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Abstract 

This study proposes the use of the Bayesian network relative risk model (BN-RRM) to estimate 

the risk associated with the release of gene drives as vectors to control disease, using Ponce, 

Puerto Rico as a case study. Bayesian networks are an appropriate risk assessment tool for 

quantitatively and probabilistically examining complex systems involving multiple stressors 

acting on multiple endpoints in a wide variety of situations. The emerging field of synthetic 

biology has the capacity to drastically alter ecological systems with the use of gene drive 

engineered organisms as a method to alter population dynamics. The purpose of the release of 

a gene drive organism is for the introduced genetic material to propagate within the wild type 

population and persist within the environment. There are many proposed gene drive designs 

and no regulatory framework that quantitatively assess the risk associated with the use of gene 

drive engineered organisms released to the environment. The risk assessment describes how 

the gene drive may spread through the populations of wild type mosquitoes and decrease rates 

of disease. The Bayesian network relative risk model can perform the risk assessment of gene 

drive engineered Ae. aegypti for vector control and as part of an adaptive management strategy 

to reduce dengue and Zika transmission. This study illustrates how the BN-RRM can integrate 

gene drive related information within a risk assessment framework suitable for adaptive 

management of these novel stressors. 
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1.  Introduction 

1.1 Introduction to risk assessment for synthetic biology 

Given the current state of gene drive technology and the lack of regulatory oversight, it is clear 

that risk assessment is necessary in order to understand any adverse effects that the release of 

gene drive organisms may pose (NASEM 2016). Therefore, the goal of my study is to use 

Bayesian network tools to model the risk associated with the applications of synthetic biology 

products and how human health endpoints are impacted as a result. Specifically, I will apply the 

Bayesian network relative risk model (BN-RRM) to examine the risk of releasing gene drive 

engineered Aedes aegypti mosquitoes as vectors to control both the dengue and Zika virus 

using Ponce, Puerto Rico as a case study. 

1.2 Gene drives 

The use of gene drives to control pest species has been speculated since the late sixties (Curtis 

1968; Foster et al. 1972). Gene drives are genetic constructs that represent themselves at rates 

greater than that of the Mendelian 50/50 ratio. Using a gene drive a trait deemed beneficial for 

some purpose could be introduced into a target population and driven to fixation in a relatively 

quick timeframe (Webber et al. 2015). Developments in biotechnology and synthetic biology 

engineering have made gene drives no longer speculation but a reality. The discovery and use 

of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated 

protein 9 (Cas9) as a genetic engineering tool has led to the ability to precisely edit the genetic 

code of almost any living organism (Webber et al. 2015; Knott & Doudna 2018). 

1.3 CRISPR/Cas9 

Discovered in bacteria, CRISPR/Cas9 acts as an immune response to foreign viral DNA within 

bacterial cells (Knott & Doudna 2018). The CRISPR/Cas9 complex re-writes segments of 

genetic code by cutting a strand of DNA at a specific site and either replacing or removing a 
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genetic sequence. Using a complementary guide-RNA, the CRISPR/Cas9 complex homes to a 

specific sequence of genetic code. Once this site is located on the genome, a double strand 

break is made and the new sequence of base pairs is inserted into the target site. The 

CRISPR/Cas9 complex then disassociates and the cells own DNA repair mechanisms complete 

the process. By attaching a cargo sequence to the CRISPR/Cas9 complex, new traits can be 

written into the genetic code of nearly any organism (Webber et al. 2015; Knott & Doudna 

2018).  

1.4 Inheritance 

Gene drives can and do occur naturally as selfish genetic elements (Burt and Trivers 2006). 

These naturally occurring drive systems achieve superseded Mendelian inheritance rates 

without any positive implications to individual fitness (Burt and Trivers 2006). These naturally 

occurring drive systems include: transposable elements (McClintock 1951; McClintock 1956; 

and Wicker et al. 2007), meiotic drives (McDermott and Noor 2010; Hickey and Craig 1966; 

Sweeny and Barr 1978; Hiraizumi and Crow 1960; Silver 1993; Ardlie 1998; Rhoades and 

Dempsey 1985), underdominance (Altrock et al. 2011; Curtis 1968), maternal-effect dominant 

embryonic arrest (Beeman et al. 1992), and homing endonuclease genes (Fraser 2012; Jasin 

1996) 

The transposable elements are short sequences of DNA that can change location within the 

genome by randomly removing and reinserting themselves at another location. Transposable 

elements were discovered in 1952 in maize (McClintock 1951; McClintock 1956) and have since 

been described in other eukaryotes (Wicker et al. 2007). 

Meiotic drive systems are interference drive mechanisms that lead to disproportional allele 

frequencies relative to Mendelian rates (McDermott and Noor 2010). These types of gene drives 

interfere with some aspect of the phenotypic expression as a result of reducing functionality at 
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certain loci. For example, in mosquitoes a meiotic drive has been observed that interferes with 

sex-linked chromosomes, resulting in a disproportionate male-to-female sex ratio, favoring 

males (Hickey and Craig 1966; Sweeny and Barr 1978). In addition to mosquitoes (Hickey and 

Craig 1966; Sweeny and Barr 1978), meiotic drive systems have been observed in Drosophila 

melanogaster (Hiraizumi and Crow 1960), Mus musculus (Silver 1993; Ardlie 1998), and maize 

(Rhoades and Dempsey 1985). 

Other forms of naturally occurring gene drive systems include underdominance. 

Underdominance occurs when the heterozygous offspring of two homozygous individuals incurs 

a fitness reduction relative to the parent organisms (Altrock et al. 2011). Curtis (1968) described 

underdominance systems that could be used to reduce pest species by causing sterility through 

introduced genes. 

Another gene drive system, maternal-effect dominant embryonic arrest, has been described in 

the flour beetle (Tribolium castaneum) where offspring that lack the associated chromosome are 

nonviable (Beeman et al. 1992). Only offspring that are homozygous for the maternal-effect 

dominant embryonic arrest chromosome develop properly, thereby superseding Mendelian 

inheritance rates (Beeman et al. 2012).  

Although gene drives occur naturally, they can now be created in the lab using techniques 

available through CRISPR/Cas9 (Gantz et al. 2015; Hammond et al. 2016; Champer et al. 2017; 

Buchman et al. 2018; Buchman et al. 2019). When CRISPR/Cas9 inputs a genetic sequence 

into the germline of an organism, the associated trait is inheritable (Webber et al. 2015). 

Regular Mendelian inheritance rates can then be superseded by incorporating the sequence 

calling for the entire CRISPR/Cas9 and guide-RNA complex and any attached cargo sequence 

into each chromosome during cellular development (Leftwich et al. 2018). In a rapidly 

reproducing target population with short generational times it may be possible that an 

introduced trait can be driven to fixation over a relatively short temporal scale, despite any 
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potential fitness implication due to the presence of the gene drive (Webber et al. 2015; Leftwich 

et al. 2018). 

1.5 Proposed applications for environmental management 

The broad applicability of genetic manipulation using CRISPR/Cas9 has led to numerous 

speculative proposals for the use of gene drives as ecosystem engineering catalysts (Webber et 

al. 2015; Gantz et al. 2015; Hammond et al. 2016; Champer et al. 2017; Buchman et al. 2018; 

Buchman et al. 2019). The majority of these potential uses fall under two main categories: 

population replacement or population suppression (Leftwich et al. 2018). Population 

replacement gene drives introduce a desired trait into a target population and over time replace 

the existing wild-type population with the new population that carries the introduced trait. 

Population suppression gene drives introduce a deleterious trait into a target population that 

spreads regardless of the magnitude of fitness costs at super Mendelian rates, potentially 

crashing populations within several generations (Windbichler et al. 2011; Adelman & Tu 2016; 

Hammond et al. 2016; Champer et al. 2017; Marcias et al. 2017; Buchman et al. 2018; Kyrou et 

al. 2018). 

1.6 Pest management 

Population suppression gene drives have been described for use as pest management tools in 

the context of invasive species (Prowse et al. 2017), agricultural pest species (Scott et al. 2018), 

and as methods of reducing mosquito borne illness (Windbichler et al. 2011; Hammond et al. 

2016; Champer et al. 2017; Buchman et al. 2018; Kyrou et al. 2018). Suppression drives have 

been modeled for use in invasive mouse populations by introducing sex specific traits that lead 

to populations becoming infertile (Prowse et al. 2017).  Synthetic CRISPR/Cas9 based gene 

drives that target agricultural pest species that are normally controlled through the use of 

pesticides have been described (Scott et al. 2018). Perhaps the most commonly proposed 

application of population suppression drives is the control of species that vector disease, 
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especially in mosquitoes (Windbichler et al. 2011; Hammond et al. 2016; Champer et al. 2017; 

Buchman et al. 2018; Kyrou et al. 2018).  

1.7 Mosquito borne disease 

Worldwide the burden of mosquito borne disease is staggering. Even with the best attempts at 

management, malaria alone kills on average over 400,000 people each year (WHO 2019). 

Many of these deaths occur in Sub-Saharan Africa and Asia. In the Americas, dengue is more 

prevalent, with 10,160,612 reported cases and 5,163 deaths over the last 7 years (PAHO 2020). 

Newly introduced diseases, like Zika virus, when introduced into an immunologically naïve 

population, have the capability to spread at epidemic proportions (Barrera et al. 2017). Current 

management strategies center on breeding habitat reduction and the use of pesticides when 

removal of breeding habitat is not feasible. Other management strategies include aerial spraying 

of insecticides indoors and outdoors, and the use of structural barriers, like mosquito nets and 

window screens (EPA 2016a, b, c). There are no current vaccinations for either dengue or Zika, 

though their development is being studied (Noyd and Sharp 2015; Barrett 2018; CDC 2018). 

1.8 Current synthetic biology regulations 

The risks posed by the use of synthetic biology products are not adequately covered by the 

current regulatory framework in the U.S. (NASEM 2016). The current regulatory laws are not 

specific to synthetic biology and therefore do not cover the unique risks that synthetic biology 

poses (NASEM 2016). Under the National Environmental Policy Act (NEPA) there are no 

requirements for quantitative assessment of risk nor the probability of effects. Current NEPA 

regulations do not require uncertainty to be reported. The lack of testable hypotheses of the 

environmental impact statement, that NEPA does require, makes the process less geared 

toward developing future research. Ecological risk assessment gives the probability of the 

desired outcomes as well as the indirect effects. Though NEPA does not require an ecological 

risk assessment to be conducted, other various regulations do (e.g. Federal Insecticide, 
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Fungicide and Rodenticide Act, Comprehensive Environmental Response, Compensation and 

Liability Act, and Toxic Substances Control Act). The general guidelines that the U.S.  

Environmental Protection Agency (EPA) requires for ecological risk assessment are: problem 

formulation, analysis, and risk characterization. These EPA guidelines do not require 

quantitative, probabilistic outcomes (NASEM 2016). 

Many questions about the use of gene drive organisms are related to probabilities of the 

outcomes both desired and undesired (NASEM 2016). The desired outcome of the release of a 

gene drive is to introduce a genetic element that persists in the environment through preferential 

inheritance and has an effect on population dynamics. The current field is lacking in studies that 

describe the risk associated with the introduction of a gene drive engineered species. As 

currently framed by the EPA, ecological risk assessments are not well suited to mathematically 

describe the multiplicity of interactions between stressors and endpoints over broad spatial 

scales. The BN-RRM is designed for such complex interactions and are able to quantitatively 

represent the interactions among multiple stressors and multiple endpoints across large spatial 

and temporal scales (NASEM 2016). 

1.9 The relative risk model for ecological risk assessment 

Landis and Wiegers (1997) developed an ecological risk assessment design that considered the 

interactions between the stressors and endpoints, the variation of the different stressors, and 

the spatial interests of stakeholders. This ecological risk assessment approach was applied to a 

real-world scenario by Wiegers et al. (1998), where risks and associated impacts of 

anthropogenic stressors were compared and evaluated for the marine environment of Port 

Valdez, Alaska. The model aided managers in developing testable hypotheses to further reduce 

impacts (Wiegers et al. 1998). Further iterations led to the development of the relative risk 

model that has been successfully applied to many very different risk assessment scenarios 
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(Hayes and Landis 2004; Landis and Wiegers 2005; Colnar and Landis 2007; Anderson and 

Landis 2012). 

Hayes and Landis (2004) used the relative risk model to assess the regional coastal marine 

area near Cherry Point, WA. The goal was to develop a model that estimated the risk 

associated with anthropogenic sources to biological endpoints in order to aid the decision-

making process of the Washington Department of Natural Resources. The results of the model 

depicted the risk of habitats to stressors, which stressors were likely to result in stronger 

impacts, and the endpoints most at risk (Hayes and Landis 2004). 

In Landis and Wiegers (2005), the outline of a regional ecological risk assessment was 

presented. In the assessment, habitats and sources of stressors within the study area are 

classified. Ranks were given weighting the relative importance of each per location within the 

study area to give levels of possible risk. If a succinct pathway between components of the 

RRM was found, then there was a risk to the associated endpoint.  

In Colnar and Landis (2007), the previously developed Relative Risk Model was applied to 

determining the risk associated with an invasive species (C. maenas) to the Cherry Point, WA, 

region. The authors investigated the probability of introduction of green crabs to the study area, 

as well as the effects of the introduction green crabs to the overall region. The risk to the region 

was determined using two scenarios: 1) established conditions, and 2) conditions associated 

with El Niño events which may influence dispersal patterns. The objective for the authors was to 

develop a system which incorporated conditions and management goals to develop testable 

hypotheses which could lead to better allocation of resources by management to attain their 

goals (Colnar and Landis 2007).  

In Anderson and Landis (2012), the relative risk model was applied to an entire watershed 

which consists of the Upper Grande Ronde area of eastern Oregon. The area of study was an 
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area of concern as outlined by the U.S. Forest Service. The goals brought forward by the U.S. 

Forest Service included management strategies aimed at predicting the outcomes of 

disturbance regimes and other processes (Anderson and Landis 2012).  

1.10 The Bayesian network relative risk model 

Cain et al. (1999) described the application of Bayesian networks to natural resource 

management. Cain et al. (1999) found that Bayesian networks provide quantitative methods for 

analyzing ecological systems and highlight uncertainties in a way that managers and the public 

can easily understand. In a key publication, Marcot et al. (2006) developed a set of guidelines 

for constructing Bayesian networks specifically to be used in ecological scenarios. Marcot et al. 

(2006) argued that although Bayesian networks had been used in the past to model complex 

ecosystem interactions, the models themselves had not been developed using a standard 

process, nor had they been consistently evaluated after more data became available. 

Using the guidelines constructed by Cain et al. (1999) and Marcot et al. (2006), various BN-

RRMs were developed that showed their effectiveness in modeling risk over large spatial scales 

(Ayre and Landis 2012), climate change (Landis et al. 2013), contaminants and urbanization 

(Hines and Landis 2013), the spread of a novel disease in trout species (Ayre et al. 2014), and 

risk to benthic estuarine populations (Graham et al. 2019). Ayre and Landis (2012) first applied 

the Bayesian network approach to ecological risk assessment while studying a large-scale 

terrestrial ecosystem. In Landis et al. (2013), the BN-RRM was used as an approach to 

assessing risk to systems from global climate change. Hines and Landis (2013) assessed risk of 

prespawn mortality in Coho salmon as a result of contaminants associated with urbanization 

and land-use. Ayre et al. (2014) applied the BN-RRM to the spread of whirling disease in native 

populations of cutthroat trout in the Colorado and Rio Grande Rivers. Graham et al. (2019) 

showed another case where the BN-RRM is an appropriate risk assessment tool by modeling 

benthic population risk in estuary systems in Australia. 
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The use of gene drives creates a potential for long term effects and impacts in a variety of 

different ways and ecosystems (NASEM 2016). Any design of a gene drive will impact not just 

the target species, but potentially all other species within an ecosystem to more or less of a 

degree. Gene drives have been proposed for use in terrestrial as well as aquatic systems, 

leaving the potential for interactions almost endless. The use of BN-RRMs  can provide the 

foundation for evaluating the risk associated with gene drives because information regarding the 

genetics and ecological interactions can included in the BN-RRM ecological risk assessment 

approach. There are components of BN-RRMs that make them well suited to assessing risk 

related to the deployment of gene drives.  

The BN-RRM requires clear dialog between stakeholders, the public, managers, and 

researchers to define goals and endpoints. For gene drive use, there will be stakeholders 

represented from every socio-economic background with differing values that need to be 

addressed. When a mechanistic understanding of interactions is known, causal pathways are 

clearly represented within the BN-RRM and the outcomes are given as probabilities of relative 

risk. This poses a potential source of uncertainty for gene drives because there are lots of areas 

of uncertainty. For example, greater understanding of how the gene drive spreads in lab trials 

does not necessarily translate into field trials.  

As gene drive research progresses, more information gained at the cellular level may produce 

more questions at the organismal level. The world that gene drives will ultimately be introduced 

is inherently an open system, meaning that the interactions taking place as a result of the drive 

will change within a project as the timescale changes, as well as from project to project as the 

location changes. Alternative management strategies are easily assessed as part of the design 

and uncertainty is easily examined. The trade-offs of alternative management options can be 

represented within the BN-RRM. This means that non-gene drive interventions can be modeled 
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alongside the use of a gene drive or in conjunction with the gene drive, with outcomes 

represented probabilistically.  

1.11 Ten steps of the Bayesian Network-Relative Risk Model 

Ten steps have been described in the development of the relative risk model (Landis and 

Wiegers 2005) and have been further adapted to incorporate Bayesian networks (Ayre and 

Landis 2012). These steps will be used to establish the BN-RRM framework for and calculations 

of risk associated with the release of gene drive engineered mosquitos in Ponce, Puerto Rico. 

Step 1: Explicitly establish the management goals, defining specific endpoint criteria and 

ecological services important for decision makers (Landis and Wiegers 2005). It is imperative for 

the risk assessment process that endpoints be chosen through clear dialogue with all applicable 

stakeholders. Communicating with current management and others through personal contact 

will be essential to this step. 

Step 2: Develop a map that includes the locations of sources and habitats of the areas to be 

treated. This includes the spatial extent of the release of the gene drive engineered mosquitos, 

the land use and land class attributes of the area, suitable mosquito habitat, the distribution of 

human dwellings, as well as any landscape characteristics that may influence migration rates 

and dispersal of the mosquito populations (Landis and Wiegers 2005). 

Step 3: Develop risk regions based on spatial connectedness of sources, stressors, habitats, 

and endpoints. Risk regions will be discerned by the ability of the gene drive to persist and 

disperse throughout the study area. This includes all of the landscape characteristics that were 

determined in step 2 (Landis and Wiegers 2005). The determination of risk regions will depend 

on the factors within the landscape that influence mosquito population dynamics and migration 

rates of the organisms, as determined through GIS analyses, and the dispersal rates of the 
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gene drive throughout the wild type Ae. aegypti population as determined through population 

and gene drive propagation simulations.  

Step 4: Develop a conceptual model that describes the causal linkages between sources, 

stressors, habitats, effects, and impacts. The criteria for inclusion into the conceptual model are 

clearly understood mechanistic properties from exposure to effect (Landis and Wiegers 2005). 

This conceptual model serves as the cause-effect framework for the BN-RRM (Ayre and Landis 

2012). 

Step 5: Use the linkages derived in step 4 to create a Bayesian network, including risk rankings 

to calculate risk to specified endpoints. The software Netica™ is used to develop the Bayesian 

network (Norsys 2014). Discrete states (zero, low, medium, or high) are assigned to all nodes 

within the Bayesian network. Higher tiered nodes (parent nodes) that influence lower tiered 

nodes (child nodes) are connected through causal linkages, creating causal chains from 

sources through endpoints. Probability distributions of outcomes for each state, which are 

determined through observations, derived from the literature, or from model output, are 

assigned to the nodes within the Bayesian network. Conditional probability tables are used to 

quantify the causal linkages. The conditional probability tables describe the interactions of all 

possible combinations of each state of the parent nodes that connect to a child node. The 

information built into step 5 is derived from the peer-reviewed literature, government sources, 

expert elicitation and site-specific data (Landis and Wiegers 2005). 

Step 6: Calculate risk based on the model output. Risk will be calculated by running the model. 

(Landis and Wiegers 2005). 

Step 7: Conduct model sensitivity and uncertainty analyses. Sensitivity analysis will be done by 

determining the input classifications that are most important changes in risk calculations through 

mutual information. Mutual information is the amount of information that is shared between two 
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nodes in the network. Larger amounts of mutual information between two variables indicates 

that an input variable has more influence on the probability distribution seen in an endpoint node 

(Norsys 2014). Outcomes of sensitivity analysis will illustrate the factors most influential to the 

risk calculations and can identify priorities for increasing accuracy of risk estimates and reducing 

uncertainties in distributions used in step 5 (Landis and Wiegers 2005). 

Step 8: Use the model outputs to develop testable hypotheses to enhance knowledge of the 

system. The questions developed will clarify areas of the model needing more information 

(Landis and Wiegers 2005). 

Step 9: Use the hypotheses from step 8 to conduct further research. Testing hypotheses from 

step 8 will create data that can be used to further parameterize the model, resulting in less 

model sensitivity and uncertainty (Landis and Wiegers 2005). 

Step 10: Communicate results established through the BN-RRM calculations. Providing results 

of the modeling to decision makers and publishing results in peer-reviewed scientific literature 

will be the top priorities in communicating the outcomes (Landis and Wiegers 2005). 

1.12 Study objectives 

The risk assessment approach proposed by the National Academies of Science, Engineering, 

and Medicine (NASEM 2016) to model the risk posed by gene drives is used here. The goal is 

to show that a quantitative risk assessment of gene drive application as a method to reduce the 

transmission of mosquito borne disease is attainable using realistic landscape characteristics in 

a large metropolitan area and can be easily reproduced for other scenarios involving the use of 

gene drives, given that sufficient data exist regarding: the life history traits of the target species, 

the interactions between the host and vector populations, and the landscape characteristics that 

influence the productivity of the landscape in terms of vector population numbers.  
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1.13 Case study - Ponce, Puerto Rico 

The municipality of Ponce, Puerto Rico is the second most densely populated area in Puerto 

Rico following the greater San Juan area (Figure 1). The Ae. aegypti mosquito is the primary 

vector of concern for mosquito borne disease on the island and within Ponce. This mosquito is 

responsible for the spread of endemic dengue as well as introduced Zika virus (CDC 2017). The 

adaptive management strategies currently in place center on eliminating the larval stages from 

the environment (CDC 2016a, EPA 2016a, b). When larval eradication is not attainable, the use 

of pesticides to control adults is leveraged (EPA 2016a, b). Other measures used are physical 

barriers that limit the exposure of humans to mosquitoes, such as bed nets and window screens 

(EPA 2016a, b). 

Here I model the release of gene drive engineered Ae. aegypti and incorporate the findings to 

quantitatively assess the direct and indirect effects of their use. The landscape characteristics of 

Ponce, Puerto Rico provide the information regarding the habitat parameters of the wild and 

subsequent hybrid populations. The connectivity of the habitat describes the movement of the 

gene drive throughout the population. Habitat connectivity as determined through published 

mosquito dispersal patterns and GIS analyses of distances between habitat patches will 

influence the spread of resistance to the drive that develops in one patch and the rates of the 

developed resistance spreading to other patches, until a new resistant population has replaced 

the wild type population. 

The emergence of resistance is a highly advantageous trait in the presence of the extreme 

selective pressure posed by the gene drive and almost assuredly occurs (Unckless et al. 2017). 

Homology-directed repair (HDR) is the process where a double strand break in a segment of 
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Figure 1. Map showing the boundary of the municipality of Ponce, Puerto Rico. 

 

DNA is repaired using an identical DNA sequence as a template (Gratz et al. 2014). By using an 

identical sequence as a repair template, the breakage can be repaired very precisely. In 

contrast, non-homologous end-joining occurs when a double strand break in a segment of DNA 

is repaired by the addition of compatible nucleotides to each end of the break that are then 

fused together (Weterings & Chen 2008). This can result in the loss of nucleotides at a specific 

locus. These inaccurate repairs due to non-homologous end-joining can give rise to the 

formation of alleles that give resistance to the gene drive (Unckless et al. 2017). 
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The habitat patch where resistance develops is a source of further resistance, given that the 

initially resistant organisms successfully breed and reach the minimum viable population size 

required within that patch (Deines et al. 2005). Large areas of suitable habitat for the resistant 

individuals become available for recolonization as the gene drive decreases the wild-type 

population because the habitat requirements between the two are identical. The entire study 

area represents a patchy metapopulation because of the spatial heterogeneity of the 

environment (Deines et al. 2005). Resources are located in discrete locations correlating with 

distributions of human habitations that subdivides the existing mosquito population into discrete 

patches (Lutambi et al. 2013) and dispersal of the resistant individuals is able to occur through 

migration between patches (Deines et al. 2005). 

1.14 Current management strategies 

The current mosquito management strategy in Puerto Rico, implemented by the Puerto Rico 

Vector Control Unit, is a three-pronged integrative pest management approach based on 

reduction of breeding habitat, introduction and maintenance of barriers to movement, and the 

use of pesticides to control larval and adult stages when reduction of breeding habitat is not 

feasible (CDC 2016a, CDC 2016b). The United States Environmental Protection Agency (EPA) 

recommends the control of mosquito populations primarily at the larval stage when populations 

are most vulnerable. The use of larvicides focuses on treating breeding habitat in order to 

reduce maturation into adult life stages and dispersal (EPA 2016a). Currently, the EPA and the 

World Health Organization approve the use of organophosphate insecticides, insect growth 

inhibitors, and bacterial insecticides for use as mosquito larvicides (EPA 2016a; WHO 2017). 

Organophosphate larvicides cause mortality in mosquito larvae by interfering with nerve 

transmission (CDC 2016a). Organophosphates are recommended as larvicides over pyrethroids 

in order to avoid the development of pyrethroid resistance in larval mosquitos. Due to the wide 

variety of suitable breeding habitat for the Aedes spp. mosquitos and the difficulty in eliminating 
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all sources of standing water, use of larvicides is recommended as an integrated part of a more 

comprehensive mosquito control program (CDC 2016a).  

Insect growth inhibitor larvicides obstruct developmental processes in larval mosquitos, 

effectively reducing adult mosquito populations. This class of chemicals mimics juvenile insect 

hormones and interferes with larval development (EPA 2001). 

Bacterial insecticides include Bacillus thuringiensis iraelensis and Bacillus spaericus. Spores of 

the bacterium Bacillus thuringiensis iraelensis create toxins that are detrimental to mosquito, 

blackfly, and fungus gnat larvae. Bacillus sphaericus is a bacterium that produces spores that 

inhibits the digestive processes in the gut of mosquito larvae (EPA 2016a). 

Mosquito adulticides target adult mosquito populations and can be applied through aerial or 

truck mounted spraying. The EPA lists 2 classes of adulticides for use: organophosphates and 

synthetic pyrethroids (EPA 2016b). 

The organophosphate insecticides approved by the EPA are malathion, temephos and Naled 

(1,2-dibromo-2,2-dichloroethylphosphate). These chemicals are neurotransmitter inhibitors that 

work by interfering with the acetylcholinesterase receptor. Malathion is primarily applied with 

truck-mounted sprayers (EPA 2016c). Naled is primarily applied aerially with ultra-low volume 

sprayers. Temephos is applied directly to water sources to control the larval stage. Unlike 

malathion, resistance to Naled or temephos in Ae. aegypti has not been detected (Del Rio-

Galvin et al. 2016; EPA 2016c; EPA 2018).  

The pyrethroid class of insecticides approved by the EPA for use as mosquito adulticides are 

applied by ultra-low volume aerial spraying (EPA 2019). Pyrethroids approved for use in Puerto 

Rico include: alpha-cypermethrin, bifenthrin, deltamethrin, etofenprox, lambda-cyhalothrin, 

permethrin, phenothrin, and tetramethrin (CDC 2017). These chemicals kill adult mosquitos 

through paralysis via neurotransmitter disruption (Soderlund et al. 2002). Synthetic pyrethroid 
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adulticides are used in conjunction with synergistic compounds (e.g. piperonyl butoxide) that 

enhance toxicity (EPA 2019). 

Sterile insect technique is another management option that results in non-viable embryos 

produced from wild-type females (Soderlund et al. 2002). Sterile insect technique releases 

laboratory reared sterile males that are treated with radiation to induce chromosomal 

breakages. When released into wild pest populations the embryos produced when sterile insect 

technique males are mated with wild-type females are non-viable (Soderlund et al. 2002). 

2 METHODS 

2.1 Scenario development 

Amid the Zika epidemic of 2015-2016, the Centers for Disease Control and Prevention (CDC) 

and the Puerto Rico Science, Technology and Research Trust established the Puerto Rico 

Vector Control Unit as the implementation arm of the integrative pest management strategy for 

Puerto Rico (CDC 2016b). The Puerto Rico Vector Control Unit is tasked with the 

implementation of control strategies that will reduce mosquito populations with the goals of 

eliminating the Ae. aegypti mosquito and reducing mosquito borne disease transmission (CDC 

2016b). This private entity was largely born out of a workshop hosted by the Puerto Rico 

Science, Technology and Research Trust that concluded the Ae. aegypti mosquito, the primary 

vector for dengue, Zika, and chikungunya, could be eliminated through an integrated pest 

management strategy that leverages reducing breeding habitat, the usage of window screens 

and bed nets, and the applications of pesticides (CDC 2016b). This study models the existing 

management options plus the addition of simulated gene drive releases to model the outcomes 

in relation to management goals. 
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2.2 Site conditions 

The municipality of Ponce, Puerto Rico, covers an area of 297 km2 (Figure 1). The U.S. Census 

lists the population as 140,859 people. The population density of the municipality of Ponce is 

474 persons/km2. Ponce, Puerto Rico is composed of rural, urban, and suburban landscapes 

(U.S. Census Bureau 2019). The Caribbean Sea borders the southern section of the 

municipality and there is a large global shipping port within the Ponce Bay. The Köppen-Geiger 

climate classification of Ponce, Puerto Rico, is tropical, savannah (Beck et al. 2018), the region 

receives on average 935 mm of rainfall per year and has an average temperature of 26.2°C, 

with seasonal highs of both temperature and precipitation in the late-summer and fall months 

(SERCC 2007). Since 2015 there have been 2,791 reported cases of Zika in Ponce, Puerto 

Rico (CDC 2019b; ArboNET 2019). Of these cases, 2,788 cases have been locally transmitted 

and 3 cases have been due to patients returning from travel. Puerto Rico has experienced 

dengue outbreaks since 1963 (CDC 2019b). There have been 1,287 reported cases of dengue 

in Ponce, Puerto Rico since 2010, all cases have been reported as locally transmitted (ArboNET 

2019). 

2.3 Gene drive applications: Population replacement and population suppression 

Although several applications of gene drives have been proposed, they nearly all fall under two 

main categories, population replacement or population suppression (Leftwich et al. 2018). 

Population replacement gene drives introduce a trait into the target population that would be 

driven to dominance over successive generations, effectively replacing the wild population with 

a subsequent population exhibiting the introduced trait. Population suppression drives would 

introduce a trait into the wild population that would incur a fitness reduction in the individuals 

that carried that trait, leading to overall population crashes and eventual extinction of the target 

population (Leftwich et al. 2018). The gene drive constructs discussed in greater detail within 

this research fall under the population suppression category and are modeled after the construct 
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developed by Hammond et al. (2016). The theoretical improvements to the resistance allele 

generation rates suggested through the use of multiple guide-RNA sequences are also modeled 

(Marshall et al. 2017). 

Multiplexing uses multiple guide-RNA sequences within the CRISPR/Cas9 complex to target 

multiple locations on the genome as introduction sites of the gene drive (Marshall et al. 2017). 

Gene drives that use multiplexing would target multiple locations on the genome thereby 

reducing the probability of resistance generating to the drive because resistance would have to 

develop simultaneously at each location. As the number of locations that the multiplexed gene 

drive targets increases, the theorized rate of resistance generation is decreased exponentially 

(Marshall et al. 2017; Noble et al. 2017). 

The population suppression gene drive system that provided the basis for the gene drive 

modeled within this study was developed by Hammond et al. (2016). This system was first 

engineered for use in Drosophila melanogaster and successfully demonstrated in the malaria 

vector Anopheles gambiae. The Hammond et al. (2016) gene drive selected haplosufficient 

female sterility genes and disrupted their normal expression through gene knockout. 

Haplosufficiency occurs when a single copy of a functional gene is sufficient to maintain the 

same normal functions as those seen in individuals carrying two copies of the gene. Females 

that were homozygous for the gene drive were sterile and failed to lay eggs. The heterozygous 

females did not incur any fitness reduction (Hammond et al. 2016). 

2.4 Endpoint selection 

The BN-RRM requires the selection of endpoints that includes the entity being examined and a 

specific attribute or characteristic of the entity that can be measured (Landis & Wiegers 1997; 

Landis & Wiegers 2005). Endpoints selected are the likelihood of reductions in dengue and Zika 

transmission as a result of population reductions due to the simulated releases of the gene drive 
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engineered Ae. aegypti and the development of resistance to the drive. The first endpoint is the 

eradication of the wild type mosquito and is defined as zero remaining Ae. aegypti within the 

study area. Eradication is shown as an intermediate node in the Bayesian network because 

eradication proved to be unlikely depending on the resistance allele generation rate. The 

second endpoint, development of resistance to the drive is defined as the proportion of 

remaining mosquitoes surviving after the releases of the gene drive have ceased in terms of 

relative proportionality from 0 to 1. The third endpoint, the likelihood of reduction in dengue 

transmission is defined as the probability of being below the dengue transmission threshold of 

1.42 pupae/person at a temperature of 28°C (as developed in Focks et al. 2000). The fourth 

endpoint node, Zika transmission, is the likelihood of the remaining Ae. aegypti densities being 

below the transmission threshold of 0.2 females/trap/day (as developed in Barrera et al. 2016). 

2.5 Wild-type mosquito population numbers 

The relationship between landscape characteristics and existing mosquito population numbers 

were incorporated from a previous study conducted in San Juan, Puerto Rico (Barrera et al. 

2019). Barrera et al. (2019) found that the land class of the areas surrounding San Juan were 

significantly correlated with the abundance of existing Ae. aegypti populations. They based their 

study off of CDC trapping data using the BG-2 Sentinel mosquito traps at 59 locations in San 

Juan city from October to November, 2017. Although San Juan city is on the northern edge of 

Puerto Rico and Ponce is on the southern edge, the two areas do share similarities. The 

municipality of Ponce is the second most populated area of Puerto Rico, following the greater 

San Juan area. In both regions there exists a strong north-south urban concentration gradient, 

including elevation gains found as distance from the coast is increased. The five types of land 

class examined were high-density housing, low-density housing, forest, non-forest vegetation, 

and wetlands (Barrera et al. 2019). The linear modeling estimates for Ae. aegypti abundance 

that were found using the BG-S Sentinel trapping data per land class were: high-density 
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housing = 3.4 ± 0.4097 (females/trap/day), low-density housing = 9.8 ± 1.1 (females/trap/day), 

forest = 2.6 ± 1.0 (females/trap/day), non-forest vegetation = 2.7 ± 0.5 (females/trap/day), and 

wetlands = 2.1 ± 0.3 (females/trap/day) (Barrera et al. 2019). 

To obtain existing mosquito population estimates within Ponce, I evaluated several landscape 

characteristics: the extent of the patchiness of the landscape, the existing wild type mosquito 

populations, and the human population of the study area. Since the Ae. aegypti mosquito 

preferentially feeds on humans, it is found primarily in and around human habitations, although 

the importance of non-dwelling buildings as sources of mosquito breeding habitat has been 

noted (Barrera et al. 2006). Because of the relative importance of any building type as potential 

for breeding and the ability of the Ae. aegypti mosquito to use highly cryptic containers as 

breeding habitat, I analyzed a GIS layer that included all of the buildings within the municipality 

of Ponce, available from the Humanitarian OpenStreetMap Team (2020). This shapefile was 

converted from polygons to points to show the locations of all buildings within Ponce. The flight 

and dispersal distance of Ae. aegypti within Puerto Rico was suggested to be within a maximum 

range of 100m (Harrington et al. 2005; Cox et al. 2007). However, the Ae. aegypti mosquito has 

been demonstrated as exhibiting leptokurtic dispersal. This right-tailed dispersal distribution 

means that although most mosquitoes do not travel very far over their lifetime, long distance 

dispersal has been seen (Harrington et al. 2005). To determine the extent of the habitat 

patches, I measured the distances between the major groupings of building points and 

characterized patches based on buildings being separated by either a major barrier (e.g. 

highways, or water channel) or by being separated by distances of over 100m. This resulted in 

there being 36 distinct habitat patches within the municipality of Ponce. The distances between 

patches were also used in conjunction with mark-recapture data gathered in Puerto Rico to 

estimate the probability that migration will occur between adjacent patches (Harrington et al. 

2005).  
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Risk regions (RR1, RR2, and RR3) were developed by examining the flight distance between 

patches and the dominant landcover classification for each set of landscape patches that were 

included in each region (Figure 2). RR1 was predominantly high-density housing and was 

bounded by a navigable channel to the East, and a major highway to the North. RR2 was mixed 

high-density housing and forest and was bounded by a major highway to the South, the border 

of the municipality of Ponce to the East, and mountains to the North. RR3 was composed of 

mainly forest and patches of low-density housing and was characterized by the strong North-

South series of valleys extending to the Northern border of the municipality. 

Existing mosquito population estimates were obtained by combining the Ae. aegypti abundance 

estimates of the Barrera et al. (2019) study with my GIS analysis of the existing landscape 

characteristics of Ponce (Table 1). A shapefile available from the National Land Cover Database 

(NLCD 2016) was used to quantify the amount of the 5 major land classes used in the 

abundance models of the Barrera et al. (2019) study: high-density housing, low-density housing, 

forest, non-forest vegetation, and wetlands. A 100m buffer surrounding the building points was 

created and used to clip the landcover dataset so that the dominant land cover classification of 

each distinct patch was defined. Once each patch was defined by its dominant landcover 

classification, the amount of buildings per patch and the abundance equations per land class 

were used to estimate the maximum number of existing wild mosquito population for each patch 

(Barrera et al. 2019).  

Table 1. Human population and maximum mosquito population estimate per risk region. 

Risk Region Human population (persons) 
Ae. aegypti maximum mosquito population 

estimate (individuals) 

RR1 113,430 80,200 

RR2 38,629 23,200 

RR3 14,170 10,200 
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Figure 2. Map showing the locations of all buildings, habitat classification, and human 

populations within each risk region (RR1, RR2, and RR3) within the study area. 

2.6 Disease transmission thresholds 

Mathematical epidemiological models date back to the 1700s (Bernoulli 1760). This early work 

was further developed by Hamer (1906) to describe the mass action principle, that the rate of 

the spread of a contagion is dependent on the number of immunologically susceptible 

individuals within a population and the number of infected individuals. Kermack and McKendrick 

(1927) expounded upon these early models to describe the idea that a population density 

threshold within a population exists that limits the spread of a contagion, relative to the infectivity 

rate of the contagion. With the idea of threshold theory, an increase in contagious individuals or 
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vectors into a population does not lead to an epidemic unless the overall density of the 

immunologically naïve population is above a critical threshold (Kermack and McKendrick 1927; 

Focks et al. 2000). 

2.7 Dengue transmission threshold 

Focks et al. (2000) coupled the mathematical threshold theory with computer simulation models 

to develop threshold levels for dengue as a function of pupae per person, herd immunity (initial 

seroprevalence), temperature, and the magnitude of viral introduction (Table 2). Focks et al. 

(2000) describe the dengue thresholds in terms of pupae per person for 3 main reasons: pupae 

are readily available to count, the Aedes subgenus Stegomyia can be easily separated from 

other container inhabiting organisms, and because of the research correlating the number of 

pupae to the number of adult individuals.  

Table 2. Dengue transmission thresholds (pupae/person) per temperature and level of herd 

immunity. Adapted from Focks et al. (2000). 

Temperature Herd Immunity 
Dengue Transmission Threshold 

(pupae/person) 

22 0 9.57 

24 0 2.92 

26 0 1.42 

28 0 0.53 

30 0 0.13 

32 0 0.07 

22 33 14.1 

24 33 4.47 

26 33 2.03 

28 33 0.75 

30 33 0.19 

32 33 0.1 

22 67 30.55 

24 67 9.22 

26 67 4.26 

28 67 1.69 

30 67 0.38 

32 67 0.26 
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The temperature of the environment influences the number of adult female mosquitoes and the 

number of pupae (Focks et al. 2000). In general, as temperature increases the length of the 

gonotrophic cycle decreases, resulting in higher rates of emergence from pupae to adult (Focks 

et al. 2000). Temperature also influences the incubation period of the dengue virus. Infected 

mosquitoes become able to transmit dengue faster at higher temperatures (Focks et al. 2000). 

2.8 Zika threshold 

Barrera et al. (2017) developed transmission threshold levels for Chikungunya in Puerto Rico. 

Chikungunya is another viral disease that is vectored by the Ae. aegypti mosquito. The first 

reported case of chikungunya was confirmed in Puerto Rico in May of 2014. The first confirmed 

case of Zika virus in Puerto Rico occurred in 2015 (Barrera et al. 2017). Though chikungunya 

and Zika viruses are different families of viral infections they are both primarily spread by the 

same vector, both share similar transmission cycles, and both were introduced into a 

serologically naïve population (Barrera et al. 2017). The co-occurrence of dengue, chikungunya, 

and Zika virus suggests that the areas that have been impacted by dengue and chikungunya 

are also at risk of being impacted by Zika virus. Therefore, the use of chikungunya transmission 

thresholds would be prohibitive to the spread of Zika and an appropriate proxy for Zika 

transmission thresholds (Barrera et al. 2017). The Zika transmission thresholds estimated in 

Barrera et al. (2017) were developed through comparing mosquito trapping data in several 

areas in Puerto Rico and comparing the rates of antibody presence in the human populations. 

Although thresholds for Zika will vary with temperature similarly as with dengue thresholds, the 

Zika threshold values in the Barrera et al. (2017) study were developed and reported with no 

specificity to temperature (Focks et al. 2000; Barrera et al. 2017).  

2.9 Case learning 

Case learning can be used within the Bayesian networks created with Netica™ to automatically 

construct the conditional probability tables that describe the likely occurrences of a specific 
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variable (Norsys 2014). Case learning in Netica™ is the process where the software performs 

probabilistic inference on a set of case data where each entry (case) describes one outcome of 

an event. This process automatically generates the values for the conditional probability tables 

that describes the outcomes of the set of variables (nodes) included in the Bayesian network 

that cause the event (Norsys 2014). To parameterize nodes within the model using case 

learning, case files must be created that include each measurement of interest for each of the 

variables (nodes) that are being described. The case files I used for case learning within my 

Bayesian networks describe the outcomes of each of the gene drive release simulations. Input 

parameters include the resistance generation rate, the duration of releases (weeks), and the 

release ratio. The nodes that the conditional probability tables are parameterized using case 

learning are the ‘Resulting Pop. After GD Release’ and ‘Proportion of GD Resistance’ nodes. 

The case files included the allele frequencies and population numbers for each patch per time 

point. 

2.10 Interaction with pesticide applications 

The effects of pesticide application are modeled within the Bayesian network through the 

incorporation of dose-response modeling within the pesticide application node. Four pyrethroid 

pesticides and DDT were incorporated. The likely impacts of these pesticides on adult Ae. 

aegypti after the release of the gene drive can be shown by selecting the specific pesticide and 

amount to be applied (mols). The impacts on remaining populations are shown via the percent 

reduction due to the application of the various pesticides.  

3. Model Structure 

3.1 Conceptual model 

A general cause-effect conceptual model adapted from Landis (2004) by NASEM (2016) was 

developed to map out the causal pathways that there is a mechanistic understanding of, that 

link the release of the gene drive engineered mosquitoes and the incidence of disease within 
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the study area (Figure 3). Each component of the conceptual model is linked to the study area 

through a spatial component. The conceptual model is composed of the sources of the 

stressors, the stressors themselves, the characteristics of the habitat, the direct and indirect 

effects, and the impacts to the defined endpoints.  

Once the general conceptual model was created a simplified version was created that lists the 

specific causal pathways which includes only the items that I was able to quantify and were to 

be included within the Bayesian networks (Marcot et al. 2006; Chen and Pollino 2012; Landis et 

al. 2020). The simplification was done to only represent the cause-effect relationships of 

stressor to endpoint where data and research regarding the mechanistic interactions was 

available (Figure 4). A table of items included in the simplified conceptual model and the 

resulting Bayesian networks, as well as data sources, is included in appendix 5. 

Source. The source column of the conceptual model lists the spatially explicit parameters of the 

release of the gene drive engineered Ae. aegypti mosquitoes. To introduce the gene drive 

engineered organism there will be multiple release points throughout the study area that are 

based on the migration rates between patches as estimated through GIS analyses in 

conjunction with known dispersal rates (Harrington et al. 2005). Other components describing 

the release of the gene drive into the target population include the number of organisms to be 

released, the timing of release, the interval of time between releases, and the overall amount of 

releases of the gene drive engineered Ae. aegypti.  

Stressor. The stressor column includes the characteristics of the specific genetic construct that 

makes up the gene drive. The homing rate of the drive mechanism (the rate at which the 

CRISPR/Cas9 complex successfully finds the target sequence), the cutting rate of the drive 

mechanism (the rate of the CRISPR/Cas9 complex successfully causing a double-strand break 

in the segment of DNA), and the resistance allele generation rate are all components that will 

impact the rates of inheritance of the synthetic genetic construct and the outcomes of the  
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Figure 3. Conceptual model for the BN-RRM assessment of gene drive engineered Ae. aegypti 

as vectors to control dengue and Zika virus. 

 

Figure 4. Simplified version of the conceptual model including only the items that are 

incorporated into the Bayesian network. Incorporation into the Bayesian network structure is 

dependent on mechanistic understandings of the causal interactions taking place between items 

on the conceptual model (Chen and Pollino 2007; Marcot 2017; Landis et al. 2020). 

release of the gene drive into the target population. Other stressors within the study area 

include the pesticides that are currently approved for use and other current mosquito 
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management efforts being conducted that may impact the dispersal of the gene drive. For 

example, extensive pesticide application could result in the engineered mosquitoes being killed 

before they can successfully mate and pass on the gene drive to their progeny, or extensive 

reductions in the amount of standing water around habitations would result in a lack of breeding 

habitat, potentially hindering the breeding success and dispersal of the gene drive within the 

target population. 

Habitat. The land classes and land use within the study area will be listed in the habitat column. 

The key component here is to understand the exposure of the target population to the gene 

drive. This will include the abundance of the existing wild type mosquitoes, the productivity of 

each associated land class, and the spatial extent of where the mosquitoes breed and forage. 

Effect. The effects include the direct and indirect effects resulting from the release of the gene 

drive Ae. aegypti into the environment. Effects of the release will include the relative frequency 

of the gene drive construct in the population, any changes in population size and population 

dynamics, and any resulting fitness cost that may result from hybridization between wild and 

gene drive mosquitoes. Agricultural and ecological effects resulting from any reduction in 

mosquito populations as a result of the drive are not to be excluded and remain as items within 

this more comprehensive conceptual model. 

Impact. The impact to our defined endpoints resulting from the release of the gene drive into the 

environment will include the number of viable disease vectors, rates of disease incidence, and 

any reduction in disease morbidity and mortality. Alterations to ecological structure or food web 

interactions, as well as any reduction of agricultural productivity resulting from release of the 

gene drive are included as potential impacts associated with the agricultural and ecological 

effects pathways that are generalized within the comprehensive conceptual model. 
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3.2 Development of the gene drive specific Bayesian network relative risk model 

The conceptual model provides the basic framework for the development of our Bayesian 

network and reflects the cause-effect relationships between the variables that are included 

(Ayre and Landis 2012; see Figures 4 & 5). The underlying mathematical driving force of the 

Bayesian network is the relationships between variables that are described within the 

conditional probability tables for each distinct node within the network (Cain et al. 1999; Marcot 

et al. 2006). Each conditional probability table lists the likely outcomes of each combination of 

input variables in terms of probabilities.  

The probability distributions defining the likelihood of outcomes to Ae. aegypti populations as a 

result of the simulated releases of the gene drive engineered mosquitoes will be developed from 

output from the Mosquito Gene Drive Explorer Model (MGDrivE) and is described in detail 

below (Sánchez et al. 2019). Landscape data resulting from GIS analyses were incorporated to 

fill out the nodes that represent source and habitat characteristics. Dengue transmission 

threshold levels from Focks et al. (2000) were used to develop the conditional probability table 

for the reduction in dengue node. The mosquito abundance estimates resulting from the gene 

drive dispersal model and the human population densities of the risk regions were used to 

determine the likelihood of dengue transmission in terms of pupae per person. Zika thresholds 

were developed in Barrera et al. (2017) in terms of female mosquitoes per building and were 

used with the mosquito abundance estimates resulting from the gene drive propagation 

modeling output to determine the relative number of female mosquitoes per building per region 

which resulted in the risk estimates for Zika transmission. 

3.3 Modeling of gene drive propagation 

To model the release of gene drive engineered Ae. aegypti into Ponce, Puerto Rico I used the 

Mosquito Gene Drive Explorer (MGDrivE) model created by the Marshall Lab at UC Berkeley
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Figure 5. Bayesian network model structure for risk estimation of gene drive releases at the maximum simulation time (6.75 years). 

The parameters selected are for RR1, a release ratio of 1:1, rate of accurate HDR of 0.999, and 13 weekly releases. Dengue 

transmission thresholds are based on 0% herd immunity and a temperature of 26°C (Focks et al. 2000). 
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Figure 6. Bayesian network model structure for risk estimation of gene drive releases at the time point to minimum overall population 

per release scenario. The parameters selected are for RR1, a release ratio of 1:1, rate of accurate HDR of 0.999, and 13 weekly 

releases. Dengue transmission thresholds are based on 0% herd immunity and a temperature of 26°C (Focks et al. 2000). Pesticide 

application as an additional management strategy is included. 
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 (Sánchez et al. 2019). MGDrivE is a spatially explicit mathematical simulation framework that 

models the deployment of gene drive engineered mosquitoes and their effect on population 

dynamics. The MGDrivE modeling framework was designed to model the spread of a variety of 

gene drive architectures through spatially explicit mosquito populations. MGDrivE incorporates 

lumped age-class ecological modeling with genetic information and site-specific spatial 

dynamics. MGDrivE allows the user to input specific life-history parameters of the target 

population including the developmental stages: egg, larvae, pupae, and adult. Patches within 

the simulated release landscape are represented with a metapopulation structure, with used 

defined rates of migration between patches. Within MGDrivE, genetic inheritance of gene drives 

is modeled using ‘inheritance cu es’ that descri e the maternal and paternal genetic information 

which results in the genetic composition of any offspring. The MGDrivE modeling framework 

allows the user to define specific characteristics of the gene drive that is being simulated. These 

gene drive characteristics include the correct homing rate and the rates of resistance allele 

generation (Sánchez et al. 2019). Rates of both in-frame and out-of-frame resistance (Marshall 

et al. 2017; Unckless et al. 2017) are able to be modeled within MGDrivE. In-frame resistance is 

resistance generation that affects only the functionality of the gene drive, with no related fitness 

reduction as a result. Out-of-frame resistance imparts resistance to the gene drive while also 

affecting some other conserved portion of DNA resulting in a substantial fitness reduction 

(Sánchez et al. 2019).  

Mosquito life history is modeled within MGDrivE by a lump age-class model, in which the 

different life stages of the mosquito as incorporated: egg, larvae, pupae, and adult (Sánchez et 

al. 2019). Density dependence is modeled in the larval stage to account for larval competition 

within breeding sites. Density independent mortality is modeled in the juvenile and adult life 

stages. Spatial dynamics of the simulated release area are incorporated through a migration 

matrix that lists the probability of an individual in one patch migrating to an adjacent patch at 
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each timestep (day). The population of each distinct patch is simulated as randomly mating 

(Sánchez et al. 2019). 

MGDrivE can be run as a deterministic or stochastic modeling framework, with the stochastic 

simulations accounting for random chance events that may occur when patch densities become 

low. Monte Carlo iterations of each simulated release can be implemented to capture the full 

range of possible outcomes as a result of the simulated releases (Sánchez et al. 2019).  

3.4 Simulation parameters 

I ran 36 different stochastic simulation scenarios for various deployments of gene drives using 

the MGDrivE modelling framework (Sánchez et al. 2019). The parameters were primarily 

focused on the initial release parameters of the engineered organisms, the homing rate of the 

gene drive construct, and the rate of resistance allele generation. I accounted for the spatial 

uniqueness of the landscape of Ponce by incorporating estimated migration rates into the 

migration matrix within the model. Each stochastic simulation was repeated 50 times to ensure 

that the range of outcomes was accounted for.  

To determine the patches that received the simulated weekly releases of gene drive engineered 

Ae. aegypti, I developed a matrix of migration rates based on GIS analyses of mosquito 

dispersal and flight distance relative to spatial locations of patches (Harrington et al. 2005). 

Patches with less than 4% migration probability to adjacent patches were chosen as release 

patches, as well as the patches that made up our primary “mainland” patch. Too account for the 

right-tailed skew in dispersal distances noted in previous studies (Harrington et al. 2005), 

patches that were beyond the 100m range but within a reasonably unimpeded flight path were 

assigned the minimum probability of migration (1%). This resulted in 24 patches designated as 

release patches. The study area represents a patchy metapopulation of wild Ae. aegypti 

(Deines et al. 2005). This release scheme is comparable to the introduction of an invasive 
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species and was chosen so that the released gene drive organisms would have a high 

probability of radiating throughout the study area. Because of the patchiness of the study area 

multiple release locations were chosen to increase the probability of the spread of the 

introduced gene drive engineered Ae. aegypti. This reduces the probability of chance 

occurrences that would result in certain patches being effectively cut off from the spread of the 

gene drive due to low migration rates (Deines et al. 2005). If the gene drive does not spread 

throughout the target population and reduce the vector densities there will be no impacts to 

disease transmission. 

The parameters surrounding the initial release of the gene drive engineered Ae. aegypti were 

the number of engineered organisms released, the locations of releases, the interval of time 

between releases, and the duration of the scheduled releases (Table 3).  

Table 3. MGDrivE release parameters. Each combination of parameters was modeled giving 36 

individual release scenarios that were repeated 50 times per simulation. 

Rate of accurate 
homology-directed repair 

Release ratio Duration of releases (weeks) 

0.001 1:1 13 
0.0001 3:1 26 
0.00005 5:1 39 
0.00001   
   

The release ratios were chosen to be similar to previous modeling efforts (Robert et al. 2014; 

Pham et al. 2019; and Sánchez et al. 2020). These previous studies modeled the release ratios 

of gene drive engineered organisms to wild type organisms. Ratios included ranged from 1:1 to 

10:1. I chose an intermediate range of simulated release ratios, including 1:1 (3,340 males 

released), 5:1 (10,021 males released), and 5:1 (16,702 males released). These release ratios 

show the effect of the gene drive resulting from a range of inundation in terms of release ratio. 

A model burn-in period of 1 year was used to allow for the simulated wild mosquito populations 

per patch to stabilize due to the various migration probabilities between adjacent patches. The 
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different release durations that I included were 13, 26, and 39 weeks, simulating 1 release every 

week starting on simulation day 366. These release durations were chosen based on previous 

modeling efforts which had similar numbers of weekly releases (Robert et al. 2014; Pham et al. 

2019; and Sánchez et al. 2020). 

The total number of simulated gene drive engineered mosquitoes was the product of variations 

in release ratio (1:1, 3:1, and 5:1), duration of weekly releases (13, 26, and 39 weeks), and the 

number of patches receiving releases (24 patches). This resulted in 9 separate values for total 

number of engineered male Ae. aegypti released over the simulation periods. Complete range 

of released engineered mosquitoes over entire simulation period by release scenario is given in 

table 4. 

The successful homing rate of the simulated gene drive was assumed to be 95%, which is the 

rate demonstrated in Hammond et al. (2016). The rate of accurate homology directed repair 

(HDR) was simulated at levels of: 0.999, 0.9999, 0.99995 and 0.99999.  The inverse of these 

rates was used to simulate the resistance allele generation developing as a result of the drive, 

giving us resistance generation rates ranging from 0.001 to 0.00001. The gene drive construct 

described in Hammond et al. (2016) designed for population suppression of the malaria vector 

Anopheles gambiae showed rates of resistance generation of approximately 0.0013. Marshall et 

al. (2017) modeled the effects of decreasing the rates of resistance allele generation through 

multiplexing (from 10-3 to 10-7) to determine the maximum size of the wild populations of 

mosquitoes that could be suppressed for each rate of resistance generation. I chose to model 

the rates of resistance generation of gene drive constructs that have been lab tested (Hammond 

et al. 2016) and a moderate level of resistance proposed by Marshall et al. (2017) through the 

theoretical use of multiplexing. 

To develop the amount of Monte Carlo iterations used, I ran preliminary MGDrivE simulations, 

increasing the value of repetitions. When comparing the results, I found that n=50 was suitable 
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to capture the range of possible outcomes and to stabilize the resulting outcome distributions to 

convergence. Time series plots of the results showed convergence was well established after 

approximately 1,500 simulation days. Specific statistical measures of the mean, standard 

deviation, and 95% confidence intervals of outcomes were not included and the value was 

based largely on visual interpretation of convergence within the preliminary results. 

Table 4. Total numbers of gene drive engineered Ae. aegypti released over the entire simulation 

period for each combination of release parameters. A total of 24 out of 36 patches were chosen 

to receive simulated releases based on migration rates between patches. If a patch had less 

than 4% probability of migration it was chosen as a release patch. 

Release 

ratio 

Duration of releases 

(weeks) 

# of patches receiving 

releases 

Total GD released during 

simulation period 

1:1 13 24 1,042,080 

1:1 26 24 2,084,160 

1:1 39 24 3,126,240 

3:1 13 24 3,126,552 

3:1 26 24 6,253,104 

3:1 39 24 9,379,656 

5:1 13 24 5,211,024 

5:1 26 24 10,422,048 

5:1 39 24 15,633,072 

3.5 Model analysis 

To understand the full range of outcomes associated with the use of population suppression 

drives I modeled 3 separate management strategies with Bayesian networks: 1) no gene drive 

releases to model the maximum mosquito population estimate and current risk estimates of the 
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landscape, 2) the absolute outcome of the gene drive release (Figure 7) at the end of the 

simulation period, & 3) the time point associated with the largest decrease in population size 

resulting from the various gene drive release simulations that could be used in conjunction with 

other adaptive management strategies (Figure 8). Modeling the maximum mosquito population 

estimate without releases provides a scenario in which I can compare with the remaining two 

release scenarios. The maximum time scenario provided the likelihood of resistance to the drive 

developing, and the likelihood of population rebounds as a result of only the releases of the 

gene drive. The third Bayesian network was built to simulate how non-eradication resulting from 

the gene drive releases could still be used as part of an integrative pest management strategy 

within an adaptive management scheme. 

3.6 Maximum mosquito population simulations 

The maximum mosquito population estimate release scenario was set using the landscape 

characteristics of Ponce to determine the wild type population size, as well as the rates of 

migration between patches. Fifty stochastic simulations were run, each simulating 6.75 years, to 

evaluate the range of possible wild type Ae. aegypti populations within the study area under 

non-intervention scenarios. This modeling effort represents the base mosquito population levels 

that would occur using realistic landscape characteristics. The population densities of 

mosquitoes per region, coupled with the human population densities described the current 

likelihood of disease transmission (Focks et al. 2000; Barrera et al. 2017). 

3.7 Gene drive deployment simulations 

The second Bayesian network created shows the effectiveness of the release of the gene drive 

after 6.75 years (Figure 7). This illustrates how the various release parameters interact to 

impact mosquito populations within the study area. This modeling effort shows the outcomes of 

the gene drive release, including: the overall efficacy of the gene drive in terms of extinction
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Figure 7 Bayesian network showing the results of one of the 36 MGDrivE release scenarios within RR1 at the end of the simulation 
period. Release ratio is set to 1:1, the rate of accurate HDR is set to 0.999 to simulate the Hammond et al. (2016) gene drive, 
duration of releases is set to 13 weeks. The dashed line shows the release parameters and risk region selected. The double-solid 
line shows the outcomes of the gene drive release and the percentage of surviving mosquitoes that are resistant to the gene drive. 
The solid line shows the risk estimates to the transmission rates of dengue and Zika. Herd immunity and temperature are selected 
within this example to represent dengue transmission thresholds at 0% herd immunity within the human population, at 26°C. 
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Figure 8. Bayesian network showing the results of one of the 36 MGDrivE release scenarios within RR1 at the time point associated 
with the average lowest possible Ae. aegypti population. Release ratio is set to 1:1, rate of accurate HDR is set to 0.999 to simulate 
the Hammond et al. (2016) gene drive, and the duration of releases is set to 13 weeks. The dashed line shows the release 
parameters and risk region selected. The double-solid line shows the outcomes of the gene drive release and the percentage of 
surviving mosquitoes that are resistant to the gene drive. The solid line shows the risk estimates to the transmission rates of dengue 
and Zika. The circular outline shows the inclusion of pesticide application as an additional management strategy. Herd immunity and 
temperature are selected within this example to represent dengue transmission thresholds at 0% herd immunity within the human 
population, at 26°C. 
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occurrence, the likelihood of wild population rebounds, the likelihood of gene drive resistance 

developing within the mosquito population resulting in either mixed (wild and resistant) or 

resistant population rebounds, and any impacts on disease transmission due to lowered 

abundance of the vector population. This means that the impact to mosquito population 

abundance can be modeled 

3.8 Gene drive deployment with alternate management strategies 

To show the applicability of the use of gene drives within an adaptive management framework, 

the third Bayesian network integrates a second management intervention taken at the average 

timepoint where the average mosquito populations were lowest within the landscape due to the 

release of the gene drive (Figure 8). To find the time to minimum population for each of the 36 

different release scenarios, the model output from MGDrivE was aggregated per release 

scenario to estimate the timepoint that the average number of mosquitoes within the entire 

study area was at its lowest per release scenarios. Using this subset of the simulation results I 

was able to show the maximum effectiveness, in terms of overall population reduction, of each 

gene drive release and used this to develop the best-case scenario that could be used to guide 

the implementation of alternative mosquito control measures (e.g. pesticides). This approach 

was used because model results showed that extinction is not likely, resistance is highly likely, 

and population rebounds were suggested to occur with high probability for many of the MGDrivE 

release scenarios. Resistance is almost assured to develop as a result of the non-homologous 

end-joining repair mechanism and because of this the likelihood of eradication decreases with 

increased resistance generation rates. If I only examined the results at the end of the simulation 

period, I would only have developed binary results (either the gene drive caused extinction or 

did not) and these results would have had little to no relevance to the human health endpoints 

(either the disease was eradicated along with the mosquitoes or not). 
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3.9 Case learning simulation output 

Case learning was used to construct the conditional probability tables for the nodes within the 

Bayesian networks that describe the propagation of the gene drive throughout the mosquito 

population. The MGDrivE model output was restructured in R to show the numbers of wild and 

resistant mosquitoes per region for each of the different release scenarios. This data was then 

used as case learning data set that Netica™ (Norsys 2014) used to determine the likely 

outcomes of each different combination of release parameters. The case learning dataset 

incorporated each of the fifty Monte Carlo simulations for each of the 36 simulated release 

combinations and were used to model the three management strategies: 1) no intervention, 2) 

the release of gene drive engineered Ae. aegypti only, and 3) release of gene drive Ae. aegypti 

and a secondary management intervention. The MGDrivE model output and case learning 

approach were used to build the conditional probability tables for the nodes in the Bayesian 

network that are associated with wild type populations, the resulting populations after the gene 

drive release, and the rates of resistance developing as a result of the gene drive release. 

With case learning, the software uses the observed output and automatically determines the 

relationships between the different input variables to give the probability of different outcomes 

for each combination of input states (Norsys 2014). With large sets of simulation output, like I 

developed with MGDrivE, Netica™ can use case learning to perform probabilistic inference on 

the model output, where each entry describes one outcome.  etica™ used the observed 

MGDrivE output to determine the relationships between the input variables (Norsys 2014). This 

process automatically calculates the values for the conditional probability tables that describe 

the probability distributions for the nodes relating to the release of the gene drive and the 

impacts to the mosquito population after the releases. 
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3.10 Sensitivity Analysis 

Model sensitivity (mutual information or entropy reduction) describes the amount of influence 

that changes in one node can assert on the other nodes within the Bayesian network (Norsys 

2014). This means that the probability distributions of inputs nodes can have more or less 

influence on the probability distributions of the endpoint nodes. The built-in model sensitivity 

analysis within Netica™ provides a framework to understand how the various input nodes affect 

the endpoint nodes. The entropy reduction for each endpoint node can vary depending on the 

location of each node in the Bayesian network being analyzed (Norsys 2014). The nodes I 

examined for entropy reduction were the input nodes describing the release parameters of the 

gene drive, the endpoint nodes for resistance development, dengue and Zika transmission, the 

intermediate node for resulting population after the release of the gene drive, and temperature 

as it is strongly related to the dengue transmission thresholds developed by Focks et al. (2000). 

4. RESULTS 

4.1 Maximum simulation time 

To examine what the end result of the release of gene drive engineered Ae. aegypti within the 

study area would be, I analyzed the results after our 6.75-year simulations (Table 5). The 

simulation outcomes gave results for each release scheme. Out of all of the simulations only 1 

resistance generation rate resulted in zero extinctions. The simulations modeling the release of 

gene drive mosquitoes modeled after the Hammond et al. (2016) construct with a resistance 

generation rate of 0.001 never resulted in extinction for any combination of release scenarios. 

All other release scenarios showed some level of extinction occurring, but this varied with the 

combinations of the resistance rates, number of weekly releases, and the wild to engineered 

release ratios. Generally, as rates of resistance decreased or ratio and duration increased, the 

likelihood of extinction increased, but not always in a monotonic relationship (Table 5). Of all the 

simulations examined for the maximum simulation time that did not result in extinction, the 
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surviving mosquito population was composed of individuals resistant to the gene drive due to 

resistance developing through non-homologous end-joining (Unckless et al 2017). General 

trends show that increasing the resistance rate, number of releases, or the release ratio resulted 

in a higher likelihood of extinction occurrence (Table 5). 

For a modeled resistance rate of 0.00001, extinction occurred 4 out 50 times at a release ratio 

of 1:1 and 26 weekly releases and 3 out of 50 for 39 weekly releases. Thirteen weekly releases 

resulted in extinction in only one of 50 simulations at a 3:1 release ratio. Both of the 26 week 

and 39-week release scenarios of a 0.0001 resistance rate and 3:1 ratio resulted in 15 

extinction events out of 50. Increasing the release ratio to 5:1 was most successful at 39 weekly 

releases and caused extinction in 50% of simulations (Table 5). 

When the resistance rate was decreased to 0.00005 the scenarios with 26 weekly releases and 

a 1:1 or 3:1 release ratio were more successful than the 13 or 39 weekly releases. Scenarios 

modeled with a resistance rate of 0.00005 and a 5:1 release ratio caused extinction in 20 

simulations. The highest degree of successfully causing extinction at a resistance rate of 

0.00005 occurred with 26 weekly releases at a 3:1 release ratio (50%) (Table 5). 

Further reducing the resistance generation rate to 0.00001 resulted in the highest likelihood of 

extinction occurring overall. Increasing each release parameter increased the likelihood of 

extinction with the highest occurrence of 47/50 simulations with a 5:1 release ratio and 39 

weekly releases. The shortest duration of 13 weekly releases and the lowest release ratio of 1:1 

resulted in extinction occurring in 29 out of 50 simulations (Table 5). 

4.2 Time to minimum population size 

The results of aggregating the data for the time point coinciding with the lowest overall 

population levels show that all release scenarios drastically reduced the population of 

mosquitoes. Resistance was strongly selected for in the population and the simulations had  
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Table 5. Results of MGDrivE maximum simulation time release scenarios. In general, a 
decrease in resistance generation or an increase in release ratio or duration of releases 
increased the probability of extinction occurring as a result of the gene drive. 

Release ratio Rate of accurate HDR Duration of Release 

1:1 (3,340) 0.001 13 weeks 
3:1 (10,021) 0.0001 26 weeks 
5:1 (16,702) 0.00005 39 weeks 
 0.00001  
Resistance Ratio Duration  Resistance Ratio Duration  Resistance Ratio Duration 

0.0001 1:1 13 weeks  0.0001 1:1 26 weeks 
 

0.0001 1:1 39 weeks 

Extinct 0   Extinct 4  
 

Extinct 3 
 

Rebound 50   Rebound 46  
 

Rebound 47 
 

        
   

0.0001 3:1 13 weeks 
 

0.0001 3:1 26 weeks 
 

0.0001 3:1 39 weeks 

Extinct 1 
  

Extinct 15 
  

Extinct 15 
 

Rebound 49 
  

Rebound 35 
  

Rebound 35 
 

           

0.0001 5:1 13 weeks 
 

0.0001 5:1 26 weeks 
 

0.0001 5:1 39 weeks 

Extinct 4 
  

Extinct 10 
  

Extinct 25 
 

Rebound 46 
  

Rebound 40 
  

Rebound 25 
 

           

0.00005 1:1 13 weeks 
 

0.00005 1:1 26 weeks 
 

0.00005 1:1 39 weeks 

Extinct 6 
  

Extinct 15 
  

Extinct 13 
 

Rebound 44 
  

Rebound 35 
  

Rebound 37 
 

           

0.00005 3:1 13 weeks 
 

0.00005 3:1 26 weeks 
 

0.00005 3:1 39 weeks 

Extinct 13 
  

Extinct 25 
  

Extinct 22 
 

Rebound 37 
  

Rebound 25 
  

Rebound 28 
 

           

0.00005 5:1 13 weeks 
 

0.00005 5:1 26 weeks 
 

0.00005 5:1 39 weeks 

Extinct 20 
  

Extinct 20 
  

Extinct 20 
 

Rebound 30 
  

Rebound 30 
  

Rebound 30 
 

           

0.00001 1:1 13 weeks 
 

0.00001 1:1 26 weeks 
 

0.00001 1:1 39 weeks 

Extinct 29 
  

Extinct 34 
  

Extinct 42 
 

Rebound 21 
  

Rebound 16 
  

Rebound 8 
 

           

0.00001 3:1 13 weeks 
 

0.00001 3:1 26 weeks 
 

0.00001 3:1 39 weeks 

Extinct 31 
  

Extinct 39 
  

Extinct 44 
 

Rebound 19 
  

Rebound 11 
  

Rebound 6 
 

           

0.00001 5:1 13 weeks 
 

0.00001 5:1 26 weeks 
 

0.00001 5:1 39 weeks 

Extinct 35 
  

Extinct 43 
  

Extinct 47 
 

Rebound 15 
  

Rebound 7 
  

Rebound 3 
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varying degrees of resistance development. General trends in the data show that increasing the 

release ratio from 1:1, 3:1, and 5:1 for each combination of resistance development rate and 

number of weekly releases gave an increased reduction in overall mosquito population numbers 

(Table 6). 

The target reduction in Ae. aegypti populations for the Bayesian network modeling only the 

release of the gene drive was 100%. Complete eradication because of the gene drive 

deployment would be necessary to avoid a population rebound of the disease vector with newly 

developed resistance to the gene drive deployed. The target reductions for the Bayesian 

network modeling the use of the gene drive and pesticide application as an additional 

management strategy is based on the percent reduction required for zero Zika transmission. 

The target reduction was 94% for RR1, 93% for RR2, and 92% for RR3. The percent reductions 

would eliminate the spread of any novel disease, like Zika virus, as well as be prohibitive of 

dengue transmission. 

The lowest percent reduction resulting from the parameters resembling the Hammond et al. 

(2016) construct for all levels of scenarios was 76.75% (release ratio = 1:1, weekly releases = 

13). The largest percent reduction of 97.76% followed 26 weekly releases at a 5:1 release ratio. 

Increasing the release ratio increased the percent reduction in population numbers for scenarios 

that included 13 and 26 weekly releases. The opposite was true for scenarios simulating 39 

weekly releases; 97% reduction at 1:1 to 91.26% reduction at 5:1. Of the surviving mosquitoes, 

the % remaining that were resistant to the gene drive varied but was most consistent when 

grouped by weekly releases. Percent resistant at 13 weekly releases were 35.97% at 1:1, 

33.06% at 3:1, and 32.95% at 5:1. The percent resistant at the 26 weekly release level were 

37.76% at 1:1, 33.80% at 3:1, and 36.97 at 5:1. The percent of the total surviving mosquito 

population at the 39 weekly release level were 38.18% at 1:1, 44.04% at 3:1, and 45.12% at 5:1 

weekly releases (Table 6). 
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When decreasing the resistance generation rate of simulations to 0.0001, the lowest percent 

reduction in populations of 88.97% occurred with 13 weekly releases and a 1:1 release ratio. 

This release scenario of 13 weekly releases at a 1:1 ratio also resulted in the highest 

percentage of surviving mosquitoes being resistant to the gene drive; 44.57% of remaining Ae. 

aegypti were resistant. No extinction events resulted from this release scheme. The largest 

reduction in simulated populations of 99.43% of the maximum mosquito population estimate 

resulted from 26 weekly releases at a 5:1 release ratio. The release scenario that resulted in the 

lowest percent of remaining mosquitoes being resistant to the gene drive (23.38% resistant) 

occurred with 13 weekly releases of a 5:1 release ratio (Table 6). 

When further decreasing the resistance generation rate to 0.0005, the scenario that resulted in 

the lowest percent reduction of mosquito populations (90.75%) and highest percent of surviving 

mosquitoes being resistant to the gene drive occurred with 13 weekly releases at a 1:1 release 

ratio. The largest reduction in mosquito populations occurred with 26 weekly releases at a 5:1 

release ratio. The lowest percentage of surviving mosquitoes being resistant to the drive was 

29.04% and resulted from 26 weekly releases at a 1:1 release ratio (Table 6). 

The lowest resistance generation rate simulated was 0.00001. Thirteen weekly releases and a 

1:1 release ratio at this level of resistance generation resulted in a 95.51% reduction in Ae. 

aegypti populations. The largest reduction in population levels of 99.74% occurred with 26 

weekly releases at a 5:1 release ratio. This was the largest percent reduction for any simulation 

across all release parameters. Not surprisingly, this release scenario with the lowest resistance 

generation rate also resulted in the least percentage of surviving mosquitoes being resistant to 

the gene drive; 12.64% of surviving mosquitoes were resistant following 13 weekly releases of a 

5:1 release ratio. The largest release ratio and longest duration of releases at this resistance 

generation rate resulted in 58.33% of surviving mosquitoes to be resistant to the gene drive but 

also had the highest probability of extinction at 94% of simulations (Table 6). 
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Table 6. Results of MGDrivE minimum simulation time release scenarios. 

Resistance 
rate 

Release ratio Weekly 
releases 

% Reduction % Resistant 

0.001 1:1 13 76.75 35.97 
0.001 3:1 13 89.94 33.06 
0.001 5:1 13 94.10 32.95 
0.001 1:1 26 88.20 37.76 
0.001 3:1 26 96.89 33.80 
0.001 5:1 26 97.76 36.97 
0.001 1:1 39 93.77 38.18 
0.001 3:1 39 93.51 44.04 
0.001 5:1 39 91.26 45.12 
0.0001 1:1 13 88.97 44.57 
0.0001 3:1 13 96.19 35.26 
0.0001 5:1 13 97.51 23.38 
0.0001 1:1 26 94.79 31.94 
0.0001 3:1 26 99.04 43.35 
0.0001 5:1 26 99.43 36.04 
0.0001 1:1 39 97.90 40.70 
0.0001 3:1 39 98.65 42.70 
0.0001 5:1 39 98.30 43.06 
0.00005 1:1 13 90.75 48.99 
0.00005 3:1 13 96.24 41.04 
0.00005 5:1 13 97.97 29.44 
0.00005 1:1 26 96.03 29.04 
0.00005 3:1 26 98.82 32.38 
0.00005 5:1 26 99.42 43.50 
0.00005 1:1 39 98.04 31.41 
0.00005 3:1 39 98.89 46.04 
0.00005 5:1 39 98.29 48.63 
0.00001 1:1 13 95.51 55.12 
0.00001 3:1 13 97.66 25.63 
0.00001 5:1 13 98.10 12.64 
0.00001 1:1 26 97.83 17.68 
0.00001 3:1 26 99.57 17.05 
0.00001 5:1 26 99.74 43.20 
0.00001 1:1 39 99.56 52.20 
0.00001 3:1 39 99.71 53.93 
0.00001 5:1 39 99.63 58.33 

 



41 
 

4.3 Change in risk to human health endpoints 

4.3.1 Maximum simulation time 

The Bayesian network assembled for gene drive deployment in Ponce calculated risk of dengue 

and Zika transmission based on spatial inputs and MGDrivE simulation outcomes. Risk 

estimates described here reflect the pupal development rates and dengue transmission 

thresholds described in Focks et al. (2000) for herd immunity levels of 0 and for temperatures of 

26°C (average temperature of Ponce is 26.2°C). The risk of dengue transmission at maximum 

mosquito population estimate prior to simulated deployment of gene drive mosquitoes for the 

entire study area was estimated to be a 60.6% probability of below transmission threshold, a 

7.69% probability at transmission threshold, and a 31.7% probability of being above the 

transmission threshold for the entire study region (Table 7). Overall risk of Zika transmission at 

maximum mosquito population estimate for all risk regions was estimated at 78.6% probability 

of being high risk (Table 8).  

Risk estimates for dengue transmission (Appendix 1) at maximum mosquito population estimate 

for RR1 and RR2 had the highest probability of being below transmission threshold based on 

pupae/person calculations (RR1 = 79.1%, RR2 = 59.5% probability of being below transmission 

threshold). RR3 was the only risk region that was at risk of dengue transmission at maximum 

mosquito population estimate; 43.3% probability of being below threshold, 7.69% probability of 

being at the threshold, and 49.1% probability of being above the dengue transmission threshold. 

When examining the outcomes of the release of gene drive Ae. aegypti to reduce dengue 

transmission without any other interventions, the risk distributions were identical for some 

scenarios. Resistance rates of 0.001 had a distribution similar to that of the maximum mosquito 

population estimate simulations (probability of being below transmission threshold: RR1 = 

79.1%, RR2 = 58.1%, RR3 = 40.0%). There was no change in probability distributions until the 

release scenario modeling a resistance generation rate of 0.0001, release ratio of 5:1, and 13  
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Table 7. Dengue transmission risk estimates for maximum simulation time scenarios. CC 

signifies maximum mosquito population estimate. At transmission threshold signifies that 

dengue transmission is possible based on pupae densities. Above transmission threshold 

signifies that dengue transmission is likely based on pupae densities. 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

CC CC CC 60.63 7.69 31.70 

0.999 3340 13 59.07 7.69 33.23 

0.999 10021 13 59.07 7.69 33.23 

0.999 16702 13 59.07 7.69 33.23 

0.999 3340 26 59.07 7.69 33.23 

0.999 10021 26 59.07 7.69 33.23 

0.999 16702 26 59.07 7.69 33.23 

0.999 3340 39 59.07 7.69 33.23 

0.999 10021 39 59.07 7.69 33.23 

0.999 16702 39 59.07 7.69 33.23 

0.9999 3340 13 59.07 7.69 33.23 

0.9999 10021 13 59.37 7.69 32.93 

0.9999 16702 13 60.37 7.69 31.97 

0.9999 3340 26 60.37 7.69 31.97 

0.9999 10021 26 63.90 7.69 28.40 

0.9999 16702 26 62.30 7.69 30.00 

0.9999 3340 39 60.03 7.69 32.27 

0.9999 10021 39 63.90 7.69 28.40 

0.9999 16702 39 67.13 7.69 25.17 

0.99995 3340 13 61.00 7.69 31.30 

0.99995 10021 13 63.27 7.69 29.03 

0.99995 16702 13 65.53 7.69 26.80 

0.99995 3340 26 63.90 7.69 28.40 

0.99995 10021 26 67.13 7.69 25.17 

0.99995 16702 26 65.53 7.69 26.80 

0.99995 3340 39 63.27 7.69 29.03 

0.99995 10021 39 66.17 7.69 26.13 

0.99995 16702 39 65.53 7.69 26.80 

0.99999 3340 13 68.43 7.69 23.87 

0.99999 10021 13 69.07 7.69 23.23 

0.99999 16702 13 70.37 7.69 21.93 

0.99999 3340 26 70.03 7.69 22.27 

0.99999 10021 26 71.67 7.69 20.63 

0.99999 16702 26 72.93 7.69 19.37 

0.99999 3340 39 72.63 7.69 19.67 

0.99999 10021 39 73.27 7.69 19.03 

0.99999 16702 39 74.23 7.69 18.07 
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Table 8. Zika transmission risk estimates for maximum simulation time MGDrivE release 

scenarios. CC signifies maximum mosquito population estimate simulations with no simulated 

gene drive releases. 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

CC CC CC 7.14 7.14 7.14 78.60 

0.999 3340 13 12.40 11.96 17.00 58.67 

0.999 10021 13 12.40 11.96 17.00 58.67 

0.999 16702 13 12.40 11.96 17.00 58.67 

0.999 3340 26 12.40 11.96 17.00 58.67 

0.999 10021 26 12.40 11.96 17.00 58.67 

0.999 16702 26 12.40 11.96 17.00 58.67 

0.999 3340 39 12.40 11.96 17.00 58.67 

0.999 10021 39 12.40 11.96 17.00 58.67 

0.999 16702 39 12.40 11.96 17.00 58.67 

0.9999 3340 13 12.40 11.96 17.00 58.67 

0.9999 10021 13 13.57 11.90 16.84 57.70 

0.9999 16702 13 17.17 11.76 16.34 54.73 

0.9999 3340 26 17.17 11.76 16.34 54.73 

0.9999 10021 26 30.30 11.30 14.47 43.93 

0.9999 16702 26 24.33 11.53 15.30 48.83 

0.9999 3340 39 15.97 11.83 16.50 55.70 

0.9999 10021 39 30.30 11.30 14.47 43.93 

0.9999 16702 39 42.27 10.90 12.77 34.10 

0.99995 3340 13 19.53 11.70 15.97 52.77 

0.99995 10021 13 27.93 11.40 14.80 45.90 

0.99995 16702 13 36.30 11.10 13.60 39.03 

0.99995 3340 26 30.30 11.30 14.47 43.93 

0.99995 10021 26 42.27 10.90 12.77 34.10 

0.99995 16702 26 36.30 11.10 13.60 39.03 

0.99995 3340 39 27.93 11.40 14.80 45.90 

0.99995 10021 39 38.63 11.03 13.27 37.03 

0.99995 16702 39 36.30 11.10 13.60 39.03 

0.99999 3340 13 47.03 10.73 12.07 30.17 

0.99999 10021 13 49.43 10.63 11.74 28.20 

0.99999 16702 13 54.20 10.46 11.07 24.23 

0.99999 3340 26 53.00 10.50 11.24 25.27 

0.99999 10021 26 59.00 10.30 10.40 20.33 

0.99999 16702 26 63.73 10.13 9.70 16.37 

0.99999 3340 39 62.57 10.16 9.87 17.40 

0.99999 10021 39 64.97 10.10 9.54 15.40 

0.99999 16702 39 68.53 9.96 9.03 12.47 
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weekly releases. All simulations with a 1:1 release ratio had similar probability distributions to 

the maximum mosquito population estimate levels. 

RR1 showed no change in probability distribution for all scenarios at the maximum simulation 

time; probability of being below dengue transmission threshold was constant at 79.1%. RR2 

varied from 58.1% at the lowest (0.001 resistance generation, 1:1 release ratio, 13 weekly 

releases) to 74.1% at its highest likelihood of being below transmission threshold (0.00001 

resistance generation rate, 5:1 release ratio, 39 weekly releases). RR3 varied in probability of 

being below dengue transmission threshold from 40.0% (0.001 resistance generation, 1:1 

release ratio, 13 weekly releases) to 69.5% (0.00001 resistance generation rate, 5:1 release 

ratio, 39 weekly releases).  

The risk calculations for Zika transmission in each region for the maximum simulation time 

(Appendix 2)  were constant for all simulations with release parameters of 0.001 resistance 

generation and for a resistance generation rate of 0.0001, release ratio of 1:1, and 13 weekly 

releases (High risk per region: RR1 = 39.6%, RR2 = 62.9%, RR3 = 73.5%). The remaining 

release parameters increased the likelihood of zero transmission as the resistance generation 

rate decreased or either the release ratio or duration of releases increased. The RR1 Zika 

transmission release ratio varied from 11.5% (0.001 resistance rate, 1:1 release ratio, & 13 

weekly releases) to 71.2% (0.00001 resistance generation rate, 5:1 release ratio, & 39 weekly 

releases). The zero transmission Zika risk calculations for RR2 varied from 15.6% (0.001 

resistance generation, 1:1 release ratio, 13 weekly releases) to 64.4% probability (0.00001 

resistance generation rate, 5:1 release ratio, & 39 weekly releases). The likelihood of zero 

transmission in RR3 increased from 10.1% to 70.0% (0.00001 resistance generation rate, 5:1 

release ratio, & 39 weekly releases) (Appendix 2). 
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4.3.2 Minimum simulation time 

All of the simulations examined for the timepoint when mosquito populations were at their lowest 

gave constant dengue transmission risk distributions for each region (Table 9, Appendix 3). All 

risk estimates used the transmission rates based off of 0% herd immunity and 26°C (Focks et 

al. 2000). The risk estimate for RR1 being below the dengue transmission threshold was 81.9%. 

Risk in RR2 was 80.0%. The RR3 risk estimate for being below the dengue transmission 

threshold was 76.4%. 

Analyzing risk of Zika transmission with the MGDrivE simulation output for the time period with 

the lowest average mosquito populations (Appendix 4) showed an increase in the probability of 

zero transmission as the resistance generation rate was decreased (Table 10). Resistance 

generation rates of 0.001, a release ratio of 1:1, and 13 weekly releases (the least invasive 

release scenario) resulted in zero Zika transmission risk of 25.6%, low risk of 20.6%, medium 

risk of 19.0%, and high risk of 34.8% in RR1.  Zika transmission risk estimates for RR2 showed 

zero transmission probability of 23.4%, low risk of 16.8%, medium risk of 42.3%, and 17.5% 

probability for high risk. Estimates for Zika transmission in RR3 ranged from 18.7% probability of 

zero transmission, 28.8% low transmission, 33.3% medium transmission, and 19.3% probability 

of high Zika transmission. Increasing the release ratio to 3:1 and weekly releases to 26 

increased the highest likelihood of zero transmission for this resistance generation level: zero 

Zika transmission probability of 59.8% for RR1 (low = 20.6%, med. = 8.7%, high = 10.8%), zero 

Zika transmission probability of 38.0% for RR2 (low = 33.8%, med. = 14.0%, high = 14.3%), and 

zero Zika transmission of 26.4% for RR3 (low = 44.7%, med. = 11.3%, high = 17.7%). 

The resistance generation rate of 0.0001 resulted in risk estimates for zero Zika transmission of 

38.7% for RR1 (low = 34.5%, med. = 10.9%, high = 15.8%), 25.7% for RR2 (low = 42.5%, med. 

= 17.5, high = 14.4%), and 20.8% for RR3 (low = 33.5%, med. = 28.0%, high = 17.7%) with the 

least invasive release scenario. Increasing the release ratio to 5:1 and weekly releases to 26  
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Table 9. Dengue transmission risk estimate for time point to minimum population size MGDrivE 

release scenarios for entire study area. CC signifies maximum mosquito population estimate 

simulations with no simulated gene drive releases. 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

CC CC CC 60.63 7.69 31.70 

0.999 3340 13 79.43 7.69 12.90 

0.999 10021 13 79.50 7.69 12.80 

0.999 16702 13 79.50 7.69 12.80 

0.999 3340 26 79.50 7.69 12.80 

0.999 10021 26 79.50 7.69 12.80 

0.999 16702 26 79.50 7.69 12.80 

0.999 3340 39 79.50 7.69 12.80 

0.999 10021 39 79.50 7.69 12.80 

0.999 16702 39 79.50 7.69 12.80 

0.9999 3340 13 79.50 7.69 12.80 

0.9999 10021 13 79.50 7.69 12.80 

0.9999 16702 13 79.50 7.69 12.80 

0.9999 3340 26 79.50 7.69 12.80 

0.9999 10021 26 79.50 7.69 12.80 

0.9999 16702 26 79.50 7.69 12.80 

0.9999 3340 39 79.50 7.69 12.80 

0.9999 10021 39 79.50 7.69 12.80 

0.9999 16702 39 79.50 7.69 12.80 

0.99995 3340 13 79.50 7.69 12.80 

0.99995 10021 13 79.50 7.69 12.80 

0.99995 16702 13 79.50 7.69 12.80 

0.99995 3340 26 79.50 7.69 12.80 

0.99995 10021 26 79.50 7.69 12.80 

0.99995 16702 26 79.50 7.69 12.80 

0.99995 3340 39 79.50 7.69 12.80 

0.99995 10021 39 79.50 7.69 12.80 

0.99995 16702 39 79.50 7.69 12.80 

0.99999 3340 13 79.47 7.69 12.83 

0.99999 10021 13 79.50 7.69 12.80 

0.99999 16702 13 79.50 7.69 12.80 

0.99999 3340 26 79.47 7.69 12.83 

0.99999 10021 26 79.50 7.69 12.80 

0.99999 16702 26 79.50 7.69 12.80 

0.99999 3340 39 79.50 7.69 12.80 

0.99999 10021 39 79.50 7.69 12.80 

0.99999 16702 39 79.50 7.69 12.80 
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Table 10. Zika transmission risk estimates for time point to minimum population size MGDrivE 

release scenarios. CC signifies maximum mosquito population estimate simulations with no 

simulated gene drive releases. High transmission for release scenarios was stable at 14.27%, 

signifying that this was at the lowest possible estimation for all scenarios modeled. 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

CC CC CC 7.14 7.14 7.14 78.60 

0.999 3340 13 22.57 22.07 31.53 23.87 

0.999 10021 13 27.17 40.07 18.29 14.53 

0.999 16702 13 35.50 36.67 13.39 14.50 

0.999 3340 26 26.33 38.70 19.53 15.50 

0.999 10021 26 41.40 33.03 11.34 14.27 

0.999 16702 26 42.97 31.87 10.88 14.27 

0.999 3340 39 33.47 38.73 13.51 14.27 

0.999 10021 39 34.43 38.53 12.74 14.27 

0.999 16702 39 28.97 39.40 16.90 14.70 

0.9999 3340 13 28.40 36.83 18.80 15.97 

0.9999 10021 13 38.60 33.70 13.22 14.47 

0.9999 16702 13 40.80 32.23 12.04 14.27 

0.9999 3340 26 37.20 35.43 12.86 14.50 

0.9999 10021 26 46.07 28.73 10.94 14.27 

0.9999 16702 26 48.70 26.17 10.91 14.27 

0.9999 3340 39 41.93 32.73 11.04 14.27 

0.9999 10021 39 43.33 31.50 10.91 14.27 

0.9999 16702 39 42.10 32.30 11.34 14.27 

0.99995 3340 13 32.03 34.73 17.77 15.53 

0.99995 10021 13 40.87 32.30 12.36 14.50 

0.99995 16702 13 46.73 28.07 10.98 14.27 

0.99995 3340 26 40.10 32.47 12.77 14.67 

0.99995 10021 26 46.70 28.00 11.04 14.27 

0.99995 16702 26 50.07 24.80 10.88 14.27 

0.99995 3340 39 43.30 31.40 11.04 14.27 

0.99995 10021 39 43.90 30.93 10.88 14.27 

0.99995 16702 39 42.40 32.33 10.98 14.27 

0.99999 3340 13 40.80 30.27 13.59 15.37 

0.99999 10021 13 44.27 29.00 12.26 14.50 

0.99999 16702 13 48.47 25.60 11.64 14.27 

0.99999 3340 26 43.90 30.13 11.68 14.27 

0.99999 10021 26 53.23 21.47 11.08 14.27 

0.99999 16702 26 56.07 18.77 10.91 14.27 

0.99999 3340 39 55.03 19.67 11.08 14.27 

0.99999 10021 39 58.57 16.33 10.88 14.27 

0.99999 16702 39 58.93 15.93 10.88 14.27 
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gave the highest likelihood of zero transmission of 65.4% for RR1 (low = 15.1%, med. = 8.7%, 

high = 10.8%), 42.5% for RR2 (low = 29.5%, med. = 13.7%, high = 14.3%), and 38.2% for RR3 

(low = 33.9%, med. = 10.3%, high = 17.7%) (Appendix 4). 

Zero Zika transmission risk estimates varied from 45.1% for RR1 (low = 30.6%, med. = 10.2%, 

high = 14.2%), 28.9% for RR2 (low = 37.5%, med. = 18.9%, high = 14.7%), and 22.1% for RR3 

(low = 36.1%, med. = 24.2%, high = 17.7%) for the simulations modeling the resistance 

generation rate of 0.00005, 1:1 release ratio, and 13 weekly releases. The highest probabilities 

of zero transmission for this resistance rate were increased to 65.0% for RR1 (low = 15.5%, 

med. = 8.7%, high = 10.8%), 45.1% for RR2 (low = 26.9%, med. = 13.6%, high = 14.3%), and 

40.1% for RR3 (low = 32.0%, med. = 10.3%, high = 17.7%) with a release ratio of 5:1 and 26 

weekly releases (Appendix 4). 

The final resistance generation rate of 0.00001 gave risk estimates for zero Zika transmission of 

58.2% for RR1 (low = 19.0%, med. = 9.7%, high = 13.1%), 36.7% for RR2 (low = 32.88%, med. 

= 16.0%, high = 14.5%), and 27.5% for RR3 (low = 39.0%, med. = 15.1%, high = 18.5%) when 

modeled with a 1:1 release ratio and 13 weekly releases. These risk estimates were increased 

to 64.6% for RR1 (low = 15.9%, med. = 8.7%, high = 10.8%), 54.9% for RR2 (low = 17.2%, 

med. = 13.6%, high = 14.3%), and 57.3% for RR3 (low = 14.7%, med. = 10.3%, high = 17.7%) 

when the release ratio was increased to 5:1 with 39 weekly releases (Appendix 4). 

4.4 Uncertainties and sensitivity analysis 

Model sensitivity analysis shows the amount of influence that changes in one node can assert 

on the other nodes within the Bayesian network (Pollino et al. 2007; Marcot et al. 2012; Norsys 

2014). Model sensitivity is calculated as reduction in entropy or mutual information. Entropy 

means the amount of information that is held within a variable. Shared entropy between to 

variables is the amount of mutual information that can be gathered by observing only one of the 



49 
 

variables, showing their mutual dependence on one another. Sensitivity analysis determines to 

what degree each input influences the endpoint. Larger values of mutual information show a 

greater influence on an endpoint. 

Results of the sensitivity analysis in Netica™ focusing on entropy reduction showed that for the 

scenarios examined for the maximum simulation time the rate of accurate homology-directed 

repair (HDR) and conversely the rate of resistance generation was the most influential for Zika 

transmission, proportion of surviving mosquitoes that are resistant to the drive, and resulting 

population after the release of the gene drive. Sensitivity analysis showed that temperature was 

most influential on dengue transmission, followed by accurate HDR, release ratio, and duration 

of releases. For each node analyzed the overall pattern of importance was the same. Frequency 

of releases followed rate of resistance generation. The release ratio was the least important of 

the input nodes analyzed for each of the maximum simulation endpoints.  

Sensitivity analysis for the maximum simulation time Zika transmission node showed that the 

rate of HDR had an entropy reduction of 5.77%. The frequency of releases node had an entropy 

reduction of 0.295%, and the release ratio node had an entropy reduction of 0.217%. The 

dengue transmission node showed entropy reductions of 1.39% for temperature, 0.657% for 

HDR, 0.033% for release frequency, and 0.0243% for release ratio. The node representing the 

proportion of surviving mosquitoes that were resistant showed that HDR had a 4.84% entropy 

reduction, the frequency of releases 0.803%, and release ratio 0.376% reduction. When 

examining the intermediate node of resulting population after gene drive release I saw an 

entropy reduction of 14.7% for HDR, 0.0109% for release frequency, and 0.008% for release 

ratio (Figure 9). 

When running the sensitivity analysis on the Bayesian network that showed the results at the 

time point associated with the lowest possible population reduction, there was no consistent 

pattern of which input variables provided the most entropy reduction. The time to minimum  
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Figure 9. Results of entropy reduction analysis for maximum simulation time Bayesian network. 

population Zika transmission node showed an entropy reduction of 0.282% for rate of accurate 

HDR, 0.0744% for release ratio, and 0.0675% for duration of releases. Sensitivity analysis of 

the dengue transmission node showed an entropy reduction of 5.35% for temperature, 

0.000707% for accurate HDR, 0.000173% for release ratio, and 0.000151% for duration of 

releases.  

The node representing the rate of resistance within the surviving mosquito populations showed 

an entropy reduction of 16.9% for HDR, 1.52% for release frequency, and 0.012% for release 

ratio. The intermediate node showing the distribution of the resulting population number after 

the release of the gene drive showed entropy reductions of 10.4% for HDR, 2.09% for release 

ratio, and 2.04% for release frequency (Figure 10). Rates of accurate HDR was the most 

influential input node in relation to the endpoints and intermediate node examined with 
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sensitivity analysis, except for dengue transmission, where temperature was most influential. 

Release ratio was more influential that the frequency of releases for dengue and Zika 

transmission, as well as the resulting population size after the gene drive release. Frequency of 

releases was more influential that release ratio when examining the mutual information between 

input nodes and the node estimating the probability of the proportion of the surviving mosquito 

population developing resistance to the drive. 

 

Figure 10. Results of entropy reduction analysis for the Bayesian network showing time point 

associated with the greatest average population reduction. 

5. Discussion  

5.1 The risk assessment approach meets NASEM 2016 recommendations 

The National Academies of Sciences, Engineering, and Medicine recommended the use of the 

BN-RRM for the risk assessment of gene drives within chapter six of their report, Gene Drives 
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on the Horizon (NASEM 2016). Several criteria were listed that future risk assessments must 

include to effectively model the risk associated with the development and deployment of gene 

drive technologies. These are: 1) acknowledging the fact that the field of synthetic biology is still 

in its infancy and uncertainties that lie behind every advancement need to be identified, 2) 

quantitatively and probabilistically describing the direct and indirect effects of the development 

and deployment of gene drive technologies, 3) discussing alternative management approaches 

in the risk assessment and quantifying the trade-offs between management scenarios, and 4) 

the model requires the input of all relevant stakeholders as well as management in order to 

effectively describe the cultural importance of endpoints within the specific study area.  

Criterion 1. Within the context of gene drive research, the amount of data regarding the 

propagation of gene drives within a target population is lacking. Lab releases have been few in 

number and relegated to a small subset of species. Research conducted to model the use of 

population suppression gene drives within my study are based off of work done on the malaria 

vector Anopheles gambiae (Hammond et al. 2016). There are most likely differences in how 

gene drives will propagate within different species of arbovirus vectors, as well as how fast the 

rates of resistance to the gene drive will occur. The Bayesian networks developed in this study 

incorporate uncertainties within the probability distributions of each node. Nodes that have 

lacking or insufficient data have been parameterized by even distributions to signify that there is 

insufficient data to determine calculations of risk. These even distributions signal that there are 

uncertainties that exist. If the findings of sensitivity analyses show that these areas are 

contributing to uncertainty these should be areas where future research is directed. Because the 

rate of accurate HDR and subsequently, the rates of resistance allele generation, proved to be 

very influential in the model results, extremely accurate estimations of potential drive systems 

would need to be calculated to inform future gene drive risk assessments. In terms of decision 

making, this means that management efforts need to prioritize research so that a complete 
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understanding of gene drive technologies can be developed. As suitable data are obtained, 

nodes can be further parameterized to better capture the full distributions of likely outcomes and 

other pathways can be included so that specific management goals can be addressed by the 

model. Any potential management actions taken before this is accomplished would be taken 

without regard for a true risk assessment, and any subsequent management actions would 

need to establish the fact that the knowledge available is likely to be incomplete. 

Criterion 2. The Bayesian networks I developed for the risk assessment of gene drive 

technologies highlight important research needs and areas of uncertainties that need to be 

addressed. To further inform the probability distributions of specific outcomes for each proposed 

release of engineered vector populations additional lab conducted releases of specific 

transgenic gene drive mosquitoes will be required. Field releases will greatly inform these 

uncertainties but should only be done once the impacts of field releases can be fully understood 

and their trade-offs quantified. Within the Bayesian networks I developed, additional pathways 

can be easily integrated that describe other endpoints and effects that stakeholders may deem 

necessary.  

These additional pathways may include the impacts to agricultural and ecological endpoints, as 

well as the likelihood of horizontal gene transfer of the drive or parts of the engineered genetic 

element into non-target species. Specific data that would inform these additional pathways 

describing unintended consequences depends on the potential endpoints being considered. 

Agricultural endpoints could be associated with the ecosystem services that the Ae. aegypti 

mosquito performs within Ponce. Studies examining their role as pollinators should extensively 

describe what specific functions the mosquito fulfils and in what circumstances. Ecological 

endpoints that could be impacted include food-web interactions. All species that eat the 

mosquito could be impacted by their eradication. The specific percentage of predator diet that 

the mosquito makes up should be defined. Any rates of recolonization by other mosquito 
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species would inform the impact on the food web. Although this was not accomplished in this 

study, my research has made it clear that a strong understanding of the role of the target 

species in the environment must be understood to grasp the full range of unintended outcomes. 

In the scenarios I modeled, incomplete eradication will most likely result in the replacement of 

the wild type population with one that has developed resistance to the gene drive. The existing 

management plan would then have to contend with a vector population that has already 

developed widespread resistance to contemporary pyrethroid pesticides (Agramonte et al. 

2017), as well as resistance to the particular gene drive deployed. 

Criterion 3. Discussing alternative management strategies and quantifying the ‘what-if’ 

scenarios (Pearl & Mackenzie 2018) make this approach ideal for use within an adaptive 

management framework (Landis et al. 2017). Any causal pathways that can be quantitatively 

described can be included into the Bayesian network. The Bayesian networks developed here 

can be further developed to include alternative management strategies by incorporating 

additional nodes that describe additional relevant causal pathways. Several pyrethroid 

insecticides were included for study within my Bayesian networks. The synergistic or 

antagonistic effects of other pesticides can be included given that there is sufficient toxicity data 

to develop dose-response curves to inform the conditional probability tables. Other pest 

management strategies can also be included, given that there are enough data about the 

management options, or through expert elicitation (Marcot et al. 2006). For example, an 

extensive effort to reduce standing water used as mosquito breeding habitat could be included 

within the nodes that model the maximum mosquito population estimate of each patch. If a 

dengue or Zika vaccine were to be developed and used, the infection rate within the human 

population could be modeled given the new probability of transmission rates. 

Criterion 4. The BN-RRM approach includes stakeholder input in an iterative manner that makes 

sure that one group does not dominate the input into the risk assessment. In this study direct 
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input from people within Puerto Rico and other stakeholder groups was not included. Attempts 

were made to reach out to the Puerto Rico Vector Control Unit and other arbovirus researchers 

in Puerto Rico. However, Puerto Rico is dealing with economic strife, disaster relief, and political 

uprisings (Bonilla 2020) that may have led to some having less time to respond to inquiries. The 

public and other stakeholders must be included when conducting a site-specific risk assessment 

for a tentative project looking at an actual release of gene drive engineered mosquitoes. By 

expanding the sphere of influence into the risk assessment process, those that will be directly 

impacted have access to determining the cultural values that will be included to determine the 

endpoints of the Bayesian network. This is especially helpful within the context of ecological risk 

assessment when defining what characteristics of the endpoints need to be measured and what 

terms like ‘recovered’ actually mean. 

5.2 Application to the field of synthetic biology 

The field of synthetic biology research is expanding and moving closer to field releases of 

transgenic organisms. To date there have been no quantitative risk assessments conducted for 

their use. By developing the Bayesian networks within this work, I have shown that the 

approach as recommended by the National Academies (NASEM 2016) can be fully integrated 

with highly site-specific spatial components to directly estimate the impacts of gene drive 

releases aimed at curtailing disease transmission. The BN-RRM can most likely be used to 

model synthetic biology release risk for any other purpose in any location, given sufficient data. 

The degree of specificity of future risk assessments will depend on the degree that data are 

available for the study area, the characteristics of the target species, and rates of propagation of 

the gene drive throughout the target population. However, even if the data sets are lacking, the 

Bayesian network approach highlights areas that require more information to be gathered and 

other areas that contribute to the uncertainties of gene drive deployment. In this sense, the 

Bayesian network approach can be a highly effective tool for management to help direct future 
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research into areas that will inform the overall risk assessment of the use of gene drive 

technologies.  

For any future risk assessment of gene drive and synthetic biology, specific information will be 

required to make any judgements about the intended and unintended outcomes due to their 

use. In the system that I modeled, incorporating population suppression gene drives as a 

management tool to reduce disease in Puerto Rico, the greatest data needs are related to the 

target species. Extensive trapping data would greatly inform the modeling by giving much more 

accurate estimates of existing Ae. aegypti populations. More information gained from lab 

releases of the drive in subsets of the vector population would greatly improve the knowledge of 

how the drive spreads through the target population, as well as estimates of the rates of 

resistance that will most likely develop as a result. The amount of time that the drive would 

remain effective could be established for gene drives that would result in a high likelihood of 

non-eradication. To even begin to model the unintended consequences of the release in Ponce, 

the life history parameters and rates of recolonization of closely related vector and non-vector 

species would need to be understood. Rates of hybridization between the Ae. aegypti and any 

other potential mates would have to be established to determine the probability of gene transfer 

between target and non-target species. A substantial survey of the role that the Ae. aegypti 

servers within the ecosystem and any ecosystem services that the mosquito supplies could 

influence any estimates regarding the risk associated with the complete eradication of the 

species and the impacts that would have on local food-webs.  

5.3 Gene drive risk assessment within adaptive management 

Adaptive management is an iterative process where resource managers update their strategies 

as concurrent strategies provide additional insights to their efficacy (Landis et al. 2017). 

Adaptive management uses knowledge gained through current monitoring programs to 

constantly update and improve available options for resource managers. The adaptive 
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management process can be thought of as a loop. The process is driven by public engagement 

and governance. Existing problems are defined that reflect the culturally significant endpoints of 

the study area, goals are explicitly stated, management actions are explored, and data that are 

relevant to determining risk to the endpoints through the monitoring programs are examined. At 

this point the impacts of current management practices are re-evaluated with updated 

information and the process starts over with the goal of constantly improving the outcomes 

(Landis et al. 2017). Adaptive management will be a substantial regulatory tool to constantly 

evaluate the interactions of a gene drive with the environment. Gene drives have not been 

leveraged as a management option before and any information that is gathered that 

quantitatively describes the outcomes can be used to make better judgements about 

subsequent management actions.  

The BN-RRM has been shown to appropriately integrate within the adaptive management 

framework (Landis et al. 2017). Any management option that includes the deployment of gene 

drives will require the input of stakeholders and local governance. Existing and alternative 

management strategies must be examined to determine if the use of gene drives is warranted, 

given the vast uncertainties involved with their use, including rates of horizontal gene transfer 

and the lack of a reversibility once the gene drive has been deployed. 

Gene drives and synthetic biology present a true ‘wicked pro lem’ (Rittel and  e  er     ). 

Almost all of the criteria listed by Rittel and Webber (1973) can be associated with use of a gene 

drive. In almost any sense, the dilemmas posed by the use of a gene drive are planning 

problems; a gene drive would only be used to solve some sort of greater issue, in my case 

study the issue would be the reduction in debilitating mosquito borne disease. Because of the 

uncertainties involved with gene drive use, the full breadth of consequential outcomes is almost 

inconceivable to define (Rittel and Webber 1973). The unknown consequences of the 

deployment of a gene drive are so great because the research is still in its infancy and because 
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the world in which a gene drive would be introduced is inherently an open system with no way to 

completely model every interaction that could possibly take place. The best we can do is model 

potential outcomes, but this is in itself another wicked problem. The range of stakeholders that 

are involved with potential uses of gene drives also lends itself to the issue. Each distinct group 

of people that can be affected by a gene drive will have differing socio-economic backgrounds 

with differing attitudes about the appropriateness of a solution that gene drives could potentially 

solve (Rittel and Webber 1973). Furthermore, the impacts of a gene drive may prove to be 

completely irreversible, and any potential solutions to reverse a drive will present yet another 

wicked problem. The starkest characteristic of gene drives as a wicked problem is that each and 

every potential use will present its own set of unique circumstances with no clear resolutions. 

The characteristics of a target species will differ between location, the aspects of a certain gene 

drive architecture will be different depending on the genetic makeup of the target species, and 

the social values of the stakeholders won’t  e consistent even within one proposed use and will 

vary over time. Because every proposed usage of a gene drive will be unique, the lessons from 

one circumstance may very well lend themselves to another proposed use but no two will be 

identical and commonalities should not be necessarily assumed (Rittel and Webber 1973). 

The synthetic biology risk assessment framework recommended by the National Academies 

(NASEM 2016) and explored within this study shows that risk can be calculated for various 

management options related to the release of gene drive engineered Ae. aegypti as vectors to 

control dengue and Zika virus. This framework can easily be adapted to alternate locations and 

the inclusion of alternative management strategies can be incorporated given that the data sets 

are sufficient. Although no two gene drive proposals will be identical, certain similarities between 

them can be characterized so that the potential outcomes can be estimated. The BN-RRM can 

be adapted to specific landscapes if the geospatial data are available at that site. The 

advancements and characteristics of gene drive architectures can be incorporated into the 
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modeling process so that the ability of the drive to spread within the target population can be 

reasonably understood and parameterized. 

In the scenario I explored, the BN-RRM can provide disease prevention specialists with a 

powerful tool to evaluate proposed and current management practices with regard to the 

potential release of gene drives. If an adaptive management process were undertaken, the BN-

RRM can be easily updated with any additional information as it becomes available. The risk 

estimates would reflect the most current information available and the trade-offs incurred by 

their use, or other management strategies, can be easily visualized. 

Within this study the integration of alternative management strategies was shown through the 

inclusion of a pesticide application pathway. This causal pathway illustrates how current 

management approaches can be used together with gene drive technologies to drive mosquito 

populations to levels below disease transmission thresholds. Additionally, this shows how 

incomplete eradication of the target species can still be a useful outcome to managers that have 

alternative and additional strategies in place to control the remaining mosquito populations. If 

avoiding resistance to the gene drive is an ideal endpoint, the Bayesian network can calculate 

what release scenarios could be used to avoid the likely development of resistance. If these 

scenarios resulted in non-eradication events, they could still be a beneficial outcome within an 

overarching adaptive management scheme that includes current mosquito control measures. 

Pesticide application schemes can then be modeled using site-specific information to determine 

the likelihood of further reducing populations based on dose-response modeling parameterized 

into the pesticide application pathway of the Bayesian network. 
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6. Conclusions and Next Steps 

6.1 Resistance generation 

Lab tested gene drives, such as those demonstrated by Hammond et al. (2016), lack a 

sufficiently low resistance generation rate for them to be effective as a stand-alone tool for 

complete eradication of mosquito species when modeled over large spatial scales. Landscape 

scale releases, as demonstrated by the results of this study, will only result in rebounds of 

resistant or wild-type mosquitoes. For complete eradication as a result of the gene drive, the 

resistance generation rate of the target population must be below some critical level as 

determined by the size of the starting population of mosquitoes (Champer et al. 2017; Marshall 

et al. 2017; Noble et al. 2017; Unckless et al. 2017). If all habitat patches within the release area 

are connected, there will be a high likelihood that resistance developing in one patch, due to the 

high selective pressure against the fitness reduction of the drive, will spread to the remaining 

patches.  As demonstrated by this study, successful population suppression will be dependent 

upon the number of gene drive engineered mosquitoes released, the duration of releases, and 

the characteristics of the landscape, the population dynamics of the target species, and more 

importantly, the resistance allele generation rate. 

Resistance generation due to non-homologous end-joining must be circumvented for gene drive 

technologies to be viable for population suppression. As gene drive and synthetic biology 

technology progresses, techniques such as multiplexing (Marshall et al. 2017) could sufficiently 

reduce the rate of resistance generation to the gene drive within the target species to rates that 

could lead to complete population suppression. Currently, the rates of resistance generation to 

demonstrated gene drives are insufficient. What my modeling has shown is that the gene drive 

releases of any scenario do reduce the target population up to a point. Depending on the 

parameters surrounding the releases of the gene drive engineered organisms there are varying 

degrees of success in terms of reducing overall population numbers.  



61 
 

Currently available gene drives may not be suitable for complete eradication of certain target 

populations of mosquitoes. However, they can be seen as a management option for effectively 

reducing populations to levels below thresholds required for disease transmission. Results of 

my modeling show that gene drives may be suitable as one tool within an adaptive management 

framework that can leverage other existing management options to potentially eradicate    a 

population of Ae. aegypti. However, the implications of complete eradication of the Ae. aegypti 

from one area are not well understood. Current research into the ecosystem services provided 

by the Ae. aegypti are not well documented. The complete impacts of elimination from a specific 

community can be described with direct monitoring after a release of the engineered 

mosquitoes. By incorporating alternative management strategies within the BN-RRM, the trade-

offs of various management strategies can be easily quantified. If the goal is to effectively 

reduce vector populations to some predetermined level and then aggressively leverage 

contemporary mosquito management strategies to further reduce the populations, the desired 

outcome may be achievable. The estimation of risk for the direct and indirect effects can be 

obtainable through the risk assessment framework recommended by the National Academies of 

Sciences, Engineering, and Medicine (NASEM 2016). To incorporate the pathways to describe 

the indirect effects associated with gene drive engineered Ae. aegypti and a method of disease 

control, much more data regarding the ecosystem services that the mosquito provides in Ponce 

needs to be gathered. To inform food-web interactions that could be impacted, the role of the 

mosquito in the diet of local predators needs to be quantified. Rates of hybridization with non-

target species and gene transfer are unknown for the non-vector mosquito species and would 

have to be determined to inform the risk of horizontal gene transfer. The agricultural impacts 

resulting from eradication of the mosquito in Ponce are currently unquantified and would need to 

be researched in order to develop risk estimates for this endpoint. Undoubtedly there will be 

unintended consequences and future risk assessments can incorporate these pathways into the 

modeling framework to highlight research needs that would inform management decisions. 
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The BN-RRM has shown its utility as part of an epidemiological risk assessment framework. 

Causal disease pathways, where a mechanistic understanding of how disease transmission 

occurs (Chen and Pollino 2007; Marcot 2017; Landis et al. 2020), were included to quantitatively 

describe the risk of transmission rates for diseases vectored by the Ae. aegypti mosquito within 

Ponce, Puerto Rico. Although the gene drive modeled after the construct created by Hammond 

et al. (2016) was unsuccessful in causing eradication in simulations, it was successful in 

causing drastic declines in simulated mosquito populations. Resource managers could use the 

BN-RRM to explore decisions based on the trade-offs between overall population reduction and 

the likelihood of resistance to the gene drive developing in the remaining population. Multiple 

synergistic management options can also be included to determine what the best possible 

outcome or set of outcomes would be depending on the scenarios depicted. 

This work builds off of the approach recommended by the National Academies of Science, 

Engineering, and Medicine (NASEM 2016), and goes a step further by incorporating site specific 

details into a case-study related to the use of gene drives as vectors to control disease. The 

Bayesian networks provide estimations of risk for the direct and indirect effects of gene drive 

deployment in a way that can be highly useful to the decision-making process. The work that I 

have done highlights some of the data requirements for future quantitative risk assessments of 

gene drive technologies. These data requirements inform the site-specific release scenarios that 

are able to be integrated into the BN-RRM approach. Furthermore, this approach illustrates the 

flexibility of the BN-RRM to any potential future release of gene drives by being able to 

incorporate site-specific and organismal specific characteristics into the model that can easily be 

adapted for different research programs. 

The trade-offs of alternative management actions are represented in a meaningful way that fits 

well within an adaptive management decision making framework (Landis et al. 2017). The BN-

RRM shows how specific decisions can be evaluated regarding gene drive deployment. The 
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framework also shows how information relating to gene drive technology can be assembled in a 

way that directly supports the decision-making process. The BN-RRM lets researchers and 

decision makers understand the trade-offs associated with management actions and improves 

the overall effectiveness and utility of the novel technology posed by gene drive and synthetic 

biology products. 

6.2 Next steps 

1) In order to further develop the estimation of risk associated with the use of gene drives, the 

full range of possible outcomes needs to be examined. In my study ecological and agricultural 

pathways have not been included due to lack of research into those areas. These could be 

included and left unparameterized with even distributions to signify knowledge gaps. The 

complete range of risk needs to be known to fully comprehend what the trade-offs associated 

with the use of gene drives are. The BN-RRM can be used as the risk assessment tool for 

synthetic biology moving forward that will clearly highlight areas of uncertainty. This study 

shows that the aspects of the spread of the gene drive through a population can be absorbed 

into the BN-RRM framework with additional stressors (pesticides) modeled. The landscape 

characteristics that will affect the spread of the gene drive will differ from location to location and 

as the system that is being modeled becomes larger. If geospatial data exists for locations of 

gene drive use, then these landscape conditions can be interpreted as inputs into the BN-RRM. 

The role of temperature on the vector density of Ae. aegypti and rates of Zika transmission is an 

area that needs to be addressed. Although Zika transmission thresholds were developed by 

Barrera et al. (2017), these were in relation to trapping data and rates of seroprevalence of 

disease and the influence of temperature was not accounted for. Sensitivity analysis showed 

that temperature is highly influential (Figures 9 and 10) in the dengue transmission pathway 

(Focks et al. 2000) and most likely has a similar role in Zika transmission (Barrera et al. 2017). 

Areas of uncertainty represent research gaps that are required to comprehend the full range of 
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risk. It is suggested that gene drive research be monitored using an adaptive management 

approach (NASEM 2016). The BN-RRM can be used to constantly update risk calculations 

based on any new data that becomes available. 

2) The role of Ae. aegypti within Puerto Rico would need to be better understood to fully 

understand the ecological impacts of their eradication. There are 36 known species of mosquito 

that inhabit parts of Puerto Rico (Fox 1953). The principal vector for dengue and Zika virus is 

the Ae. aegypti mosquito. The Aedes spp. do act as pollinators for some orchid species (Thein 

1969; Gorham 1976; Lahondère et al. 2020), but these plant species do not occur within Puerto 

Rico and are more commonly found in Northern latitudes. Eradication of the Ae. aegypti may 

pose little threat to pollination success of plant species within Puerto Rico, though there is a lack 

of research into this area, which must be addressed if field deployments of gene drive 

engineered mosquitoes were to be proposed as a management strategy. A full understanding of 

the ecosystem services that the Ae. aegypti performs is a necessary requirement for 

determining risk of gene drive use and the unintended consequences as they relate to the 

ecological interactions in the study area. Furthermore, within this study Ponce was treated as a 

closed system and emigration and dispersal of the gene drive was not considered to other 

bordering municipalities. To have a complete range of risk calculation the likelihood of the gene 

drive spreading beyond political borders within well connected habitat needs to be addressed. 

Dispersal beyond legal boundaries can be incorporated by expanding the spatial scope to the 

rest of Puerto Rico, given that sufficient spatial data exists to do that, if not than this highlights 

yet another area to be researched in terms of having a complete understanding of risk. 

3) Predation upon Ae. aegypti within Puerto Rico is not a significant controlling factor on 

regulating their populations (Barrera et al. 2006). Although there are several species that have 

been documented as taking Ae. aegypti as food items, none of these predators specialize on 

eating the Ae. aegypti mosquito solely (Arrivillaga & Barrera 2003). Introduction of biocontrol 
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agents into specific Ae. aegypti habitats can reduce populations, but because the mosquito can 

use highly cryptic containers as habitats, the predator species are not likely to be present in 

many areas (Krol et al. 2019). Understanding the role of Ae. aegypti as a food source would be 

required to parameterize nodes and pathways that describe ecological impacts of their 

eradication. Other mosquito species could expand their range and fill the role of food items for 

predators, but this another area where research must be conducted if field deployments were to 

be proposed. If the Ae. aegypti were to be fully eradicated from a location, the rates of 

recolonization of other mosquito species in the area would need to be quantified in order to 

better describe the agricultural and ecological impacts resulting from their extirpation, especially 

if a closely related species is also a disease vector. 

4) The BN-RRM can be adapted to include both ecological and human health endpoints. The 

National Academies of Sciences, Engineering, and Medicine’s recommended approach to the 

regulation and risk assessment of gene drives (NASEM 2016) is achievable using realistic 

landscape characteristics and parameters that describe how the gene drive spreads throughout 

and reduces the target population, impacting human health endpoints. As the research into 

gene drives progresses, new data can be incorporated into the risk assessment process in an 

iterative fashion that can be constantly updated to suit manager’s needs.  hrough this 

recommended approach (NASEM 2016), the effects resulting from the use of gene drives as 

methods to control disease can be quantified in a probabilistic manner. However, there are large 

data gaps regarding the role that the Ae. aegypti mosquito servers within the ecosystem and 

these areas need to be addressed in a probabilistic way before a complete risk assessment of 

gene drive engineered mosquitoes can be fully completed. 
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Appendix 1. Dengue transmission risk estimates for maximum simulation time. 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 CC CC CC 79.1 7.69 13.2 

2 CC CC CC 59.5 7.69 32.8 

3 CC CC CC 43.3 7.69 49.1 

1 0.999 3340 13 79.1 7.69 13.2 

2 0.999 3340 13 58.1 7.69 34.2 

3 0.999 3340 13 40 7.69 52.3 

1 0.999 10021 13 79.1 7.69 13.2 

2 0.999 10021 13 58.1 7.69 34.2 

3 0.999 10021 13 40 7.69 52.3 

1 0.999 16702 13 79.1 7.69 13.2 

2 0.999 16702 13 58.1 7.69 34.2 

3 0.999 16702 13 40 7.69 52.3 

1 0.999 3340 26 79.1 7.69 13.2 

2 0.999 3340 26 58.1 7.69 34.2 

3 0.999 3340 26 40 7.69 52.3 

1 0.999 10021 26 79.1 7.69 13.2 

2 0.999 10021 26 58.1 7.69 34.2 

3 0.999 10021 26 40 7.69 52.3 

1 0.999 16702 26 79.1 7.69 13.2 

2 0.999 16702 26 58.1 7.69 34.2 

3 0.999 16702 26 40 7.69 52.3 

1 0.999 3340 39 79.1 7.69 13.2 

2 0.999 3340 39 58.1 7.69 34.2 

3 0.999 3340 39 40 7.69 52.3 

1 0.999 10021 39 79.1 7.69 13.2 

2 0.999 10021 39 58.1 7.69 34.2 

3 0.999 10021 39 40 7.69 52.3 

1 0.999 16702 39 79.1 7.69 13.2 

2 0.999 16702 39 58.1 7.69 34.2 

3 0.999 16702 39 40 7.69 52.3 

1 0.9999 3340 13 79.1 7.69 13.2 

2 0.9999 3340 13 58.1 7.69 34.2 

3 0.9999 3340 13 40 7.69 52.3 

1 0.9999 10021 13 79.1 7.69 13.2 

2 0.9999 10021 13 58.4 7.69 33.9 

3 0.9999 10021 13 40.6 7.69 51.7 

1 0.9999 16702 13 79.1 7.69 13.2 

2 0.9999 16702 13 59.5 7.69 32.9 

3 0.9999 16702 13 42.5 7.69 49.8 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 0.9999 3340 26 79.1 7.69 13.2 

2 0.9999 3340 26 59.5 7.69 32.9 

3 0.9999 3340 26 42.5 7.69 49.8 

1 0.9999 10021 26 79.1 7.69 13.2 

2 0.9999 10021 26 63.2 7.69 29.1 

3 0.9999 10021 26 49.4 7.69 42.9 

1 0.9999 16702 26 79.1 7.69 13.2 

2 0.9999 16702 26 61.5 7.69 30.8 

3 0.9999 16702 26 46.3 7.69 46 

1 0.9999 3340 39 79.1 7.69 13.2 

2 0.9999 3340 39 59.1 7.69 33.2 

3 0.9999 3340 39 41.9 7.69 50.4 

1 0.9999 10021 39 79.1 7.69 13.2 

2 0.9999 10021 39 63.2 7.69 29.1 

3 0.9999 10021 39 49.4 7.69 42.9 

1 0.9999 16702 39 79.1 7.69 13.2 

2 0.9999 16702 39 66.6 7.69 25.7 

3 0.9999 16702 39 55.7 7.69 36.6 

1 0.99995 3340 13 79.1 7.69 13.2 

2 0.99995 3340 13 60.1 7.69 32.2 

3 0.99995 3340 13 43.8 7.69 48.5 

1 0.99995 10021 13 79.1 7.69 13.2 

2 0.99995 10021 13 62.5 7.69 29.8 

3 0.99995 10021 13 48.2 7.69 44.1 

1 0.99995 16702 13 79.1 7.69 13.2 

2 0.99995 16702 13 64.9 7.69 27.4 

3 0.99995 16702 13 52.6 7.69 39.8 

1 0.99995 3340 26 79.1 7.69 13.2 

2 0.99995 3340 26 63.2 7.69 29.1 

3 0.99995 3340 26 49.4 7.69 42.9 

1 0.99995 10021 26 79.1 7.69 13.2 

2 0.99995 10021 26 66.6 7.69 25.7 

3 0.99995 10021 26 55.7 7.69 36.6 

1 0.99995 16702 26 79.1 7.69 13.2 

2 0.99995 16702 26 64.9 7.69 27.4 

3 0.99995 16702 26 52.6 7.69 39.8 

1 0.99995 3340 39 79.1 7.69 13.2 

2 0.99995 3340 39 62.5 7.69 29.8 

3 0.99995 3340 39 48.2 7.69 44.1 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 0.99995 10021 39 79.1 7.69 13.2 

2 0.99995 10021 39 65.6 7.69 26.7 

3 0.99995 10021 39 53.8 7.69 38.5 

1 0.99995 16702 39 79.1 7.69 13.2 

2 0.99995 16702 39 64.9 7.69 27.4 

3 0.99995 16702 39 52.6 7.69 39.8 

1 0.99999 3340 13 79.1 7.69 13.2 

2 0.99999 3340 13 68 7.69 24.3 

3 0.99999 3340 13 58.2 7.69 34.1 

1 0.99999 10021 13 79.1 7.69 13.2 

2 0.99999 10021 13 68.6 7.69 23.7 

3 0.99999 10021 13 59.5 7.69 32.8 

1 0.99999 16702 13 79.1 7.69 13.2 

2 0.99999 16702 13 70 7.69 22.3 

3 0.99999 16702 13 62 7.69 30.3 

1 0.99999 3340 26 79.1 7.69 13.2 

2 0.99999 3340 26 69.7 7.69 22.6 

3 0.99999 3340 26 61.3 7.69 31 

1 0.99999 10021 26 79.1 7.69 13.2 

2 0.99999 10021 26 71.4 7.69 20.9 

3 0.99999 10021 26 64.5 7.69 27.8 

1 0.99999 16702 26 79.1 7.69 13.2 

2 0.99999 16702 26 72.7 7.69 19.6 

3 0.99999 16702 26 67 7.69 25.3 

1 0.99999 3340 39 79.1 7.69 13.2 

2 0.99999 3340 39 72.4 7.69 19.9 

3 0.99999 3340 39 66.4 7.69 25.9 

1 0.99999 10021 39 79.1 7.69 13.2 

2 0.99999 10021 39 73.1 7.69 19.2 

3 0.99999 10021 39 67.6 7.69 24.7 

1 0.99999 16702 39 79.1 7.69 13.2 

2 0.99999 16702 39 74.1 7.69 18.2 

3 0.99999 16702 39 69.5 7.69 22.8 
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Appendix 2. Zika transmission risk estimates for maximum simulation time. 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 CC CC CC 7.14 7.14 7.14 78.6 

2 CC CC CC 7.14 7.14 7.14 78.6 

3 CC CC CC 7.14 7.14 7.14 78.6 

1 0.999 3340 13 11.5 15.9 33.1 39.6 

2 0.999 3340 13 15.6 11.7 9.75 62.9 

3 0.999 3340 13 10.1 8.29 8.16 73.5 

1 0.999 10021 13 11.5 15.9 33.1 39.6 

2 0.999 10021 13 15.6 11.7 9.75 62.9 

3 0.999 10021 13 10.1 8.29 8.16 73.5 

1 0.999 16702 13 11.5 15.9 33.1 39.6 

2 0.999 16702 13 15.6 11.7 9.75 62.9 

3 0.999 16702 13 10.1 8.29 8.16 73.5 

1 0.999 3340 26 11.5 15.9 33.1 39.6 

2 0.999 3340 26 15.6 11.7 9.75 62.9 

3 0.999 3340 26 10.1 8.29 8.16 73.5 

1 0.999 10021 26 11.5 15.9 33.1 39.6 

2 0.999 10021 26 15.6 11.7 9.75 62.9 

3 0.999 10021 26 10.1 8.29 8.16 73.5 

1 0.999 16702 26 11.5 15.9 33.1 39.6 

2 0.999 16702 26 15.6 11.7 9.75 62.9 

3 0.999 16702 26 10.1 8.29 8.16 73.5 

1 0.999 3340 39 11.5 15.9 33.1 39.6 

2 0.999 3340 39 15.6 11.7 9.75 62.9 

3 0.999 3340 39 10.1 8.29 8.16 73.5 

1 0.999 10021 39 11.5 15.9 33.1 39.6 

2 0.999 10021 39 15.6 11.7 9.75 62.9 

3 0.999 10021 39 10.1 8.29 8.16 73.5 

1 0.999 16702 39 11.5 15.9 33.1 39.6 

2 0.999 16702 39 15.6 11.7 9.75 62.9 

3 0.999 16702 39 10.1 8.29 8.16 73.5 

1 0.9999 3340 13 11.5 15.9 33.1 39.6 

2 0.9999 3340 13 15.6 11.7 9.75 62.9 

3 0.9999 3340 13 10.1 8.29 8.16 73.5 

1 0.9999 10021 13 12.7 15.7 32.6 39 

2 0.9999 10021 13 16.6 11.7 9.75 61.9 

3 0.9999 10021 13 11.4 8.29 8.16 72.2 

1 0.9999 16702 13 16.5 15.3 31.1 37 

2 0.9999 16702 13 19.8 11.7 9.75 58.8 

3 0.9999 16702 13 15.2 8.29 8.16 68.4 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 0.9999 3340 26 16.5 15.3 31.1 37 

2 0.9999 3340 26 19.8 11.7 9.75 58.8 

3 0.9999 3340 26 15.2 8.29 8.16 68.4 

1 0.9999 10021 26 30.5 13.9 25.5 30.1 

2 0.9999 10021 26 31.2 11.7 9.75 47.4 

3 0.9999 10021 26 29.2 8.29 8.16 54.3 

1 0.9999 16702 26 24.2 14.6 28 33.2 

2 0.9999 16702 26 26 11.7 9.75 52.6 

3 0.9999 16702 26 22.8 8.29 8.16 60.7 

1 0.9999 3340 39 15.3 15.5 31.6 37.7 

2 0.9999 3340 39 18.7 11.7 9.75 59.8 

3 0.9999 3340 39 13.9 8.29 8.16 69.6 

1 0.9999 10021 39 30.5 13.9 25.5 30.1 

2 0.9999 10021 39 31.2 11.7 9.75 47.4 

3 0.9999 10021 39 29.2 8.29 8.16 54.3 

1 0.9999 16702 39 43.2 12.7 20.4 23.7 

2 0.9999 16702 39 41.6 11.7 9.75 37 

3 0.9999 16702 39 42 8.29 8.16 41.6 

1 0.99995 3340 13 19.1 15.1 30 35.8 

2 0.99995 3340 13 21.8 11.7 9.75 56.7 

3 0.99995 3340 13 17.7 8.29 8.16 65.8 

1 0.99995 10021 13 28 14.2 26.5 31.3 

2 0.99995 10021 13 29.1 11.7 9.75 49.5 

3 0.99995 10021 13 26.7 8.29 8.16 56.9 

1 0.99995 16702 13 36.9 13.3 22.9 26.9 

2 0.99995 16702 13 36.4 11.7 9.75 42.2 

3 0.99995 16702 13 35.6 8.29 8.16 48 

1 0.99995 3340 26 30.5 13.9 25.5 30.1 

2 0.99995 3340 26 31.2 11.7 9.75 47.4 

3 0.99995 3340 26 29.2 8.29 8.16 54.3 

1 0.99995 10021 26 43.2 12.7 20.4 23.7 

2 0.99995 10021 26 41.6 11.7 9.75 37 

3 0.99995 10021 26 42 8.29 8.16 41.6 

1 0.99995 16702 26 36.9 13.3 22.9 26.9 

2 0.99995 16702 26 36.4 11.7 9.75 42.2 

3 0.99995 16702 26 35.6 8.29 8.16 48 

1 0.99995 3340 39 28 14.2 26.5 31.3 

2 0.99995 3340 39 29.1 11.7 9.75 49.5 

3 0.99995 3340 39 26.7 8.29 8.16 56.9 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 0.99995 10021 39 39.4 13.1 21.9 25.6 

2 0.99995 10021 39 38.4 11.7 9.75 40.1 

3 0.99995 10021 39 38.1 8.29 8.16 45.4 

1 0.99995 16702 39 36.9 13.3 22.9 26.9 

2 0.99995 16702 39 36.4 11.7 9.75 42.2 

3 0.99995 16702 39 35.6 8.29 8.16 48 

1 0.99999 3340 13 48.3 12.2 18.3 21.2 

2 0.99999 3340 13 45.7 11.7 9.75 32.8 

3 0.99999 3340 13 47.1 8.29 8.16 36.5 

1 0.99999 10021 13 50.9 11.9 17.3 19.9 

2 0.99999 10021 13 47.8 11.7 9.75 30.8 

3 0.99999 10021 13 49.6 8.29 8.16 33.9 

1 0.99999 16702 13 56 11.4 15.3 17.3 

2 0.99999 16702 13 51.9 11.7 9.75 26.6 

3 0.99999 16702 13 54.7 8.29 8.16 28.8 

1 0.99999 3340 26 54.7 11.5 15.8 18 

2 0.99999 3340 26 50.9 11.7 9.75 27.7 

3 0.99999 3340 26 53.4 8.29 8.16 30.1 

1 0.99999 10021 26 61.1 10.9 13.3 14.8 

2 0.99999 10021 26 56.1 11.7 9.75 22.5 

3 0.99999 10021 26 59.8 8.29 8.16 23.7 

1 0.99999 16702 26 66.1 10.4 11.2 12.2 

2 0.99999 16702 26 60.2 11.7 9.75 18.3 

3 0.99999 16702 26 64.9 8.29 8.16 18.6 

1 0.99999 3340 39 64.9 10.5 11.7 12.9 

2 0.99999 3340 39 59.2 11.7 9.75 19.4 

3 0.99999 3340 39 63.6 8.29 8.16 19.9 

1 0.99999 10021 39 67.4 10.3 10.7 11.6 

2 0.99999 10021 39 61.3 11.7 9.75 17.3 

3 0.99999 10021 39 66.2 8.29 8.16 17.3 

1 0.99999 16702 39 71.2 9.88 9.19 9.7 

2 0.99999 16702 39 64.4 11.7 9.75 14.2 

3 0.99999 16702 39 70 8.29 8.16 13.5 
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Appendix 3. Dengue transmission risk estimates for minimum population timepoint. 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At 
transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 CC CC CC 79.1 7.69 13.2 

2 CC CC CC 59.5 7.69 32.8 

3 CC CC CC 43.3 7.69 49.1 

1 0.999 3340 13 81.9 7.69 10.5 

2 0.999 3340 13 80 7.69 12.3 

3 0.999 3340 13 76.4 7.69 15.9 

1 0.999 10021 13 81.9 7.69 10.4 

2 0.999 10021 13 80 7.69 12.3 

3 0.999 10021 13 76.6 7.69 15.7 

1 0.999 16702 13 81.9 7.69 10.4 

2 0.999 16702 13 80 7.69 12.3 

3 0.999 16702 13 76.6 7.69 15.7 

1 0.999 3340 26 81.9 7.69 10.4 

2 0.999 3340 26 80 7.69 12.3 

3 0.999 3340 26 76.6 7.69 15.7 

1 0.999 10021 26 81.9 7.69 10.4 

2 0.999 10021 26 80 7.69 12.3 

3 0.999 10021 26 76.6 7.69 15.7 

1 0.999 16702 26 81.9 7.69 10.4 

2 0.999 16702 26 80 7.69 12.3 

3 0.999 16702 26 76.6 7.69 15.7 

1 0.999 3340 39 81.9 7.69 10.4 

2 0.999 3340 39 80 7.69 12.3 

3 0.999 3340 39 76.6 7.69 15.7 

1 0.999 10021 39 81.9 7.69 10.4 

2 0.999 10021 39 80 7.69 12.3 

3 0.999 10021 39 76.6 7.69 15.7 

1 0.999 16702 39 81.9 7.69 10.4 

2 0.999 16702 39 80 7.69 12.3 

3 0.999 16702 39 76.6 7.69 15.7 

1 0.9999 3340 13 81.9 7.69 10.4 

2 0.9999 3340 13 80 7.69 12.3 

3 0.9999 3340 13 76.6 7.69 15.7 

1 0.9999 10021 13 81.9 7.69 10.4 

2 0.9999 10021 13 80 7.69 12.3 

3 0.9999 10021 13 76.6 7.69 15.7 

  



86 
 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At 
transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 0.9999 16702 13 81.9 7.69 10.4 

2 0.9999 16702 13 80 7.69 12.3 

3 0.9999 16702 13 76.6 7.69 15.7 

1 0.9999 3340 26 81.9 7.69 10.4 

2 0.9999 3340 26 80 7.69 12.3 

3 0.9999 3340 26 76.6 7.69 15.7 

1 0.9999 10021 26 81.9 7.69 10.4 

2 0.9999 10021 26 80 7.69 12.3 

3 0.9999 10021 26 76.6 7.69 15.7 

1 0.9999 16702 26 81.9 7.69 10.4 

2 0.9999 16702 26 80 7.69 12.3 

3 0.9999 16702 26 76.6 7.69 15.7 

1 0.9999 3340 39 81.9 7.69 10.4 

2 0.9999 3340 39 80 7.69 12.3 

3 0.9999 3340 39 76.6 7.69 15.7 

1 0.9999 10021 39 81.9 7.69 10.4 

2 0.9999 10021 39 80 7.69 12.3 

3 0.9999 10021 39 76.6 7.69 15.7 

1 0.9999 16702 39 81.9 7.69 10.4 

2 0.9999 16702 39 80 7.69 12.3 

3 0.9999 16702 39 76.6 7.69 15.7 

1 0.99995 3340 13 81.9 7.69 10.4 

2 0.99995 3340 13 80 7.69 12.3 

3 0.99995 3340 13 76.6 7.69 15.7 

1 0.99995 10021 13 81.9 7.69 10.4 

2 0.99995 10021 13 80 7.69 12.3 

3 0.99995 10021 13 76.6 7.69 15.7 

1 0.99995 16702 13 81.9 7.69 10.4 

2 0.99995 16702 13 80 7.69 12.3 

3 0.99995 16702 13 76.6 7.69 15.7 

1 0.99995 3340 26 81.9 7.69 10.4 

2 0.99995 3340 26 80 7.69 12.3 

3 0.99995 3340 26 76.6 7.69 15.7 

1 0.99995 10021 26 81.9 7.69 10.4 

2 0.99995 10021 26 80 7.69 12.3 

3 0.99995 10021 26 76.6 7.69 15.7 

1 0.99995 16702 26 81.9 7.69 10.4 

2 0.99995 16702 26 80 7.69 12.3 

3 0.99995 16702 26 76.6 7.69 15.7 

       

       



87 
 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Below 
transmission 
threshold (%) 

At 
transmission 
threshold (%) 

Above 
transmission 
threshold (%) 

1 0.99995 3340 39 81.9 7.69 10.4 

2 0.99995 3340 39 80 7.69 12.3 

3 0.99995 3340 39 76.6 7.69 15.7 

1 0.99995 10021 39 81.9 7.69 10.4 

2 0.99995 10021 39 80 7.69 12.3 

3 0.99995 10021 39 76.6 7.69 15.7 

1 0.99995 16702 39 81.9 7.69 10.4 

2 0.99995 16702 39 80 7.69 12.3 

3 0.99995 16702 39 76.6 7.69 15.7 

1 0.99999 3340 13 81.9 7.69 10.4 

2 0.99999 3340 13 80 7.69 12.3 

3 0.99999 3340 13 76.5 7.69 15.8 

1 0.99999 10021 13 81.9 7.69 10.4 

2 0.99999 10021 13 80 7.69 12.3 

3 0.99999 10021 13 76.6 7.69 15.7 

1 0.99999 16702 13 81.9 7.69 10.4 

2 0.99999 16702 13 80 7.69 12.3 

3 0.99999 16702 13 76.6 7.69 15.7 

1 0.99999 3340 26 81.9 7.69 10.4 

2 0.99999 3340 26 80 7.69 12.3 

3 0.99999 3340 26 76.5 7.69 15.8 

1 0.99999 10021 26 81.9 7.69 10.4 

2 0.99999 10021 26 80 7.69 12.3 

3 0.99999 10021 26 76.6 7.69 15.7 

1 0.99999 16702 26 81.9 7.69 10.4 

2 0.99999 16702 26 80 7.69 12.3 

3 0.99999 16702 26 76.6 7.69 15.7 

1 0.99999 3340 39 81.9 7.69 10.4 

2 0.99999 3340 39 80 7.69 12.3 

3 0.99999 3340 39 76.6 7.69 15.7 

1 0.99999 10021 39 81.9 7.69 10.4 

2 0.99999 10021 39 80 7.69 12.3 

3 0.99999 10021 39 76.6 7.69 15.7 

1 0.99999 16702 39 81.9 7.69 10.4 

2 0.99999 16702 39 80 7.69 12.3 

3 0.99999 16702 39 76.6 7.69 15.7 
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Appendix 4. Zika transmission risk estimates for minimum population timepoint. 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 CC CC CC 7.14 7.14 7.14 78.6 

2 CC CC CC 7.14 7.14 7.14 78.6 

3 CC CC CC 7.14 7.14 7.14 78.6 

1 0.999 3340 13 25.6 20.6 19 34.8 

2 0.999 3340 13 23.4 16.8 42.3 17.5 

3 0.999 3340 13 18.7 28.8 33.3 19.3 

1 0.999 10021 13 36.8 42.9 8.97 11.4 

2 0.999 10021 13 23.7 43.4 18.4 14.5 

3 0.999 10021 13 21 33.9 27.5 17.7 

1 0.999 16702 13 49.1 30.6 8.97 11.4 

2 0.999 16702 13 32.5 37.6 15.6 14.4 

3 0.999 16702 13 24.9 41.8 15.6 17.7 

1 0.999 3340 26 34.8 40.9 10.2 14.2 

2 0.999 3340 26 23.7 42.3 19.4 14.6 

3 0.999 3340 26 20.5 32.9 29 17.7 

1 0.999 10021 26 59.8 20.6 8.73 10.8 

2 0.999 10021 26 38 33.8 14 14.3 

3 0.999 10021 26 26.4 44.7 11.3 17.7 

1 0.999 16702 26 62.6 17.8 8.73 10.8 

2 0.999 16702 26 39.6 32.5 13.6 14.3 

3 0.999 16702 26 26.7 45.3 10.3 17.7 

1 0.999 3340 39 46.7 33.7 8.73 10.8 

2 0.999 3340 39 28.9 41 15.8 14.3 

3 0.999 3340 39 24.8 41.5 16 17.7 

1 0.999 10021 39 47.1 33.3 8.73 10.8 

2 0.999 10021 39 30.8 39.5 15.4 14.3 

3 0.999 10021 39 25.4 42.8 14.1 17.7 

1 0.999 16702 39 40.7 38.1 9.2 12 

2 0.999 16702 39 24 43.7 17.8 14.4 

3 0.999 16702 39 22.2 36.4 23.7 17.7 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 0.9999 3340 13 38.7 34.5 10.9 15.8 

2 0.9999 3340 13 25.7 42.5 17.5 14.4 

3 0.9999 3340 13 20.8 33.5 28 17.7 

1 0.9999 10021 13 56.6 23 8.97 11.4 

2 0.9999 10021 13 34.4 36.6 14.7 14.3 

3 0.9999 10021 13 24.8 41.5 16 17.7 

1 0.9999 16702 13 61 19.4 8.73 10.8 

2 0.9999 16702 13 37 34.5 14.2 14.3 

3 0.9999 16702 13 24.4 42.8 13.2 17.7 

1 0.9999 3340 26 53.4 26.2 8.97 11.4 

2 0.9999 3340 26 32.8 37.3 15.5 14.4 

3 0.9999 3340 26 25.4 42.8 14.1 17.7 

1 0.9999 10021 26 64.2 16.3 8.73 10.8 

2 0.9999 10021 26 41.6 30.3 13.8 14.3 

3 0.9999 10021 26 32.4 39.6 10.3 17.7 

1 0.9999 16702 26 65.4 15.1 8.73 10.8 

2 0.9999 16702 26 42.5 29.5 13.7 14.3 

3 0.9999 16702 26 38.2 33.9 10.3 17.7 

1 0.9999 3340 39 61.8 18.6 8.73 10.8 

2 0.9999 3340 39 37.3 34.3 14.1 14.3 

3 0.9999 3340 39 26.7 45.3 10.3 17.7 

1 0.9999 10021 39 63.4 17.1 8.73 10.8 

2 0.9999 10021 39 39.9 32.1 13.7 14.3 

3 0.9999 10021 39 26.7 45.3 10.3 17.7 

1 0.9999 16702 39 62.2 18.2 8.73 10.8 

2 0.9999 16702 39 37.7 34 14 14.3 

3 0.9999 16702 39 26.4 44.7 11.3 17.7 

1 0.99995 3340 13 45.1 30.6 10.2 14.2 

2 0.99995 3340 13 28.9 37.5 18.9 14.7 

3 0.99995 3340 13 22.1 36.1 24.2 17.7 

1 0.99995 10021 13 58.6 21 8.97 11.4 

2 0.99995 10021 13 36.4 34.4 14.9 14.4 

3 0.99995 10021 13 27.6 41.5 13.2 17.7 
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Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 0.99995 16702 13 61 19.4 8.73 10.8 

2 0.99995 16702 13 42.9 29 13.9 14.3 

3 0.99995 16702 13 36.3 35.8 10.3 17.7 

1 0.99995 3340 26 57.8 21 9.2 12 

2 0.99995 3340 26 36 35.2 14.5 14.3 

3 0.99995 3340 26 26.5 41.2 14.6 17.7 

1 0.99995 10021 26 63.4 17.1 8.73 10.8 

2 0.99995 10021 26 43.2 28.9 13.6 14.3 

3 0.99995 10021 26 33.5 38 10.8 17.7 

1 0.99995 16702 26 65 15.5 8.73 10.8 

2 0.99995 16702 26 45.1 26.9 13.6 14.3 

3 0.99995 16702 26 40.1 32 10.3 17.7 

1 0.99995 3340 39 61.4 19 8.73 10.8 

2 0.99995 3340 39 38.6 33 14.1 14.3 

3 0.99995 3340 39 29.9 42.2 10.3 17.7 

1 0.99995 10021 39 63.8 16.7 8.73 10.8 

2 0.99995 10021 39 41.2 30.8 13.6 14.3 

3 0.99995 10021 39 26.7 45.3 10.3 17.7 

1 0.99995 16702 39 62.2 18.2 8.73 10.8 

2 0.99995 16702 39 38.3 33.5 13.9 14.3 

3 0.99995 16702 39 26.7 45.3 10.3 17.7 

1 0.99999 3340 13 58.2 19 9.68 13.1 

2 0.99999 3340 13 36.7 32.8 16 14.5 

3 0.99999 3340 13 27.5 39 15.1 18.5 

1 0.99999 10021 13 61.4 18.2 8.97 11.4 

2 0.99999 10021 13 39.9 31.1 14.6 14.4 

3 0.99999 10021 13 31.5 37.7 13.2 17.7 

1 0.99999 16702 13 60.2 20.2 8.73 10.8 

2 0.99999 16702 13 43.2 28.5 14 14.3 

3 0.99999 16702 13 42 28.1 12.2 17.7 

1 0.99999 3340 26 60.6 19.8 8.73 10.8 

2 0.99999 3340 26 40.6 31 14.1 14.3 

3 0.99999 3340 26 30.5 39.6 12.2 17.7 

        

        



91 
 

Risk 
Region 

Rate of 
accurate 

HDR 

Release 
ratio 

Weekly 
releases 

Zero 
transmission 

(%) 

Low 
transmission 

(%) 

Medium 
transmission 

(%) 

High 
transmission 

(%) 

1 0.99999 10021 26 65 15.5 8.73 10.8 

2 0.99999 10021 26 49 23 13.7 14.3 

3 0.99999 10021 26 45.7 25.9 10.8 17.7 

1 0.99999 16702 26 65 15.5 8.73 10.8 

2 0.99999 16702 26 52.3 19.7 13.7 14.3 

3 0.99999 16702 26 50.9 21.1 10.3 17.7 

1 0.99999 3340 39 65 15.5 8.73 10.8 

2 0.99999 3340 39 50.6 21.4 13.7 14.3 

3 0.99999 3340 39 49.5 22.1 10.8 17.7 

1 0.99999 10021 39 65.4 15.1 8.73 10.8 

2 0.99999 10021 39 53.6 18.5 13.6 14.3 

3 0.99999 10021 39 56.7 15.4 10.3 17.7 

1 0.99999 16702 39 64.6 15.9 8.73 10.8 

2 0.99999 16702 39 54.9 17.2 13.6 14.3 

3 0.99999 16702 39 57.3 14.7 10.3 17.7 
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Appendix 5. Conceptual model and Bayesian network node derivation and quantification 

Variable (node) Discretization methodology & justification States 

SOURCE 

Region Risk regions delineated by average mosquito dispersal 
distance using GIS analysis. Average mosquito flight 
distance found to be 100m (Harrington et al. 2005; Cox 
et al. 2007). 

RR1 

RR2 

RR3 

Landclass Land class was determined through GIS analysis using 
National Land Cover Database shapefile. The land class 
of the subregions were defined by the dominant land 
cover for each patch. 

High-density housing (HDH) 

Low-density housing (LDH) 

Forest (F) 

Non-forest vegetation (NFV) 

Wetlands (W) 

Buildings Number of buildings was determined in GIS using a 
shapefile available from the Humanitarian 
OpenStreetMap Team. Shapefile showed polygons of all 
existing buildings within the study area. Polygons were 
converted to points. 

Low = 2379 buildings 

Medium = 4334 buildings 

High = 11069 buildings 

Release ratio Release ratios reflect the average wild type mosquito 
population per patch: (total mosquito population / # of 
patches). Ratios chosen in agreement with previous 
modeling studies (Robert et al. 2014; Pham et al. 2019; 
and Sánchez et al. 2020) 

1:1 (3340 individuals) 

3:1 (10021 individuals) 

5:1 (16702 individuals) 

Accurate HDR Accurate homology directed repair (HDR). Rate of 
accurate HDR reflect one level (0.999) shown in 
previous lab studies (Hammond et al. 2016), and 
increasing levels theorized to be capable through the 
use of multiplexing (Marshall et al. 2017). 
1 - (accurate HDR) = resistance generation rate. 

0.999 

0.9999 

0.99995 

0.99999 

Duration of Releases Frequency of releases in weeks, e.g. 13 = one release 
every week for 13 weeks. Weeks chosen in agreement 
with previous modeling studies (Robert et al. 2014; 
Pham et al. 2019; and Sánchez et al. 2020) 

13 weeks 

26 weeks 

39 weeks 

STRESSOR 

Wild population 8687 to 16413 (individuals) 



34 
 

Wild population (continued) Existing mosquito population estimates were obtained by 
combining the Ae. aegypti abundance estimates of the 
Barrera et al. (2019) study with our GIS analysis of the 
existing landscape characteristics of Ponce. A 50/50 sex 
ratio is assumed in the sex of offspring. Original 
population estimates are for female mosquitoes only, 
multiplying this by 2 gives an approximation of both male 
and female mosquitoes. States chosen represent ranges 
of mosquitoes per region based on Barrera et al. (2017) 
linear model equations. 
WildPop (landclass, Buildings) = HDH = 3.4*2*(# of 
Buildings), LDH = 9.8*2*(# of Buildings), F = 2.6*2*(# of 
Buildings), W = 2.1*2*(# of Buildings), NFV = 2.7*2*(# of 
Buildings). 

16413 to 20476 (individuals) 

20476 to 30216 (individuals) 

30216 to 66565 (individuals) 

66565 to 84166 (individuals) 

84166 to 217000 (individuals) 

Pesticide application Pesticides chosen for examination are from Agramonte 
et al. 2017. This study tested various levels of several 
pyrethroid insecticides on strains of Ae. aegypti found in 
Puerto Rico. Authors examined resistance levels, dose-
response relationships show pesticide efficacy. Analysis 
done in R. 

Permethrin 

Etofenprox 

Deltamethrin 

DDT 

Transfluthrin 

Mols pesticide (applied) Pesticides chosen for examination are from Agramonte 
et al. (2017) 
Levels of dose developed from natural Jenk's 
optimization for pesticide levels in Agramonte et al. 
(2017). 

1e-20 to 1.32e-11 (mols) 

1.32e-11 to 3.58e-11 (mols) 

3.58e-11 to 7.73e-11 (mols) 

7.73e-11 to 1.55e-10 (mols) 

1.55e-10 to 2.34e-10 (mols) 

2.34e-10 to 3.09e-10 (mols) 

HABITAT 

Human population Human population estimates derived from GIS analysis 
of 2010 U.S. Census data. 

14170 (persons) 

38629 (persons) 

113430 (persons) 

Herd immunity Levels of herd immunity derived from Focks et al. 
(2000). 

0% (seroprevalence) 

0.33% (seroprevalence) 

0.67% (seroprevalence) 

Temperature 22°C 
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Temperature (continued) 
 
 
  

Temperatures that are correlated to dengue thresholds 
and pupal production are derived from Focks et al. 
(2000). 

24°C 

26°C 

28°C 

30°C 

32°C 

Dengue threshold (pupae/1000 
people) 

Specific dengue transmission thresholds from Focks et 
al. (2000) table 6. Values are specific thresholds for 
each combination of herd immunity and temperature. 

70 (pupae/1000 people) 

100 (pupae/1000 people) 

130 (pupae/1000 people) 

190 (pupae/1000 people) 

260 (pupae/1000 people) 

380 (pupae/1000 people) 

530 (pupae/1000 people) 

750 (pupae/1000 people) 

1420 (pupae/1000 people) 

1690 (pupae/1000 people) 

2030 (pupae/1000 people) 

2920 (pupae/1000 people) 

4260 (pupae/1000 people) 

4470 (pupae/1000 people) 

9220 (pupae/1000 people) 

9570 (pupae/1000 people) 

14100 (pupae/1000 people) 

30550 (pupae/1000 people) 

EFFECTS 

Resulting population after gene drive 
release 

CPT filled out with case learning file from output of 
MGDrivE simulations. Data was either aggregated to 
show the population levels for the time period (day) in 
which the average number of mosquito per patch was at 
its lowest over the entire simulation, or the resulting 
population estimates and genotype at the end of the 
simulation period (6.75 years). 

0 (individuals) 

0 to 100 (individuals) 

100 to 2741 (individuals) 

2741 to 7626 (individuals) 

7626 to 13729 (individuals) 

13729 to 65701 (individuals) 

Proportion of gene drive resistant 0 to 0.05 
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Proportion of gene drive resistant 
(continued) 

Resistance to the drive occurs primarily through non-
homologous end joining (NHEJ; Unckless et al. 2017). 
Rates of resistance generation in MGDrivE are 
determined by 1 - (rate of accurate HDR). 

0.05 to 0.25 

0.25 to 0.75 

0.75 to 1 

Proportion survival Pesticides chosen for examination are from Agramonte 
et al. (2017). This study tested various levels of several 
pyrethroid insecticides on strains of Ae. aegypti found in 
Puerto Rico. Authors examined resistance levels, dose-
response relationships show pesticide efficacy. Analysis 
done in R. Full range of survival proportion in increments 
of 0.1 to estimate full range of effect. 
Survival (Pesticide, Mols) =  
Permethrin =  1/(1+exp(1.2428*(log(Mols)-log(4.2368e-
12)))),  
Etofenprox =  1/(1+exp(1.4305*(log(Mols)-log(1.7591e-
11)))), 
Deltamethrin =  1/(1+exp((6.4233e-01)*(log(Mols)-
log(1.0283e-13)))), 
DDT =  1/(1+exp((4.8912e-01)*(log(Mols)-log(6.0348e-
12)))), 
Transfluthrin =  1/(1+exp((5.7621e-01)*(log(Mols)-
log(3.0401e-12)))) 

0 to 0.1 

0.1 to 0.2 

0.2 to 0.3 

0.3 to 0.4 

0.4 to 0.5 

0.5 to 0.6 

0.6 to 0.7 

0.7 to 0.8 

0.8 to 0.9 

0.9 to 1 

Resulting population after pesticide 
application 

Outcomes of dose-response modeling for pesticides 
examined in Agramonte et al. (2017) applied to the 
population estimates resulting from the gene drive. 
States are 0 to 1 to represent extinction, 0 to 100 to 
represent near extinction, and then Jenk's natural breaks 
optimization.  

0 to 1 (individuals) 

1 to 100 (individuals) 

100 to 2741 (individuals) 

2741 to 7626 (individuals) 

7626 to 13729 (individuals) 

13729 to 64030.7 (individuals) 

Pupae 
 
 
 

Equations for pupal production from standing crop of 
female mosquitoes are derived from Focks et al. (2000). 
A 50/50 sex ratio was assumed, total population/2 gives 
approximation of female mosquitoes. 

0 to 1 (pupae) 

1 to 114 (pupae) 

114 to 3124 (pupae) 

3124 to 8693 (pupae) 
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Pupae (continued) Pupae (Temperature, TotalAfterPesticide) =  
22 =  ((TotalAfterPesticide)/2)*1.14, 
24 =  ((TotalAfterPesticide)/2)*0.94, 
26 =  ((TotalAfterPesticide)/2)*0.75, 
28 =  ((TotalAfterPesticide)/2)*0.57, 
30 =  ((TotalAfterPesticide)/2)*0.41, 
32 =  ((TotalAfterPesticide)/2)*0.26 

8693 to 33117.5 (pupae) 

Pupae per 1000 people Pupae per 1000 people estimates are derived from 
dividing the pupae estimates per the human population 
per risk region and multiplying by 1000.  

0 to 100 (pupae/1000 people) 

100 to 200 (pupae/1000 
people) 

200 to 300 (pupae/1000 
people) 

300 to 2318.82 (pupae/1000 
people) 

IMPACTS 

Zika transmission Transmission thresholds derived from Barrera et al. 
(2017). Zero = 0 to 0.2 females/trap/day, Low = 0.2 to 
0.8 females/trap/day, Medium = 0.8 to 1.5 
females/trap/day, High = 1.8 to >6.8 females/trap/day. 

Zero 

Low 

Medium 

High 

Dengue reduction Dengue transmission thresholds derived from Focks et 
al. (2000). Dengue transmission states represent the 
likelihood of being below the transmission threshold, at 
the transmission threshold, or above the transmission 
threshold in terms of pupae/1000 people. 

Below threshold 

At threshold 

Above threshold 
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