXTG 

motif will cause the active site to reorganize. The flexible, and highly mobile b6-b7 loop will 

undergo a disorder-to-order transition, forming an 310 helix (26, 28).  

 

 

 

 

 

 

 

 

Figure I-6. Sortase A derived from S. 
aureus bound to the LPAT* sorting signal. 
Loop and helix structures are shown 
interacting with the bound LPAT* substrate 
illustrated in ball-and-stick form colored 
cyan. Ca2+ bound to the distal b3-b4 pocket 
is also shown colored yellow. Solved via 
solution NMR (PDB 2KID).   
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This 310 helix is able to interact with the bound substrate. In addition, binding of the LPXTG 

motif will also cause a displacement of the b7-b8 loop. This displacement could play a role in 

exposing the catalytically active His-120 and assisting in the next step of SML, integration of the 

lipid II complex (27). The binding of the sorting signal is commonly described as an “induced 

fit” because when the sorting signal is bound the b7-b8 loop will transition to a more “open” 

conformation, allowing for improved contact with the covalently bound sorting signal in the 

binding groove (29). 

 

Active Site Loop Structure and Dynamic Movement 

As discussed above, there are many functional components that make up the substrate binding 

groove of SrtAstaph. Out of these components, both the b7-b8 and the b6-b7 active site loops are 

crucial for effective binding of the LPXTG sorting motif in class A sortases (Figure I-7). Before 

substrate binding occurs, the “closed position”, the apo-SrtAstaph b7-b8 loop is highly mobile. 

Previous studies indicate that this loop is also unstable and requires a calcium cofactor to be 

bound in order to modulate hinge motions in the mobile b7-b8 loop, allowing for reordering into 

proper orientation of the loop before substrate binding may occur (1, 21). This reordering is 

achieved by signal transmission from the Ca2+ binding pocket to the b7-b8 loop, via repetitive 

folding and unfolding of short helical stretches in the b6-b7 loop (30).  
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The b6-b7 loop will then adopt a conformation in which the side chains of Val-168 and Leu-169 

are rotated away from the body of the protein (27). Structurally the Glu-171 residue that 

coordinates Ca2+ originates from the b6-b7 loop. When the sorting signal binds, the complex 

orients into the final “open conformation” where the b7-b8 loop is partially displaced, leaving 

room for proper binding of the sorting signal where the active site catalytic cysteine, Cys-184, is 

positioned to cleave between the Thr and Gly residues of the LPXTG motif, the integral first step 

of sortase mediated ligation. 

 

 

Figure I-7. Overlay of NMR structures of apo-SrtA and bound SrtA. (A) Apo-SrtA from S. 
aureus (PDB 1IJA) shown in grey and SrtA with bound LPAT* sorting signal shown in magenta, 
LPAT* sorting signal shown in ball and stick format colored cyan. Arrows indicate the unbound to 
bound state (PDB 2KID). (B) NMR ensemble structures of apo and bound SrtA. 
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Substrate Specificity of SrtA and ‘Loop Swapped’ SrtA 

Previous in vitro studies on SrtAstaph have revealed optimal catalytic activity using an expanded 

sorting motif with the LPXTGG substrate but no catalytic activity for any additional 5th position 

substrates (31). Though this substrate specificity is advantageous for researchers looking to 

perform site-specific modifications where cross reactions would be unfavorable this requirement 

for substrates containing the LPXTGG motif can be considered a limitation of SrtAstaph, and the 

ability to target variants of the LPXTGG motif would increase the versatility of SML (11, 31, 

32). SrtAstrep on the other hand displays modest efficiency (31). But this low catalytic efficiency 

is countered with a broader substrate profile. SrtAstrep is quite nonselective at the 5th position in 

the LPATXG motif, and the ability to harness this selectivity profile and engineer an enzyme that 

maintains the high catalytic activity, like that from SrtAStaph but also possesses an broader 

substrate specificity profile, would extend the capabilities of established SML schemes. 

Previous research that has explored ‘loop swapped’ constructs has primarily focused on 

swapping both the b6-b7 and b7-b8 loops. A ‘loop swapped’ SrtA enzyme study was 

implemented by Bentley, et al., where the b6-b7 loop sequence was swapped from S. aureus 

SrtB into S. aureus SrtA, altering the substrate specificity profile of SrtA to accommodate 

recognition of NPQTN substrates and modulating the overall catalytic specificity profile; the 

ability of an enzyme to process NPTQN the given reaction was 700,000-fold higher compared to 

WT SrtA. Though they only observed substrate cleavage for this loop swapped construct but 

could not complete the ligation reaction (22). A recently published study out of the University of 

Groningen investigated a “loop grafted” b7-b8 loop to engineer the specificity of Streptococcus 

pyogenes SrtA. By grafting in b7-b8 loops from S. aureus and B. anthracis researchers found 

that the engineered S. pyogenes SrtA with the S. aureus b7-b8 loop showed improved activity 
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toward the LPETG substrate, the established sorting motif that is recognized by S. aureus. Their 

results indicated that the b7-b8 loop may be modulating substrate access to the active site groove 

(33). Similar to this study we have also explored the impact of swapping in this b7-b8 loop 

between homologous SrtA enzymes in order to modulate the overall specificity and activity of 

these constructs, as described below.  

 

A Multi Direction Approach  

Utilizing these two constructs, SrtAstaph and SrtAstrep, we designed a compatible mutant enzyme 

where the desirable aspects of both enzymes, high catalytic activity from SrtAstaph and a broader 

substrate profile from SrtAstrep are displayed. By means of a principle component analysis (PCA) 

we were able to globally analyze the sortase network and identified a region of variability in the 

b7-b8 loop, this loop region near the catalytic domain was swapped between SrtAstaph and 

SrtAstrep. The b7-b8 loop is recognized has also previously been recognized as a potential 

component to substrate binding (33). 

This ‘loop swap’ concept is not only limited to these two enzymes, SrtAstaph and SrtAstrep, 

but any number of loops may be swapped in, with a SrtA enzyme core and any b7-b8 loop that is 

adjacent to the active site engineered on. The b7-b8 loop boundaries are the N-terminal Cys and 

the C-terminal Arg of the catalytic triad. By utilizing these species with increased promiscuity in 

a hybrid enzyme schematic as described previously, it may be possible to alter the substrate 

specificity to include amino acids not recognized by SrtAstaph or SrtAstrep enzymes or improve 

catalytic activity. 

Another tool for investigating sequence variation in protein families is ancestral sequence 

reconstruction (ASR) where ancestral protein sequences are reconstructed using an alignment of 
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extant protein sequences. These ancestral sequences provide insight into the natural sequence 

variations around the extant sequences and may reveal novel links between sequence variation 

and biochemical behaviors such as substrate promiscuity and catalytic activity (34–36).  

We hoped to identify an ancestral SrtA sequence that would display an improved 

substrate specificity profile and/or improved catalytic efficiency compared to the WT SrtAstaph 

and SrtAstrep. Though we were not limited to just these two ancestral sequences, we were able to 

reconstruct additional sequences further back on the phylogenetic tree. Though, these enzymes 

are catalytically dead we were still able to explore the natural sequence variation and the 

investigation into these constructs is ongoing. 

By engineering over eight S. pneumoniae b7-b8 loop variants with loop sequences from 

different bacterial species and by performing ancestral sequence reconstruction on extant class A 

sortase sequences we were able to broadly explore the natural sequence variation of class A 

sortase enzymes and deepen our understanding of sortase biology, especially of the role of the 

b7-b8 loop. Specifically, the loop’s recognition of ligands in SrtA enzymes, in particular, SrtA 

from S. pneumoniae. 
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Introduction 
  
 
1.1 Introduction to ‘Loop Swapped’ SrtA 

 
Previous studies on SrtAstaph revealed that the preferred substrate was LPXTGG, indicating a 

highly stringent substrate profile as compared to that seen in SrtA from Streptococcus 

pneumoniae (SrtAstrep) or other SrtA homologues (31). This specificity motif does offer benefits 

to researchers who are looking to perform modifications in complex settings (31). But, this rigid 

motif specificity can also be considered a significant drawback to usage of SrtAstaph for 

techniques such as simultaneous conjugation of multiple peptide substrates to a target (11). As 

mentioned previously, SrtAstrep, displays a broader substrate specificity profile, a more 

‘promiscuous’ enzyme, but exhibits poor catalytic efficiency.  

The activity and selectivity of class A sortases is primarily based on the substrate 

interacting loops that border the active site of sortase. Previous research has indicated both the 

b6-b7 and the b7-b8 loops play a role in substrate recognition and catalysis (7, 22, 28, 32, 33). 

We performed a PCA which reasserted the b7-b8 loop as a region of high variability. We 

hypothesized that this loop may play a role in the biochemical differences observed between 

SrtA species, and selected it as a ‘loop swap’ target for the purposes of this study. The b7-b8 

loop of the S. aureus was swapped onto the core of the S. pneumoniae core (SPSaureus) or the b7-

b8 loop from S. pneumoniae was swapped onto the core of the S. aureus (SASpneumoniae).  

This ‘loop swap’ concept is not only limited to these two WT enzymes, SrtAstaph and 

SrtAstrep. Any number of loops may be swapped in, with a WT SrtAstaph or SrtAstrep ‘core’ and a 

new b7-b8 loop swapped on. Research conducted by the Antos group revealed that  SrtA 

enzymes from a number of bacterial species exhibited differing substrate selectivities and 
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catalytic activity while still maintaining similar identities and catalytic activity (Figure 1-1, 1-2). 

Catalytic activity was observed for both 4th and 5th position substitutions but 5th position 

substitutions were of primary interest due to the observed enhanced substrate promiscuity (31). 

By utilizing these species with enhanced promiscuity in a hybrid enzyme schematic as described 

previously, we hypothesized that it may be possible to alter the substrate specificity to include 

amino acids not recognized by the WT SrtAstaph or SrtAstrep enzymes, and in turn and provide 

further insight into the role of this b7-b8 substrate-interacting loop in class A sortases. 

 

 
 

 

 
 Figure 1-2. Sequence alignment of SrtAstaph and SrtAstrep. Colored red (small and hydrophobic residues), 
green (hydroxyl, sulfhydryl, amine, and glycine residues), magenta (basic residues), and blue (acidic residues). 
Aligned using Clustal Omega. Sequence identity between SrtAstaph and SrtAstrep, 77.56%. 

Figure 1-1. Heat map of substrate 
selectivity and catalytic activity of 
sortase enzymes isolated from 
differing bacterial species. “Hits” on 
the heat map (colored green or red) 
indicate that cleavage had occurred and 
was measured via MS after 24 hrs when 
the enzyme and substrate were 
incubated together. Colored letters 
indicate the substituted amino acid in 
either the 4th or 5th position (left to 
right) in the canonical LPXTG motif 
(Adapted from Nikghalb KD, et al., 
2018).  
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Results and Discussion 
 
 

1.2 Principle Component Analysis of Sortase A 
 

A Principle Component Analysis is a statistical method which allows data in a higher 

dimensional space to be projected into a lower dimensional space (e.g. 2-D or 3-D), this is 

achieved by maximizing the variance of the data set so that even though the dimensionality is 

reduced, the variability remains relatively high (37). This PCA allowed us to globally analyze the 

sortase family tree, examining each sequence as a whole all at one time, differing from a network 

analysis in which only portions of the sequence are analyzed. Every published sortase enzyme 

sequence was sourced from the UniProt data base, and a multi sequence alignment (MSA) 

informed us as to how the sequences were related. From there, individual residues and their  

chemical properties were introduced for every single amino acid and sequence gap, producing a 

Protein Similarity Matrix (PSM). In this PSM each sequence holds a position in some higher 

dimensional space wherein each protein sequence correlates to a data point in this protein 

sequence space. PCA allowed us to simplify these data points down into a 3-D or 2-D space for 

further analysis of the data shape (Figure 1-3). Classes of sortases clustered, and we selected and 

analyzed the Class A sortase cluster. Within this cluster of class A sortase enzymes, we were 

able to identify the b7-b8 loop and the b6-b7 loop as regions of variability within class A sortase 

enzymes. We hypothesize that these regions may play a role in the observed biochemical 

differences in class A sortase enzymes such as selectivity and activity.  
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1.3 Initial ‘Loop Swapped’ Constructs SASPneumoniae and SPSAureus  

 
As discussed, the b7-b8 loop is recognized as a component to substrate binding, laying adjacent 

to the catalytic residues, Cys-184, Arg-197, and His-120. Between SrtAstaph and SrtAstrep the b7-

b8 loops differ significantly in length, with the SrtAstaph b7-b8 loop containing 14 residues 

(CDDYNEKTGVWEKR), and the SrtAstrep b7-b8 loop containing 9 residues (CEDLAATER).  

Additionally, there is only one residue conserved between the loops, an Asp located two residues 

C-terminal to Cys-184. The residue numbering for this study is based on the WT SrtAstaph unless 

otherwise specified. Taking these b7-b8 loop residues and swapping them between the b-barrel 

Figure 1-3. Principle component analysis (PCA) of sortase superfamily and b7-b8 loop alignment. 
Sortase sequences sourced from UniProt were subjected to a multisequence alignment in which they were 
filtered by the presences of large gaps (from 16164 to 9427). Data was simplified to 3D space (PCA1-PCA3 
axis)  and class A sortase was selected. A BLAST sequence comparison displays variation in the b7-b8 region, 
boxed in black. b6-b7 loop boxed in red.  
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core of the two enzymes resulted in two hybrid, ‘loop swapped’ chimeric constructs, SPSaureus  

and SASpneumoniae (Figure 1-4). 

 

These engineered constructs were hypothesized to follow the substrate specificity and catalytic 

activity of the enzyme from which the loop originated. Consequently, we hypothesized that the 

substrate specificity and catalytic activity of the SPSaureus should be most similar to the behavior 

of SrtAstaph with a possibility of increased substrate specificity due to the fact that this loop has 

been spliced onto the core of the more promiscuous SrtAstrep. The opposite was anticipated hold 

true for SASpneumoniae.  

 
1.4 High Throughput Fluorescence Assay Development 
 
In order to measure the activity and promiscuity of our engineered SrtA enzymes, the SrtA 

reactions were monitored using model substrates containing an attached fluorophore and 

quencher (Abz and Dnp) to estimate overall conversion from starting material to product (Figure 

1-5). Using these substrates, we were able to develop an efficient assay in which multiple 

enzyme-substrate pairs could be monitored in parallel via the increase in the observed Abz 

fluorescence.  

 

Figure 1-4 ‘Loop swapped’ 
SrtA constructs. The b7-b8 
loop from the SrtAstaph 
construct is boxed, the core 
from the SrtAstrep construct is 
boxed. These two species are 
merged together to form one 
of the new constructs, 
SPSaureus. (PDB 2KID and 
homology model made using 
SWISS Model with 3RCC 
used as the template 
structure).  



 

 21 

 

 

 

 

This high throughput kinetic fluorescence assay was executed on a microplate reader, 

where each individual reaction was performed in a single well of a 96 well plate for a maximum 

of 96 reactions per 2 hr time period, improving our testing speed significantly compared to the 

previous HPLC method (31). Though this assay offered an improved testing rate, it only 

provided a fluorescence intensity reading, a unitless number that, without a correlated peak area, 

such as that observed when performing the reaction on a HPLC, could not be correlated to 

overall conversion of substrate starting material to product.  

The overall conversion rate of these reactions was originally calculated by comparing the 

starting material peak, the Abz-LPATXG-K(Dnp) species, and the product peak, the XG-K(Dnp) 

species. Dnp has a strong UV absorption at 360 nm, which allowed us to observe both the 

starting material peak and the product peak on a HPLC. In addition once the Dnp group is 

Figure 1-5. Scheme illustrating the SrtA cleavage reaction. The starting material, Abz-
LPATXG-K(Dnp) is cleaved to form the products Abz-LPAT and XG-K(Dnp) after the 
specified peptide is reacted with SrtA and the H2NOH nucleophile.  
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cleaved it will no longer quench the fluorescent Abz group, resulting in a measurable fluorescent 

signal. This fluorescent behavior can be harnessed when performing the reaction in a plate reader 

assay where measuring starting material and product peaks by HPLC is more time consuming. 

By measuring a florescent signal of the fluorophore Abz over a 2 hr time period and correlating 

it to the more precise UV vis traces obtained on the HPLC we were able to create a standardized 

calibration curve that can be applied to any sortase mutant to estimate overall percent conversion 

from the starting material, Abz-LPATXG-K(Dnp) to the product, XG-K(Dnp) without needing 

to perform the reaction on a HPLC in tandem (Figure 1-6). This novel high throughput screen 

permitted a broader subset of our sortase enzyme mutants to be screened for selectivity behaviors 

and resulting catalytic activity.  

 

 

(1) y=577.45x+1243.3 

 
 
 
 
 
 
 

Figure 1-6. HPLC and calibration curve for high throughput assay. (A) Representative HPLC 
reaction peaks, starting material (Abz-LPATGG-K(Dnp)) and product (GG-K(Dnp)), absorbance at 360 
nm. (B) Calibration curve correlating fluorescence from plate reader assay to percent conversion 
calculated via peak ratios obtained from HPLC traces such as that shown in (A).  
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1.5 Selectivity and Activity of Initial ‘Loop Swapped’ Constructs  
 
When substituting residues in for the 5th position in the LPATXG motif we selected LPATGG, 

LPATSG, and LPATAG as the representative substrates based on a previous study out of the 

Antos lab which indicated that if a sortase enzyme is not catalytically active with one or more of 

these substrates, catalytic activity will not be observed in any other tested substrates (31). A 

similar pattern is observed for 4th position motif LPAXGG in which LPAAGG, LPAEGG, and 

LPAIGG were selected as the representative substrates. For the purposes of this study we 

determined that a 20% conversion from our starting material, Abz-LPATXG-K(Dnp) to our 

desired cleavage product XG-K(Dnp) was sufficient to claim that a WT or engineered construct 

was catalytically active with the specified substrate. This cut off percentage is based on the 

magnitude of experimental error which was consistently 15-17%. In addition, for this study we 

acknowledge that the presence of a His-tag used for recombinant protein expression can affect 

enzyme activity. We chose to keep the His-tag on all of our S. pneumoniae SrtA variants in order 

to compare with our WT enzyme, a construct that does not contain a protease cleavage site for 

His-tag removal, as well as previously published data (31) 

Consistent with previous literature, SrtAstaph displayed catalytic activity with only the  

LPATGG and LPAAGG substrates. SrtAstrep displayed lowered and roughly similar catalytic 

activity for the 5th position LPATGG, LPATSG, and LPATAG substrates while displaying no 

catalytic activity for the 4th position LPAAGG, LPAEGG, and LPAIGG substrates (Figure 1-7). 

As described earlier, a value of 35, for example, means that at a time point of 2 hrs, there was a 

35% total conversion from starting material, Abz-LPATXG-K(Dnp) to the product XG-K(Dnp) 

measured by fluorescence intensity. 
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Subjecting our engineered constructs SPSaureus and SASpneumoniae to the same 4th and 5th 

position panels as the WT constructs reveled that swapping the more catalytically active SrtAstaph 

loop onto the more promiscuous SrtAstrep core (SPSaureus) produced roughly a 3-fold improvement 

in catalytic activity for the 5th position LPATGG substrate compared to that of SrtAstrep, while 

almost completely knocking out activity for the LPATSG and LPATAG substrates. A similar 

behavior was observed for the 4th position substitutions where the previously inactive SrtAstrep 

enzyme had activity completely restored by adding on the SrtAstaph b7-b8 loop (Figure 1-7). This 

observed catalytic activity was consistent with our initial hypothesis that the b7-b8 loop may 

play a role in target selectivity, and found that indeed, the sequence of these residues can 

modulate both activity and selectivity as sortase substrate interacting loops and have been 

indicated a playing a role in substrate recognition and processing (1, 22, 26, 28, 33, 38). The 

SASpneumoniae construct produced unexpected results where no catalytic activity was observed for 

any 4th or 5th position substitutions wherein we expected to possibly observe an increase in 

substrate promiscuity due to the addition of the b7-b8 loop from the promiscuous SrtAstrep onto 

the catalytically active SrtAstaph core, especially due to our results obtained for the SPSaureus 

Figure 1-7. Heat map of initial ‘loop swapped’ SrtA enzymes. Displays measured 
catalytic activity of WT and initial ‘loop swapped’ SrtA enzymes with a 5th and 4th 
position substitutions (LPATXG and LPAXGG). Each “hit” corresponds to final 
percent conversion from starting material to product measured via florescent plate 
reader assay after 2 hrs. Darker shades of red/green indicate an enhanced overall 
percent conversion. 
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construct. We are uncertain as to why this inactivity is occurring and we investigate potential 

solutions to address this issue by identifying key residues and structural components that may be 

causing this inactivity in Section 1.7 Enzyme Inactivity. The results we obtained for the SPSaureus 

construct led us to explore additional loop swapped constructs utilizing the same S. pneumoniae 

core and different substrate interacting loops from sortase homologues.  

 
1.6 ‘Loop Swapped’ Complexes with New Sortase Homologues 
 
By addition of the b7-b8 substrate interacting loop from the SrtAstaph onto the core of the SrtAstrep 

core (SPSaureus) we were able to narrow the substrate specificity profile such that only the 

LPATGG substrate was recognized. Though we did improve catalytic efficiency with this 

SPSaureus construct and LPATGG, the substrate scope was still limited. Expanding this panel to 

include all 5th position amino acid substitutions allowed us to determine if the loop swapped 

constructs, SPSaureus and SASpneumoniae had enhanced substrate profiles outside of the initial 

substrates tested. Based on initial results for our ‘loop swapped’ constructs SPSaureus and 

SASpneumoniae, we were interested in exploring the usage of new b7-b8 substrate interacting loops 

from multiple distinctive sortase homologues. Previous results showed SPSaureus to be a 

promising engineered construct, displaying a slightly increased substrate promiscuity compared 

to the SrtAstaph construct in which the b7-b8 loop originated from. Although this result was 

encouraging, we considered that the overall substrate and catalytic activity may be modulated by 

the addition of substrate interacting loops from new sortase homologues onto the SrtAstrep core.  

The sortase family encapsulates thousands of sortase genes that may be studied and 

utilized for the purposes of SML but we wanted to identify a SrtA enzyme that has a differing 

selectivity and activity from those that are currently available to researchers. In a previously 

published study out of the Antos Lab at Western Washington University, our collaborators 
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identified and tested 6 new WT sortase homologues, Streptococcus suis, Streptococcus oralis, 

Listeria monocytogenes, Enterococcus faecalis, Lactococcus lactis, Bacillus anthracis. Overall 

these homologues, specifically S. suis, S. pneumoniae, S. oralis, and L. monocytogenes, 

displayed higher substrate promiscuity compared to that of SrtAstaph in the previously published 

study (31). This substrate selectivity was 

measured by “hits” seen via mass spectrometry 

(MS) and informed an HPLC based assay in 

which total percent conversion was measured 

at a time point of 24 hrs for selected peptides 

(Figure 1-1, 1-8).  

We engineered 6 new constructs 

utilizing these new sortase homologues b7-b8 

loops and the SrtAstrep core based on our 

previous loop swapped results which indicated 

improved catalytic efficiency for the SPSaureus 

construct. By swapping in these new b7-b8 

loops we hoped to engineer a construct that 

would display improved catalytic activity and a 

more promiscuous substrate specificity profile. 

We utilized our high throughput kinetic 

fluorescence assay to assess of the impact these 

new sortase homologue b7-b8 loops on the 

overall behavior of an engineered construct. 

Figure 1-8. Heat map of substrate selectivity 
and catalytic activity of sortase enzymes 
isolated from differing bacterial species. 
Darker colors of green or red on the heat map 
indicate that cleavage had occurred and was 
measured via an HPLC based assay after 24 hrs 
when the enzyme and substrate were incubated 
together. Substrates with substituted residue (red) 
in either the 4th, or 5th position in the canonical 
LPATXG motif. Adapted from Nikghalb KD, et 
al., 2018.  
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Initial results obtained via our fluorescence assay exhibited improved catalytic activity 

for the SPSlactis, SPSfaec, SPSoralis, and SPSsuis constructs with all of the representative 5th position 

substrates (LPATGG, LPATSG, and LPATAG) compared to the initial SrtAstaph and SPSaureus 

constructs. For 4th position representative substrates (LPAAGG, LPAEGG, LPAIGG) catalytic 

activity was only observed for the LPAAGG substrate. For the constructs, SPSanth and SPSmono 

no catalytic activity was observed for any 4th or 5th position substitutions (Figure 1-9). The 

sequence similarity between catalytically inactive enzymes versus the catalytically active 

enzymes displayed a trend in b7-b8 loop length and loop composition related to catalytic 

behavior. The active SrtA enzymes have the same loop length (7 residues) and a 43% loop 

sequence identity to the SrtAstrep b7-b8 loop while the inactive enzymes have a longer loop 

length (8 residues) and have no loop sequence similarity to that from SrtAstrep (Figure 1-10). It 

seems that loop sequence and loop length may influence if the selected b7-b8 loop on a SrtAstrep 

core will exhibit catalytic activity with the representative panel of substrates for both 4th and 5th 

position substitutions. Notably, the mutant, SPSfaec showed promising catalytic activity for all of 

the 5th position representative substrates, leading us to expand our substrate panel to include all 

20 amino acids for a 5th position substitution.  



 

 28 

 

 

 

 

To better understand how the substrate specificity of our engineered constructs may be 

modulated by b7-b8 loop mutations, all of our constructs including the original loop swapped 

variants were tested against a 19 amino acid panel for 5th position substitutions (excluding Trp 

due to issues with peptide purification). We observed an overall trend matching that seen with 

the initial substrate panel (LPATGG, LPATSG, and LPATAG), wherein catalytic activity was 

only observed for SPSlactis, SPSfaec, SPSoralis, and SPSsuis and no catalytic activity was observed 

for SPSanth and SPSmono (Figure 1-11). Using a 20% conversion cut off, in the expanded panel the 

SPSlactis, SPSfaec, and SPSsuis displayed improved catalytic activity for the LPATFG and 

Figure 1-9. Heat map of ‘loop swapped’ SrtA with new SrtA homologues. 
Displays measured catalytic activity of SrtA enzymes with a 5th and 4th position 
substitutions (LPATXG and LPAXGG). Each “hit” corresponds to final percent 
conversion from starting material to product measured via florescent plate 
reader assay after 2 hrs. Darker shades of red/green indicate an enhanced 
overall percent conversion. 
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LPATNG substrates, while only SPSlactis and SPSfaec displayed catalytic activity for all 

LPATVG, LPATLG, LPATFG, and LPATNG substrates. 

 

 

 

 

Figure 1-10. b7-b8 loop sequences from WT SrtA enzymes and SrtA 
homologues.  
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Comparing the sequences between SPSfaec and SPSlactis we see that both loop sequences 

contain the three residues Asp, Ala, and Thr, similar to that of SrtAstrep but also contain small, 

uncharged residues next to the catalytic cysteine in the active site (Figure 1-10, 1-11, 1-12).  

Figure 1-11. Expanded graphical representation of ‘loop swapped’ SrtA with new SrtA homologues. 
Displays measured catalytic activity of SrtA enzymes with a 5th position substitutions (LPATXG). Final percent 
conversion from starting material to product measured via florescent plate reader assay after 2 hrs. Percent 
conversions over 20% are labeled above bar. * indicates residue substitution was not determined. 
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On the other hand the construct SPSoralis contains 4 out of 7 similar residues to SrtAstrep 

but its catalytic behavior across the substrate panel is lowered, implying that there may be 

specific residues in the b7-b8 loop that are influencing catalytic behavior to a large degree. The 

two residues in the loop sequence Asn and Val show no similarity between either the SrtAstrep or 

any other catalytically active loops. We also see that the SPSanth b7-b8 loop contains a Val 

residue in the same position. When comparing the SPSmono to the SPSanth construct we actually 

see that SPSmono is marginally active and does not contain a Val residue, though this could be 

coincidental. Future studies could explore the impact of swapping in a Gly residue for the Val 

residue, similar to that seen in the SPSfaec mutant. 

The complete inactivity observed for the SPSanth and SPSmono constructs could potentially 

be due to the fact that both of these constructs are longer than the original SrtAstrep b7-b8 loop, 

possibly impacting the ability of these constructs from forming key residue interactions 

necessary for catalysis (Figure 1-10, 1-11). In addition, these sequences also have no sequence 

similarity compared to that of the SrtAstrep b7-b8 loop. Future experiments could shorten the b7-

b8 loops to match the loop length of SrtAstrep or even substitute in residues closest to the active 

site in order to determine if site specific mutations could restore activity. 
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Based on the results obtained from the expanded sortase homologue panel, we identified 

our most promising construct, SPSfaec. SPSfaec had the most expansive substrate promiscuity 

profile with 7/20 amino acids meeting or exceeding the 20% conversion rate cut off for 

determining improved catalytic activity. In addition SPSfaec showed improved substrate 

promiscuity with a 10% conversion rate cut off, expanding the recognized substrate profile by an 

additional two residues. Though these additional two residues would not be as useful for protein 

engineering purposes due to their slower catalytic rate over the course of 2 hrs, they could 

potentially still be utilized for SML if run over the course of 24 hrs. The promiscuity of this 

construct was surprising as the WT E. faecalis is highly selective, only recognizing the LPATAG 

substrate when tested in the study out of the Antos lab via HPLC/MS (Figure 1-1, 1-8). By 

generating this ‘loop swapped’ construct with a S. pneumoniae core we produced a construct 

with the highest substrate promiscuity out of any of our SrtA enzymes.  

Figure 1-12. Swiss modeled ‘loop swapped’ complexes with new SrtA 
homologues. SrtAstrep core colored grey, b7-b8 loop colored by species (A) 
SPSanth, (B) SPSfaec, (C) SPSlactis, (D) SPSmono, (E) SPSoralis, (F) SPSsuis. Adapted 
from homology model made using SwissModel with PDB 3RCC used as the 
template structure 
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With the generation of this SPSfaec construct we show that we were able to successfully 

engineer a unique SrtA enzyme which displayed an broader substrate specificity profile and 

overall improved catalytic efficiency (Figure 1-11). The vastly improved catalytic activity and 

promiscuity of this enzyme was achieved by changing only three residues from the initial 

SrtAstrep sequence, these being the Gly, 

Gln, and Thr in the loop sequence 

(GDLQATT). The origins of the effect 

of this loop swap are not entirely clear 

but we speculate that specific residue 

interactions  on the S. pneumoniae 

scaffold may be the key to 

understanding the behavior of this 

construct, as detailed below.  

Identifying key residues that may 

play a role in maintaining catalytic activity 

is important for this study as the 

identification of specific residue positions 

can possibly be employed by researchers to further mutate SrtA enzymes which currently 

struggle from nominal catalytic activity, such as our SPS constructs, SPSanth and SPSmono.  

We identified one potential residue target for investigation, the Gly residue in the 

(GDLQATT) sequence displayed in SPSfaec. We hypothesized that this Glu-128 residue in 

SrtAstrep may be interacting with the Arg-104 residue near the N-terminus of the b6-b7 loop, 

reducing the flexibility of the loop, which may be deleteriously impacting substrate promiscuity 

Figure 1-13. SrtAstrep with measured angstrom 
distances between residues Glu-128 and Arg-
104. b6, b7, and b8 loops are highlighted. 
Adapted from homology model made using 
SWISS Model with PDB 3RCC used as the 
template structure. 
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and overall catalytic activity (Figure 1-13). The numbering of these residues is based on the S. 

pneumoniae sequence, up until now we have only used S. aureus numbering.  This Gly was 

mutated back to a Glu, similar to that displayed in the SrtAstrep sequence. Since SPSfaec displays 

high catalytic efficiency this Glu mutation near the active site may demonstrate if this interaction 

is impacting catalytic activity and promiscuity and identify Glu as a key residue which may 

limiting the overall catalytic activity and substrate specificity of SrtAstrep as well as 

demonstrating Gly near the catalytic Cys may be a necessity for a highly active and promiscuous 

enzyme.  

 

 

 

 

 

 

This mutated construct, SPSfaecG145E, resulted in an overall decrease in catalytic activity 

for the 5th position  LPATGG, LPATSG, and LPATAG substrates (Figure 1-14). This decrease 

in catalytic activity was not as sizable as we expected but the overall reduction in catalytic 

Figure 1-14. Expanded 
graphical representation of 
mutated SPSfaecalis. Displays 
measured catalytic activity of WT 
and the ‘loop swapped’ SPSfaec 
mutant SrtA enzyme with a 5th 
substitutions (LPATXG). Final 
percent conversion from starting 
material to product measured via 
florescent plate reader assay after 2 
hrs. Percent conversion over 20% 
labeled over bar. * indicates 
peptide was not measured.  
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activity indicated that the negatively charged Glu residue near the catalytic cysteine is either 

limiting the activity by interaction with this Arg or that a small residue, such as Gly is necessary 

for activity with our SPSX constructs. The impacts on substrate promiscuity were unknown due 

to limitations of enzyme and peptide availability.  

The 4th position LPAAGG, 

LPAEGG, and LPAIGG substrates were 

also tested via the fluorescence assay and 

we observed a 3-fold drop in catalytic 

activity compared to SPSfaec. The panel 

in general displayed lowered catalytic 

activity for the LPAAGG substrate and no 

catalytic activity was exhibited for either 

the LPAEGG or LPAIGG substrates 

(Figure 1-15). Future studies could address why these residues are not catalytically active as well 

as expanding the 4th position LPAXGG motif to include all 20 amino acid substitutions in order 

to identify any unexpected amino acid substitutions that may produce catalytic activity. 

 
1.7 Enzyme Inactivity  
 
The results of our enzymatic assay revealed multiple inactive SrtA enzymes. Though this 

inactivity may be truly due to the enzymes inability to recognize the substrates, we wanted to 

ensure that the inactivity was not due to outlying factors such as enzyme contamination with 

dimer or oligomeric fractions or protein expression/purification issues. We primarily focus on 

the inactive SASpneumoniae enzyme in this section as its counterpart, the SPSaureus construct 

behaved so well under similar conditions. 

Figure 1-15. Heat map of mutated SPSfaecalis. Displays 
measured catalytic activity of WT, ‘loop swapped’, and 
SPSfaec mutant SrtA enzymes with a 4th substitutions 
(LPAXGG). Each “hit” corresponds to final percent 
conversion from starting material to product measured via 
florescent plate reader assay after 2 hrs. Darker shades of 
green indicate an enhanced overall percent conversion. 
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Based on the initial results obtained via the kinetic fluorescence assay we observed a 

completely inactive SASpneumoniae enzyme (Figure 1-7). This result was intriguing due to the fact 

that we expected to observe an enzyme that may have displayed improved substrate promiscuity 

or catalytic activity, but instead catalytic activity was completely knocked out of this engineered 

construct. Originally thought to be due to a protein expression or purification issue, SASpneumoniae 

was re-expressed and re-purified under standard, non-denaturing conditions with similar results, 

indicating that there may be additional properties of the enzyme at play in determining catalytic 

activity. 

Previous studies have indicated that 

the dimer and oligomeric states of sortase 

A are catalytically inactive (31). Due to 

potential perturbations of the monomeric 

identity of our enzymes by influence of 

freeze/thaw cycles we were uncertain if 

inactivity issues in our SASpneumoniae 

construct or in other constructs could be 

due to a transformation of the SrtA 

enzymes from a monomeric to 

dimeric/oligomeric state. Therefore, a 

control experiment was performed where 

previously purified protein samples were re-

run over a S75 SEC column to gauge the level 

of monomer versus dimer or oligomer (Figure 1-16). This revealed that the majority of our 

Figure 1-16. Isolation of monomeric species by SEC. 
SEC chromatogram illustrating isolation of monomeric 
complexes for WT SrtA enzymes and new SrtA 
homologues. 
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sortase enzymes did possess a monomeric identity, with only SrtAstrep displaying a potentially 

dimer or oligomer contaminated sample. When tested with our fluorescence assay SrtAstrep 

displayed no difference in overall activity compared to previous fluorescence data collected for 

the monomeric enzyme stock solution that was contaminated with dimer using the LPATXG 

substrate with either a Gly, Ser, or Ala substitution. Inconclusive results from this control 

experiment for SASpneumoniae led us to consider additional methodologies directly involving 

manipulation of the b7-b8 loop sequence when addressing causes of inactivity. 

In the introduction, the significance of the tryptophan residue on catalytic activity in 

SrtAstaph was presented. Tryptophan shields the active site residues in the sortases’ active site 

from the surrounding solvent, thus this Trp residue was a promising target for site specific 

mutation. Using our two previously tested constructs, SPSaureus and SASpneumoniae, we engineered 

two new constructs with a T194W mutation in the construct SASpneumoniaeT194W or a W194T 

mutation in the construct SPSaureusW194T. When the Trp was added back into the SASpneumoniaeT194W 

construct we expected to observe partially restored catalytic activity. But for the SPSaureusW194T 

construct, we expected that swapping the Trp residue out of the SPSaureus would greatly reduce 

catalytic activity for this enzyme. A result for either of these scenarios could indicate a potential 

correlation between the presence of this residue in our engineered constructs and overall catalytic 

activity.  

The SPSaureusW194T construct displayed a decrease in overall catalytic activity for the 5th 

position LPATGG substrate and the 4th position LPAAGG substrate but overall catalytic activity 

was not knocked out completely. The catalytic behavior for SPSaureusW194T construct was in line 

with the proposed result of this mutation and these results support the findings from previous 

literature (Figure 1-17)(27). Results for the SASpneumoniaeT194W construct displayed unresolved 
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inactivity with substitutions for both the LPATXG motif and the LPAXGG motif, wherein we 

expected to observe an increase in catalytic activity due to the restoration of this Trp residue 

(Figure 1-17). Sustained inactivity even with this Trp mutation and the reduction in activity 

observed for the SPSaureusW194T indicates that this Trp residue may play a role in determining 

overall catalytic activity on the S. aureus scaffold.  

To address loop length differences and b7-b8 loop composition as a potential cause of 

catalytic inactivity in our SASpneumoniae construct we engineered SrtAstaph in which the b7-b8 loop  

(DDYEKTGVWEK) was truncated by removing the (EKTG) residues resulting in a loop length 

which is similar to that of SrtAstrep. The (EKTG) portion of the b7-b8 loop was selected due to its 

distance from the active site of the enzyme and was assumed to not play a substantial role in 

substrate recognition as it was not near the active site of SrtAstaph.  

The new SADEKTG construct was tested for both 4th and 5th position substitutions using the 

representative substrates, LPATGG, LPATSG, and LPATAG (5th position) and LPAAGG, 

LPAEGG, and LPAIGG (4th position) to determine if this mutation could provide insight as to 

why the SASpneumoniae construct was catalytically inactive. The truncation of the (EKTG) residues 

completely knocked out catalytic activity for the 5th position LPATGG substrate and the 4th 

position LPAAGG substrate, compared to the SrtAstaph control which displayed 100% total 

conversion over 2 hrs for both of these substrates (Figure 1-17). This reduction in catalytic 

activity with a truncation of the b7-b8 loop could be due to a reduction in loop flexibility that 

may be necessary for substrate recognition in SrtAstaph by means of key residue interactions. In 

addition, the (EKTG) residues may play an unknown role in substrate recognition.  
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Rather than site specifically engineering a new b7-b8 loop to potentially restore activity 

of the SASpneumoniae construct, we 

instead opted to utilize an existing 

b7-b8 loop from a sortase 

homologue, SrtA from 

Streptococcus suis, due to the b7-

b8 loop similarities to that of 

SrtAstrep. The sequence from S. suis 

(TDYYATQ) has the same number 

of residues and a roughly 43% 

loop sequence identity (3 out of 7 

residues) to that of SrtAstrep, 

(EDLAATE). By use of this 

sortase homologue b7-b8 substrate 

interacting loop we hoped to 

observe a partial or full restoration 

of catalytic activity in a construct 

with the SrtAstaph core and identify key residues that may influence catalytic activity, especially 

those closest to the catalytic active site.  

 The mutated construct, SASsuis, with the S. suis b7-b8 loop exhibited no catalytic activity 

when tested for both 4th and 5th position substitutions using the representative substrates 

LPATGG, LPATSG, LPATAG (5th position) and LPAAGG, LPAEGG, LPAIGG (4th position), 

similar to that of the SADEKTG construct (Figure 1-17).  

Figure 1-17. Heat map of ‘loop swapped’ enzymes with a 
Trp mutation, truncated loop, or S. suis b7-b8 loop. Displays 
measured catalytic activity of SrtA enzymes with a 5th and 4th 
position substitutions (LPATXG and LPAXGG). Each “hit” 
corresponds to final percent conversion from starting material to 
product measured via florescent plate reader assay after 2 hrs. 
Darker shades of red/green indicate an enhanced overall percent 
conversion. 
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We were unable to restore catalytic activity in our SASpneumoniae construct and we are still 

unsure as to what specific issue is resulting in this catalytically dead enzyme but we hypothesize 

that both loop composition and substrate interacting loop length, especially on the S. aureus 

scaffold, may be responsible for substrate recognition and catalytic activity.  

 
1.8 Preliminary HDX Experiments  
 
Promising results for the SPSfaec construct and the identification of key residues in the b7-b8 

loop that may be modulating activity assists our understanding of the localized effects of this 

‘loop swap’. To comprehend the bigger picture of how this chimeric construct behaves, and the 

dynamic movement experienced by this b7-b8 loop and the surrounding substrate interacting 

loops we employed Hydrogen Deuterium Exchange (HDX) to investigate dynamic substrate loop 

movement and conformational changes that relate to SrtA function. 

As described previously, before substrate binding occurs, the apo-SrtA b7-b8 and b6-b7 

loops are unstructured and flexible. When the substrate binds, the b6-b7 loop will then adopt a 

conformation in which the side chains of Val-168 and Leu-169 are rotated away from the body 

of the protein and the complex orients into the conformation wherein the b7-b8 loop is partially 

displaced, leaving room for binding of the sorting signal where the active site catalytic Cys, Cys-

184, is positioned to cleave between the Thr and Gly residues of the LPXTG motif (27). 

Previous results in our study indicated that b7-b8 loop flexibility and length may be a key 

component mediating catalytic activity, exemplified by the SADEKTG mutant in which catalytic 

activity was knocked out by truncating the SrtAstaph loop by 4 residues, (EKTG). Investigating 

the flexibility and dynamic movement of these b7-b8 and b6-b7 loops should help us evaluate 
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why some of our constructs are catalytically inactive and also why our highly successful mutant, 

SPSfaec, performs so well with many 5th position substitutions in the LPATXG motif.  

One way one we can examine this loop flexibility and dynamic movement is through 

hydrogen deuterium exchange (HDX). HDX is a biophysical technique that allows researchers to 

investigate the dynamic loop movements and structural characteristics of proteins. HDX can be 

used to examine protein conformations, identify substrate binding sites, and investigate the 

dynamics of protein domains (39–41).  

In a protic solution covalently bonded amide hydrogens of the protein backbone with 

exchangeable protons will exchange with the deuterated solvent, incorporating deuterium in at 

these positions, causing a mass change. The rate of exchange the detectable by MS. This 

“exchange” allows for detection of dynamic movement by means of measuring increased or 

decreased hydrogen-exchange and the mass change is dependent on the folded state of the 

protein and exposed loop surface area, where more shielded areas will experience less exchange 

from protons to deuterium. The stability of the hydrogen bonding networks and the chemical 

properties sequence also play a role in the rate of exchange (42, 43). 

 Partnering with a PhD candidate, Helen Hobbs in Susan Marqusee’s Lab at UC Berkeley 

we tested numerous constructs including our WT SrtA enzymes and our promising enzyme 

candidate, SPSfaec, to determine how the improved activity of the engineered construct would 

correlate to flexibility and dynamic movement of its loops.  
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 Results of the HDX experiments showed that in our SPSfaec mutant there was an 

enhancement in the percent deuteriation indicating that this b7-b8 loop region may be more 

flexible and dynamic (Figure 1-18). The improvement in the flexibility of this loop may help the 

SPSfaec accommodate a broader scope of substrates compared to the SrtAstrep. Within this loop, 

most of the enhancements in the flexibility seem to be focused around the C-terminus of this 

loop sequence, specifically near the Gln and Thr residues. Though, the residue where we 

expected to potentially see a change in the flexibility was the Gly residue in SPSfaec based on the 

results from the SPSfaecG145E mutant but we did not see this in the deuteriation heat maps. 

Figure 1-18. Deuteration level of SrtAstrep and SPSfaecalis residues at different time points. Regions 
in the b7-b8 loop with enhanced rates of exchange are boxed in black. Scale of % deuteration listed 
from 10%-100% in increments of 10%.   
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Conceivably this residue change may “loosen up the C-terminus of the loop. This increase in 

flexibility near the C-terminus may be resulting in a loop-loop interaction or a change in 

structure that accommodates additional substrates. Though this experiment was limited as we 

were only able to test the apo state of our enzymes. To really get a deeper understanding of the 

differences in loop dynamics and draw conclusions about the behavior of these enzymes we 

should test both bound and unbound states of the SPSfaec and SrtAstrep.   

 
1.9 Dermcidin Experiment 

Our project has predominantly focused on determining if these newly engineered constructs were 

able to form the cleavage product by either observing a product peak for (XG-K(Dnp)) via 

HPLC or producing a 

fluorescent signal (Abz) via our 

plate reader assay, and 

correlating these results to 

overall enzymatic behaviors. 

Though useful for making 

general observations about 

these new enzymes, we were 

limited by the scope of this 

assay. Therefore, we were 

interested to explore how these 

new constructs, specifically the SPSfaec, would behave when used in a ligation method 

application which expands beyond the scope of simple model substrates.   

Figure 1-19. Dermcidin modification experiment. MS of 
dermcidin experiment utilizing a five-fold molar excess of F* tagged 
peptide, FITC-Axh-LPATSG in combination with the SPSfaec enzyme 
after 2 hrs. The modified peak indicates the presence of a modified 
N-terminus. 



 

 44 

 This experiment utilized dermcidin-1L (DCD-1L), a small 48 residue antimicrobial 

peptide (roughly 4.8 kD), which has a naturally occurring N-terminal Ser residue. The utilization 

of this peptide is indicated by results obtained with our SPSfaec enzyme and the LPATSG 

substrate where improved catalytic activity was observed via the fluorescence plate assay. In 

previous experiments performed in the Antos lab, DCD-1L has shown the ability to be ligated to 

the LPATSG substrate using SrtA and Ser also displays as a naturally occurring N-terminal 

nucleophile in DCD-1L. 

 This DCD-1L was incubated with a five-fold molar excess of fluorescently tagged 

peptide, FITC-Axh-LPATSG, and our SPSfaec enzyme. We observed a conversion from our 

unmodified DCD-1L to a modified N-terminal DCD-1L product. This conversion was monitored 

by LC-ESI-MS (Figure 1-19).  

 The ability our SPSfaec enzyme to not only form a cleavage product with a variety of 5th 

position substitutions (LPATGG, LPATSG, LPATAG, LPATVG, LPATLG, and LPATFG) but 

also successfully progress through the transacylation reaction and form the ligation product when 

utilized in the DCD-1L modification scheme, similar to that used by the Antos lab, is indicative 

that this enzyme can be used for the purposes of sortase-mediated ligation in a research setting, 

potentially out-performing previously engineered constructs. Future experiments could apply this 

same dermcidin experiment to our other constructs which displayed improved catalytic activity, 

SPSlactis and SPSsuis.  

 
1.10 Expansion of Sortase Utilization and Concluding Remarks 
 

By means of engineering existing SrtA enzymes we produced a novel sortase by loop 

swapping a b7-b8 loop from E. faecalis onto the core of the S. pneumoniae, producing an 

enzyme, SPSfaec, that not only displayed an improved catalytic profile but in addition had vastly 
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expanded substrate promiscuity compared to WT SrtAstrep and SrtAstaph. Though we had 

additional engineered enzymes, specifically SPSlactis and SPSsuis, which showed enhanced 

catalytic activity and a relatively similar substrate promiscuity, SPSfaec was the construct which 

we considered to be the most promising for future protein engineering endeavors. This 

consideration was supported by the behavior of SPSfaec when tested against the antimicrobial 

peptide dermcidin, in which SPSfaec was able to successfully perform the transacylation reaction, 

producing a modified N-terminal DCD-1L product. The ability of a SrtA construct to ligate is 

necessary for the labeling of antibodies with small molecule labels or the formation of antibody 

drug conjugates, such as used with sortase-mediated antibody drug conjugation technology 

(SMAC-technology)(12).  

We have also identified key structural components and residues that may be modulating 

the activity of our SrtA constructs. The HDX experiment reasserted this b7-b8 loop as a region 

of flexibility in our SPSfaec enzyme. In addition, loop length seems to possibly play a role in 

determining overall catalytic activity and substrate promiscuity of our SPSX constructs. The 

inactive constructs, SPSmono and SPSanth, both exhibit longer b7-b8 loops compared to their active 

counterparts, SPSfaec, SPSsuis, and SPSlactis. In addition, our ‘inactive’ SASpneumoniae construct 

followed this same trend where the shorter S. pneumoniae loop which was engineered on to the 

SrtAstaph core resulted in no catalytic activity observed. When testing this with our SADEKTG 

construct, a shortened SrtAstaph loop completely knocked out catalytic activity, reinforcing the 

idea that overall loop structure and length may be modulating substrate interaction and resulting 

catalytic activity. The key residues that seem to possibly be regulating the behavior of our 

constructs are those nearest to the active site of the SrtA enzyme. When we tested the mutated 

enzyme, SPSfaecG145E, the slight reduction in catalytic efficiency illustrated that the Glu in the 
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SrtAstrep b7-b8 could be interacting with the Arg residue, limiting catalytic activity. This Glu 

residue seems to be necessary for effective catalysis.  

Future studies should first, explore the impacts of additional site-specific mutations in 

both our active SPSfaec mutant and our ‘inactive’ enzymes to determine if loop composition 

and/or loop length is the determining factor of catalytic activity and substrate promiscuity. In 

addition these site-specific mutations may reveal if we may restore the activity of the 

SASpneumoniae enzyme. Additionally, the other constructs SPSsuis and SPSlactis which displayed 

catalytic activity and promiscuity close to that of SPSfaec should be tested to determine if they are 

also able to form a modified N-terminal DCD-1L product. 

The engineering of the S. pneumoniae b7-b8 loop by means of a ‘loop swap’ to produce a 

more promiscuous and catalytically active enzyme as well as identifying potential residue 

interactions that may be limiting WT S. pneumoniae catalysis illustrates a compelling 

opportunity to further explore sortase biology and the role of the b7-b8 loop in the biochemical 

characteristics of this class of enzymes. Furthermore, sortases with altered substrate specificity 

are of interest to protein engineers as they expand the applications of SML and our findings may 

assist in the design of sortase for future engineering purposes.  
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Materials and Methods 
 
 
Instrumentation 
 
Protein purification by immobilized metal affinity chromatography (IMAC) and size exclusion 

chromatography (SEC) was conducted on a GE AktaPrime Plus FPLC system with a GE 

Healthcare HisTrap HP column (5 x 5 mL) for IMAC in either a Ni2+-NTA wash buffer (50 mM 

Tris pH 7.5, 150 mM NaCl, 20mM Imidazole pH 7.5, 1mM TCEP) or a Ni2+-NTA elution buffer 

(50mM Tris pH 7.5, 150mM NaCl, 300mM Imidazole pH 7.5, 1mM TCEP). For SEC we used a 

HiLoad 16/600 Superdex 75 pg column in SEC running buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, 1 mM TCEP).  

RP-HPLC purifications and analyses were performed on a Dionex Ultimate 3000 HPLC 

system. Phenomenex Kinetex® 2.6 μm C18 100 Å column (100 x 2.1 mm), aqueous (95% H2O, 

5% MeCN, 0.1% formic acid) / MeCN (0.1% formic acid) mobile phase, flow rate = 0.3 

mL/min, hold 10% MeCN (0.0-0.5 min), linear gradient 10-90 (0.5-7.0 min), hold 90% MeCN 

(7.0-8.0 min), re-equilibrate at 10% MeCN (8.0-13.5 min). 

For LC−ESI-MS analyses, the Dionex Ultimate 3000 HPLC was interfaced with an 

Advion CMS expression mass spectrometer. LC−ESI-MS data were analyzed using Advion Data 

Express software. 

Kinetic fluorescence assays were conducted on a BioTek Synergy H1 Microplate Reader. 

Excitation: 320, Emission: 420, Gain: 75, Light source: Xenon flash lamp.  

 HDX experiments were performed using a LEAP H/D-X PAL robotic automatic 

sampling system. Tandem MS and HPLC was performed on a Thermo Scientific LTQ Orbitrap 

Discovery system. Data analyzed using HDExaminer software from Sierra Analytics.  
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SrtA Mutant Cloning  
 
All SrtA mutant clones were purchased from Genscript. Wild type SrtA from Staphylococcus 

aureus and Streptococcus pneumoniae were from the Antos Lab at Western Washington 

University. Cloning errors did occur with a number of our SrtA sequences, experimental data did 

not seem to be affected by an additional His-tag added on the N-terminus. Sequences for all 

constructs are listed in the Appendix.  

 
Expression and Purification of SrtA Wild Types and Mutants 
 
E. coli BL21(DE3) competent cells were transformed with pET-28a(+) vector plasmids for all 

sortase constructs, both the WT and mutated constructs (all uncleaved molecular weights and 

extinction coefficients are listed in Table 3).  

Transformed cells were plated on an agar plate (200µL) with kanamycin (KAN) 

(50µg/mL) resistance and grown at 37° C overnight. Single colonies were then selected and 

cultured overnight in 10mL of Luria Broth (LB) supplemented by 50µg/mL KAN. These 

overnight cultures were then used to inoculate 1000mL of LB media, supplemented by 50µg/mL 

KAN, and grown to an optical density (OD600) between .6-.8 at 37°C. When the desired OD was 

reached, temperature was changed to 18°C and growths were inoculated with 150µL of 1 M 

Isopropyl b-D-1-thiogalactopyranoside (IPTG) and induced overnight. Cell pellets were obtained 

by centrifugation (4,000rpm, 10 min, 4ºC), the cell pellet was then resuspended in lysis buffer 

(50mM Tris pH 7.5, 150mM NaCl, 0.5mM ethylenediaminetetraacetic acid (EDTA)). The 

resuspended cell pellets were then lysed by sonication and the lysate was then centrifuged 

(17,500 rpm, 30 min, 4℃). The resulting supernatant was run over a nickel nitrilotriacetic acid 

(Ni2+-NTA) resin column equilibrated with Ni2+-NTA wash buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, 20mM Imidazole pH 7.5, 1mM TCEP). Using fast phase liquid chromatography (FPLC), 



 

 49 

the column was rinsed with wash buffer for 50 mL to eliminate non-specifically bound proteins 

and then, running a gradient elution using wash buffer and elution buffer (50mM Tris pH 7.5, 

150mM NaCl, 300mM Imidazole pH 7.5, 1mM TCEP) from 0-100% buffer over a 50mL elution 

a peak was obtained, indicating the presence of our desired protein. The peak was collected and 

concentrated down to desired volume utilizing a 10kD molecular weight cut off (MWCO) 

ultrafiltration device (Millipore). 

Concentrated and partially purified protein was then loaded onto a size exclusion column 

(SEC) equilibrated with running buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP) to 

obtain three peaks corresponding to oligomer, dimer, and monomeric fractions, the monomeric 

fractions were only collected for the purpose of this study (Figure 1-20). Protein fraction purity 

was analyzed by tricine gel (Figure 1-21,1-22). We noticed slight degradation over time from 

proteins that were stored in 4 °C for longer than a week. Using a 10 kD MWCO ultrafiltration 

device, the purified monomeric fraction concentration was calculated at A280 absorbance on a 

NanoDrop Lite Spectrometer utilizing extinction coefficient information. MS analysis was 

performed on initial WT and ‘loop swapped’ constructs to confirm identity (Figure 1-23). 

 
Figure 1-20. FPLC chromatogram of SASpneumoniae. Elution off SEC column delivers 
three peaks (oligomer, monomer, and dimer). Monomeric fractions were collected for 
kinetic fluorescence assays.  
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Figure 1-21. Gel image of SrtA enzymes. Tricine gel 
showing purified SrtA protein samples of WT, initial 
‘loop swapped’ constructs, and S. aureus tryptophan 
mutants.  

Figure 1-22. Gel image of SrtA enzymes. Tricine gel 
showing purified SrtA protein samples of six sortase 
homologues and the SPSfaecG145E mutant.  
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Peptide Synthesis 
 
We used a widely accepted scheme for solid phase synthesis similar to that utilized in the 2017 

paper out of the Antos Lab (31). Briefly, model peptides (Abz-LPATXG-K(Dnp) and Abz-

LPAXGG-K(Dnp)) were synthesized using solid phase synthesis. The utilization of Fmoc 

protecting groups allowed for a stepwise addition of amino acids. The synthetic scheme began 

with Fmoc-protected rink amide solid support. We have used both resin and synphase lanterns as 

solid supports for the purposes of this project, but the advantage of synphase lanterns is the 

ability to create multiple distinct peptides in tandem. The base-labile Fmoc was removed using a 

20% piperidine/NMP mixture, followed by additional NMP washes to ensure that excess 

reagents/amino acids are washed out from the previous step, and then an additional Fmoc 

protected amino acid was coupled to the deprotected amine using a mixture of Fmoc-K(Dnp)-

OH, HBTU, DIPEA, NMP. These deprotection and addition steps were repeated until all the 

desired amino acids had been added. In addition, the chromophores were added to the N and C 

terminus of the peptide to allow for reaction monitoring when performing the sortase catalyzed 

transpeptidation reaction (Scheme 2). When the desired sequence had been synthesized, the 

Figure 1-23. Mass spectrometry analysis of ‘loop swapped’ SASpneumoniae. Expected mass: 
20,032.39 Da.  
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peptide was cleaved off of the solid support using a mixture of TFA:TIPS:H2O/95:2.5:2.5. Model 

peptides were purified vis RP-HPLC and their identities were confirmed using mass 

spectrometry (Figure 1-24, 1-25, 1-26).  

 

 

 
 
 
 
 
 
 

 
 
 
 

Figure 1-24. SrtA peptide synthesis scheme. Synthesis of LPATXG and LPAXGG SrtA peptides utilized 
with HPLC/MS and F* plate reader assay.  

Figure 1-25. HPLC trace of Abz-LPATGG-K(Dnp) peptide.  
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Kinetic Enzyme Assays 
 
Protocol 1: HPLC  
 
Individual reaction pools of 100 µL containing, 50 µM peptide (LPATXG or LPAXGG, X 

denotes any amino acid substitution), 5 µM sortase, 5 mM NH2OH, 10% (v/v) 10x sortase 

reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) as well as residual glycerol 

(<6%, v/v) and DMSO (£5%, v/v) from sortase and peptide substrate stock solutions were 

mixed. Reactions involving cysteine containing peptide substrates were supplemented with 1mM 

TCEP to prevent undesired disulfide bond formation. Using the established protocol from the 

Antos Lab for reaction monitoring we used RP-HPLC (Phenomenex Kinetex 2.6 µM 100 A C18 

column, 3.0 x 100 mm) with a H2O (0.1% Formic Acid)/MeCN (5% MeCN/0.1% Formic Acid) 

mobile phase at 0.3 mL/min (method: hold 10% MeCN 0.0-0.5 min, linear gradient of 10-90% 

MeCN 0.5-6.0 min, hold 90% MeCN 6.0-7.0 min) and by LC-ESI-MS. To determine overall 

percent conversion, peak areas for the starting material and product, measured at 365 nm on the 

RP-HPLC chromatogram, were compared.  

 

Figure 1-26. MS spectrum of Abz-LPATGG-K(Dnp) peptide. Expected m/z=927.5. 
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Protocol 2: Plate Reader, Kinetic Enzyme Assay  
 
Individual reaction pools of 100 µL containing, 50 µM peptide (LPATXG or LPAXGG, X 

denotes any amino acid substitution), 5 µM sortase, 5 mM NH2OH, 10% (v/v) 10x sortase 

reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) as well as residual glycerol 

(<6%, v/v) and DMSO (5%, v/v) from sortase and peptide substrate stock solutions were mixed. 

Reactions involving Cys containing peptide substrates were supplemented with 100mM TCEP to 

prevent undesired disulfide bond formation. The reaction mixture was combined without sortase 

into a 96 well plate. Immediately before the start of the 2 hr time run 10µL of a 10X stock 

sortase enzyme (5 µM) was added, allowing for precise monitoring of the cleavage reaction start 

point and progress. Each set of reactions was measured over a 2 hr time period via fluorescent 

output readings obtained at 2 min intervals on a Synergy H1 Microplate Reader. These unitless 

fluorescent values were then compared against the calibration curve equation 

(y=577.45x+1243.3) calculated via standardized UV-vis data obtained from the HPLC to obtain 

an overall percent conversion for each SrtA reaction. The standardized UV-vis values are 

readings obtained the WT type SrtA enzymes, SrtAstaph and SrtAstrep, measured over a 2 hr time 

period in 30 min time intervals when in combination with the substrates LPATGG, LPATSG, or 

LPATAG by HPLC providing a percent conversion from starting material (Abz-LPATXG-

K(Dnp)) to the cleavage product (XG-K(Dnp)).  

 
Hydrogen Deuterium Exchange (HDX-MS) 
 
HDX experiments and digestions were completed utilizing the robotic LEAP H/D-X PAL 

automated sample preparation system. Peptic peptide mass fingerprinting from purified SrtA 

samples (SrtAstaph, SrtAstrep, and SPSfaec) was performed using an online pepsin and fungal 

protease digestion. This was immediately followed by RP-HPLC and tandem MS (Thermo 
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Scientific LTQ Orbitrap Discovery) to identify a list of common peptide peptides and retention 

times. For the HDX experiments the SrtA samples were diluted 1:10 in D2O buffer (50 mM Tris, 

150 mM NaCl, pD 7.5). At time points 60 s, 120 s, 300 s, 1500 s, 3600 s, 7200 s, and 14,400 s 

deuterated aliquots were quenched with quench buffer (3.5 M GdnHCl, 1.5 M Glycine, pH 2.5). 

These samples were then digested on column as described previously and analyzed by LC-MS. 

Data was analyzed using HDExaminer (Sierra Analytics). 
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Introduction 
 

2.1 Ancestral Sequence Reconstruction  
 

Ancestral Sequence Reconstruction (ASR) is a technique utilized by researchers to 

investigate the evolution of structure-function relationships of protein families. ASR has allowed 

protein scientists to bridge the gap “between mechanistic biochemistry and evolutionary 

biology” (44). ASR involves identifying key evolutionary relationships via a statistical analysis 

of amino acid substitutions in which the probability of replacing any amino acid with another 

amino acid is calculated. At the ancestral nodes on a phylogenetic tree a maximum likelihood 

(ML) sequence is calculated along with a confidence score for that residue substitution. This 

sequence is the most likely to have generated the following sequences that are observed in more 

current proteins (45, 46). The probabilistic ML method has been more commonly used in recent 

ASR studies due to the more statistically reliable information it provides. This is in contrast to 

previous methodologies which utilize the maximum parsimony (MP) method, in which the 

phylogenetic tree with the least amount of amino acid substitutions was selected for sometimes 

leading to inaccurate conclusions regarding homoplasy of these enzymes (34). This amino acid 

sequence can then be encoded in a DNA plasmid and expressed and purified recombinantly. 

ASR allows researchers to analyze the activity of ancestral sequences and the functional changes 

that result from evolved mutations as well as exploring the sequence space between enzymes 

(47). Though there is an expected uncertainty to the validity of reconstructed sequence as there is 

no way to be fully confident that an ancestrally reconstructed sequence would match that of the 

actual protein which existed so many years ago but the general biochemical properties of these 

enzymes can still allow researchers to rationalize the data and form conclusions about potential 

enzymatic behavior (46). ASR is a powerful tool that aids researchers in tracing the ancient 
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mutations that led to current functional sites, structural features such as ligand binding pockets 

and loop dynamics, as well as biochemical characteristics seen in their extant relatives. By filling 

in the natural sequence space between extant enzymes and adding these sequences to a MSA 

researchers are able to predict functional sites and detect homologues in database searches (48, 

49).  

Ancestral proteins found in bacteria such as Sortase A from Streptococcus pneumoniae or 

Staphylococcus aureus along with other eubacteria, archaea, yeast, and vertebrates have been 

hypothesized to exist roughly between several million to around 3 billion years ago (34). The 

first studied examples of ancestral enzymes were translation elongation factors from organisms 

that lived roughly 3.5 billions years ago (35). Ancestral sequences reconstructed via ASR exhibit 

a pattern of expanding substrate specificity at older branch nodes on a phylogenetic tree, 

indicating that more ancestral sequences may have a more promiscuous substrate profile (50). 

These ancestral sequences also tend to possess enhanced stability, possibly due to the high-

temperature environment of ancient times, especially in sequences reconstructed from the Pre-

Cambrian era (36). 

We reconstructed ancient SrtA proteins and tested them against our established assay 

which allowed us to explore how natural sequence variation of SrtA enzymes related to the 

overall promiscuity and activity of this important class of enzymes. We predicted that the 

ancestral SrtA enzymes will display improved substrate promiscuity for the target motif as they 

may retain ancestral generalist traits allowing for recognition of these target motifs (51). 
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Results and Discussion 
 
 
2.2 Ancestral Constructs, AncStaph and AncStrep 

 
By use of ASR we initially obtained two ancestral sortase sequences, Ancstrep and 

Ancstaph. These sequences correspond to the ancestral forms of the WT SrtAstrep and SrtAstaph 

enzymes, selected based on the high statistical support for these nodes on the ancestral SrtA 

phylogenetic tree. When expanding the scope of this study via utilization of ancestrally 

reconstructed constructs, the identification and selection of constructs with high statistical 

support is vital, especially when attempting to discover viable, catalytically active constructs. In 

addition, the quality of the phylogenetic tree which informs these reconstructed sequences is of 

the utmost importance (48). Errors in alignment, reconstructing longer sequences then the true 

ancestors, tree topology, or errors in insertions/deletions of residues can dramatically alter the 

reliability of the ASR results (52). The techniques for reconstruction of these ancestral sequences 

are described.  

The potential behavior of these initial constructs, Ancstaph and Ancstrep was uncertain due 

to limited supporting information regarding how SrtA may perform when subjected to ASR as 

currently there are no studies in which SrtA has been reconstructed by use of ASR to elucidate 

the characteristics of an improved SrtA enzyme. The ancestral Ancstaph was of particular interest 

as its extant relative, SrtAstaph, has a highly limited substrate scope where only the LPXTG motif 

is recognized. These ancestral prokaryotic enzymes, Ancstaph and Ancstrep, have experienced 

many mutations altering their overall functionality but have retained conserved key residues, and 

maintained roughly a 44% sequence identity, due to the need for these catalytically active 

residues to maintain enzymatic function. These conserved residues seem to be generally focused 
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around the SrtA active site and previous research has indicated that promiscuous enzymes tend to 

share the same catalytic active site (53).  

By restoring these ancestrally reconstructed sequences we hope to at a minimum, 

improve the substrate promiscuity of SrtA with these new constructs, Ancstaph or Ancstrep, and 

potentially improve the resulting overall catalytic activity in conjunction with exploring the 

natural sequence variation of 

these ancestral enzymes and their 

extant relatives, especially 

considering the low sequence 

identity between the WT SrtAstaph 

and SrtAstrep.  

To determine the 

sequences of these ancestral 

constructs, a member of our lab, 

Jordan Valgardson, applied 

multiple statistical modeling 

systems to ancestrally reconstruct 

SrtA sequences. First, non-

redundant sortase sequences 

were sourced from NCBI protein 

database. Cluster Database at 

High Intensity with Tolerance 

program (CD-HIT) was used to filter out highly similar (>95%) identical sequences sourced 

Figure 2-1. Steps for Ancestral Sequence Reconstruction (ASR). 
Allowed for the production of the ancestral protein sequences tested 
via our F* assay. 
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from NCBI. An All-vs-all basic local alignment search tool (BLAST) was used on the remaining 

sortase sequences, producing a sortase network which informed the assignment of sortase class 

groups (A-F) by using labeled sortase sequences to assign a class to each grouping. Proteins 

surrounding the class A group were selected. An additional round of filtering was performed, and 

all highly similar proteins (>90%) were filtered out via CD-HIT. The remaining pool of sortase 

sequences was then subjected to alignment by MUltiple Sequence Comparison by Log-

Expectation (MUSCLE), and then manually curated to remove any outlying sequences. SrtA 

structures sourced from the PDB database were structurally aligned and sequence similarity 

between structural sequences (via PDB) and sortase sequences from the multi sequence 

alignment (MSA) (via ASR) then informed the true alignment of the MSA. A phylogenetic tree 

was constructed from the MSA via phyml and ancestral sequences were then generated at each 

node via multi-channel access XML (maxml) (Figure 2-1). The nodes preceding the SrtAstrep and 

SrtAstaph branches with high statistical support, designated Ancstaph and Ancstrep, were selected, 

and the sequences were cloned into DNA plasmids for further study (Figure 2-2). This same 

process informed the selection of other ancestral SrtA sequences used for this study. 

 Figure 2-2. Phylogenetic tree displaying evolutionary branch points of sortase A. Red arrows 
indicate ancestrally reconstructed nodes for SrtAstaph and SrtAstrep. (Unpublished work, Jordan 
Valgardson)  
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2.3 Substrate Selectivity and Activity of Ancestral Constructs  
 
Initial results for the ancestral constructs Ancstaph and Ancstrep showed that only the Ancstrep 

construct displayed improved catalytic activity when tested with the representative 5th position 

LPATGG, LPATSG, and LPATAG substrates. The most noticeable improvement in catalytic 

activity was observed for the LPATAG substrate wherein we observed a 4-fold improvement in 

activity compared to SrtAstaph (Figure 2-3). Ancstaph 

exhibited a sharp decrease in catalytic activity of 

roughly 50% compared to that of the WT SrtAstrep. 

Regarding the substrate promiscuity of these two 

new constructs, neither the Ancstaph or the Ancstrep 

displayed a more promiscuous substrate selectivity 

profile when tested with the LPATGG, LPATSG, or 

LPATAG substrates. This is contrary to the hypothesis 

that ancestral enzymes tend to possess broader 

specifies, recognizing not only the canonic substrates 

but also additional substrate binding motifs, and their 

extant relatives tend to be specialists, catalyzing specific reactions (53). But these substrate 

promiscuity results were limited to this representative substrate panel so to better understand 

how the substrate specificity of our ancestral constructs may be expanded by the utilization of 

ancestral constructs, both the Ancstaph and Ancstrep were tested against a 19 amino acid panel for a 

5th position substitution (excluding Trp due to issues with peptide purification) to determine if 

they possessed improved substrate profiles outside of the initial substrates tested. 

 

Figure 2-3. Heat map of initial 
ancestrally reconstructed SrtA 
enzymes. Displays measured catalytic 
activity of WT and ancestral SrtA 
enzymes with a 5th substitutions 
(LPATXG). Each “hit” corresponds to 
final percent conversion from starting 
material to product measured via 
florescent plate reader assay after 2 hrs. 
Darker shades of red indicate an 
enhanced overall percent conversion. 
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Similar to the substrate panel developed for the engineered ‘loop swapped’ constructs in 

Chapter 1, our ancestral constructs were tested against 19 amino acid substitutions in the 5th 

position LPATXG motif. Results indicated the Ancstaph exhibited a substrate promiscuity profile 

similar to that of WT 

SrtAstaph except reduced 

catalytic activity was 

observed for the LPATGG 

substrate. Ancstrep displayed a 

slightly enhanced substrate 

selectivity profile in which 

catalytic activity was 

observed for the LPATCG 

and LPATNG substrates, in 

addition to the LPATGG, 

LPATSG, and LPATAG 

substrates (Figure 2-4). This 

catalytic activity was 

measured with a 20% 

conversion cut off. This improvement in promiscuity is consistent with literature that has 

explored ASR and enzymatic function wherein ancestral proteins were capable of recognizing a 

multitude of substrates compared to their extant relatives. The improved substrate promiscuity 

can possibly be linked to conformational changes of the substrate interacting loops as the active 

sites of enzymes such as SrtA tend to be highly conserved (35, 46). Our construct, Ancstrep not 

Figure 2-4. Expanded graphical representation of ancestrally 
reconstructed SrtA enzymes. Displays measured catalytic activity of WT 
and ancestral SrtA enzymes with a 5th substitutions (LPATXG). Final 
percent conversion from starting material to product measured via 
florescent plate reader assay after 2 hrs. Percent conversions over 20% 
labeled above bar. * indicates residue substitution was not determined. 
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only followed this trend, but in addition displayed higher catalytic activity for these newly 

recognized substrates.  

A BLAST sequence comparison indicated twenty mutations between Ancstaph and 

SrtAstaph and fifty-three mutations between Ancstrep and SrtAstrep (Figure 2-5). This result is 

intriguing as the Ancstrep displayed an improved substrate specificity though it has over two times 

the number of mutations of the Ancstaph, which has fewer mutations but it’s catalytic activity has 

been halved. This difference in activity and promiscuity between the Ancstaph construct and its 

extant relative, WT SrtAstaph, is most likely due to the majority of mutations occurring in the b6-

b7 loop region (Figure 2-6, 2-7). The b6-b7 loop has been indicated as playing a role in substrate 

motif recognition and promiscuity as well as making up a part of the binding groove (38). These 

mutations in WT SrtAstaph, K162N, T165D, G167E, K175E, D176K, and K177N could be 

impacting the dynamic movement of the b6-b7 loop required for substrate binding or eliminating 

necessary contact points required for substrate recognition and processing. One of these contact 

points, the Gly residue in the WT S. aureus seems to be interacting with the Pro residue of the 

LPXTG substrate. When this Gly is mutated to a Glu, a necessary interaction for catalysis may 

not be able to occur (Figure 2-6). Regarding the movement of the b6-b7 loop, during substrate 

binding the b6-b7 loop experiences repetitive folding and unfolding of the short helical stretches, 

and once the substrate is bound b6-b7 loop will then adopt a final conformation which 

accommodates the bound substrate (27, 30). These mutations could be altering the conformation 

of this region so that processing of the substrates cannot occur.  
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Figure 2-6. SWISS model of Ancstaph and WT SrtA from S. aureus. Modeled using 1T2W as 
template. WT SrtA from S. aureus colored grey, Ancstaph colored green. (PDB: 1T2W). (A) Mutations 
along the b6-b7 loop. (B) Bound LPETG peptide and G167E mutation interacting with Pro residue of 
peptide. 

Figure 2-5. BLAST sequence alignment of Ancstaph and Ancstrep. The number of mutations between the 
ancestrally reconstructed SrtA enzymes and their WT SrtA mates are identified.  
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The Ancstrep enzyme has 53 mutations as compared to wildtype SrtAstrep, and these 

mutations resulted in a roughly 2-fold increase in catalytic activity and a slightly enhanced 

substrate promiscuity. By modeling this construct via SWISS-MODEL we can elucidate the key 

structural differences that may be producing this improvement in catalytic activity (Figure 2-8) 

(54). Similar to the Ancstaph, most of the mutations are the b6-b7 loop (Figure 2-7). But, we also 

observe mutations in the b7-b8 and the b4-b5 regions. As with the ‘loop swapped’ constructs we 

saw that mutations in the b7-b8 loop can modulate substrate promiscuity and catalytic activity. 

We see a similar mutation in the 

Ancstrep as we saw with the SPSsuis, 

where a Thr residue directly follows 

the catalytic Cys which may have 

resulted in an improvement in catalytic activity. Comparing the WT S. pneumoniae to the 

Ancstrep, we know that a Glu residue next to the catalytic Cys resulted in a decrease in catalytic 

activity as we saw with the SPSfaecG145E mutant. Perhaps this mutation from a Glu to Thr is 

causing the extra boost in activity and promiscuity for this ancestral construct. Another mutation, 

the E138T mutation in the Ancstrep b7-b8 loop seems to result in an interaction between the b7-

b8 and b4-b5 loops. We are uncertain if this mutation is resulting in the modulation of activity 

and promiscuity of the Ancstrep but this possible interaction led us to consider that interactions 

between the b7-b8 and the b4-b5 loop may be a cause of previously unseen catalytic results, 

supported by PCA which illustrated that not only did the b7-b8 region show variability but the 

b4-b5 region showed variability as well.  

Based on our demonstrated ability to reconstruct these ancestral SrtA sequences we 

speculated that we may reconstruct even more ancestral sequences in the phylogenetic tree to 

Figure 2-7. b7-b8 loop sequences of Ancstrep and WT 
SrtA homologues.  
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expand our initial investigation into how the sequence variation and the space between these 

constructs may be affecting target motif recognition and also address the possible b7-b8 and b4-

b5 loop interactions and how they could modulate activity in our SrtA enzymes.  

 

 

 
 

2.4 Expansion into More Ancestral Relatives  
 

Promising results observed from our initial constructs Ancstaph and Ancstrep, encouraged 

further investigation into how these even more ancestral sequences would behave. The sequences 

of these ancestral SrtA relatives were obtained in a similar fashion to our initial constructs, 

Ancstaph and Ancstrep, in which nodes with high statistical support were selected for further testing 

by our kinetic florescence assay. Three new SrtA constructs were tested, termed corresponding 

to which node was selected, Anc408, Anc503, and Anc547 (Figure 2-9). Node 408 is the most 

ancestral, corresponding to the branch between the Staph/Strep families and other bacterial 

Figure 2-8. SWISS model of Ancstrep and WT SrtA from S. pneumoniae. Modeled using 3RCC as 
template. WT SrtA colored grey, Ancstrep colored green, areas of mutated residues in b6-b7 loop colored 
magenta (PDB: 3RCC). (A) Mutation in b7-b8 loop and mutations in b6-b7 loop (magenta). (B) Zoomed view 
of the E138T interaction in the Ancstrep with the Ile residue in the b4-b5 loop to a distance of 3.4 angstroms.  

A B 
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families, node 503 is the branch between Staph and Strep families, and node 547 is the branch 

between Strep and other families.  

 

 

 

 

 

 

 

 

 

 

 

Though these nodes did have higher confidence values compared to other nodes, we 

acknowledge the limitations of ASR in reconstructing these ancestral sequences compared to the 

previous Ancstaph and Ancstrep nodes, though we aimed to select ancestral nodes with high 

confidence scores, there is a potential for sequence bias and error when utilizing a MSA in order 

to reconstruct these sequences (52).  

By reconstructing the ancestral SrtA sequences of nodes further back on the phylogenetic 

tree we hoped to explore the natural sequence variation of class A SrtA enzymes and investigate 

how this variation could enhance or alter substrate recognition motifs. Reconstruction of 

ancestral constructs serves to fill in the sequence space of class A sortase enzymes, these 

reconstructed ancestral sequences “fill in” the space between these enzyme sequences, including 

Figure 2-9. Phylogenetic tree of ancestral SrtA sequences. Multiple nodes are displayed 
(#1-5), further rounds of manual filtering reveled three nodes and their corresponding 
sequences to be tested, 408, 503, and 547, highlighted in red.  
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extant relatives, offering researchers the opportunity to predict functional sites and in addition, 

by adding ancestral sequences to a native MSA can improve the detection of new class A SrtA 

homologues. We hoped to observe an improvement in substrate promiscuity as previous 

literature indicates that ancestral proteins tend to be more thermally stable and act as generalists, 

recognizing a broader variety of substrates (35, 46, 51). 

Results from the kinetic enzyme assay revealed no recognition of any of the 5th position 

substrate motifs wherein we expected to potentially observe an improvement in substrate 

promiscuity (Figure 2-10). The complete 

lack of all three enzymes ability to 

process any of the substrates indicates 

that key contact points and residues 

necessary for activity may be absent in 

these reconstructed enzymes, similar to 

what we saw in the Ancstaph construct.  A 

comparison of the loop sequence identity 

reveals that all three of the enzymes 

possess shorter b7-b8 loops and have 

almost no similarity in identity to the 

WT or initially constructed ancestral 

constructs except for a conserved Asp 

near the N-terminus of the b7-b8 loop. 

The presence of this Asp was also 

indicated in our four active SrtA 

Figure 2-10. Heat map of more ancestral SrtA enzymes. 
Displays measured catalytic activity of WT and ancestral 
SrtA enzymes with a 5th position substitutions (LPATXG). 
Each “hit” corresponds to final percent conversion from 
starting material to product measured via florescent plate 
reader assay after 2 hrs. Darker shades of red indicate an 
enhanced overall percent conversion. 
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homologues, SPSfaec, SPSsuis, SPSoralis, and SPSlactis (Figure 2-11, 2-12). This Asp plays an 

unknown role in catalysis but could be a potential target for mutation.  

 
 

 
 

 
 

 

 

There are also numerous mutations in the b6-b7 region of all of these ancestral enzymes. As 

described previously, the b6-b7 loop plays a role in substrate recognition, and before substrate 

binding is in a flexible, disordered state but upon substrate binding becomes ordered (22, 27). 

The mutation of not only this b6-b7 loop region as well as the b7-b8 loops in all three of the 

ancestral constructs may be deleteriously impacting the enzymes’ ability to recognize and 

process the substrates.  

 

 

 

 

A 

Figure 2-11. Sequence comparison of ancestral SrtA enzymes and newly constructed nodes. 
(A) BLAST sequence comparison, value corresponds to percent sequence identity between 
constructs. (B) b7-b8 loop sequences from WT and ancestral sequences.  

B 
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 Regarding the potential interactions with the b4-b5 loop as previously discussed with the 

Ancstrep construct, we observe a pattern in loop length discrepancies between the b4-b5 loop and 

the b7-b8 loop in our ancestral constructs, exemplified by the SWISS homology model, which 

displays a significantly longer b4-b5 loop for the Ancstrep compared to the other three constructs 

(Figure 2-11, 2-13). The b4-b5 loop boundaries are defined as an N-terminal His and a C-

terminal Phe. Though this loop segment does not encompass the entire b4-b5 loop length the 

conserved C-terminal Phe marks the end of the loop area that may be interacting with the b7-b8 

loop. A combination of a short b7-b8 loop and a long b4-b5 loops seems to correlate to higher 

promiscuity and catalytic activity, and we see this pattern with our WT S. pneumoniae and the 

Ancstrep enzymes (Figure 2-11, 2-13).  

Figure 2-12. b7-b8 loop and b4-b5 loop sequences of WT SrtA enzymes and sortase homologues.  
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2.5 b7-b8 and b4-b5 Loops and Enzymatic Behavior 
 
 The behavior of these substrate interacting loops and the interactions between them 

seems to be the key in modulating the behavior of engineered sortase A constructs. The results 

from the alignment of these ancestral sequences and the homology models led us back to our 

original ‘loop swapped’ constructs. Applying the knowledge we have gained from the 

exploration of the class A sortase sequence space we looked at the loop length variations and 

potential interactions between the b7-b8 and b4-b5 loops of the sortase homologues. 

 Using the WT sortase homologues sequences and the promiscuity data from the 2018 

study out of the Antos lab we were unable to observe any overarching trends in loop length 

discrepancies between the b7-b8 and b4-b5 loops and substrate promiscuity using this MS data, 

contrary to the results obtained from the ancestral homology models (Figure 1-1). Though, the 

Figure 2-13. SWISS model of Anc408, Anc503, and Anc547 and WT S. 
agalactiae. Modeled using 3RCC as template. WT S. agalactiae colored 
grey, Anc408, green, Anc503, blue, Anc547, magenta. 
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WT sortase homologues that were more promiscuous possessed a hydrophobic residue directly 

following the catalytic His residue in the b4-b5 loop (Figure 2-12). This hydrophobic residue 

could be necessary for enhanced substrate promiscuity and catalysis. From this MS data we see 

that the WT E. faecalis was highly selective and only recognized the LPATAG substrate, but 

when engineered onto the S. pneumoniae core (SPSfaec) this enzyme recognized not only the 

LPATAG substrate but many other substrates when tested with our kinetic fluorescence assay. 

Thus, this improvement in activity seen for the SPSfaec may be not only due to the identity of the 

b7-b8 loop and the presence of a Gly residue near the catalytic Cys but the also the identity of 

the b4-b5 loop and the presence of a hydrophobic residue near the catalytic His. We were unable 

to explore site specific mutations in the b4-b5 loop regions for this study so our hypothesis 

regarding specific residue interactions is speculative, but our exploration of the sequence space 

and the data we have obtained exemplifies an exciting new avenue for exploration. Future 

studies could explore swapping out b4-b5 loop regions, specifically the region near the b7-b8 

loop, as there seems to be conserved residues near the N and C terminus (His and Phe 

respectively) and variability between these residues. In addition, site specific mutations of the 

residues near the catalytic His could reveal loop interactions that may be modulating activity. 

These substrate interacting loops seem to be more intricately related then we previously thought 

and the real key to the difference in catalytic behavior and promiscuity.  

 
 
2.6 Crystallization of AncStaph 
 
Previous published crystallization efforts of SrtA have successfully characterized the WT 

SrtAstaph and the dimer swapped SrtAstrep as well as other SrtA constructs but crystallization 

efforts have not been attempted for any ancestrally reconstructed SrtA constructs. The ability to 



 

 74 

successfully crystallize either Ancstaph or Ancstrep could reveal key structural components and 

residues that resulted in improved substrate promiscuity and catalytic efficiency, especially with 

the Ancstrep construct where improved activity and substrate promiscuity was observed. Though 

crystallization attempts were made for both the apo-Ancstrep and apo-Ancstaph constructs and the 

apo-Anc408, the only crystals that were successfully grown were those from the apo-Ancstaph 

enzyme. The results from our kinetic fluorescence assay showed that Ancstaph exhibited reduced 

catalytic efficiency and unremarkable substrate promiscuity, therefore limiting the conclusions 

we may make regarding the differing structural elements between WT SrtAstaph and Ancstaph, and 

their application to future engineered SrtA constructs.  

Initial crystallization for the Ancstaph construct was 

performed using a commercially available PEG ion 2 screen, 0.2 

M sodium thiocyanate, 20% PEG3350, pH 6.9. Crystal trays 

were set up using the ‘hanging drop’ method at 20 °C. The drop 

contained 2 µL of well solution and 2 µL of 6.76 mg/mL SrtA 

enzyme. The N-terminal His tagged protein crystallized as a 

needle shaped crystal form with noticeable nucleation that had to 

be broken apart prior to looping (Figure 2-14). Crystals were 

grown to their maximum size after five months. These crystals 

diffracted when analyzed at the synchrotron source to 3 angstroms. Though, the results for this 

construct were not in line with our research goals as the activity of this construct was 

unremarkable and there are multiple SrtAstaph structures published on the PDB database. 

Further studies of SrtA proteins should explore a crystallization of Ancstrep which could reveal 

more impactful results due to its overall catalytic behavior.  

Figure 2-14. Crystallization of 
AncStaph. Crystallized at 6.76 
mg/mL in 0.2 M sodium 
thiocyanate, 6.9 pH. Crystallized 
as needle shaped crystal form 
with nucleation.  
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2.7 Ancestral Sortase and Future Directions  
 

By means of ASR we were able to reconstruct a SrtA enzyme, Ancstrep, that displayed a 

slightly improved substrate promiscuity profile, recognizing the LPATCG and LPATNG 

peptides as well as our standard peptide panel of LPATGG, LPATSG, and LPATAG. Though 

the catalytic activity was only improved roughly 2-fold this enzyme still offers an option for 

researchers wanting to process a wider variety of substrates for the purposes of SML. The 

inactivity of the Ancstaph illustrated that perturbations in the b6-b7 loop region may result in 

deleterious effects on substrate promiscuity and catalysis.  

When analyzing our more ancestral constructs the inactivity observed for all three of our 

ancestral constructs (Anc408, Anc503, Anc547) could be related to not just the differences in the 

loop length and loop identity of b7-b8 loops but also the b4-b5 loops and the interactions 

between them. We identified potential residue interactions that may be causing this inactivity in 

not only our ancestral constructs but their extant relatives, specifically the presence of a 

hydrophobic residue near the catalytic His in the b4-b5 loop, and future work will investigate  

site specific mutations to test this hypothesis. A future study should explore if and/or where the 

interactions between these substrate interacting loops is occurring as we think that these loops 

and the interactions between the seem to be the key in modulating the behavior of engineered 

sortase A constructs.  
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Materials and Methods 
 
 

Materials and methods for the ancestral sortase enzymes are the same as those detailed in 

‘Chapter 1: ‘Loop Swapped’ Engineered Sortase A. Refer to this chapter for information 

regarding protein purification, peptide purification, fluorescence plate reader assays, and 

instrumentation information. Tricine gel images showing purified samples of all of our ancestral 

proteins is pictured (Figure 2-15), molecular weights listed in Table 3 in Appendix 1. 

Crystallization methods are detailed in Section 2.6 Crystallization of Ancstaph. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-15. Gel image of SrtA 
enzymes. Tricine gel showing purified 
SrtA protein samples of ancestral 
sortase enzymes.  
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Appendix A 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1. Standard deviation values from 5th position kinetic enzyme assays. Dashed lines indicate that only 
one trial was performed.  
 

Table 2. Standard deviation values from 4th position kinetic enzyme assays. Dashed lines 
indicate that only one trial was performed.  
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Identity Molecular Weight Ext. Coefficient 
SrtAStaph 18760.13 0.770 
SrtAStrep 20144.73 0.865 
SASPneumoniae 20235.65 0.442 
SPSAureus 23788.64 1.089 
AncStaph 20954.16 0.760 
AncStrep 22447.98 0.597 
Anc408 20183.88 0.443 
Anc503 18256.63 0.408 
Anc547 17768.22 0.419 
SASPneumoniaeT194W 20320.76 0.711 
SPSAureusW194T 23912.74 0.853 
SPSSuis 21139.78 1.035 
SPSOralis 21089.72 0.967 
SPSMonocytogenes 21197.91 0.892 
SPSFaecalis 20983.64 0.901 
SPSLactis 20992.61 0.901 
SPSAnthracis 21154.89 0.894 
SASSuis 18041.32 0.661 
SADEKTG 18475.88 0.782 

 
 
 
 
>WT Staph_aureus_D59-sortase_A (SrtAStaph) 
MGSSHHHHHHSSGLVPRGSHMQAKPQIPKDKSKVAGYIEIPDADIKEPVYPGPATPEQLN 
RGVSFAEENESLDDQNISIAGHTFIDRPNYQFTNLKAAKKGSMVYFKVGNETRKYKMTSI 
RDVKPTDVGVLDEQKGKDKQLTLITCDDYNEKTGVWEKRKIFVATEVK 
 
>WT Strep_pneumoniae_D80-sortase_A (SrtAStrep) 
MESSHHHHHHAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMK 
REQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVT 
PDRVDEVDDRDGVNEITLVTCEDLAATERIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Streptococcus_pneumoniae-Swap-Aureus (SPSaureus) 
MGSSHHHHHHSSGLVPRGSHMESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNL
PIFKGLDNVNLFYGAGTMKREQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTD
KNKVYTYEIREVKRVTPDRVDEVDDRDGVNEITLVTCDDYNEKTGVWEKRIIVKGDLKETKDY
SQTSDEILTAFNQPYKQFY 
  
>SrtA_staphylococcus_aureus-Swap-Pneumoniae (SASpneumoniae) 
MGSSHHHHHHSSGLVPRGSHMESSHHHHHHENLYFQSQAKPQIPKDKSKVAGYIEIPDADIKEPV
YPGPATPEQLNRGVSFAEENESLDDQNISIAGHTFIDRPNYQFTNLKAAKKGSMVYFKVGNETRK
YKMTSIRDVKPTDVGVLDEQKGKDKQLTLITCEDLAATERKIFVATEVK 
 

Table 3. Molecular Weights and Extinction Coefficients of Sortase A Enzymes 

Table 4. Sortase A Enzyme Sequences 
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>SrtA_staph_aureus-Swap-Pneumoniae_T194W (SASpneumoniaeT194W) 
MESSHHHHHHSSGLVPRGSHMESSHHHHHHENLYFQSQAKPQIPKDKSKVAGYIEIPDADIKEPV
YPGPATPEQLNRGVSFAEENESLDDQNISIAGHTFIDRPNYQFTNLKAAKKGSMVYFKVGNETRK
YKMTSIRDVKPTDVGVLDEQKGKDKQLTLITCEDLAAWERKIFVATEVK 
 
>SrtA_Strep_pneumoniae-Swap-Aureus_W194T (SPSaureusW194T) 
MESSHHHHHHSSGLVPRGSHMESSHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPI
FKGLDNVNLFYGAGTMKREQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDK
NKVYTYEIREVKRVTPDRVDEVDDRDGVNEITLVTCDDYNEKTGVTEKRIIVKGDLKETKDYSQ
TSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap-suis (SPSsuis) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMKLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDR
VDEVDDRDGVNEITLVTCTDYYATQRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap-oralis (SPSoralis) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCVDYNATERIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap-monocytogenes (SPSmonocytogenes) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCDKPTETTKRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap_faecalis (SPSfaecalis) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCGDLQATTRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap_lactis (SPSlactis) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCADAEATHRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap_anthracis (SPSanthracis) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCVSVKDNSKRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Strep_pneumoniae-Swap_faecalisG145E (SPSfaecalisG145E) 
MESSHHHHHHENLYFQSAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKR
EQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVTPDRV
DEVDDRDGVNEITLVTCEDLQATTRIIVKGDLKETKDYSQTSDEILTAFNQPYKQFY 
 
>SrtA_Staph_aureus-Swap-suis (SASsuis) 
MGSSHHHHHHSSGLVPRGSHMQAKPQIPKDKSKVAGYIEIPDADIKEPVYPGPATPEQLN 
RGVSFAEENESLDDQNISIAGHTFIDRPNYQFTNLKAAKKGSMVYFKVGNETRKYKMTSI 
RDVKPTDVGVLDEQKGKDKQLTLITCTDYYATQRKIFVATEVK 
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>SrtA_Staph_aureus-DEKTG (SADEKTG) 
MGSSHHHHHHSSGLVPRGSHMQAKPQIPKDKSKVAGYIEIPDADIKEPVYPGPATPEQLN 
RGVSFAEENESLDDQNISIAGHTFIDRPNYQFTNLKAAKKGSMVYFKVGNETRKYKMTSI 
RDVKPTDVGVLDEQKGKDKQLTLITCDDYNVWEKRKIFVATEVK 
 
>ancSrcA_staph (Ancstaph) 
MESSHHHHHHSSGLVPRGSHMESSHHHHHHENLYFQSQKPPEIPKDKSKMAGYISVPDADIKEP
VYPGPATPEQLNRGVSFAEEDESLDDQNISIAGHTFTDRPHYQFTNLKAAKKGSKVYFKVGNET
RKYKMTSIRDVNPDDVEVLDEQGEKNQLTLITCDDYNEQTGVWEKRKIFVAEQVK 
 
>ancSrtA_strep (Ancstrep) 
MESSHHHHHHSSGLVPRGSHMESSHHHHHHENLYFQSISLVAQAQSNNLPVIGGIAIPELGINLPI
FKGVGNTSLLYGAGTMKEDQVMGEGNYALASHHIFGVTASDMLFSPLERAKNGMKIYLTDKD
NVYTYTITSVEVVTPERVDVIDDTEGKKEITLVTCTDYEATQRIIVKGELEETTPYNEASEDILNAF
NQSYNQF 
 
>ancSrtA_408 (Anc408) 
MESSHHHHHHENLYFQSIQPPSLSAKVDKSAIGQIAIPSVGLNLPIFKGTTNENLLAGAGTMSPDQ
KMGEGNYVLAGHHMREDLLFGPLMKVKKGDKIYLTDQNEVYTYKVTETKVVHETDTSVLDDT
GEPRLTLITCDTDTDQRFVVTAELVEKEPMKEESQEVKYQQKNQFILFLLL 
 
>ancSrtA_503 (Anc503) 
MESSHHHHHHENLYFQSEPPSLASAKMDKQVIGQIAIPSVNINLPILKGTTNENLLAGAATMKPD
QKMGKGNYVLAGHHMREDLLFSPLHNVKKGDKIYLTDNKHVYTYKVTETKVVDPTETDVLDD
TGEPQITLITCDNTDKRLVVTGELVETTPFEEEQVK 
 
>ancSrtA_547 (Anc547) 
MESSHHHHHHENLYFQSSLSLAKARMDDLHVIGAIAIPSVNMNLPILKGVSNENLAVGAGTMKP
DQKMGKGNYALAGHHMNNPNLLFSPLHRVKKGDKIYLTDMKHVYTYKVTSTKVVDPTEVDVI
DDTGEPLITLITCDDDGTNRLIVQGELVETTPFDA 
 
 
List of Abbreviations: 
 
SrtA: Sortase A 
SPSX: Strep pneumoniae Swap X (X=Indicates any of the 6 new sortase homologues) 
CWSS: Cell wall sorting signal  
ASR : Ancestral Sequence Reconstruction 
WT: Wild Type 
Anc: Ancestral  
 
 
Enzyme Abbreviations; 
 
SrtAStrep: Wild type Sortase A from Streptococcus pneumoniae   
SrtAStaph: Wild type Sortase A from Staphylococcus aureus  
SPSAureus: SrtA Streptococcus pneumoniae swap S. aureus b7-b8 loop 
SASPneumoniae: SrtA Staphylococcus aureus swap S. pneumoniae b7-b8 loop 
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AncStaph: Ancestrally reconstructed Staphylococcus aureus 
AncStrep: Ancestrally reconstructed Streptococcus pneumoniae  
Anc408: Ancestrally reconstructed SrtA at node 408 
Anc503: Ancestrally reconstructed SrtA at node 503 
Anc547: Ancestrally reconstructed SrtA at node 547 
SASPneumoniaeT194W: SrtA Staphylococcus aureus swap S. pneumoniae b7-b8 loop, T194W 
mutation  
SPSAureusW194T: SrtA Streptococcus pneumoniae swap S. aureus b7-b8 loop, W194T mutation 
SPSSuis: SrtA Streptococcus pneumoniae swap S. suis b7-b8 loop 
SPSOralis: SrtA Streptococcus pneumoniae swap S. oralis b7-b8 loop 
SPSMono: SrtA Streptococcus pneumoniae swap L. monocytogenes b7-b8 loop 
SPSFaec: SrtA Streptococcus pneumoniae swap E. faecalis b7-b8 loop 
SPSLactis: SrtA Streptococcus pneumoniae swap L. lactis b7-b8 loop 
SPSAnth: SrtA Streptococcus pneumoniae swap B. anthracis b7-b8 loop 
SASSuis: SrtA Staphylococcus aureus swap S. suis b7-b8 loop 
SA△EKTG: SrtA Staphylococcus aureus swap with truncated EKTG residues 
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