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ABSTRACT

Here we discuss the development of a time-independent excited state computational method

that consists of three augmentations to the semi-empirical electronic structure package,

DFTB+ 19.1. The density functional based tight binding method (DFTB) is an approx-

imation of Kohn-Sham (KS) density functional theory (DFT) wherein the energy functional

is expanded to second order with respect to density fluctuations. Application of a ∆ self-

consistent field (∆SCF) approach within DFTB has allowed for the variationally optimized

calculation of spin-purified excited state (ES) properties, and forms the foundation of our

time-independent DFTB (TI-DFTB) framework. Selection of KS spin orbitals based on the

character of the ES, and subsequent relaxation of these orbitals under non-Aufbau occupa-

tion constraints for both the singlet and triplet configuration is followed by application of the

Ziegler sum rule to determine the time-independent spin purified ES of the system, its energy,

and its optimized geometry. The maximum overlap method is an algorithmic restructuring

of the typical DFTB variational charge optimization pathway, allowing differential relaxation

pathways for difficult to converge molecules. Three variations of this approach have been

implemented in DFTB+ 19.1, and are compatible with the time-independent ES method.

The ground and excited electronic states resulting from a TI-DFTB calculation are made

mutually orthogonal by a corresponding orbital transformation, thereby allowing calculation

of transition properties like the transition dipole moment (TDM). Together these methods

form a robust computational platform to investigate ES and transition information about

chemical systems at low computational cost.
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Chapter One

INTRODUCTION

1.1 The Climate Crisis

Global temperatures have risen in the last hundred years due in part to the burning of fossil

fuels. The unearthing and burning of long hydrocarbon chains pollutes the atmosphere with

low energy gas particles termed greenhouse gases, so named because these particles trap

infrared radiation near the earth’s crust. When infrared radiation is not allowed to exit the

atmosphere, global temperatures rise.1,2 This has resulted in and continues to perpetuate ris-

ing sea levels, diminished polar ice caps, reduced air quality, and receding terrestrial ecosys-

tems.3–5 The rising temperature affects many large scale ecological systems that directly

affect human beings as well, including but not limited to crop failure, increased populations

of disease spreading insects, hurricanes, forest fires, drought, and flooding.6–8

The climate dilemma has ushered in an era of policy making that seeks to limit large scale

sources of atmospheric pollution, such as so called "carbon taxes." However, the perceived

economic burden of these policies by both the private sector and the general public has

led to a disbelief in this crisis.9,10 Misinformation regarding climate change is a powerful

weapon in the hands of politicians and corporate lobbyists, therefore a pervasive ignorance

regarding this crisis has become rampant. Climate change is the core motivation for this

work, therefore it is strongly suggested that the information and references provided above



are understood fully before proceeding.

Climate change has demanded technological progress in energy production that does not

rely on carbon based fuel sources. Wind turbines and hydroelectric dams harness the kinetic

energy of wind and water, and "bio-fuels" refine combustibles from agricultural staples like

corn to reduce the need for deep oil drilling. Solar alternatives are an attractive replacement

to fossil fuels as these materials and interfaces harness the radiative energy of the sun to

induce excited states within an atomistic framework, releasing this useful energy without the

harmful gases that are a byproduct of burning fuel.11

Photoactive materials are a significant area of investigation in the chemical sciences

where photothermal, photocatalytic and photovoltaic pathways are considered. Notable

advances have been made in organic photovoltaics, which when photoexcited by the sun

release energy in the form of an electric current.12–17 Sensitization of solar cells with organic

dyes have increased the efficiency of these systems, allowing for broader absorption ranges.18

Preservation of a fraction of the excitation energy from photoadsorption is exemplified by

solar thermal fuels which photoisomerize to a higher energy conformation allowing for energy

storage, and the subsequent relaxation of this excited state allows for the transformation of

solar energy to useful thermal, chemical, or electrical work.19–21 These are but a few examples

of the burgeoning world of photochemistry and its relationship to clean energy alternatives.

1.2 The Role of Computation

The aforementioned solar devices depend on photon driven electron excitation within some

photoactive chromophores. Absorption of a photon can promote an electron from a valence

orbital to a virtual orbital as shown in Figure 1.1, and a quantum of energy is released

upon relaxation back to the ground state. Depending on convention, the highest energy

electron(s) in the ground state (S0) valence orbitals occupy an energetic state called the

highest occupied molecular orbital (HOMO) in organic compounds or the valence band in

2



semiconductors. The first excited state (S1) often occupies a virtual orbital referred to as

the lowest unoccupied molecular orbital (LUMO) in organic compounds or conduction band

in semiconductors. The gap between these orbital energies is termed the HOMO-LUMO gap

for organics, and the band gap for semiconductors. Vocabulary will adjust depending on the

application, and the general ground state (GS) and excited state (ES) verbiage will be used

when discussing computational methods.

The difference in energy between the highest energy valence orbital and the lowest energy

virtual orbital determines the propensity of a molecular candidate to exhibit strong solar

properties. This property in conjunction with the quantum yield is of great interest to

experimentalists when designing materials for it is directly responsible for the efficiency of

the photoactive device.22,23 Furthermore, detailed understanding of the transition state of

these materials can elucidate the energetic barrier for relaxation on the ES potential energy

surface, and the energetic barrier for photoexcitation.24 These properties are therefore highly

important for solar applications and though are often simple enough to test experimentally
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Figure 1.1 Representative ground and excited-state potential energy surfaces of a
typical organic chromophore.
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after synthesis, it is computationally expensive to test theoretically.

Investigation into accessible computational methods capable of describing the excited-

state (ES) potential energy surface in prospective solar materials is therefore highly justified,

and an efficient and cost effective excited state electronic structure calculation method is in

high demand.25–27 Data driven materials vetting is made possible through a marrying of

electronic structure theory and high throughput (HT) screening as is exemplified by the

field of cheminformatics and its foundation in drug discovery.28 These processes typically

rely on classical methods (see section 2.2) or first principles based ground-state methods

(see section 3.1) which can be used to predict ES descriptors given a proper functional (see

subsection 3.1.1). However, these methods do not typically describe the ES potential energy

surface nor do they correctly predict nonadiabatic electronic transitions which are imperative

to predict excited state lifetimes, exciton diffusion, and electron mobility.

Computational methods for ES potential energy surface description currently exist, but

are rarely used for screening molecular candidates before synthesis due to both the time and

resource intensity of such calculations. Wavefunction based methods (see subsection 2.3.2)

are often used for high accuracy virtual space description due to the exhaustively multiref-

erence nature of the methods. These levels of theory would not be a reasonable choice in a

HT scenario due to their computational cost, or more specifically the high level of scaling.

Perturbation based methods offer well defined ES potential energy surface but are again

limited by computational cost in the light of HT photochemical screening. For example,

time-dependent density functional theory (TD-DFT) is among the most popular methods

for excited state calculations due to its relative efficiency,29 but this method scales as O(N3),

or in a cubic manner with respect to number of molecular orbitals (MO). Additionally, this

strategy breaks down near conical intersections therefore making its description of photo-

chemistry questionable.30–32 This is specifically limiting for photovoltaic applications,33 where

one would do better to use a higher level of theory and avoid this oversight, undermining

HT screening efforts.

4



As it currently stands, in order to describe a compound with the accuracy required

to derive multistate characteristics one incurs prohibitively long calculation times, not to

mention the surrounding barriers of software paywalls, overly technical user interfaces, and

overwhelming processing needs. There is therefore a division between experimentalists and

computational predictions that relate to their work, and the current solution rests in collabo-

ration between experimentalists and theorists who can incur heavier computational burdens.

The purpose of this manuscript is to outline an electronic structure alternative that bridges

the gap between experimentalists and photophysical descriptors that can expedite molecular

design in the field of photochemistry.

1.3 TI-DFTB

Density functional tight-binding (DFTB, see section 3.2) is an approximation of full den-

sity functional theory (DFT, see section 3.1) that allows for fast ground-state calculations

due to parameterization and a sparse matrix implementation.34,35 Into this method hosted

in DFTB+, and open source codebase,36 we have integrated time-independent excited state

capabilities modeled after ∆SCF.37 In this method the ES potential energy surface is approx-

imated and self-consistently optimized under non-Aufbau orbital occupation constraints.38

This allows for relaxation of the ES potential energy surface, and offers post calculation

transition dipole moment definition. This value is theoretically related to photophysical re-

laxation pathways and can be used to determine ES lifetimes. This novel ES method is useful

for structures in the hundreds of atoms, and can provide a platform for HT screening of or-

ganic chromophores. This method is desktop compatible due to low memory requirements,

fast due to parameterization of the theoretical approach, and accessible to experimentalists

due to its easy input structure and open sourced packaging.
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1.4 Outline

The method developed in this thesis and described in the following text has the ability to

fill a gap by providing fast approximate excited and transition state information, providing

accessible molecular screening to scientists on the forefront of this developing field.

Other methods available to the public to study molecular candidates are described in

detail in chapter 2. In this section the strengths and weaknesses of the main modern compu-

tational methods are discussed to paint a fairly comprehensive picture of the spectrum where

our method falls. Density functional theory, and the tight-binding approximation DFTB are

described in detail in chapter 3. In chapter 4, the theory and implementation of TI-DFTB

and several convergence options within the method are discussed. Within chapter 5 there is a

proof and description of the implementation of transition dipole moment calculations within

a TI-DFTB framework. A proof of concept of the final TI-DFTB framework, including ES

and state-transition information against higher levels of theory is described in chapter 6, and

in chapter 7 we discuss the implications of our findings.
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Chapter Two

AN OVERVIEW OF

COMPUTATIONAL CHEMISTRY

2.1 A Brief Orientation

The 20th century houses both the conception and boom of modern computational chemistry.

In the 20’s and 30’s quantum mechanical calculations were first applied to chemical systems, a

movement pioneered by people including Linus Pauling. The 40’s saw the development of the

first electronic computers, replacing forever the old mechanical models. The first quantum

mechanical calculations performed on computers were executed in the 50’s, followed by the

development of a hierarchy of quantum chemical methods in the 60’s and 70’s. Kohn and

Pople introduced the first electronic structure methods, propelling this fledgling enterprise

into the 21st century where the range of computational chemistry models have exploded into

the active corner of modern chemistry it is today.

Although to an unwitting consumer modern computers seem limitless in their perfor-

mance, a computational chemist understands the inevitability that certain trade-offs must

be expected and carefully considered. Computational chemistry is as any system: a delicate

dance of give and take where the more fully you wish to describe your model correlates to

an increased level of toil on the part of the scientist, or more accurately, the technological
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resources she has access to. As the size of a system one wishes to consider increases, so

does the computational expense in describing that system rigorously - therefore many of the

approaches to methods development in recent times have introduced approximations to a

full physical treatment that allow reasonably accurate predictions to be made about many-

electron systems. A purist - or perhaps a recent physical chemistry student - might balk at

this news, but fear not, the Shrödinger equation was in fact useful information to absorb

and tediously derive, however if this perfectly exact treatment of a physical system cannot

be extended to a helium atom how is one to use it to describe a kinase, or a solar device?

Understanding the spectrum of computational feasibility and level of physical description

one is left on a seesaw teetering between full quantum mechanical and classical descriptions

of particles deciding where the fulcrum of each system lies. This metaphorical playground

toy is delineated into categories: ab ibitio, semi-empirical, and classical. Ab initio meth-

ods include Hartree-Fock (HF), post Hartree-Fock, and density functional theory (DFT).

These electronic structure methods explicitly treat all or most electronic degrees of free-

dom and offer the highest amount of physical detail with the highest computational cost.

Semi-empirical methods like Hückel, extended Hückel, and density functional tight bind-

ing (DFTB) expedite the description of electronic systems using experimentally determined

constants termed parameters. This parameterization increases the speed of a calculation

while making assumptions about the system, introducing error but allowing the extension of

these methods to electron populations in the hundreds. Classical methods step away from

remodeling the Schrödinger equation altogether, instead employing force fields and contin-

uum models to accomplish calculations of thousands of electrons. These classical methods

are grouped into subcategories like molecular mechanics, molecular dynamics, course-grained

models and more. Truthfully they have very little to do with the crux of this work, however

they will be described with care for the benefit of the reader, and to describe where TI-DFTB

fits into the zoo of computational methods.
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2.1.1 In Practice

The first thing any computational chemist must understand is how to describe a system to

their computer and what they hope the computer will return, fundamental ideas termed

respectively the molecular geometry and the potential energy surface (PES).

Input: The Molecular Geometry

The molecular geometry is simply the identity and position of each atom in a system. An

example structure of this is a Cartesian coordinate xyz structure where each nucleus is

assigned a three coordinate location in space. Applying this to a model, water (H2O) has

9 Cartesian coordinates. For all non-linear molecules the number of degrees of freedom can

be calculated by the simple arithmetic 3N − 6 (and 3N − 5 for linear molecules) where N

is the number of atoms, therefore water possesses three intrinsic degrees of freedom - each

O− H bond-length and the H−O− H bond angle. Using information about the degrees of

freedom of a system allows you to create a second form of input called a Z-matrix where the

columns correspond to the bond-length, bond angle, and dihedral angle between atoms in a

chain. Although this input is not useful for cyclic or branched systems, it can be an intuitive

form of input for some systems.

(An) Output: (Part of) The Potential Energy Surface

The potential energy surface (PES) is a plot of the energy of a system as a function of

geometric degrees of freedom. Minima correspond to the most stable geometries, where the

global minimum is a good guess at the native configuration of a molecular system. A common

example of a PES is a Morse potential where energy is charted as a function of bond-length,

however the true PES is a function of every degree of freedom a molecule possesses. In

practice, PES’s are typically represented as graphs charting energy as a function of one to

three degrees of freedom or linear combinations of them. This requires the scientist to place
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constraints on her system, for example setting specific bond-lengths in parts of the system

and plotting how the energy changes in response to changing a single variable.

Understanding the nature of an arbitrary PES is important as it lends insight to the

goal of a computation. When one is attempting to understand a system she wants to know

about how the system behaves in nature, therefore the lowest energy configuration must be

established before further calculations can commence. This process is known as a geometry

optimization, and involves finding the global minimum of the PES function although this

is certainly easier said than done. There is no surefire way to reach a global minimum of

any function, however most computational methods do so in a step-wise gradient descent

approach starting from the initial guess provided in the input file and following the PES

downhill. The gradient of a two dimensional PES tracking two degrees of freedom q1 and q2

is calculated by taking the partial derivative of each degree of freedom with respect to each

other: ~∇E =
(

( δE
δq1

)q2 , (
δE
δq2

)q1

)
. Thresholds (or tolerances) can be set for δqn to tune step

size and the threshold for ~∇E ≈ 0 sets precision.

The PES is used to describe much of the physical nature of chemicals, and describing

and operating upon this surface is what computational chemistry is all about. Whether it

be describing difficult PES with model functions or traipsing from one minimum to another

along a saddle-point seeking a trajectory to describe transition states, this function is the

most fundamental idea behind this last hundred years of study. The following text will

describe different ways chemists and physicists have tried to describe the PES of systems,

and outline the methodology of constructing the PES of an arbitrary input geometry.

2.2 Classical Methods

What is the motivation behind trying to describe a chemical system classically? When

considering the electronic Hamiltonian Ĥ in the Schrödinger equation ĤΨ = EΨ for a
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diatomic hydrogen gas molecule;

Ĥ = − ~2

2me

2∑
i=1

∇i2 +
e2

4πε0

[ 1

R
−

2∑
i=1

( 1

|ri −RA|
+

1

|ri −RB|

)
+

1

|r2 − r1|

]
(2.1)

Ĥ depends on the kinetic energy of the electrons, the nuclear repulsion term, the electron-

nuclear attraction term and the electron repulsion. If extended to a box of hydrogen gas

the Hamiltonian quickly becomes incredibly complicated, and even more so if considering,

say, a lattice of carbon nanotubes. Thus is the crux of computational chemistry; to make

approximations and harness the power of modern computers to solve this problem with

tunable accuracy and describe electronic phenomena to a level of detail a researcher requires.

2.2.1 Force Fields and Molecular Mechanics

Molecular mechanics (MM) methods represent the energy of a system as a force field accord-

ing to the following equation.

EMM =
∑
bonds

Ebond(~q)+
∑
angles

Eangle(~q)+
∑

dihedrals

Edihedral(~q)+
∑

atom pairs

(
ECoulomb(~q)+Edispersion(~q)

)
(2.2)

Although this model has no consideration of electronic spin or chemical reaction, MM

can describe conformational changes and intermolecular interactions, making it a widely

used tool to describe proteins and extended materials systems.

The bond distortion energy depends on an empirical force constant unique to each atomic

pair in the system.

Ebond(RAB) =
1

2
kAB(RAB −R0)2 (2.3)

This model does not allow for bond breaking or forming, but can be tuned to reflect anhar-

monicity by replacing the Harmonic with a higher order polynomial or Morse potential.

The angle distortion energy can be extended to higher order, however there are some

notable drawbacks to this proposed equation.

Eangle(θABC) =
1

2
kABC(θABC − θ0)2 (2.4)
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A linear bond angle cannot be described, and only one local minimum is considered. Out of

plane bending is also not included in this, such as the inversion of ammonia.

The energy about the change in a dihedral angle, or the torsional energy, reflects an

overall period of 2π (or less) with a maximum at each barrier.

Etors(φABCD) =
Ubarrier

2
[1 + cos(nφ− φ0)] (2.5)

Changing n allows control of the periodicity, and φ0 controls the offset.

The Coulombic terms of the MM energy equation are calculated between partially charged

species that are not bonded nor in the same bonding network.

ECoulomb =
1

2

nonbonded∑
A,B

1

4πε0

qAqB
RAB

(2.6)

For example, two hydrogens on an ammonia molecule will have no Coulombic energy between

them nor with a neighboring hydrogen gas molecule, however they will have a nonzero

Coulombic energy term between them and another neighboring ammonia molecule.

The dispersion or van der Waals energy is restricted by setting a distance under which

it should be considered.

Edispersion =
restricted∑
A,B

4ε
[( σ

RAB

)12

−
( σ

RAB

)6]
(2.7)

This also does not consider atoms within the same bonding network. One can control the

amplitude of this energy function with the parameter ε and the shift with σ.

The force field described above is considerably parameterized. Values of R0, θ0, φ0, kAB,

kABC , Ubarrier, n, qi, ε and σ for all atoms or atom pairs are determined experimentally or

with higher level computations like ab initio methods.

Molecular mechanics might seem questionable in the number of approximations it uses,

however as stated before this is an invaluable tool for people studying large systems. With

MM one can perform energy decompositions, geometry optimizations, and molecular dy-

namics. To perform molecular dynamics one must take the gradient of EMM and derive the
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acceleration of the particles. From there an integration scheme is employed to solve Newton’s

second law and classical kinematic equations to predict the lowest energy trajectory of the

particles in the system.

2.3 Ab Initio Quantum Chemistry

As stated, MM does not explicitly treat electrons quantum mechanically, so how would one

go about describing a system in a more fine grained and electronically motivated manner?

Let us step through the electronic Hamiltonian for He to scaffold the following methods.

The Shrödinger equation for He is ĤΨ = EΨ, where:

Ψ = (~r1, ~r2)

Ĥ = − ~2

2me

∇2
1 −

Ze2

4πε0r1

− ~2

2me

∇2
2 −

Ze2

4πε0r2

+
e2

4πε0r12

(2.8)

The elements of the Hamiltonian operator are the kinetic energy of electron one, the Coulom-

bic attraction of electron one and the nucleus, analogous terms for electron two and finally

the electron repulsion between electrons one and two.39 If you ignore the fifth term of the

second equation, you can approximate the operator as a pair of He+ Hamiltonians, where the

wavefunction is the product of the wavefunctions of the individual electrons and the energy

is a sum of individual electron energies. The ground state (GS) wavefunction could therefore

be represented as:

φ(~r1, ~r2) = ψ0(~r1)ψ0(~r2) = Ne−2~r1/a0e−2~r2/a0 (2.9)

If a GS wavefunction ψ0 has energy E0, then the energy expectation value is Egs
0 ,∫

ψ∗0Ĥψ0dτ∫
ψ∗0ψ0dτ

= Egs
0 (2.10)

and the variational principle postulates that the energy expectation value of any trial wave-

function φ is greater than or equal to Etrial
0 .∫
φ∗Ĥφdτ∫
φ∗φdτ

≥ Etrial
0 (2.11)
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Therefore, every wavefunction is a superposition of ψ0 and higher energy eigenfunctions.

This notion of variationally minimizing an object with respect to some parameter relates

closely to how density functional tight-binding (DFTB) expresses a ground state density

through a Taylor expansion, so let’s examine this carefully. To use eqn. 2.11, one might

define φ as a trial wavefunction with variable parameters (eg. a sum of Gaussians), then

minimize the energy expectation value with respect to those parameters. The resulting

wavefunction and energy will be the closest possible representation of ψ0 and E0 achievable

within the scope of the functions explored (ie. the span of the basis).40 For an example, lets

consider electron shielding, Zeff as an adjustable parameter.

φ(~r1, ~r2, Zeff ) = Ne−Zeff (~r1+~r2)/a0 (2.12)

In this scenario we find the Zeff where the energy expectation value is the lowest. By

the variational principle this indicates that the lowest answer will be the most similar to the

correct answer, so minimization of this equation provides the closest possible answer with

respect to the chosen parameter. The flexibility of the chosen parameters allows for φ to

approximate ψ0 and E0.

Decomposing ψ0 into individual contributions from each electron ψ(~r1, ~r2) = φ1s(~r1)φ1s(~r2)

is known as the Hartree product wavefunction. In this approximation the electrons are truly

independent, not satisfying the Pauli principle that demands all spin functions to be orthog-

onal to each other. By treating electrons independently, Hartree-Fock (HF) theory requires

the construction of spin orbitals from the spatial and spin components of the one electron

Hamiltonian.

χ(xi) = φ(~ri)α(ωi) (2.13)

In order to satisfy the Pauli principle one must construct a Slater determinant where every

electron is associated with each orbital, and electron correlation can be considered.41
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ψ( ~x1, ~x2) =
1√
2

∣∣∣∣∣∣∣
χ1( ~x1) χ2( ~x1)

χ1( ~x2) χ2( ~x2)

∣∣∣∣∣∣∣ −→ ψ( ~x1, ~x2) = |χ1χ2〉 (2.14)

Electron correlation refers to the likelihood that finding one electron in a certain location

is affected by the presence of another electron. When one can decompose the probability

density of both electrons into the product of the individual electron densities as is demon-

strated by the Hartree product in eqn. 2.9, this indicates that these probability densities

are independent and that the location of each electron is completely unaffected by the out-

side electron cloud. In nature this is of course untrue, and electrons cluster themselves into

favorable atomic or molecular orbitals to minimize electron repulsion. The two electron

probability functions of same and opposite spin electrons respectively are listed below.

P↑↓(~r1, ~r2) =
1

2

[
|φ1(~r1)|2|φ2(~r2)|2 + |φ1(~r2)|2|φ2(~r1)|2

]
d~r1~r2

P↑↑(~r1, ~r2) =
1

2

[
|φ1(~r1)|2|φ2(~r2)|2 + |φ1(~r2)|2|φ2(~r1)|2

−
(
φ∗1(~r1)φ∗2(~r2)φ2(~r1)φ1(~r2) + φ∗1(~r2)φ∗2(~r1)φ2(~r2)φ1(~r1)]d~r1~r2

)]
d~r1~r2

(2.15)

As shown by the final term in P↑↑, same spin electrons in a Slater determinant are

correlated. This process is similar to finding the inner product 〈χ1χ2|χ1χ2〉.

2.3.1 Hartree-Fock Theory (HF)

Mathematical Formulation - The goal of Hartree-Fock (HF) theory is to use the varia-

tional principle and apply it to the specific case of a single Slater determinant of one-electron

orbitals.42 This is referred to by physicists as a “mean field theory.”

The first procedure of a HF calculation is to evaluate the expectation value of Ĥ over

a Slater determinant. This generally has one or few solutions that describe how an elec-

tron feels due to the average electron cloud. Each χi considered can be thought of as an

approximate representation of a molecular orbital where each function has a real three di-

mensional shape. The many electron Hamiltonian is comprised of the kinetic energy of the
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electrons, the electron-nuclear attraction and electron-electron repulsion terms. Using the

Born-Oppenheimer approximation (where nuclei are fixed) the many electron Hamiltonian

can be represented as:

Ĥ =
n∑
i=1

−~2

2me

∇2
i +

n∑
i=1

( N∑
A=1

−ZAe2

4πε0|ri −RA|

)
+

n∑
i=1

( i∑
j=1

e2

4πε0|ri − rj|

)
(2.16)

Using atomic units, or a.u. convention to simplify this equation, eqn. 2.16 can be written

as:

Ĥ =
n∑
i=1

ĥi +
1

2

n∑
i+j=1

ĝij (2.17)

The one electron operator ĥ incorporates the kinetic energy and attractive terms while

the two electron operator ĝ calculates repulsive terms. They are expanded in a.u. below.

ĥi = −1

2
∇2
i −

n∑
A=1

ZA
riA

ĝij =
1

|ri − rj|
=

1

rij

(2.18)

According to Slater-Condon rules for one-electron operators, the expectation value of ĥ over

identical determinants evaluates to a sum;
∑n

i=1〈χi|ĥ|χi〉. If determinants differ by a single

orbital (χk → χl) the expectation value evaluates to 〈χk|ĥ|χl〉. If determinants differ by two

or more orbitals, the expectation value is zero.

The two-electron operator is more difficult to decompose as it includes electron correlation

and is therefore spin dependent. For the opposite spin circumstance, P↑↓ remains as describes

in eqn. 2.15. Using this format to calculate electron repulsion, one applies 1
r12

and integrates.

P↑↓(~r1, ~r2) =
1

2

∫ ∫
|φ1(~r1)|2 1

r12

|φ2(~r2)|2 + |φ1(~r2)|2 1

r12

|φ2(~r1)|2d~r1d~r2

J12 =

∫ ∫
|φ1(~r1)|2 1

r12

|φ2(~r2)|2d~r1d~r2

〈χ1χ2|
1

r12

|χ1χ2〉 =
1

2
(J12 + J12) = J12

(2.19)

16



Each term in the opposite spin case is a Coulombic interaction. J12 can therefore be

thought of as the Coulombic repulsion term, or electrostatic term. Notice that each electron

is calculated to inhabit each orbital.

For electrons with the same spin this Coulombic term is present as well, however as seen in

eqn. 2.15 there is a slightly more bulky term incorporating electron correlation. Calculation

of the analogous electron repulsion term as above for electrons with the same spin looks as

follows:

P↑↑(~r1, ~r2) =
1

2

∫ ∫
|φ1(~r1)|2 1

r12

|φ2(~r2)|2 + |φ1(~r2)|2 1

r12

|φ2(~r1)|2

−
(
φ∗1(~r1)φ∗2(~r2)

1

r12

φ2(~r1)φ1(~r2) + φ∗1(~r2)φ∗2(~r1)
1

r12

φ2(~r2)φ1(~r1)]d~r1~r2

)
d~r1~r2

K12 =

∫ ∫
φ∗1(~r1)φ∗2(~r2)

1

r12

φ2(~r1)φ1(~r2)d~r1~r2

〈χ1χ2|
1

r12

|χ1χ2〉 =

∫ ∫
|φ1(~r1)|2 1

r12

|φ2(~r2)|2 − φ∗1(~r1)φ∗2(~r2)
1

r12

φ2(~r1)φ1(~r2)d~r1~r2

= J12 −K12

(2.20)

This K12 term can be thought of as an exchange term. Electrons with the same spin are

therefore, and understood chemically, less stable near each other than they would be if they

had opposite spins. This satisfies the Pauli principle that orbitals be occupied by two spin

paired electrons.

HF theory therefore calculates the energy by taking the expectation value of the Hamil-

tonian over a single Slater determinant. The energy is notably not a simple sum of orbital

energies.
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E(|χi...χn〉) = 〈χi...χn|Ĥ|χi...χn〉

= 〈χi...χn|
n∑
i=1

ĥi +
1

2

n∑
i,j=1

ĝi,j|χi...χn〉

=
n∑
i=1

〈χi...χn|ĥi|χi...χn〉+
1

2

n∑
i,j=1

〈χi...χn|
1

r12

|χi...χn〉

=
n∑
i=1

〈χi|ĥi|χi〉+
1

2

n∑
i,j=1

(ii|jj)− (ij|ji)

E =
n∑
i=1

εi +
1

2

n∑
i,j=1

Jij −Kij

(2.21)

The second task of a HF calculation is to vary the one electron orbitals to minimize the

energy. According to the variational principle, the expectation value of the Hamiltonian over

any trial Slater determinant is greater than or equal to the true energy of the system. What

follows therefore is to define a basis of orbitals χi that minimize the energy of the system

subject to the constraint that the orbitals be orthonormal. Orthonormality is defined below

in eqn. 2.22.

〈χi|χj〉 =

∫
χ∗i (~r)χjd~r =


1 if i = j

0 if i 6= j

= δij (2.22)

This minimization technique can be thought of in the light of a Lagrangian approach where

one minimizes an auxiliary function describing the constraint.

F (x, y, z) = f(x, y, z)− λg(x, y, z)

L[
{
χi
}

] = E[
{
χi
}

]−
n∑

i,j=1

λij(〈χi|χj〉 − δij)
(2.23)

One then takes the variation (or functional derivative) with respect to χi → χi + δχi,

δL[
{
χi
}

] =
n∑
i=1

〈δχi|ĥi|χi〉+
1

2

n∑
i,j=1

(δχiχi|χjχj)− δχiχj|χjχi)

−
n∑

i,j=1

λij〈δχi|χj〉+ all complex conjugates

δL[
{
χi
}

] = 0

(2.24)
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followed by factoring out the orbital perturbation δχi,

0 =
n∑
i=1

〈δχi|ĥi|χi〉+
1

2

n∑
i,j=1

(
〈δχi|ĵi|χi〉 − 〈δχi|k̂j|χi〉 − λij〈δχi|χj〉

)
0 =

n∑
i=1

〈χi|
(
ĥi +

n∑
j=1

(Ĵij − K̂ij)
)
|χi〉 −

1

2

n∑
i,j=1

λij〈δχi|χj〉
(2.25)

which holds for variations of any of the orbitals χi, so:(
ĥi +

n∑
j=1

(Ĵij − K̂ij)
)
|χi〉 =

n∑
j=1

λij|χj〉 (2.26)

Now one might define the one-electron Fock operator using eqn. 2.26, and recast the

resulting equation through a unitary transformation of the orbitals (i.e. a linear combination

that preserves orthonormality) to define εi, the energy of a spin orbital.

f̂i = ĥi +
n∑
j=1

(Ĵj − K̂j)

f̂i|χi〉 =
n∑
j=1

λij|χj〉

f̂i|χi〉 = εi′ |χi′〉

(2.27)

The Fock operator describes molecular orbitals in terms of the kinetic energy of the

electrons and their attraction to the nucleus (ĥi) as well as Coulomb (Ĵi) and exchange (K̂i)

interactions with other electrons. It is formulated in such a way to avoid double-counting,

where the elements of ĝij cancel out when i = j. The Fock operator is defined by the

molecular orbitals of the system as shown by eqn. 2.27. Therefore we must define the

molecular orbital basis set in order to construct f̂i. The crux of all HF equations lies in

an iterative eigenvalue problem wherein determining one-electron orbitals and their energies

allows for the construction of the Slater determinant for which the energy is minimized.

The final part of a HF calculation therefore lies in introducing the concept of a basis

set, and equations by which the orbitals might be iteratively guessed and redefined known

as the self-consistent field (SCF) equations - initially outlined by Roothan and Hall.43 For

this approach one must construct a Slater determinant from one-electron molecular orbitals,
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however as chemists we have a better physical understanding of atomic orbitals. We there-

fore use atomic orbitals (AO) as a basis to construct molecular orbitals (MO) via linear

combination (LC). Let n be the number of electrons (and therefore the number of occupied

spin MOs) and m be the total number of AO from which we will construct our Slater deter-

minant (n ≤ m). A small note is that AO are generally expressed with Greek letters (µ, ν)

while MOs are expressed with Roman letters (i,j). The highest and lowest energy occupied

MOs are therefore:

|χ1〉 = C11φ1...Cm1φm

|χn〉 = C1nφ1...Cmnφm

|χi〉 =
m∑
µ=1

Cµiφµ =
m∑
µ=1

Cµi|µ〉

(2.28)

Generally, the ith MO is expressed as the ith row of the following matrix, where each AO

contributes to the overall shape of the MO according to the values of the MO coefficients.


χ1

...

χn

 =



C11 C21 . . . Cm1

C12 C22 . . . Cm2

...
... . . . ...

C1n C2n . . . Cmn





φ1

φ2

...

φm


(2.29)

Rewriting our original HF equation (eqn. 2.27) we begin to deconstruct this MO basis into
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LCAO that depend on our one-electron spin orbitals.

f̂i|χi〉 = εi|χi〉

f̂i

m∑
µ=1

Cµi|µ〉 = εi

m∑
µ=1

Cµi|µ〉

⇓

〈ν|f̂i
m∑
µ=1

Cµi|µ〉 = 〈ν|εi
m∑
µ=1

Cµi|µ〉

m∑
µ=1

〈ν|f̂i|µ〉Cµi = εi

m∑
µ=1

〈ν|µ〉Cµi

where 〈ν|f̂i|µ〉 =

∫
φ∗ν(~ri, ωi)f̂iφµ(~ri, ωi)d~ridωi

⇓

F~c = εS~c

Fi =


∫
φ∗1fiφidτ

∫
φ∗2fiφidτ . . .∫

φ∗2fiφidτ
. . .

...



Si =


∫
φ∗1φidτ

∫
φ∗2φidτ . . .∫

φ∗2φidτ
. . .

...


(2.30)

These Roothan-Hall equations are recursive. To apply eqn. 2.30, first a guess is used to

construct an initial MO coefficient matrix (C0) and then to build the Fock matrix (F0). One

then solves the general eigenvalue equation for C1 and ε1 followed by computation of F1

from C1. This continues until ∆ε has converged below some threshold.

The Fock matrix elements incorporate the four main electronic energy components of the

Hamiltonian:

Fµν = Tµν + Vµν + Jµν +Kµν

Tµν = 〈µ| − 1

2
∇2|ν〉 : The KE

Vµν = −
∑
A

〈µ|ZA
rA
|ν〉 : The electron/nuclear attraction

Jµν =
∑
λσ

Pλσ(µλ|νσ) : The Coulombic term

Kµν = −1

2

∑
λσ

Pλσ(µλ|νσ) : The exchange term

(2.31)
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Both Jµν and Kµν use the density matrix and rely on four separate indices. This is the

most computationally expensive part of a HF calculation, causing this method to scale

O(N4). The convergence criteria can be manipulated according to the calculation at hand.

A few examples of convergence criteria would be the change in energy, the change in MO

coefficients, or the change in the gradient. Any of these values can be tested against some

defined threshold to determine when a calculation had converged satisfactorily.

Basis Sets - Basis sets are functions that describe molecular (or crystal) orbitals from an

atomic orbital basis. The higher the level of physical description of the atomic orbitals the

more precise a calculation will be, but the computational cost will increase. These bases are

linearly independent vectors that can be infinitely added to describe a space that increases

in dimension with every additional vector. The synonymous wording for this application

is the infinite addition of orthonormal basis functions to describe an increasingly complex

electronic space - the more basis functions included, the more well described the space.

An example of these basis functions is a Slater-type orbital (STO). These functions are

generally described by the form: R(r) = Nrle−ζr. They describe long-range behavior well

and introduce no radial nodes. Manipulating the ζ term allows for control of how diffuse or

localized the function is. STOs are used without alteration in methods like extended Hückel,

however they can be problematic to use in ab initio methods as the Coulombic integrals

often do not have real solutions. These time intensive calculations are often precomputed

for ab initio methods and approximated for HF.

STOs can be approximated with a sum of Gaussian functions, R(r) = Nrle−αr
2 where

the α term is varied to replicate the cusp conditions of a STO, wherein there is a derivative

discontinuity or kink at the nucleus. Gaussian-type orbitals (GTO) are inherently inaccurate

at r = 0 where an STO predicts a derivative of infinity and a GTO predicts a derivative of

zero, however both do well at long range.

Examples of select basis set construction follow. Minimal basis sets like the group STO-
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MG approximate Slater-type atomic orbitals with a sum of 2-6 GTO (eg. STO-3G) and

represent the low end of physical description. Split-valence basis sets include virtual orbitals

and represent atomic orbitals with multiple STO with different ζ. This class includes the

“double-" and “triple-zeta" family of basis sets, and have names like 3-21G. Basis sets with

this type of nomenclature were created by John Pople whose lab has also produced triple-

and quadruple-zeta split valence basis sets which would have three or four numerical values

after the dash, respectively. The basis set 3-21G* is similar to the aforementioned example,

however this basis set includes polarization functions with higher angular momentum quan-

tum numbers (p → d). 3-21+G includes diffuse functions with higher principle quantum

numbers (2p→ 3p). Pople basis sets are becoming out of date, due to their cost to accuracy

ratio. Another popular group of basis sets were developed by the Dunning lab. They have

names cc-pVDZ which can be read as “correlation-consistent polarized valence-only double

ζ" and are optimized for calculations involving electron correlation.

Most computational chemists need only choose a basis set, weighing their individual

preference in the spectrum of precision versus expense. The ideal basis set closely repro-

duces the MO of your system using the fewest possible functions. To indicate what kind

of calculation has been attempted, one describes both the method and the basis set. For

example, HF/6-311G//HF/3-21G indicates that a single point HF calculation with 6-311G

(a triple-zeta Pople type basis set) was followed by a HF geometry optimization with 3-21G

(a double-zeta Pople type basis set).

In Practice - HF calculations come in two main flavors, restricted (RHF) and unrestricted

(UHF). RHF calculations are cheaper as they fill up the occupied MO with pairs of opposite

spin electrons, but as UHF calculates spin-specific MO (twice as many MO as RHF) UHF is

required for systems with unpaired electrons. Having both options available is important in

the face of “wavefunction instability" where SCF calculations can converge on a solution that

is not actually the lowest energy configuration of the system. Perhaps a RHF calculation
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converges for a system where a closed shell singlet is not truly the lowest energy electron

configuration. To correctly describe a singlet bi-radical system, or a triplet state, one would

need to use UHF to resolve the RHF/UHF instability. Remember - the variational principle

does not guarantee that SCF calculations always converge on the global minimum!

Another thing to take into consideration is the convergence with respect to basis set size.

The higher number of Gaussian type functions, the higher the accuracy. It is possible to

extrapolate to a “complete" basis set:

EHF
χ = EHF

CBS + Ae−αχ

χ = The number of GTO in each AO (or ζ)

A,α = Empirical values

(2.32)

Going beyond triple-zeta is often unnecessary in HF as the electron correlation error can

overcome the basis set limits. Additionally, HF scales O(N4), where N is the number of basis

functions, therefore larger basis sets can be needlessly expensive. However, that is not to say

that larger basis sets are always unnecessary. For calculations regarding thermochemistry

one needs a larger basis set to capture reaction energetics, and should choose a basis set

that treats electron correlation appropriately. For a geometry optimization, one can find the

lowest energy molecular geometry with a small basis set, as HF accuracy depends on specific

chemical bonds. A larger basis set will improve the accuracy of the energy by shifting the

potential energy surface to a lower energy, however it will not change where the local or

global minima are. Hearkening back to the variational principle, allowing for a larger test

space can lead you closer to the correct answer, and for a computational chemist the lowest

answer is always the better answer when searching for a minimum.

Care should be taken when calculating intermolecular interactions with HF, as there is no

explicit electron correlation and therefore an empirical dispersion energy should be added to

the calculated HF energy. HF is also not a size-consistent approach, and dissociation energy
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cannot be calculated as it would be when using an approach like ab initio. Size-consistency

refers to the total energy equaling the sum of the parts (EAB = EA + EB).

2.3.2 Wavefunction-based Correlation Methods (WF)

Configuration Interaction (CI) - HF is not an exact method, the most egregious ap-

proximation being made when describing an electronic system with a single Slater determi-

nant. This method can describe static electron correlation, but neglects dynamic electron-

electron interactions due to averaging.

E =
〈
χ1...χn

∣∣∣Ĥ∣∣∣χ1...χn

〉
f̂i({χk})

∣∣χi〉 = εi
∣∣χi〉 (2.33)

Each f̂i calculates the energy of a one-electron orbital, only considering the interaction

of the ith electron with the average electron cloud, but this is a large approximation for

some systems. If one Slater determinant is not enough to correctly describe a system, one

could construct a wavefunction as a linear combination of weighted Slater determinants.

These additional Slater determinants would include contributions from the virtual orbitals

to increase the flexibility of the wavefuncton description.

ΨCI =
∣∣χ1...χn

〉
+ c1

∣∣χ1...χn−1, χn+1

〉
+ ...

ΨCI = ΨHF + c1Ψ1 + ...

(2.34)

One can construct as many CiΨi as there are available promotions. Below, i indicates

the occupied orbital the electron has been “excited” from, and a indicated the virtual orbital

it is “excited” to.

∣∣ΨHF

〉
=
∣∣χ1...χn

〉
∣∣Ψa

i

〉
=
∣∣...χa...〉 : Singly excited (CIS)∣∣Ψab

ij

〉
=
∣∣...χa...χb...〉 : Doubly excited (CISD)

(2.35)
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A full CI calculation where every electron is excited from an occupied to a virtual orbital

is in theory a perfectly exact solution for the many-electron wavefunction in the chosen basis.

∣∣ψ〉 =
∣∣ψHF〉+

∑
i→a

cai
∣∣ψai 〉+

∑
i→a
j→b

cabij
∣∣ψabij 〉+ ... (2.36)

This function eventually truncates in a finite basis, as although one can always increase

the number of virtual orbitals by extending the basis set size, a calculation will only ever have

n substitutions as there are only n occupied orbitals. To find the energy of a CI calculation,

one applies Slater-Condon rules as outlined below.

〈
χ1...χn

∣∣ĥ∣∣χ1...χn
〉

=
n∑
i=1

〈χi|ĥ|χi〉

〈
χ1...χk...χn

∣∣ĥ∣∣χ1...χl...χn
〉

= 〈χk|ĥ|χl〉〈
χ1...χkχl...χn

∣∣ĥ∣∣χ1...χpχq...χn
〉

= 0

(2.37)

Truncating a CI calculation at single excitations (CIS) or double excitations (CISD) can

often recover over 90 percent of the electron correlation. This method is very computationally

expensive, and suffers from the same lack of size-consistency as HF.

Coupled Cluster (CC) - Continuing on the road to a well-described electron correlation,

one arrives at the coupled cluster (CC) approach to HF modification which fixes the size-

inconsistency of HF and CIS/D.44 Let’s define the cluster operator, T̂n:

T̂
∣∣ψ〉 =

1

4

∑
ijab

tabij
∣∣ψabij 〉

T̂ = T̂1 + T̂2 + ...+ T̂n

(2.38)

What if we applied eT̂ to
∣∣ψHF〉? eqn. 2.39 shows the cluster operator for both coupled

cluster singles (CCS) and coupled cluster singles and doubles (CCSD).

eT̂ = 1 + T̂ +
1

2
T̂ 2 + ... = 1 + T̂1 + T̂2 +

1

2
T̂1

2
+ T̂1T̂2 +

1

2
T̂2

2
(2.39)
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This operator introduces higher disconnected excitations (powers and products of Ti)

even at early truncations. These excitations restore size-consistency, and yield a hierarchy of

ab initio approximations that are widely employed as the “gold-standard” for benchmarking

other electronic-structure methods.

2.3.3 Møller-Plesset Perturbation Theory (MP2)

Møller-Plesset time-independent perturbation theory is in essence the tweaking of an easy

problem to approximate the solution to a hard one. This method assumes a reference wave-

function derived by HF, and formulates a Hamiltonian comprised of the HF reference Hamil-

tonian perturbed by a correlation operator, V̂ .

Ĥ = Ĥ0 + λν̂∣∣ψ0

〉
=
∣∣ψHF〉

ψ = ψ0 + λψ(1) + λ2ψ(2) + ...

E = E(0) + λE(1) + λ2E(2) + ...

(2.40)

The λ term is a scalar between zero and one that modifies V̂ . This lambda is by extension

used to scale the first and second order expansions of ψ and E. Without any approximations

thus far, the Schrödinger equation has been modified as follows:

Ĥψ = Eψ(
Ĥ0 + λν̂

)
ψ = Eψ

(
Ĥ0 + λν̂

)( N∑
i=0

λiψ(i)
)

=
( N∑
i=0

λiE(i)
)( N∑

i=0

λiψ(i)
) (2.41)

By truncating the energy expression to second order and setting terms of the same order

with respect to the wavefunction equal, it s possible to derive an expression for the second-

order Møller-Plesset (MP2) correlation energy.
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EMP2
corr = −1

4

occ∑
i<j

virt∑
a<b

tabij = −1

4

occ∑
i<j

virt∑
a<b

|(ij|ab)− (ia|jb)|2

(εa + εb)− (εi + εj)
(2.42)

2.4 Semi-Empirical Approaches

Methods that fall in the ab initio category are computationally expensive due to a full elec-

tronic treatment. Semi-empirical approaches attempt to reduce this computational burden

by pretabulating or experimentally determining the many simple expressions within these

methods that need to be calculated at every iteration. Density functional tight-binding

(DFTB), the semi-empirical star of this work, parameterizes a significant amount of a full

electronic structure calculation allowing similar accuracy at a fraction of the time. In semi-

empirical approaches, pretabulated and experimental parameters are calculated or collected

for particular bonds or groups of atoms in high level methods and saved as discreet numbers

in parameter libraries. The following method uses parameters substantially, and is a useful

tool to describe the kind of paramterization used in DFTB, described in section 3.2.

2.4.1 Hückel and Extended Hückel

The Hückel method is a simple semi-empirical technique that uses the single-electron Hartree

product orbitals, but does not use Slater determinants. This method therefore does not

account for electron correlation, exchange, nor does it necessarily consider the Pauli principle.

The goal of these calculations is to obtain a qualitative description of the shape, energy, and

ordering of a system’s MO. This method is valuable to investigate as a simple and transparent

vessel to allow us to understand the equations that form the foundation of other MO methods

like DFTB (section 3.2.) The Hückel method can be compared to DFTB in that the matrix

elements of both methods are known, and the problem can be simplified to an eigenvalue

and eigenvector search.45 By visualising Hückel methodologies, later description of DFTB,

the focal point of this manuscript, will be simpler for the reader to visualize.
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Mathematical Formalism - Let’s begin by describing the Hückel treatment of H2 and

approximate the H2 MO as an LCAO.

ψ = c1φ1 + c2φ2

Ĥ(c1φ1 + c2φ2) = E(c1φ1 + c2φ2)

(2.43)

Next, left-multiply by one AO and integrate over all space (could use φ1 or φ2) to define

the secular equations.

∫
φ1Ĥ(c1φ1 + c2φ2) =

∫
φ1E(c1φ1 + c2φ2)

c1

∫
φ1Ĥφ1 + c2

∫
φ1Ĥφ2 = c1E

∫
φ1φ1 + c2E

∫
φ1φ2

(2.44)

These secular equations are divided into discrete parts that are each assigned a value in

the Hückel method. The latter half of eqn. 2.44 becomes;

c1α + c2β = Ec1 + 0 (2.45)

Let’s dive into this approximation. α =
∫
φ1Ĥφ1 is the Coulomb integral, expressing

the initial energy of each AO. β =
∫
φ1Ĥφ2 is a resonance integral, which defies a classical

description to describe the electron transfer and resonance between φ1 and ψ2.
∫
φ1φ1

reduces to 1 as each AO is normalized. The biggest approximation made in this method

occurs when
∫
φ1φ2 is reduced to 0. This expression would generally describe the overlap

integral, which would have non-zero values due to the fact that AO on different atoms are

not mutually orthogonal. This large approximation however is what makes this method so

computationally affordable. The following set of equations outlines how one would solve a

Hückel calculation for H2.
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c1α + c2β = Ec1

c1β + c2α = Ec2

Solve for cn + E. Implicit: c2
1 + c2

2 = 1

α +
c2

c1

β = E = α +
c1

c2

β

c2

c1

β = E − α =
c1

c2

β

c1

c2

β =
c1

c2

β

c2
1 = c2

2

c1 = ±c2

(2.46)

So what does this tell us? There are two possibilities for this system. Either c1 = c2 and

E = α+β or c1 = −c2 and E = α−β. The former would describe a bonding MO, while the

latter represents the antibondng MO. (Note that both α and β are negative numbers!) These

equations can be (and generally are) represented as eigenvalue equations. This example looks

like:

α β

β α


c1

c2

 = E

c1

c2

 (2.47)

Notice that the energy is the eigenvalue while the cn coefficients make up the eigenvector.

These eigenvalues and eigenvectors are intrinsic to the matrix made up of the AO energies

(α) and AO couplings (β).

Hückel theory is used to evaluate conjugated π systems. Let us look then at how one

would solve for the MO of butadiene. Butadiene is made up of carbon (2s, 3p) and hydrogen

(1s), and has 22 valence MO consisting of a σ system and a π system. Looking only at the

π system, we have four out of plane p orbitals denoted hereafter as φ1 − φ4. Because we are

only considering p orbitals on carbons, each Coulomb integral will have the same value, that

is, each α will have the same numerical value. Let’s set up our Hückel eigenvalue problem.
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

α β 0 0

β α β 0

0 β α β

0 0 β α





c1

c2

c3

c4


= E



c1

c2

c3

c4


(2.48)

Notice the assumption that only AO on explicitly bonded atoms have non-zero resonance

integrals. This approximation pales in comparison to the complete disregard of the overlap

integrals, and is the primary reason that this method is generally used for a qualitative

understanding of conjugated linear and cyclic systems. This system has four eigenvalues

corresponding to four eigenvectors, which are shown to one significant figure below.

Ĥ~c = (α± β)~c

α−mβ ~c1 = (+0.4,+0.6,+0.6,+0.4)

α− nβ ~c2 = (+0.6,+0.4,−0.4,−0.6)

α + nβ ~c3 = (+0.6,−0.4,−0.4,+0.6)

α +mβ ~c4 = (+0.4,−0.6,+0.6,−0.4)

(2.49)

Each index of the ~cn describes the relative size of the MO on the carbon corresponding

to that index, and the sign of each value describes its orientation. ~c1 is the lowest energy π

system where there are no nodes. ~c4 describes the fully antibonding MO configuration where

there is a node between each carbon unit. ~c1 has a larger electron cloud on the inner carbon

units while ~c2 has larger orbitals on the ends of the molecule.

Extended Hückel is a natural progression from the aforementioned method, and differs

very little in its general setup. While the integral
∫
φ1φ1 still reduces to one, the overlap,

Coulomb and resonance integrals are treated slightly differently. α, which corresponds to the

energy of each AO, is empirically parameterized with ionization energies distinct to different

molecular environments. The resonance integrals are still approximated to be β or zero
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depending on whether or not the two atoms are neighbors, but in extended Hückel β is

calculated using the Wolfsberg-Helmholtz approximation.46

Most notably, the overlap integral
∫
φ1φ2 is not disregarded in this method and is explic-

itly calculated by integrating over the product of the basis functions. These differences allow

for extended Hückel calculations to be carried out on molecules with multiple atom types.

2.4.2 Comments on Density Functional Methods

The classification of density functional theory (DFT) as either ab initio or semi-empirical

has often been debated, and indeed the classification tends to be more useful in describing

specific functionals over the full theory of density functionals.47,48 The concept of density

functional based methods have been entirely categorized under a semi-empirical umbrella for

this manuscript as DFT is the foundation upon which DFTB was built, and the problem-

solving techniques present in the conception of this method follow a similar accessibility

trend as that main semi-empirical method described here. Because DFT is such a tunable

and robust computational strategy, it is easy to assume that it is the only method worth

considering. The other aforementioned methods have been described to remind one that this

is not the case.
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Chapter Three

DENSITY FUNCTIONAL

THEORETICAL APPROACHES

(DFT and DFTB)

As shown in the above first principles approaches, wavefunctions are complicated and time-

consuming to fully describe. Density functional theory is a method that approximates the

wavefunction of a system by its electronic density, and in so doing can dramatically lower

computational cost of large systems. This model termed density functional theory (DFT)

radically shifted the way computational chemists approach many-electron calculations and is

to this day the most common type of electronic structure calculation that one will encounter.

The allure of DFT is that there exits a theoretically attainable and chemically exact solution,

and indeed the DFT community is a thriving and ever growing niche of physical chemistry.

This author does not work directly in that niche, however, and the following overview in

section 3.1 is provided simply to support future students who have only just begun to learn

about this discipline as it sets up the primary method of this work smoothly.

DFT has been further approximated to afford the user a desktop friendly density based

calculation in the form of density functional tight-binding (DFTB). DFTB is the method

upon which this work is focused, and the platform for the the time-independent excited
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state framework ∆DFTB, and subsequent molecular orbital relaxation maximum overlap

methods (MOM, IMOM, DAD) and time-independent transition dipole moment calculations

(TI-TDM). The following chapter will thoroughly introduce DFT and build from that a

mathematical formalism of DFTB to ground the method development work in chapter 4 and

chapter 5.

3.1 Density Functional Theory (DFT)

The formalism of DFT can be understood historically, as this method developed over time as

an extension of Hartree-Fock (HF) theory (subsection 2.3.1).49 In such a method as HF and

other wavefunction based methods, each electron is described with three spatial coordinates

and a fourth spin coordinate, forcing the definition of 4n unique indices for an n electron

system, and an additional polynomial scaling to form objects like two electron integrals.

Physically, the energy of a chemical system depends on the electron density, not necessarily

the wavefunction - but can we express the energy as a function of the electron density (ρ) and

disregard the wavefunction (ψ) entirely? (That is to say, can we accurately define a space

using the complex square of the wavefunction and disregard phase information entirely?)

Fortunately we can, and the following section will outline the formulation of a model that

requires only the intuitive definition of the three spatial coordinates that define the electronic

densities of the α (spin-up) electrons, β (spin-down) electrons, and difference of these two

to determine a magnetization density (α− β).

Thomas-Fermi (1927) - To accomplish the energy calculation of a many electron system

one must define an operator for E in terms of ρ(x, y, z). Thomas and Fermi defined the first

model as follows:
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E[ρ(~r)] = Vne[ρ(~r)] + Vee[ρ(~r)] + T [ρ(~r)]

Vne[ρ(~r)] =
nuc∑
k

∫
Zk

|~r − ~rk|
ρ(~r)d~r

Vee[ρ(~r)] =
1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2

T [ρ(~r)] =
3

10
(3π2)2/3

∫
ρ5/3(~r)d~r

(3.1)

Unfortunately, this model is terrible unless one is dealing with a metallic system at or

near the Fermi level. The final term T [ρ(~r)] is an approximation of the electronic kinetic

energy with that of a uniform electron gas (otherwise known as “jellium") which is a pretty

scandalous way to treat non-theoretical chemical systems. Small molecules, semiconductors,

bio-materials, insulators, and any other system chemically described as bonded are all poorly

described by a nearly uniform electron density. Also, this model suffers from the very

anticipated flaw that DFT developers sought to disprove - a ton of information is lost without

considering the wavefunction here. There is no exchange or correlation considered, neglecting

the Pauli principle that leads to non-classical repulsion from electrons with the same spin,

and there is no account for self-interaction error. Ignoring self-interaction specifically results

in the nonsensical conclusion that a single electron system would have a non-zero electron

repulsion term.

Hohenberg-Kohn (1964) - The turning point for DFT came in the form of two theorems;

the existence theorem and the variational theorem. Pioneered by Hohenberg and Kohn,

these two notions validated the DFT proposition to the point that different extensions of

density functional based calculations would become the most widely used electronic structure

methods in existence.50,51

The existence theorem states that the GS electron density of a system uniquely determines

the Hamiltonian and therefore all of the properties of that system. Therefore, one can define

an exact density functional to express the exact energy of that system. The variational
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theorem states that like the wavefunction, the electron density obeys the variational principle,

whereby trial wavefunctions or densities can be used to describe a system, and that the lowest

energy solution will more closely match the correct answer than the other higher energy trials.

In the iterative nature of computation this presents to the user that as the calculated energy

of a system goes down, the closer one gets to the exact answer. This suggests how one would

find the GS density from an exact density functional, however this model is not useful yet as

of 2020. It has been postulated that an exact density gives rise to the exact Hamiltonian of a

system and furthermore the exact wavefunction, however this defeats the purpose of DFT as

the wavefunction is not being circumnavigated in this situation. Also, we don’t know what

the exact density functional is yet!

Kohn-Sham (1965) - Working with the early DFT method proposed by Thomas and

Fermi, Kohn and Sham sought to unite the actualized calculations of 1927 with the exciting

ideas of 1964. From their perspective, the Thomas-Fermi model had a major advantage

and a major disadvantage - both happened to be that electron-electron interactions were

neglected. Although mean field theories like the Thomas-Fermi model of a uniform electron

gas, we as chemists cannot avoid the importance of exchange and correlation, both of which

were neglected. Kohn and Sham decided to solve this problem via Occam’s razor, and simply

added a correction term. The term they added was an explicit exchange and correlation

component of the energy equation, and according to the existence theorem a correction term

exists for which the total energy of any system is exactly correct. The revolutionary new

energy functional was as follows:

E[ρ(~r)] = Vne[ρ(~r)] + Vee[ρ(~r)] + T [ρ(~r)] + Exc[ρ(~r)] (3.2)

As uninteresting as the previous equation may seem, the meat of this idea lies in the

construction of Exc[ρ(~r)]. Scientists have offered many ideas over the decades for what this

functional could be, and the multitude of currently available functionals will be described in
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summary later in the chapter (3.1.1). The main takeaway from this idea is the possibilities

that Kohn-Sham (KS) DFT offers, for if one could find the exact density functional they

would also be able to find the exact GS electron density and the total energy of their system

with computational ease. They could also define one-electron KS molecular orbitals (MO)

and their respective energies, which according to Koopman’s theorem can be used to define

a system’s HOMO-LUMO gap, ionization energy, electron affinity, etc.52

Encapsulated in these functionals are chemically relevant bits of information such as how

an electron’s kinetic energy changes in response to electron-electron interactions, electron

correlation and exchange, and self-interaction corrections. There is still an active field within

computational chemistry aimed at improving density functionals. At the moment, certain

functionals are better for certain situations and many are parameterized heavily. However,

this theory-motivated field works specifically on how to define the perfect Exc[ρ(~r)] such that

all of nature can be defined accurately and reliably within the constraints of DFT.

Assuming one is using a suitable density functional, the general procedure of Kohn-Sham

DFT is to iteratively define the set of one-electron molecular orbitals {χi} that are occupied

in their system. The MOs are built from a basis set of atomic orbitals (AOs), {φi} that

are used to construct a matrix for which the MO coefficients are the eigenvectors, and the

energy is the eigenvalue. The elements of this matrix are calculated as follows:

Fµν =
〈
φµ
∣∣− 1

2
∇2 −

nuclei∑
k

Zk
|~r − ~rk|

+

∫
ρ(~r′)

|~r − ~r′|
d~r′ + Vxc

∣∣φν〉 (3.3)

Using this expression, one initially will guess some trial density ρ(~r) and iteratively solve

for the MO coefficients, updating the density with each step until the change in energy is

below some threshold.
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3.1.1 Jacob’s Ladder of Density Functionals

Although DFT is in theory capable of exact accuracy, functionals are developed by scientists

to match experiment as closely as possible. Development generally falls into one of two

camps; the "bottom-up" first principles approach or the "top-down" empirical approach.

First principles folks develop functionals with the ultimate goal of universality, or transfer-

ability to a wide range of systems. The form of the functional is derived from known pa-

rameters and limits of model system data and augmented with a few adjustable parameters.

These functionals tend to be favored by theoretical physicists. The empirical developers,

who consist mainly of chemists, try to create functionals that display a particularly high

level of accuracy to specific domains of interest. These functional forms are initially guessed

and then fit to training data, containing many adjustable parameters.53–55

Density functionals come in a range of physical complexity which allows one to choose

where each desired calculation falls on the line between computational feasibility and accu-

racy.56 The following section will list this classification of functionals in ascending physical

complexity, and by extension increasing computational cost.

Local Density Approximation (LDA) - This class of functionals is the most approx-

imate, and describes the first rung of Jacob’s ladder. There is no unique local density

approximation, but “the" LDA usually refers to the exchange-correlation term derived from

analysis of a uniform electron gas. Because of this, this method is not good for systems with

strongly varying densities. The exchange-correlation energy at each given point depends only

on the density at that point, not the density as a whole as is the case in other functionals.

ELDA
xc [ρ(~r)] =

∫
ρ(~r)εUEGxc

[
ρ(~r)

]
)d~r

ELDA
xc [ρ(~r)] =

∫
ρ(~r)

(
εx[ρ] + εc[ρ]

)
d~r

εx[ρ] = −9α

8

( 3

π

)1/3

ρ

(3.4)

εc[ρ] is not analytical, but instead is calculated with Monte-Carlo. LDA is the simplest func-
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tional used in DFT, and can be generalised to account for different spins (LSDA). Though

this approach sounds messy, this approximation works well for some systems and the energy

term is incredibly easy to compute. This functional does show the high level of parame-

terization used in the construction of DFT, and reminds one of the "semi-empirical vs. ab

initio" argument in which some members of the density functional community engage.

Example Functionals: GVWN, GPW92

Generalized Gradient Approximation (GGA) - Where LDA can over-bind, the gen-

eralized gradient approximation (GGA) functionals tend to perform better. This method

allows for a semi-local calculation to be made that accounts for density fluctuations bet-

ter. This class of functionals adds a dependence on the gradient of the density, or the first

derivative of the electronic density. The new exchange energy is computed as follows.

EGGA
xc [ρ(~r)] =

∫
ρ(~r)εxc

[
ρ(~r), s(~r)

]
d~r

s(~r) =
∣∣∣ ∆ρ(~r)

2KFρ(~r)

∣∣∣
εxc[ρ(~r), s(~r)] = εLDAxc [ρ(~r)] + ∆εxc

[ |∆ρ(~r)|
ρ4/3(~r)

] (3.5)

GGA functionals include a higher order correction term, however it does not necessarily

correlate to better performance. GGA and LDA have a similar level of physical description,

and are used with regard to the specific system requirements.

Example Functionals: BLYP, PBE

Meta-GGA - Meta-GGA are similar to GGA functionals an the added dependence on the

second derivative of the electronic density (or the Laplacian). In general, these functionals

include a dependence on the non-interacting kinetic energy density (τ).

EmGGA
xc [ρ(~r)] =

∫
ρ(~r)εxc

[
ρ(~r),∇ρ(~r), τ(~r)

]
d~r

τ(~r) ∝ ∇2ρ(~r)

τ(~r) =
occ∑
i

1

2
|∇ψi(~r)|2

(3.6)
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Example Functionals: TPSS, VSXC

Occupied Orbital-Dependent Functionals - The simplest example of this fourth rung

functional class is the hybrid exchange (XC) functionals.57,58 In functionals that calculate

exact exchange, the XC functional depends on occupied orbitals.

Eexact
x = −

∑
i<j

〈ij|ij〉

〈ij|ij〉 =

∫
ψ∗i (~r1)ψj(~r1)

1

|~r1 − ~r2|
ψ∗j (~r2)ψi(~r2)d~r1d~r2

(3.7)

A common hybrid functional, PBE0, has the following hybridization (ax = 0.25):

Ex = axE
exact
x + (1− ax)EPBE

x (3.8)

Example Functionals: PBE0, B3LYP

Virtual Orbital Dependent Functionals - Including the virtual orbitals within the

functional offers a clearer description of dispersion effects and improves the accuracy for

transition state calculations. The only well established type of this functional so far are

the double-hybrid functionals which combine exact exchange and MP2 correlation, two ap-

proaches where the XC functional depends on either the occupied or virtual orbitals, respec-

tively. An example MP2 correlation energy could be described as follows,

EMP2
c = −1

4

occ∑
i<j

virt∑
a<b

|(ij|ab)− (ia|jb)|2

εa + εb − εi − εj
(3.9)

and the double-hybrid DFT correlation energy could be calculated according to the following

equation.

Ec = acE
MP2
c + (1− ac)EGGA

c (3.10)

3.1.2 DFT Today

While executing a DFT calculation, one is given many choices to best describe the system in

question. One may choose an exchange-correlation functional (the main categories of which
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are described above), a basis set (which can affect convergence time much more than in an

HF calculation, and many applications necessitate specific basis sets), and an integration

grid (where one can fit a set of fewest possible points to integrate over while fully describing

their system, while many exchange functionals require a specific grid density). It gets quite

complicated very quickly! Much of the focus of computational chemistry as a whole is

related to DFT in: developing functionals, developing basis sets, developing approximations

to simplify calculations, expanding existing approximations to more fully describe a system,

etc. DFT serves today as a platform that goes well beyond the toolkit developed by Kohn

and Sham, to include excited states and real-time dynamics via a perturbative method,

time-dependant density functional theory (TD-DFT).59–63

3.2 Density Functional Tight Binding (DFTB)

There exists in the world of computation an ever growing need for electronic description of a

bulk material, pulling scientists between the world of force fields (FF) or molecular mechanics

(MM) to describe large systems efficiently, and density functional theory (DFT) or ab initio

methods to describe the electronic properties. Within this gap of efficiency and physical

description lies the domain of semi-empirical methods which approximate and parameterize

higher order calculations to reasonably describe larger systems. Density functional based

tight binding (DFTB) theory is a simplification of Kohn-Sham DFT to a tight binding

formalism which allows for near DFT accuracy with a CPU cost about three orders of

magnitude lower than traditional DFT.64 This group focuses on DFTB as implemented in

the open-source platform DFTB+.65

3.2.1 Mathematical Formalism

Density functional based tight-binding (DFTB) is derived from a simplification of Kohn-

Sham density functional theory (DFT) to a tight binding form, allowing for a less compu-
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tationally complex semi-empirical method for applications with large systems and longer

time-scales.66,67

The total energy functional of Kohn-Sham (KS) DFT is expanded with respect to a chosen

reference density (ρ0) that is calculated from a superposition of neutral atomic densities.68

The ground state (GS) density is then represented as this approximated density perturbed

as shown below.

ρ(~r) = ρ0(~r) + δρ(~r) (3.11)

A Taylor expansion is then applied to the total energy expression up to the third order

as follows, where V xc and Exc are the exchange correlation potential and energy. The below

equation describes the three levels of expansion that have been used to describe DFTB at the

third order, however one can decompose the following equations into the non-self-consistent

DFTB1 (E0 + E1), and second order self-consistent DFTB2 (E0 + E1 + E2) as well.

EDFTB3[ρ0 + δρ] = E0[ρ0] + E1[ρ0, δρ] + E2[ρ0, (δρ)2] + E3[ρ0, (δρ)3]

E0[ρ0] =
1

2

∑
AB

ZAZB
RAB

− 1

2

∫∫
ρ0(~r)ρ0(~r′)

|~r − ~r′|
d~rd~r′ −

∫
V xc[ρ0]ρ0(~rd~r + Exc[ρ0])

E1[ρ0, δρ] =
∑
i

ni < ψi|Ĥ[ρ0]|ψi >

E2[ρ0, (δρ)2] =
1

2

∫∫ ( 1

|~r − ~r′|
+

δ2Exc[ρ0]

δρ(~r)δρ(~r′

∣∣∣
ρ0

)
δρ(~r)δρ(~r′d~rd~r′

E3[ρ0, (δρ)3] =
1

6

∫∫∫
δ3Exc[ρ]

δρ(~r)δρ(~r′δρ(~r′′)

∣∣∣
p0
Xδρ(~r)δρ(~r′)δρ(~r′′)d~rd~r′d~r′′

(3.12)

Standard second-order DFTB therefore takes the KS-DFT total energy represented as a

functional of charge density ρ(~r),

EDFT =
occ∑
i

〈
Ψi

∣∣∣∣− Vext +
1

2

∫ ′
n(~r′)

| ~r − ~r′ |

∣∣∣∣Ψi

〉
+ EXC [n(~r)] +

1

2

N∑
α,β

ZαZβ

|~Rα
~Rβ|

(3.13)

and simplifies the above expression so that it is solely dependent upon charge density fluc-

tuations, ∆q.

EDFTB =
occ∑
i

〈
Ψi

∣∣∣∣Ĥ0

∣∣∣∣Ψi

〉
+

1

2

N∑
α,β

γαβ∆qα∆qβ + Erep (3.14)
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The Hamiltonian is constructed from optimized MO coefficients, and diagonalization of

the corresponding matrix provides the density fluctuation, δρ(r). The reference density is

perturbed by this density fluctuation, calculating the total density as the sum of these values

as per Equation 3.11.

Both E0 and Erep are calculated from the reference density, the former resulting from

a summation over the occupied orbitals with their corresponding eigenvalues, thereby con-

structing the Hamiltonian matrix under a two-center approximation. The latter term, Erep

approximates the remaining Coulomb and exchange-correlation contributions with atom cen-

tered potentials. Eγ represents the charge transfer between two atomic centers, with the net

atomic charge derived from Mulliken charges related to the density. Eω is a spin polarization

term, utilizing the Mulliken spin population of each shell.

3.2.2 Self Consistent Charge (SCC)

The time independent Schrodinger equation is modified in all Hartree-Fock (HF) and DFT

based methods to approximate the Hamiltonian as a sum of single-electron operators.

HSCC =
n∑
i=1

f̂(ri) (3.15)

The wavefunction therefore is a single determinant over the spin orbitals, σ(s) and summation

of the MO, Ψi(r) expanded in a finite basis, Φµ.

ΨSCC
k = det[Xi(rj, sj)]

Xi(r, s) = Ψi(r)σ(s)

Ψi(r) =
N∑
µ

Cµiφµ(r)

(3.16)

Because the Hamiltonian depends on the wavefunction, the resulting Schrodinger equa-

tion is nonlinear and must be iteratively converged. The MO coefficient matrix (Cµi) is

used at each iteration to build a new Fock matrix (F ), and the MO’s corresponding to the
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lowest energy are filled. A nonlinear eigenproblem is therefore proposed, relating the MO

coefficient matrix (C) multiplied by the overlap matrix (S) and energy of the system (ε) to

this optimized value FC to some threshold (τ).

FCNEW = SCNEW ε

C0 → F 1

F 1C1 = SC1ε

Cn → F n+1

| Cn − Cn+1 | < τ

(3.17)

Both the reference density and corresponding perturbations are calculated from the

Hamiltonian, which is constructed from MO’s resulting from the linear combination of atomic

orbitals (LCAO). These MO coefficients are optimized via self-consistent charge (SCC) cal-

culations that impose approximations upon the Schrodinger equation.

ĤSCCΨSCC
k = ESCC

k ΨSCC
k

A visual unpacking of the SCC routine is discussed in subsection 5.1.2.

3.2.3 Parameterization of DFTB Hamiltonians

DFTB is based on a number of approximations. First, the method is based on a valence-only

minimal basis set of atomic orbitals (AO) which are used to construct the molecular orbitals

(MO), and by extension, the wavefunction.

ψi = cµiφµ (3.18)

These AO are explicitly computed from DFT by solving the KS equations in a confining

potential. [
− 1

2
∇2 + V eff [ρatom] +

r

r0

n]
φµ = εµφµ (3.19)
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Because of this, the approximated atom-centered orbitals are slightly compressed to better

describe bonding situations.

Additionally, a two-center approximation is applied to the Hamiltonian operator Ĥ[ρ0],

where:

〈φµ|Ĥ[ρ0]|φν〉 ≈ 〈φµ| −
1

2
∇2 + V [ρA + ρB]|φν〉, µεA, νεB (3.20)

This leads to a direct neglect of three center terms and pseudo-potential contributions such

that the inter-atomic forces are calculated pairwise across atomic pseudo-dimers. These pair-

wise interactions are calculated according to inter-atomic distance by Slater-Koster combi-

nation rules, therefore the Hamiltonian is calculated according to atomic pair calculations of

Slater-Koster equations. These pairwise interactions are pretabulated and stored in reposi-

tories to form the AO basis of DFTB.

Finally, DFTB calculates the total reference energy, E0[ρ0], using only the reference

density. This is constructed with parameterized repulsive energy terms that apply to the

atomic pairs within the systems geometry.

E0[ρ0] ≈ Erep =
1

2

∑
AB

V rep
AB (3.21)

This means that this method has a high transferability of parameters in the sense that

the reference energy is independent of chemical environment, and a thorough description of

a reference system can be applied to many other environments. These terms of Erep are

pretabulated using DTF calculations or experimental data.

3.2.4 Applications

Due in part to the high parameterization of DFTB, it is an extremely memory efficient

electronic structure method that allows calculations of large complexes with the average

processing power of a standard laptop CPU. Additionally, DFTB as implemented in the

software package DFTB+ 19.1 is an open source platform allowing free download and user

control for tweaks to the standard software. This makes DFTB+ an incredibly accessible
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option for many researchers, where bypassing a paywall or need for external processing power

can afford detailed electronic description to researchers regardless of individual laboratory

or university funding streams. Memory efficiency allows for a desktop calculation of large

biomolecules, bulk materials, and molecular dynamic simulations of organic catalysts. To

demonstrate this, a small sampling of recent publications have been selected that show the

tunability of DFTB in terms of breadth of application.

Materials Science

Depletion of fossil fuels has necessitated renewable energy sources, leading to increased re-

search in the fields of solar devices. The sun is a resource that is effectively limitless and free

of pollution, therefore photovoltaic devices constitute a commonly studied class of material.

Although most current photovoltaic devices are silicon based, titanium dioxide derivatives

are a valuable platform material for the development of dye-sensitized solar cells.69,70 Tita-

nium dioxide materials are somewhat limited in their pure structure by an intrinsic band-gap

of 3eV, where photonic absorption is restricted to the ultraviolet range. Therefore, band-

gap engineering, surface functionalization and doping have been a crucial element of this

field. Titanium dioxide materials containing defects often have smaller band-gaps, leading

to increased solar absorption. Additionally, doping titanium dioxide materials with transi-

tion metals can enhance photocatalytic activity. Furthermore, semiconductor materials like

titanium dioxide can be synthesized into quantum dots (QD) or nanoparticles, small several-

hundred-atom clusters that increase photon absorption via a phenomenon called "quantum

confinement" when the size of the particle is small compared to the wavelength of an elec-

tron. Titanium dioxide QD alone have been used in a variety of applications, including

photovoltaics, lasers, biomedical applications, and photocatalysts. DFTB is an attractive

tool for studying such materials, as several hundred atoms is usually the approximate size

of QD, and can model bulk defects and heterogeneous materials reasonably well.

DFTB has been useful in nanomaterials research beyond renewable energy applications.71
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Nanotubes formed from boron nitrides (BNNTs) have been studied experimentally since

their discovery in the 1990’s due to their promise as gas sensors, drug delivery hosts, and gas

storage matrices.72 BNNT’s like titanium dioxide derivatives perform differently if doped,

or synthesised in specific dimensions. DFTB has been used to characterize gas adsorption

efficiency of pristine and functionalized BNNTs, showing a calculable effect to the Fermi level

of devices functionalized with amines.

Biochemistry

As materials science has developed, so too has the interest in nanomaterials in biomedical

fields. Carbon nanotubes have proven to be biocompatable and widely useful, and modifica-

tions or coatings of these structures with biomolecules have revealed a host of applications

like targeted cancer therapy, drug delivery, bioimaging and bone tissue repair. As many bio-

chemists say, form equals function, so understanding how these biomaterials interact with

targeted proteins is often a question of how they might preferentially fit into or around a

specific residue. This could often be a question best suited for molecular mechanics, however

this form of calculation will not describe fully the electronics of a biomaterial in great enough

resolution to describe interactions at the scale of single electrons.73,74

DFTB is uniquely useful to this field of research in that it can speak to electronic effects of

these larger molecules in a biological medium at greater electronic resolution than MM alone.

DFTB+ itself has been used to characterize adsorption energies of boron nitride nanosheets,

or white graphene, with different shapes to characterize how bonding affinity is affected by

curvature of these materials.75 These researchers were able to model the target residue and

full nanosheets for their calculations, which would have been prohibitively expensive in full

DFT.

Rhodopsins and other light harvesting biological complexes have been studied with TD-

DFTB, and these calculations have shown to be in good agreement with more expensive

TD-DFT calculations.76 Kinases involved in signalling pathways related to immunity were
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investigated with a number of MM methods and described electronically by DFTB.

Excited States (ES)

Perovskites are a class of material that has a specific crystal structure that is highly tunable,

and construction of solar cells using these materials have proven interesting to researchers

for being cost-effective, and their efficiency has skyrocketed in the recent decade.77,78 Lead

halide perovskites (LHPs) are attractive in the context of solar-cell applications and light

emitting devices, thereby necessitating a full understanding of the excited state (ES) dynam-

ics of these systems. When an LHP is photo-excited, charge carriers cause structural changes

to the crystalline device which in turn affects the electronic state, resulting in the forma-

tion of polarons. To study these polarons one must model both electronic and structural

degrees of freedom, which cannot be encapsulated by adiabatic MM or nonadiabatic classi-

cal path approximation methods. LHPs were computationally investigated with the fewest

switches trajectory surface hopping (FSSH) method coupled with long range TD-DFTB

(LR-TD-DFTB) to calculate the excitation energies, ES wavefunctions and nuclear forces.79

For these long time-scale calculations, the researchers admitted that full DFT was impracti-

cal, and showed that the LR-TD-DFTB results agreed well with previous nonadiabatic DFT

studies using a PBE functional. Using FSSH and LR-TD-DFTB these researchers were able

to replicate experimental time scales for exciton dissociation, decay of carrier energy, and

polaron formation.

TD-DFTB within DFTB+ has been benchmarked for GS and ES geometry optimiza-

tions of organic molecules, where photo-induced phenomena have previously been difficult

to replicate over long timescales, or within an appropriate description of experimental sys-

tems including grafting support, embedding matrix, or solvent molecules.45 A single chro-

mophore description can be accomplished with TD-DFT assuming a molecular size equal to

or smaller than about 100 atoms, however larger single compound studies are also out of

reach. The precomputation by DFTB at the PBE level allows this semi-empirical method to
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approximate full DFT as an eigenvalue problem of atomic charges, thereby describing charge

transfer states even within the approximate framework. TD-DFTB can replicate TD-DFT in

the calculation of vertical excitations, and the implementation of analytical gradients allows

for for more correct ES geometry optimizations. Using common parameter sets mio and 3ob

these researchers calculated mean absolute error for ES bond length description and found

that TD-DFTB outperformed PBE and B3LYP in description of CO bonds, and performed

similarly to these higher level methods in describing CN and CC bonds. This in-depth

study is one of the first to produce a side-by-side comparison between TD-DFTB and TD-

DFT within DFTB+ for organic chromophores, and discusses potential pitfalls of unreliable

parameterization. This study does however note that DFTB is not marked by systematic

decrease of accuracy when moving from GS to ES calculations and provides clear pathways

for researchers wishing to utilize this method for large scale chemical systems assessment.80
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Chapter Four

TIME-INDEPENDENT DFTB

(TI-DFTB 19.1)

4.1 Time-Independent Excited State Calculations

Excited state calculations are difficult to describe by single-determinant methods as they are

inherently multireference in behavior. Previously described are a host of options to complete

these calculations, however as stated they are hindered by their comparatively large compu-

tational cost when compared to analogous ground state (GS) calculations. There is therefore

a gap in the computational chemist’s toolkit - a method that is fast, affordable, and offers

comparable accuracy to both the expensive excited state (ES) methods as well as the GS ap-

proaches. A method that offers ES solutions within the time-independent single-determinant

GS method DFTB is described here. This method changes electron occupation patterns, de-

viating from the Aufbau principle that populates MO’s according to ascending energy, and

introducing analogous non-Aufbau occupancy within the existing SCC framework of DFTB.

This allows for SCC relaxation of ES MOs within the time-independent framework of DFTB,

allowing comparisons between GS and ES calculations to be made even-handedly (i.e. at

the same level of mathematical description). These tools could prove incredibly useful for

the researcher with many potential synthetic targets, or single particularly large synthetic
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targets, or for the scientist who has to run calculations on a laptop. These accessible and

cost efficient methods are implemented in the open source program DFTB+ for ultimate

accessibility.

4.1.1 ∆DFTB

Minimization of the energy on each self-consistent charge (SCC) loop of a typical DFTB

calculation drives the system to the global minimum of the the GS potential energy sur-

face based on Aufbau occupation rules. To implement ES calculations, a new bias must be

introduced where one or more electrons are promoted to a virtual orbital at each SCC iter-

ation, thereby simulating a pseudo ES. These newly described electrons are not optimized

after such artificial promotions however, as the occupation of the vacated orbital remains

implied and relaxation of the lower molecular orbitals (MO) into the vacant space is pro-

hibited. Additionally, the promoted electron feels the effect of the other electrons in the

GS optimized molecular orbitals, and this can more accurately describe an N+1 system.

In these ways, orthogonalized single-reference ES methods are restricted in application by

their inability to relax the MOs in response to excitation, therefore increasing the error in

situations like charge-transfer states where relaxation alters the electron configuration of the

ES significantly.

∆DFTB harnesses the power of the SCC loop allowing slight relaxation of imposed

ES.37 The Kohn-Sham (section 3.1) spin orbitals are self-constantly optimized under non-

Aufbau constraints, emphasizing the highest occupied molecular orbital (HOMO) to lowest

unoccupied molecular orbital (LUMO) transitions by selecting the KS orbital based on the

character of the singlet ES. This method has been shown to accurately describe ES of large

systems with extreme efficiency,38 cutting down computational cost significantly and making

these advanced calculations more accessible to the research community at large.
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Theory

The ES density (ρe) is calculated according to Equation 4.1.

ρe(r) =
∑
σ

∑
iεocc(σ)

| φσi (r) |2 (4.1)

but because the constraint is placed on the spin orbitals rather than the MO’s, this method

introduces heavy spin contamination to the system by arbitrary promotion of α spin elec-

trons.

Performing a non-Aufbau calculation manipulates the electronic filling to emulate a sin-

glet ES. Because of this strict bias towards the alpha spin channel, the simple calculation

resulting from the promotion of an alpha electron to the LUMO of the system does not

describe a pure singlet state. The issue arises due to the quantum entanglement of a singlet

ES system, whereby alpha and beta electrons have equal probability of promotion by the

theoretical incoming photon. This inconsistency is not immediately apparent in DFTB as

the electronic structure is approximated as an electronic density, a description that treats

mixed and pure states on equal footing. However, because the singlet ES Hamiltonian is

more correctly described as a composite quantum system, Hα ⊗Hβ where the subscript in-

dicates the spin of the promoted electron, isolating Hα only describes a partial trace of the

full pure quantum state.

This issue is circumvented by application of the Ziegler sum rule (Equation 4.2), whereby

the triplet state energy is subtracted from twice the mixed singlet state energy.81–85

E(S1) = 2E[{φσi }m]− E[{φσi }t] (4.2)

This approximates the span of the full Hilbert space defined by the singlet ES by artificially

imposing the composite type nature of the pure state. In practice this requires two separate

DFTB calculations, one of an artificially promoted alpha electron in the alpha spin channel

to emulate the mixed state, and one of a beta electron promotion to the alpha spin channel
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to describe a triplet (Figure 4.2). This doubles the calculation time, however within a

tight-binding framework scaling by a factor of two still massively outpaces standard time-

dependent approaches.

4.1.2 Code Description

Preliminary programming efforts for ∆DFTB were implemented in DFTB+ 1.2 and were

vetted against ∆SCF, TD-DFT and TD-DFTB.38 This study showed great promise for

the ∆DFTB model as the RMS error of vertical excitation energies for a small test set

of molecules calculated in ∆DFTB (0.82) rivaled that of TD-DFT using the common PBE

functional (0.51). Furthermore, ∆DFTB outperformed ∆SCF (PBE/6-311+G*) when cal-

culating vertical excitation energies of large organic dyes (RMS error of 0.64 versus 0.71

respectively). Since this publication, DFTB+ has undergone tremendous updates, the meat

of the calculations moving from a linear type main file to a network of subdirectories. The

current working version of this program is DFTB+ 19.1, and its tremendously different

structure has made direct transfer of the original coding efforts impossible. Where previous

versions of DFTB+ manipulated the dense MO coefficient matrix (HSqrReal) as a univer-

sally intact and callable array, the current program transfers these values between multiple

overwritten arrays.

It is sensible perhaps to wish to avoid excess memory allocation to such a potentially

large dense array, however the murky definition of the MO coefficients throughout the pro-

gram makes direct implementation of ∆DFTB and MOM derivatives incredibly challenging.

Without an intact MO coefficient matrix, the published upon ∆DFTB method, which in the

past directly reordered the columns of HSqrReal, cannot be achieved. A new method involv-

ing direct reordering of the eigenvalues communicates the alternate electron populations of

∆DFTB to an electron filling vector, an overview of which is described in the flowchart in

Figure 4.1, and described below.
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Figure 4.1 ∆DFTB flowchart mapping calculation with Spin-Purify (nDet=2) and
Ground-Guess (det=0). Determinant Loop counts iDet from det (0) to nDet (2) for
a total of three iterations.
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The Determinant Loop

To do a ∆DFTB calculation one must harness the SCC loop to run twice per geometry

step, once for the mixed- and once for the triplet-state. ∆DFTB in DFTB+ 1.2 managed

calculation of both states within the linear format of the most current version of the code,

however that double calculation was impossible to do in the newer version of the code using

the “goto” statement previously implemented. A third loop was introduced to the main

subroutine of DFTB+ 19.1 called the determinant loop, or lpDets, that encompasses the

SCC loop entirely (see Figure 4.1 for approximate placement). This loop runs a tunable

number of times over the SCC loop using its iteration number (0 for ground, 1 for triplet,

or 2 for mixed) as an indicator of which state is being calculated. In the input file the user

has the option for spin purification of their Non-Aufbau calculation, though this option is

automatically set to true. In the event that the user does not want spin purification and

to simply calculate a singlet state with mixed properties, the determinant loop only cycles

once calculating the mixed state energy. At the end of each determinant loop the current

SCC optimized energy is saved according to which state is being calculated, and once both

states have converged the program applies the Ziegler sum rule to these saved energies and

updates the total energy of the system. This newer version of the program has been run in

tandem with its previous implementation in 1.2 and is able to replicate previously calculated

energies of example molecules.
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1 ! TI -DFTB Determinant Loop

2 ! Will pass though once if unless specified in input

3 lpDets : do iDet = det , nDet

4 call processGeometry(env , iGeoStep , iLatGeoStep , tWriteRestart ,

tStopDriver , tStopScc ,&

5 & tExitGeoOpt)

6 if (tGroundGuess .and. iDet ==0) then

7 call printEnergies(energy , TS, electronicSolver , tDefinedFreeE ,

tNonAufbau , tSpinPurify , tGroundGuess , iDet , &

8 & tTDM , tiTransitionDipoleMoment)

9 end if

10 if (iDet .ne. 0) then

11 call postprocessDerivs(derivs , conAtom , conVec , tLatOpt ,

totalLatDeriv , extLatDerivs ,&

12 & normOrigLatVec , tLatOptFixAng , tLatOptFixLen ,

tLatOptIsotropic , constrLatDerivs)

13 end if

14 if (iDet == nDet) then

15 exit lpDets

16 end if

17 end do lpDets

Listing 4.1 TI-DFTB determinant loop.

The determinant loop, as outlined in Listing 4.1 encompasses processGeometry, the

subroutine responsible for the SCC cycle and necessary pre-initialization and post-analysis of

the necessary variables. Minor modifications were necessary to override certain algorithmic

steps within this subroutine that could not be called multiple times. Within this loop a call

was also implemented to print the current energy of the ground state if the necessary calls

were implemented by the user. The triplet- and mixed-state derivatives were spin purified

manually. This loop is variable in nature, as it can be set to cycle through the ground state,

triplet-state, and mixed-state consecutively or any number of those options in that order.
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That as been arranged to be totally controlled by the input of the user.

The Filling Swap

As stated, the previous version of ∆DFTB implemented in DFTB+ 1.2 directly modified

the column arrangement in HSqrReal, therefore reordering the eigenvectors of the system

to simulate the Non-Aufbau electron arrangement. As current modifications must sidestep

this interaction with HSqrReal, a different and perhaps more direct rout to mimic the triplet

and mixed ES was followed by manipulating the values of the array called filling. Filling

is a three dimensional array with information about the system’s electron occupation, k-

point, and electron spin. It is a simple array consisting of ones and zeros to denote electron

occupancy of the MO corresponding to the first dimensions index. Although it could not

be directly modified, filling was manipulated through the temporary reordering of a single

dimension of the eigenvals array which contains the eigenvalues (or MO energies) of each

SCC iteration. A temporary array called swapfill was used to achieve this reorganization for

the ease of the compiler.

Figure 4.2 Visualization of ∆DFTB non-Aufbau filling routine: mixed state in
green, triplet state in blue.

This may seem nonsensically arduous when working only in ones and zeros, however

harsh numerical assignment was avoided whenever possible for both ease for the compiler as

well as readability. Additionally, this arrangement allows this method to be easily expanded

to work in temperature modulated filling calculations in the future.
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Manipulating the fillings by way of an eigenvalue reorganization is a new approach to

implementing Non-Aufbau electron populations, and is a cleaner version of the previous

approach. Additionally, it automatically provides a clean output for the band.out file gen-

erated by the calculation, allowing the user to see an accurate description of the electron

population of the ES system. This interface is also specifically useful in tandem with the

maximum overlap method, described in section 4.2.

The primary benefit of this change was that in previously manipulating MO coefficient

matrices directly, there was a huge drain on the CPU efficiency for which DFTB+ is praised.

Large three dimensional matrix manipulation requires temporary matrices, populated with

double precision variables that if allocated, populated, deallocated, reallocated, repopulated,

etc. each SCC cycle can cause memory “loss” near 8% of the total DFTB+ routine for

molecules of around 20 atoms. The current system of reordering the eigenvalues directly,

and temporarily, allows reordering of one-dimensional vectors.

1 if (tNonAufbau) then

2 do iSpin = 1, size(eigenvals , dim =3)

3 do i = 1, kpts

4 if (iDet == 1 .and. tSpinPurify .and. iS==1) then

5 eigenvals(int(nEl(iS))+1,i,iSpin)=eigenvals(int(nEl(iS)),i,

iSpin)

6 else if (iDet == 1 .and. tSpinPurify .and. iS==2) then

7 eigenvals(int(nEl(iS)), i, iSpin)=eigenvals(int(nEl(iS)) + 1,

i, iSpin)

8 else if (iS==1 .and. iDet /=0) then

9 swapFill = eigenvals(int(nEl(iS)) + 1, iSpin , iSpin)

10 eigenvals(int(nEl(iS))+1,iSpin ,iSpin)=eigenvals(int(nEl(iS)),

iSpin ,iSpin)

11 eigenvals(int(nEl(iS)), iSpin , iSpin) = swapFill

Listing 4.2 TI-DFTB Non-Aufbau filling routine fragment. Not shown: the
eigenvalues are saved, and then reordered in a non-Aufbau filling pattern.
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Listing 4.3 shows how the program iteratively populates the fillings vector up to the Fermi

level (as seen on line 4 of Listing 4.3).

1 do iSpin = 1, size(eigenvals , dim =3)

2 do i = 1, kpts

3 do j = 1, size(eigenvals , dim=1)

4 x = (eigenvals(j, i, iSpin) - Ef) / kT

5 #:if EXP_TRAP

6 if (x > mExpArg) then

7 filling(j, i, iSpin) = 0.0_dp

8 else

9 filling(j, i, iSpin) = 1.0_dp / (1.0 _dp + exp(x))

10 endif

11 #:else

12 filling(j, i, iSpin) = 1.0_dp / (1.0 _dp + exp(x))

13 #:endif

14 if (tNonAufbau .and. j/=1) then

15 if ( (( filling(max(j-1,1), i, iSpin)+filling(j-1, i, iSpin))

) <= elecTol) then

16 exit

17 end if

18 else if (filling(j, i, iSpin)<=elecTol .and. .not. tNonAufbau)

then

19 if (filling(j, i, iSpin) <= elecTol) then

20 exit

21 end if

22 ...

23 Eband(iSpin) = Eband(iSpin) &

24 & + kWeights(i) * (filling(j, i, iSpin) * eigenvals(j, i,

iSpin))

Listing 4.3 Portion of filling population routine with example TI-DFTB logic.
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The Ground Guess

The previous code included a “ground-guess" functionality, allowing the user to toggle an

optional SCC calculation according to the GS of their system when convergence of the ES

was difficult. In the newest version of the code it is explicitly stated that the old eigenvectors

be deallocated before beginning the next cycle of the determinant loop, so while this function

no longer aids convergence it was reinstated as it offers a clear way for users to quickly know

the vertical excitation energy of their system at the current geometry. This functionality was

added by introducing a variable in the new determinant loop, allowing the loop to start from

zero instead of one (the usual indicator of the triplet state calculation). When the variable

“det” is set to zero, it carries through the following logic to run past any alternate filling

logic, therefore allowing an SCC energy calculation of an Aufbau system to commence. This

effort can be summarized by noting the logic present in line 11 of Listing 4.2, and inferring

that a similar thread of logic was passed throughout the code.

The program then prints out the energy of the GS guess at the end of the ground state

SCC calculation, and saves that information for output in the clean reading at the end of

the calculation. A user can see with this option the mixed-, triplet-, ground-state and spin

purified energies of their system.

4.2 Maximum Overlap Convergence Strategies

Though ∆DFTB is a good tool for systems with well defined local minima corresponding

to their first ES, many systems have very low lying virtual orbitals that become nearly

degenerate near conical intersections. Calculations of the ES energy can be confused by the

oscillation between two similar solutions, and collapse to the GS is common for molecules

with low lying virtual orbitals. Calculating very low level ES can be nearly impossible

under standard non-Aufbau occupation procedures when plagued by this phenomena called

variational collapse, when the optimization of some slightly higher energy solution can cause
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the calculation to fall into the global minimum of the energy landscape. Degenerate or nearly

degenerate HOMO and LUMO are common in large or highly conjugated systems, therefore

making calculations of examples like organic chromophores difficult to converge.86

To alleviate these convergence issues, the maximum overlap method (MOM) was proposed

which redefines the SCC energy calculation to hold more tightly to a prescribed electronic

structure and lessens the probability of collapsing into the global minimum of the GS. MOM

has been expanded to multiple variations including the initial maximum overlap method

(IMOM) and decision augmented diagonalization (DAD). These as well as the original MOM

are described below.

Formalism in DFTB

DFTB is a single determinant approach, and as stated in chapter 3.2 the wavefunction is

approximated by a sum of single-electron operators.

ĤSCC =
n∑
i=1

f̂(ri) (4.3)

The eigenfunctions of these new equations are single determinants

ΨSCF
k = det[χi(rj, sj)] (4.4)

and each spin-orbital (χi = ψi(r)σ(s)) has a molecular orbital component (ψi) described

by a linear combination of atomic orbitals (φµ).

ψi(r) =
N∑
µ

Cµiφµ(r) (4.5)

Because of this, on each iteration when the molecular orbital matrix (Cµi) is built, the

eigenvectors of the wavefunction are uniquely described. The atomic orbitals are described

by the finite AO basis as prescribed by choice of Slater-Koster files, therefore these MO

coefficients are the descriptive force in defining a unique system’s electronic space. These
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eigenfunctions and their eigenvalues correspond to the molecular orbitals and orbital energies

of the system respectively. As these values change, so does the Hilbert space of the electronic

structure of the system. At its core, this electronic space is what the SCC pathway of DFTB

is optimizing along a lowest energy pathway.

FCNEW = SCNEW ε (4.6)

In forcing minimization of the energy (ε) the calculation can be driven towards the

global minimum of the PES, and incorrectly bypass a desired local minimum, a phenomenon

termed variational collapse. In ∆DFTB occupation is forced into either a mixed- or triplet-

state scheme, however if there are two nearly degenerate ES this can force the calculation to

bounce between the similar electronic structures and inhibit convergence.

What the maximum overlap formalism does to offset this involves using the subspace of

the system’s Hilbert space defined by electronic occupation. This method uses the eigen-

vectors described by the molecular orbital coefficients to define a space onto which future

spaces are projected, thereby informing occupation of subsequent iterations.

4.2.1 Maximum Overlap Method (MOM)

The maximum overlap method is in essence an alternative population scheme. Instead of

forcing excitation into the LUMO on each ∆DFTB cycle, MOM populates the current SCC

iteration MO’s according to those that have the largest projection onto the span of the

previously occupied space, driving energy calculations influenced by some informed initial

guess.87

FCN = OCNε

OMOM = (CN−1)‡SCN

(4.7)

The SCC equation is modified so that the basis function overlap matrix (S) is used to

build a new overlap matrix (O) which is constructed by multiplying the transpose of the
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previous C matrix onto the product of S and the current MO’s (Equation 4.7.) This retains

the information of the past SCC cycle, and allows iterative population of molecular orbitals

according to how similar they were to the previous iteration. The projection (pj) of each

new MO onto its equivalent from the last SCC iteration is calculated by the absolute value

of the summation over the rows of this calculated O matrix (Equation 4.8.)

pj =

(∑
i

(Oij)
2

) 1
2

(4.8)

This vector now holds the information of which MO’s overlap the most strongly with the

MOs form the previous iteration, and population of the MO’s in the current cycle are filled

in descending projection (compare to ascending energy for Aufbau). This method does not

always populate the prescribed MO filling pattern, however it can help guide the calculation

by retaining the shape of the originally described electron density.88 When paired with a

∆DFTB calculation, SCC cycles following the initial energy definition of either a mixed or

triplet state will hold more true to that initial guess, and keep the calculation from collapsing

in either promoted configuration.

4.2.2 Initial Maximum Overlap Method (IMOM)

Though implementation of MOM can be helpful relaxing ES, there are still circumstances

where this method fails. This single determinant ES compatible relaxation algorithm still

falls short in cases involving double excitations, charge-transfer states, and near canonical

intersections, therefore the equation has been slightly modified in a newer approach called

the initial maximum overlap method (IMOM).89 This method works under the same rules

governed by MOM, however instead of populating the new MO’s in accordance to their

projection over the previously occupied space, IMOM populates MO’s according to their

projection over the space occupied by the initial guess.

FCN = OCNε

OIMOM = (C0)‡SCN

(4.9)
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The calculation continues in the same way as traditional MOM, building a projection

vector using OIMOM as Oij in Equation 4.8. This modification is helpful in cases where even

MOM descends on the energy landscape too quickly as shown in Figure 4.3, and is a good

tool to probe very low level ES given a strong enough initial guess.

Figure 4.3 Visualization of IMOM converging to the desired state where MOM
fails. Reprinted with permission from Giuseppe M. J. Barca, Andrew T. B. Gilbert,
and Peter M. W. Gill. Journal of Chemical Theory and Computation 2018 14
(3), 1501-1509. DOI: 10.1021/acs.jctc.7b00994. Copyright 2020 American Chemical
Society.

When pairing IMOM with ∆DFTB, it can help hold the electron configuration closer to

the initial mixed or triplet state definition when these states exhibit near degeneracies with

the GS or the opposing spin-state.

4.2.3 Decision Augmented Diagonalization (DAD)

Because the energy landscape is an inherently difficult surface to probe, decision augmented

diagonalization (DAD) was introduced to provide flexibility in these convergence strategies.

Like IMOM, DAD is again directly comparable to MOM and seemed a natural extension of

development once IMOM had been implemented in the electronic structure package DFTB+.

This method (both created and hilariously named by our group) allows the user to select

which SCC iteration they would like to project upon in cases where the initial guess is too
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high, and quick relaxation is useful for a specific number of cycles before maximum overlap

type restrictions slow descent along the energy surface. This choice of iteration is denoted

by K in Equation 4.10.

FCN = OCNε

ODAD = (CK)‡SCN

(4.10)

This also affords flexibility to the user and gives them greater access to the energy land-

scape of their system, affording the possibility of probing many different ES solutions.

4.2.4 Code Description

The logical architecture of MOM and IMOM is shown in Listing 4.4, and DAD in Listing 4.5.

The general flow of these calculations can be found in Figure 4.4.

1 !> If MOM

2 if (tMOMo) then

3 if(iSccIter >1) then

4 tMOM = .true.

5 endif

6 tTImat =.true.

7 endif

8 !> If IMOM

9 if (tIMOM) then

10 if(iSccIter >1) then

11 tMOM = .true.

12 endif

13 if (iSccIter ==1) then

14 tTImat =.true.

15 endif

16 endif

Listing 4.4 TI-DFTB MOM logic to alter ∆DFTB determinant loop. Variable
tMOM initiates projection subroutine and variable tTImat saves previous MO
coefficients.
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choose value of K. Works with ∆DFTB with options for user to specify determinant
for which they wish to perform maximum overlap.
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1 !> If DAD

2 if (iDADt .ne. 0) then

3 if (iDADt <iSccIter .and. iDet ==1) then

4 tMOM=.true.

5 endif

6 if (iDADt == iSccIter .and. iDet ==1) then

7 tTImat =.true.

8 endif

9 endif

10 if (iDADm .ne. 0) then

11 if (iDADm <iSccIter .and. iDet ==2) then

12 tMOM=.true.

13 endif

14 if (iDADm == iSccIter .and. iDet ==2) then

15 tTImat =.true.

16 endif

17 endif

Listing 4.5 TI-DFTB DAD logic to alter ∆DFTB determinant loop. DAD is
both determinant (iDet) and SCC iteration (iSccIter) dependant. Variable tMOM
initiates projection subroutine and variable tTImat saves previous MO coefficients.

The logical structure of MOM, IMOM and DAD was an important piece of the architec-

ture of this platform. Many iterations of this method were attempted, but what is reported

in Listing 4.4 and Listing 4.5 were the least variable and memory intensive structure that

we could devise. The logical tMOM toggles multiple subroutines that prepare the MO coef-

ficient and overlap matrices for direct input into an overlap calculation, and is used to call

for the eventual overlap matrix calculation, projection vector creation, and filling alteration

that the MOM, IMOM or DAD user defines. The variable tTImat is the signal that causes a

cascade of temporary variable allocation to hold these values for as short a time as possible.

Great care taken to not over allocate-memory to holding these many dense MO coefficient

matrices.
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Listing 4.6 shows a small portion of the overlap calculation, where the overlap matrix,

O, is formed by the multiplication of the current MO coefficient matrix (C ) and whatever

previous eigenvectors the user defines (pC ).

1 O = matmul(S,C)

2 temp = matmul(transpose(pC),O)

3 do ia=1,na

4 O(:,ia)=abs(temp(:,ia))*filling (:)

5 enddo

6 pr = sum(O,dim =1)

7 call index_heap_sort(p, pr)

Listing 4.6 Excerpt of TI-DFTB I/MOM and DAD overlap matrix (O) routine.
Variables C and pC are imported dense MO coefficients of the prescribed SCC
iteration. Output variable p is the projection vector that alters the electron
occupation.

The overlap matrix is multiplied by a filling vector that corresponds to the spin-dependant

electronic fillings of the previous SCC iteration. Because O is a square matrix, this operation

zeros out columns of O that were previously unoccupied, but does not disallow transition to

previously unoccupied MO as this information is still stored in the rows of the matrix. This

step was added as many of the highest level virtual orbitals remained as fixed as the lowest

occupied orbitals, and there was an unnatural weighting of electrons promoted to high level

virtual orbitals. This method seemed to temper that proclivity of the algorithm slightly

while still allowing for alternate filling patterns.

Electronic filling directly followed the ∆DFTB filling logic as in Listing 4.3. Listing 4.7

shows the necessary programming in its entirety. The projection vector pMOM holds orbital

indices in order of ascending projection, and this is used to reorder the binary filling indices

according to maximum overlap with the defined previous space.
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1 if (tMom) then

2 allocate(tmpMtx1(size(filling , dim =1)))

3 call index_heap_sort(tmpMtx1 , filling (:,1,1))

4 do iSpin = 1, size(eigenvals , dim =3)

5 do i = 1, kpts

6 do j = 1, size(eigenvals , dim=1)

7 p=tmpMtx1(j)

8 m=pMom(j, iS)

9 tmpMtx(m, i, iSpin)=filling(p,i,iSpin)

10 end do

11 end do

12 end do

13 filling=tmpMtx

14 end if

Listing 4.7 TI-DFTB I/MOM and DAD filling routine.
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Chapter Five

TRANSITION DIPOLE MOMENTS IN

TI-DFTB 19.1

Transition dipole moments (TDM) of electronic transitions and their associated oscillator

strengths correlate to the lineshape of emission and absorption spectra.90,91 The ability of

electronic structure methods to predict these values allows for more precise UV/vis spectral

prediction which is an invaluable tool for experimentalists. This feature is available in many

computational methods that boast high physical description at albeit high computational

cost, however as it is sightly complex the TDM calculation is lacking in many lower resolution

methods.

Time-dependent density functional theory (TD-DFT) is currently the most popular com-

putational method for adiabatic description of electronic excitation due to its favorable cost

to accuracy ratio.92 TD-DFT calculates excited states via a time-dependant approach. This

means that the ground-state electronic structure is fully described and perturbed with a

sweep of simulated photons. The program reads which wavelength produces a linear re-

sponse from the ground-state wavefunction. It then proceeds to describe the virtual states

based entirely off of the derived energy gap, meaning that the full wavefunctions of the ex-

cited states are not described in this method. This approximation paired with the variety

of available functionals leads to potentially substantial disagreement of predicted electronic
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transitions.

Furthermore, this approach relies exclusively on the quality of the functional form used

to describe the electronic density of the system. As a formally exact method, TD-DFT

advocates need only await the elusive “perfect” density functional to correctly describe all

systems in nature. As this has not yet been developed, a game of fitting functionals to

specific inputs plagues the DFT community with inconsistencies. Newer functionals have

not shown themselves to necessarily outperform older ones, and there are large variations in

the performance of the group as a whole. As many of the available functionals are highly

parameterized, there exist theoretical or conceptually complicated systems for which no

experimental data is available. This method scales O(N3) and quickly becomes overwhelming

for regularly accessible technology, requiring an incredible amount of memory as molecular

systems exceed the 100 electron point.93,94

Equation of motion coupled-cluster singles and doubles (EOM-CCSD) provides a valuable

alternative. This method has proven itself to be very accurate, and as a coupled-cluster

calculation it has the option to be improved by expanding the range of allowed excitations.95

There is no limiting factor like the functional choice in TD-DFT, however this method is

very computationally expensive, scaling O(N6). This method is therefore limited to very

small systems in the absence of a large scale computing facility.

In the age of functionalized materials and nanostructures, a more complete description

of extended systems is imperative. Development of a time-independent density functional

tight-binding (TI-DFTB) excited state approach is being actively pursued by this lab, and

one of the functionalities of this method is dynamic TDM calculation. The tight binding

approximation of density functional theory introduces higher parameterization and drasti-

cally reduced computational cost. The extension of this method to include full excited-state

wavefunction description allows for direct transition information to be obtained, something

that is lacking in perturbation type methods like TD-DFT.
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5.1 The Hilbert Spaces Defined by TI-DFTB

A natural benefit to the aforementioned time-independent methodology is the even-handed

treatment of the ground state (GS) and excited state (ES), allowing transition information to

be interpreted directly. Linear response methods like TD-DFT, as well as configuration inte-

gration methods result in a series of allowed excitation energies and some series of coefficients

that quantify each amplitude’s contribution to the ES space. This, if paired with chemical

intuition, can help answer the question of which electron is excited and where does it go,

however the output system “orbitals” lack qualitative description and physical significance

on their own. They are represented with X and Y vectors for TD-DFT, and CI coefficients

in CI approaches.

In ∆DFTB the GS and ES molecular orbitals are variationally described to the same level

of accuracy, and the two spaces are defined under an identical treatment. The eigenvectors

that would generally define the space of the GS are captured by ∆DFTB and forced to relax

into the ES. This treatment allows for an orbital response to excitation. When an electron is

excited from the HOMO to the LUMO, the now de-occupied HOMO will relax slightly, and

be described by a different spatial orientation as well as density. This same logic extends

to all of the occupied orbitals below the HOMO, and to a lesser extent the virtual orbitals

as well. Therefore, the MO space of the GS and ES will be intentionally different - and a

higher level of physical description is offered beyond simply approximating the energy of the

virtual orbital from the GS calculation.

In understanding the transition between these spaces one must capture the eigenvectors

defining the space of the GS and the ES. These vectors form the bases of the subspaces in

question, and as previously stated they define different physical spaces. In order to compare

these subspaces one must make them mutually orthogonal. This is accomplished in this

method by the corresponding orbital transformation (section 5.3), an extension of singular

value decomposition (section 5.2). To rationalise this approach to the calculation of TDM,
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let’s step through a typical GS dipole moment calculation in DFTB.

5.1.1 Single State Dipole Moment Formalism and Requirements

The dipole moment is calculated by applying the dipole moment operator (µ̂) to the GS

wavefunction (Ψg). The µ̂ operator for a molecule is composed of nuclear and electronic

components. For example, µ̂e is the sum over electronic charges multiplied by their respective

position operators, and µ̂N behaves analogously. Therefore, Equation 5.1 defines the GS

dipole moment operator µ̂.

µ̂ = µ̂N + µ̂e

µ̂ =
∑
A

ZaR̂A −
∑
i

r̂i

µgg = 〈Ψg|µ̂|Ψg〉

(5.1)

For an n electron system, the GS dipole moment evaluation µgg can be represented as an

integration over all electronic degrees of freedom of the GS wavefunction acted upon by the

µ̂ operator.

∫
Ψg(~r1, . . . , ~rn) · µ̂ · Ψ∗g(~r1, . . . , ~rn)dr1 . . . drn (5.2)

The integrals needed to evaluate Equation 5.2 are pretabulated in DFTB as a part of

the parameterization, therefore this is a relatively simple calculation for one to request. The

meat of this calculation lies in the construction of Ψg, which interestingly is never directly

referenced in the DFTB+ program. Instead, the wavefunction is approximated as a Slater

determinant over one electron wavefunctions as below.
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det


φ1(~r1) . . . φ1(~rn)

... . . . ...

φn(~r1) . . . φn(~rn)


φi =

∑
µ

CiµXµ

(5.3)

The column vectors of C form an orthogonal basis for the GS MO, where:

〈i|j〉 = δij (5.4)

Equation 5.4 will be proven in the following section. The MO coefficients are used to

calculate the Mulliken population of electrons on each atomic center. The population matrix

Pµν is calculated as described in Equation 5.5, and relies on the orthogonality of the MO

vectors. The density matrix, Dµν is calculated from the MO coefficient matrix, and Sµν is

the overlap matrix of the AO basis functions.

Pµν = DµνSµν

Dµν = 2
∑
i

CµiC
∗
νi

(5.5)

In Equation 5.5, the construction of Dµν is a typical probability density according to the

quantum mechanical postulate that one can relate it to the amplitude of the wavefunction

squared, here represented in terms of the coefficients defining the MO in the AO basis. If

the wavefunction (or the MO basis) is not orthogonal these probabilities can be distorted

due to spatial overlap. Furthermore, these spaces need also to be normalized so that the

sum of probabilities adds to one. DFTB constructs single electron Kohn-Sham-like molecular

orbitals, therefore these orbitals are forced to obey these postulates and eachCµν is composed

of orthonormal column vectors.
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Once the charge density is used to construct the populations on each atomic center, Pµν

is summed over to calculate the charges. These are used to assign single orbital charges at

each atomic center to calculate the dipole moment in DFTB.

µ =
∑
A

∆qARA (5.6)

5.1.2 Visualizing the SCC Pathway

Due to the stipulation that each LCAO molecular orbital vector must remain orthogonal to

the other vectors in the set, the relaxation of the MO space in the SCC pathway looks like a

rotating and twisting set of vectors that always remain perpendicular to their neighbors. This

twisting is represented in Figure 5.1, where a selection of MO coefficients from a triplet-state

N2 relaxation is depicted. The MO coefficient matrix of the beta spin channel of a triplet

state relaxation for N2 is shown below for the first couple of SCC iterations in the final

geometry step.

(Step 1) C :

0.56 0.62 0.00 0.00 0.32 0.00 0.00 −0.71
0.09 −0.20 −0.08 −0.53 −0.35 −0.55 0.31 −0.53
0.09 −0.20 −0.42 0.33 −0.35 0.54 0.32 −0.53
0.09 −0.20 0.50 0.20 −0.35 0.00 −0.63 −0.53
0.56 −0.62 0.00 0.00 0.32 0.00 0.00 0.71
−0.09 −0.20 −0.08 −0.53 0.35 0.55 −0.31 −0.53
−0.09 −0.20 −0.42 0.33 0.35 −0.54 −0.32 −0.53
−0.09 −0.20 0.50 0.20 0.35 0.00 0.63 −0.53

(Step 2) C :

0.56 0.62 0.00 0.00 0.32 0.00 0.00 −0.71
0.09 −0.20 0.26 −0.47 −0.35 −0.55 −0.30 −0.53
0.09 −0.20 −0.54 0.00 −0.35 0.02 0.63 −0.53
0.09 −0.20 0.27 0.46 −0.35 0.54 −0.33 −0.53
0.56 −0.62 0.00 0.00 0.32 0.00 0.00 0.71
−0.09 −0.20 0.26 −0.47 0.35 0.55 0.30 −0.53
−0.09 −0.20 −0.54 0.00 0.35 −0.02 −0.63 −0.53
−0.09 −0.20 0.27 0.46 0.35 −0.54 0.33 −0.53

(5.7)

For the purpose of visualization one must move to three-space, so to that end let us select

the lower right indices depicted in bold in Equation 5.7 and construct two 3×3 matrices as in

Equation 5.8. The C matrix from step one is used to construct A, and step two information

is used to construct B. Let the columns of A = [~a1, ~a2, ~a3] and the columns of B be defined
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analogously to A.

A =


0.55 −0.31 −0.53

−0.54 −0.32 −0.53

0.00 0.63 −0.53

B =


0.55 0.30 −0.53

−0.02 −0.63 −0.53

−0.54 0.33 −0.53

 (5.8)

The column vectors of A and B are plotted in Figure 5.1. This figure depicts the trans-

formation of A→ B, and as is shown this transformation is simply the negative (clockwise)

rotation about the axis defined by ~a3 and ~b3, which in this example are identical. The four

remaining vectors lie on a plane orthogonal to ~a3, and ~a1 ⊥ ~a2 and ~b1 ⊥ ~b2.

The vectors shown in Figure 5.1 represent the treatment of MO by DFTB in the SCC

pathway. Each MO is represented by a column vector that is held orthogonal to all other MO

vectors, and these vector spaces are rotated to correctly define the LCAO that describes the

molecular orbitals of the system. In this example the space is simplified to be represented

in three-space, or R3. Because this is real data, and only a subset of the overall matrix

was selected, these vectors are only approximately normalized, however physical significance

was not lost by being selective in this way. Physically the vectors shown above represent

the contribution of the 3p atomic orbitals of each nitrogen to the π∗ molecular orbitals of

N2 for spin-down electrons. Selecting any identical 3 × 3 areas of the matrices depicted in

Equation 5.7 will allow a similar visualization of AO contribution to MO space.

Hearkening back to Equation 5.4 in this new context, we can rewrite this equation as:

< ~ai|~aj >= δij (5.9)

This new equation is now simple to understand and visualize: The inner product of any

vector, ~ai is one if with itself and zero if with any other column vector of A. Now it has been

settled that within any single SCC iteration the MO are orthogonal, and the inner product
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The columns of A and the columns of B are individually orthogonal, and differ by a 59o

rotation about ~a3 or ~b3

Figure 5.1 SCC rotation of MO coefficients while maintaining orthogonality.

of that space with itself is identity. Thus it is visualized that the basis of the MO space

defined by the columns of the MO coefficient matrix C from any one SCC iteration is an

orthogonal basis.

However in this project we do not wish to compare the product of identical SCC path-

ways - we will be using entirely different states defined by many iterations of unique SCC

manipulations. For simplicity, let us compare states different by only one SCC iteration.

What can be said about orthogonality of these spaces by comparing a column vector of

A (~ai) with a column vector of B (~bj)? If i = j = 3 we have the desirable output that

~a3 · ~b3 = 1, however if i = j = 2 then ~a2 · ~b2 = 0.31, they are no longer identical because the
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space rotated. Furthermore, if i = 1 and j = 2 then ~a1 · ~b2 = 0.50, no longer zero as when the

space rotated the columns of A were not held orthogonal to the columns of B. Therefore,

the inner product of A and B is not identity. Not only are the diagonal elements typically

less than one, but there are non-zero off-diagonal elements to contend with as well. Let M

represent this non-diagonal matrix.

M =< ~ai|~bj >6= δij (5.10)

Now it has been visualized that these two states are not necessarily mutually orthogonal.

In this same way, the columns of the C matrices from a GS (CGS) and ES (CES) ∆DFTB

calculation will also not be mutually orthogonal due to the rotations of the SCC routine.

Let i represent the columns of CGS and ī represent the columns of CGE.

M =< ī|j >6= δīj (5.11)

In order to calculate a transition dipole moment in DFTB one must calculate the changing

molecular charges according to Mulliken population analysis, as described by section 5.4. As

stated in the previous section, calculating Mulliken populations is similar to calculating a

probability density. Transition densities between the GS and ES MO spaces must rely on

mutually orthonormal vector spaces in order to have any physical significance. Therefore,

these two spaces will have to be rotated with respect to each other to offset the rotations of

the SCC routine. In order to do this we will have to construct transformation matrices and

apply them to these spaces. This process is called the corresponding orbital transformation

(COT), and is closely related to singular value decomposition (SVD) - both of which are

described below.
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5.2 Singular Value Decomposition (SVD)

In linear algebra when one wishes to diagonalize a matrix A they would factor it according

to the general prescription A = PDP−1. This form is useful in visualizing the eigenvalues

(the diagonal matrix elements of D) and eigenvectors (the columns of P ). The stipulation

that A be diagonalizable in this manner is that A must be similar to a diagonal matrix, and

that if A is n × n it must have n linearly independent eigenvectors. What this generally

translates to is that A must be composed of linearly independent column vectors.

Let the aforementioned theoretical matrix A represent the specific matrix A defined

in Equation 5.8. A is a portion of a molecular coefficient matrix, and has been shown

to be composed of orthogonal column vectors, therefore linear independence is assured.

Furthermore, it has been stated that any C matrix composed of Kohn-Sham MO coefficients

will have mutually orthogonal column vectors. By this logic, all MO coefficient matrices will

be diagonalizable according to this prescription. section 3.1 which describes the foundation

of DFT (from which DFTB is derived) outlines that the MO coefficient matrixC is composed

of the eigenvectors of the Fock matrix, F . The eigenvalues of F relate to orbital energies.

Now let the theoretical A be represented with M from Equation 5.10. Is this matrix

necessarily diagonalizable? It certainly could be, but there is no assurance of linear in-

dependence in the overlap of two unique MO spaces. For this reason the A = PDP−1

decomposition is not a suitable choice. Furthermore, the inverted matrix in that equation is

quite computationally expensive to calculate.

Instead of A = PDP−1 we use a related but more generalizable approach for this problem

- singular value decomposition (SVD).96,97 This approach factors a matrix A according to

Equation 5.12 into unitary transformation matrices U and V and a diagonal matrix Σ.98 The

superscript T refers to the transpose of the matrix V .

A = UΣV T (5.12)

Because V is a unitary matrix, V −1 = V T , and therefore expensive matrix inversion is
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avoided. This method is often used in applied linear algebra in part due to this relationship,

as well as its compatibility with rectangular matrices.

Let’s dive into the composition of the diagonal matrix Σ. SVD is based on the property

of eigenvectors and values that the absolute values of the eigenvalues (|λ1|) measure the

amount that a matrix A will stretch or shrink its eigenvectors, ~v1, according to;

A~vi = λi~vi (5.13)

Let A be a rectangular (m × n) matrix. ATA is symmetric. Let {~v1 . . . ~vn} be an or-

thonormal basis consisting of the eigenvectors of ATA, and let {λ1 . . . λn} be the associated

eigenvalues.

Remembering that ~vi is both a unit vector, and an eigenvector of ATA, let us follow a

derivation adapted from Lay 2003.99

||A~vi||2 = (A~vi)
TA~vi

= ~vi
TATA~vi

= ~vi
T (λi~vi)

= λi

(5.14)

One can see that the eigenvalues of ATA are all non-negative. The elements (σi) which

make up the diagonal indices of Σ from Equation 5.12 are called singular values, and are

the square root of the eigenvalues of ATA and are the lengths of the vectors A~vi. These

singular values are uniquely determined by A.

σi =
√
λi

σi = ||A~vi||
(5.15)

Any process in which the factorization A = UΣV T produces orthogonal U and V , and

diagonal entries in Σ where 0 ≤ σi is considered SVD. Although the diagonal entries of Σ are

necessarily the singular values of A, A does not uniquely determine U and V . The columns

of U are termed the left singular vectors of A and the columns of V are termed the right
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singular vectors of A. The right singular vectors of A are the orthogonal eigenvectors of

ATA, and the left singular values form an orthonormal basis that spans ColA.

5.2.1 Example SVD Calculation

Our computational approach to evaluating TDMs through ∆DFTB relies on SVD, so lets

walk through an example SVD of A described in Equation 5.8.

A =


0.55 −0.31 −0.53

−0.54 −0.32 −0.53

0.00 0.63 −0.53

 = UΣVT (5.16)

Step One: Find the eigenvalues ATA, then solve for singular values to create Σ- After

calculating ATA one has a symmetric matrix. This is significant because symmetric n × n

matrices possess exactly n eigenvectors, though they might not necessarily be distinct.100 We

will calculate the eigenvalues (λi) by finding the roots of the characteristic equation defined

by det(ATA− kI) = 0. Σ will be a diagonal matrix with the square roots of the eigenvalues

(called the singular values) on the diagonal.

81



ATA =


0.594 0.002 −0.005

0.002 0.595 0.000

−0.005 0.000 0.843



Λ =
{
λ1, λ2, λ3

}
Λ =

{
0.842, 0.592, 0.597

}
σi =

√
λi

Σ = I ∗
[
σ1, σ2, σ3

]

Σ =


0.918 0 0

0 0.770 0

0 0 0.773



(5.17)

Step Two: Determine the n orthogonal eigenvectors from the eigenvalues to create the

right singular vectors, V - Because ATA is symmetric, the n distinct eigenvectors correspond-

ing to the eigenvalues will be orthogonal to each other. Therefore the columns of V will all

be orthogonal. In our example, we solve for the eigenvectors (~vi) by solving (ATA)~vi = λi~vi.

V =
[
~v1, ~v2, ~v3

]

VT =


−0.021 0.000 1.000

−0.804 0.594 −0.017

0.594 0.804 −0.013


(5.18)

Step Three: Determine the left singular vectors, or the columns of U , by normalizing

the vectors A~vi - Because ATA is symmetric, the eigenvectors of ATA are orthogonal. The

basis U = {A~v1, . . . , A ~vn} is therefore an orthogonal basis for ColA, and normalising these

vectors produces an orthonormal basis of ColA composed of the eigenvectors of AAT . The

orthonormal basis vectors are used to construct U .
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~ui =
1

||A~vi||
A~vi =

1

σi
A~vi

U =
[
~u1, ~u2, ~u3

]

U =


−0.590 −0.802 0.091

−0.565 0.329 −0.757

−0.577 0.498 0.647


(5.19)

Now when we consider the matrix equation UΣV T , we can visualize describing A as

follows.

A grounding conceptual synopsis - An orthonormal basis for ColA, or U , is stretched

according to the singular values of A which are calculated from the eigenvectors of ATA.

This space is then transformed by the transpose of the eigenvectors of ATA, that is,

V , which because V is unitary (or composed of orthonormal vectors) is equivalent to

the inverse of V .101 Notice also that V is an improper rotation matrix wit the generic

form
(

cos θ sin θ
sin θ − cos θ

)
appearing in the lower left.

Figure 5.2 plots the columns of the matrices described by Equation 5.17 through Equa-

tion 5.19. In Figure 5.2a one can see that though the columns of U span all of ColA they

are not identical vectors to the columns of A. Figure 5.2b shows how multiplying U by Σ

alters the length of the vectors but not their span. This is consistent with fact that Σ is

a diagonal matrix. The statement that V T is a transformation matrix that brings about

an improper rotation is demonstrated in Figure 5.2c. This figure shows the mapping of the

previous vectors (in grey) onto A (in red) by way of a reflection followed by a rotation.

Being familiar with the components of SVD will be essential to understand the following

section on the corresponding orbital transformation. Much of this section was straightforward

as we dealt with a symmetric matrix ATA - but does this system hold up if considering a non-

83



(a) Columns of U shown in red, and
columns of A shown in black.

(b) Columns of UΣ shown in red, columns
of A shown in black. Columns of U in grey
to show vector shrinkage with application
of Σ.

(c) UΣV T shown in red, also shown in red with dashed lines is rotation from UΣ
onto A = UΣV T . Columns of UΣ in grey to show rotation with application of V T

Figure 5.2 A = UΣV T shown step-wise, where a shows U 6= A, b shows UΣ is
a shrinking transformation, and c shows V T is a rotation matrix and maps V T :
UΣ→ A.

84



symmetric matrix ATB? Demonstration of the affirmative can be found in subsection 6.3.1

where a real data output from the TDM functionality of ∆DFTB is shown as a proof of

concept.

5.3 The Corresponding Orbital Transformation (COT)

A canonical orbital set is one that is composed of orthonormal orbital vectors, such as

the MO coefficient matrices we have seen above. These types of canonical orbitals have

the mathematical property of being spatially orthogonal and normalized. When faced with

two sets of canonical orbitals that are not mutually orthogonal, one must transform these

orbitals into a space where they are. These new orbitals will now also have a diagonal

overlap, enabling calculations that can probe transitions between these spaces in a quantum

mechanical framework. To transform canonical orbitals one must hold their wavefunction,

Ψ unaltered in order to retain physical significance. In single determinant methods, Ψ has

been defined as a determinant over occupied spin orbitals that are themselves canonical.

Transforming canonical orbitals while holding the determinant Ψ constant requires unitary

transformations.

Unitary transformations (Ui) are those that hold the inner product constant. In this

way, the original space is isomorphic to the transformed space, and the transformation itself

is considered a bijective function in which each element of the first space maps directly to

its pair in the transformed space. In chemical terms, we can define two sets of canonical

orbitals (Φa and Φb) as isomorphisms of themselves in such a way that that the transformed

MO spaces (χa and χb) have a diagonal spatial overlap integral (T ).102
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ΦiUi = χi

Tab =
〈
χa
∣∣χb〉

=

∫
χ∗aχbdτ

= Taδab

(5.20)

The isomorphisms χi are also canonical orbitals, and due to the relationship described

in Equation 5.20 they are called corresponding orbitals.

These types of transformed orbitals have been used in a variety of applications includ-

ing describing a subset of electrons as “froze” during large scale effective core potential

calculations103 and adsorbate-substrate chemisorbtion calculations,104 as well as calculat-

ing magnetic coupling between spin-up and spin-down wavefunctions in broken-symmetry

calculations.105,106 The values along the diagonal of T have been related to particle-hole am-

plitudes of TD-DFT calculations107 and identifying MO that are inherently closed-shell.105

This method can be used in order to implement exciton models between excited monomers

in a molecular cluster108 and in solar cells,109 and has been expanded upon to create Maximal

Orbital Analysis which allows key aspects of chemical bonding from the relationship between

the MO and AO of a given fragment.110

5.3.1 Corresponding Orbitals in Terms of SVD

Although any Hermitian matrix can be diagonalized by a unitary transformation, the overlap

between matrices that are neither orthogonal nor identical is not generally Hermitian.

Let us follow the King 1967 derivation111 and consider two wavefunctions, ψa and ψb

as single Slater determinants over orbitals i = a, b with a non-diagonal overlap matrix A .

C is an antisymmetrizing operator, a projection that forces systems to satisfy the Pauli
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principle.112

a =
{
a1, . . . , an

}
b =

{
b1, . . . , bn

}
ψa = C

∣∣a1(1), . . . , an(n)
∣∣

ψb = C
∣∣b1(1), . . . , bn(n)

∣∣
A =

∫
a∗bdτ

(5.21)

Our goal is to perform unitary transformations on the orbitals such that;

â = aU

b̂ = bV∫
b̂∗âdτ = U∗A V = Σδâb̂

(5.22)

where Σ is a diagonal matrix. While the overlap matrix has been transformed into a diagonal

matrix, the resulting wavefunctions will remain unchanged beyond stretching.

ψa = det(U∗)C
∣∣â1, . . . , ân

∣∣
ψb = det(V ∗)C

∣∣b̂1, . . . , b̂n
∣∣ (5.23)

Choosing the correct U and V looks very much like SVD. We define V as composed of

orthonormal eigenvectors of A ∗A , such that A ∗A V = V Λ. Solving for the eigenvalues, Λ

gives:

Λ = V ∗A ∗A V

= (A V )∗(A V )

(5.24)

Because Λ is diagonal, the columns of A V must be orthogonal, and the eigenvalues are

positive as the squares of the indices of Λ. We can now use these values to construct a second

unitary matrix U such that;

U = A V Λ1/2 (5.25)
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wherein U is composed of the eigenvectors of A A ∗. This definition indicates that the

aforementioned procedure is necessarily symmetric with regards to ψa and ψb. The previously

unknown diagonal matrix, Σ, can therefore be derived as follows.

Σ = U∗A V

= Λ1/2V ∗A ∗A V

= Λ1/2

(5.26)

And thus the earlier prescription of the singular values has been procured, as well as the

left and right singular vectors.

Therefore, the products of SVD are chemically relevant spaces that can be used to

re-orient the GS and ES produced by TI-DFTB to calculate TI-TDM.

5.3.2 Mathematical Formalism of COT in TI-DFTB

Let’s first describe the vector-spaces obtained from TI-DFTB and SVD, and how they can be

used. A generic ∆DFTB calculation with a ground-state guess and spin purification describes

the MO spaces of three distinct states: the GS, the triplet-state, and the mixed-state. For

the remainder of this chapter we will refer to the SCC optimized GS MO coefficient matrix

as G, and the optimized mixed-state MO coefficient matrix as E.

Once we calculate GTE = M and perform SVD we have calculated U , V , and Σ. Because

MO spaces are defined by orthonormal column vectors in the MO coefficient matrix, G and

E are unitary matrices along with U and V , such that:

UTU = GTG = V TV = ETE = I

(The transpose of these equations are also true.)
(5.27)

M and Σ also possess intrinsic qualities that are useful. Σ is a diagonal matrix such that;
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Σ = ΣT = σiδij (5.28)

and contains the uniquely determined singular values of M which have already been linked

to the stretching effect of an electronic transition section 5.2. Singular values close to unity

indicate little change has occurred between the two calculations for a particular MO, and

values significantly above or below unity will identify MO that have changed the most.104 M

is not necessarily unitary nor diagonal, however it can be related to the unitary matrices U

and V as follows.98

M = UΣV T

MTM = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = V (ΣTΣ)V T = V Σ2V T

MMT = (UΣV T )(UΣV T )T = UΣV TV ΣTUT = U(ΣΣT )UT = UΣ2UT

(5.29)

In subsection 6.3.1 an example U and V are shown for an an excitation in N2.

Equation 5.30 shows the mathematical basis of the assertion that; two MO spaces that

are not mutually orthogonal can be made mutually orthogonal by transforming

the MO bases with the products of SVD. Bearing in mind all that has been discussed

in this chapter, this notion is perhaps not so difficult to believe. The effect of U , V and Σ

are shown in Figure 5.2, and the unitary transformation matrices U and V were shown to

have rotational properties. When comparing to the SCC operation visualized in Figure 5.1 it

made intuitive sense that these unitary matrices contained information about the rotational

transformations between the GS and ES. In subsection 6.3.1 an example U and V are shown

for an an excitation in N2, and in this more tangible example these rotational regions of

these matrices are visible. COT assigns the left singular vectors of M to transform the

left multiplied matrix used to form M, and the same with the right singular vectors and

matrix. By using these rotational matrices, one is able to redefine the MO spaces within a
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The Corresponding Orbital Transformation

Let the MO column vectors of G =
[
a1, . . . , an

]
and E =

[
ā1, . . . , ān

]
, and the diagonal

elements of Σ =
{
σ1, . . . , σn

}
as per Equation 5.28. Let M = GTE = UΣV T as per

Equation 5.12, and MTM = V Σ2V T as per Equation 5.29. Recall from Equation 5.4

that for mutually orthogonal bases < i|j >= δij.

M = UΣV T

MTM = MTUΣV T

V Σ2V T = MTUΣV T

V Σ2V TV = MTUΣV TV

V Σ2 = (GTE)TUΣ

V Σ2 = ETGUΣ

V Σ = ETGU

EV Σ = EETGU

EV Σ = GU

(EV )TEV Σ = (EV )TGU

Σ = (EV)TGU

...〈
ai
∣∣Û =

〈
i〈

āi
∣∣V̂ =

〈̄
i

Σ =
〈
i
∣∣̄j〉 = σiδīj

(5.30)

mutually orthogonal basis to rectify the issue of non-orthogonality posed in Equation 5.11.

Equation 5.30 shows that U and V can be interpreted as operators Û and V̂ that rotate the

column vectors in G and E so that the spaces are mutually orthogonal.
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5.4 TDM in TI-DFTB+

The MO coefficient matrices that have now been made orthogonal with COT must be used

to evaluate the transition dipole moment. As per Equation 5.6, the permanent dipole mo-

ment is approximated as a summation of partial Mulliken charges on each atomic center.

The wavefunctions are not used directly for this calculation as the MO described by the

SCC routine of DFTB are auxiliary and have an inherently unknown relation to the true

many-body wavefunction. The meaningful quantity from these MO is the electronic den-

sity in DFTB as well as DFT, in which a theoretical perfect functional exists wherein the

wavefunction is perfectly described by this density. In Casida TD-DFTB (or linear response

DFTB) one approximates the TDM by assigning individual orbitals with a transition charge

at each atomic center. Here C is the GS MO coefficient matrix and S is the AO overlap

matrix.

∆qia,A =
1

2

(∑
µ∈A

∑
ν

C‡µiSµνCνa + C‡νiSνµCµa

)
(5.31)

The charges, ∆qia,A, are weighted by transition vectors from the linear response calculation.

How do TDM in TD-DFTB compare to the TI-DFTB procedure? Firstly, TI-DFTB is

not a linear response method, therefore transition vectors are not calculated and cannot be

used to weight the sum. The MO spaces from ES calculations in ∆DFTB are optimized fully

under SCC procedure, and as described above will need to be transformed by COT with

respect to their GS analogues before direct comparison. Once transformed, however, the

isomorphisms (G′ and E ′) of the original MO spaces (G and E) can be directly implemented

in an analogous sum. Σ is the diagonal overlap matrix between these states described by

Equation 5.17.

∆qia,A =
1

2

(∑
µ∈A

∑
ν

(G
′

µi)
‡ΣµνE

′

νa + (G
′

νi)
‡ΣνµE

′

µa

)
(5.32)
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5.4.1 Code Description

Listing 5.1 shows an excerpt of the outermost TDM subroutine, nested within is the call for

tiTDM() where the SVD and COT occurs. The approximate placement of this routine in

the overall DFTB+ structure can be found in Figure 5.3.

1 ! Transform saved MO coefficient matrices using COT (SVD)

2 do iSpin = 1, size(gfilling , dim =3)

3 call tiTDM(tiMatG(:,:,iSpin), tiMatE(:,:,iSpin), tiMatS , gfilling

(:,1,iSpin), mfilling (:,1,iSpin))

4 ! Make transition density lower triangular

5 do i = 1, n

6 forall (j=1:i) tiTransitionDensity(i,j, iSpin) = tiMatS(i,j)

7 enddo

8 ! Pack transition density matrix

9 rhoPrim(:,iSpin)=0.0 _dp

10 call packHS(rhoPrim(:,iSpin), tiTransitionDensity (:,:,iSpin),

neighbourlist%iNeighbour , nNeighbourSK , orb%mOrb , denseDesc%

iAtomStart , iSparseStart , img2CentCell)

11 titracharges (:,:) =0.0 _dp

12 call mulliken(tiTraCharges ,over ,rhoPrim(:,iSpin),orb ,neighbourlist%

iNeighbour ,nNeighbourSK ,img2CentCell ,iSparseStart)

13 !Calculate Dipole

14 nAtom = size(tiTraCharges , dim =2)

15 do ii = 1, size(iAtInCentralRegion)

16 iAtom = iAtInCentralRegion(ii)

17 tiTDMom (:) = tiTDMom (:)&

18 & + sum(q0(:,iAtom ,iSpin)-tiTraCharges (:,iAtom))*coord(:,iAtom)

19 enddo

20 enddo

Listing 5.1 TI-DFTB TDM outer routine; calls COT, density packing, Mulliken
analysis, and sums dipole moment.
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Figure 5.3 TI-DFTB Transition dipole moment (TDM) calculation work-flow,
highlighting how TI-TDM fits into the established ∆DFTB determinant loop, and
algorithmic targets achieved in this implementation as described in Equation 5.30.
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Listing 5.2 is an excerpt from the subroutine tiTDM() where SVD and COT are used to

create the mutually orthogonal ES and GS vector spaces. SVD is accomplished with a

LAPACK routine called gesvd().113

1 M=matmul(transpose(g),e)

2 !> Lapack routine SVD

3 call gesvd(M,u,sigma ,vt)

4 !Transforms e with singular vectors and isolate occupied MO

5 M=matmul(e,transpose(vt))

6 do jj = 1, nElec

7 if (abs(mfilling(jj)) >= epsilon (1.0 _dp)) then

8 Ce(:,jj) = mfilling(jj)*M(:,jj)

9 endif

10 end do

11 if (mfilling(nElec)==0.0 _dp) then

12 do jj = nElec , na

13 if (abs(mfilling(jj)) >= epsilon (1.0 _dp)) then

14 Ce(:, nElec) = mfilling(jj)*M(:,jj)

15 endif

16 enddo

17 endif

18 !Transforms g with singular vectors and isolate occupied MO

19 M=matmul(g,u)

20 do jj = 1, na

21 if (abs(gfilling(jj)) >= epsilon (1.0 _dp)) then

22 Cg(:,jj) = gfilling(jj)*M(:,jj)

23 endif

24 end do

25 !> Cet*Cg, Transition Density of Excitation

26 M=matmul(Cg, transpose(Ce))

Listing 5.2 TI-DFTB TDM subroutine which performs SVD and COT.
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The general structure of these TDM subroutines was accomplished by closely emulat-

ing existing code structures for density, Mulliken population, dipole moment calculations

already present in the DFTB+ main code. Interestingly, a difference between lines 26 of

Listing 5.2 and Equation 5.32 arose when application of neither the DFTB+ overlap matrix

(SSqrReal) nor the diagonal matrix form of the singular vectors (Seg) produced reasonable

values for transition dipole moments and were left out of the calculation. Looking deeper

into the structure of DFTB it was noted that the overlap matrix was not used in calculating

the density, therefore that structure was not used in our part of the code as well. List-

ing 5.3 shows a snippet of this main-code structure where the variables are declared for the

fullDensityMatrix_real() subroutine. Note that only the eigenvectors and fillings are called.

1 !> the resulting nOrb*nOrb density matrix

2 real(dp), intent(out) :: dm(:,:)

3 !> the eigenvectors of the system

4 real(dp), intent(inout) :: eigenvecs (:,:)

5 !> the occupation numbers of the orbitals

6 real(dp), intent(in) :: filling (:)

Listing 5.3 DFTB+ variables used in main-code density calculation.

This structure was therefore replicated in tiTDM() where as per Listing 5.2 lines 6-16

and 20-24 the electron occupancy is used to select only columns of the transformed MO

coefficient matrices that are occupied. The sparse packing of tiTransitionDensity(:,:,:) and

Mulliken population analysis (mulliken()) shown in Listing 5.1 are both subroutines local

to the DFTB+ software package and were called as “black-boxes” such that no substantive

alteration of the code occurred there. Lines 14-19 of Listing 5.1 is a direct translation of the

local code structure for calculating ground state dipole moments in DFTB+.

A step by step printout of this type of calculation is described in subsection 6.3.1.
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Chapter Six

PROOF OF CONCEPT

(Representative Calculations in

TI-DFTB 19.1)

6.1 Earlier Versions of the Code

To discuss the differences in coding organization between TI-DFTB 1.2 and 19.1 is like

the colloquialism "apples and oranges" - which is to say that DFTB 1.2 and 19.1 are very

different! This extends to their efficacy as well. In Table 6.1 the eye is somewhat befuddled

by the sheer amount of different solutions, and the amount of solutions which could not lead

to a stable final geometry (shown with italics). This data is admittedly not very lovely to look

at, but it is included in full to communicate several ideas that will be focused and expanded

upon. It is also included as a nod to the fact that the this was the first time I had ever

used a terminal, and as such each of these calculations was individually and painstakingly

executed by hand. I mention this to encourage future students that though the results are

sometimes ugly and difficult at first, things do get easier. And ask your lab-mates to help

you write a script, ASAP.

Let us look at the first two lines, where DFTB (a GS calculation) and TD-DFTB (an ES
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Coronene Benzene Butadiene Indigo Fluorescein Tetracene

DFTB -45.94 -12.57 -9.08 -42.70 -55.60 -35.51

TD-DFTB -45.89 -12.57 -9.06 -42.70 -55.56 -35.51

∆DFTB -45.78 -12.35 -8.94 -42.64 -55.46 -35.44

MOM -44.58 -12.38 -8.94 -42.64 -44.89 -35.44

IMOM -45.32 -12.60 -8.86 -40.84 -221.39 -34.06

DAD1 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD2 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD3 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD4 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD5 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD6 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD7 -43.68 -12.60 -8.86 -40.37 -325.35 -33.65

DAD8 -43.68 -12.57 -8.86 -40.37 -325.35 -33.65

DAD9 -43.68 -12.52 -8.75 -40.37 -325.35 -33.65

DAD10 -42.93 -30.55 -8.86 -40.37 -325.35 -33.48

DAD11 -44.13 -12.53 -8.98 -40.79 -325.35 -33.85

DAD12 -44.46 -28.29 -8.61 -40.24 -325.35 -33.85

DAD13 -44.77 -12.70 -8.82 -40.64 -326.93 -33.85

DAD14 -44.77 -12.19 -8.83 -40.64 -52.91 -33.85

DAD15 -44.39 -12.19 -8.68 -40.64 -52.91 -33.85

Table 6.1 Example final energy outputs (H) from geometry optimizations using
TI-DFTB 1.2 for test-set of conjugated small molecules. The italicized numbers
indicate a geometry optimization where the SCC converged at each geometry step,
but the final geometry could not converge in 2000 steps using the Broyden mixer
and Conjugate Gradient driver.
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calculation) outputs are recorded. The perturbative excited-state method housed in DFTB+

could not faithfully account for reasonably spaced singlet excited-states in many of these

small conjugated molecules, and for tetracene and indigo it predicted no stable excited-state.

∆DFTB 1.2 was able to predict reasonable excited states for butadiene, indigo, fluorescein

and tetracene, but failed for the other two. Using MOM 1.2 one could find a solution

for benzene, but fluorescein now fails. MOM 1.2 is able to reproduce ∆DFTB values for

three molecules. IMOM 1.2 finds a solution for coronene, however the solutions for benzene

and butadiene do not match ∆DFTB values, and the benzene excited-state is predicted to

be lower energy than the ground-state! The DAD1-DAD15 data is particularly unwieldy,

predicting many different converging solutions. Most notably, what happened to fluorescein?

This data does not make physical sense in the slightest, and riddling out what particularly

was happening to cause such an upset was the focus of investigation for many months. It was

eventually decided that what was happening was a continual update of the geometry loop

from the ground-state eigenvectors, the triplet-state eigenvectors and then the mixed-state

eigenvectors. As many as three geometry updates would happen in a single iteration of the

geometry loop, and as such the eigenvectors of the previously calculated state were passed

into the next as an initial guess. An optimized ground-state would update the geometry of

the molecule and form the initial guess for the triplet-state, and that when optimized would

again update the geometry and form the guess for the mixed. When the mixed was optimized,

the geometry would be updated for the third time and written in the optimized geometry

file. In larger systems like fluorescein this caused major upset, as shown in Figure 6.1.

The geometry for several selected steps are shown in Figure 6.1. It is unclear what

happens to the eigenvectors in the last step to cause the energy to fall so low, as steps 2595

and 2644 look very similar. Perhaps in this step the hydrogens dissociated completely as

they seem to be attempting throughout the calculation.

This dissociation of hydrogen was common in DAD and IMOM calculations, and it was

later found that the eigenvectors were not sorted in such a way that affected the electron
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Figure 6.1 DAD10 1.2 geometry optimization of fluorescein with several geometries
from peaks or valleys shown. Geometry does not update correctly, and affects
strange crumpled structure, leading to an overall rising energy that will not converge.
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filling, only the diagonalization and assignment of eigenvalues. Another frightening example

of geometry upset was found in tetracene examples where the code had been updated into

DFTB+ 17.1. Unfortunately, the code did tend to update before complete programming

efforts had been completed a number of times throughout this project, but this total re-

hauling of efforts allowed for a very thorough reevaluation of what elements of our code

caused problems, as well as an strong familiarity with the general structure of the DFTB+

program.

In Figure 6.2 the final geometries of multiple tetracene calculations are shown, as well as

the final printed geometries from the current SCC cycle in Table 6.2. Values corresponding to

geometries in red were the final total energy of the SCC cycle where the calculation stopped.

Figure 6.2 Final geometry of
optimization, showing clear issues
with IMOM and DAD methods in
DFTB+ 17.2.

DAD 10 -33.4803 H

IMOM -33.5661 H

DAD 1 -9 -33.6905 H

DAD 11 -15 -33.7363 H

MOM -35.4484 H

∆DFTB -35.4484 H

TD-DFTB -35.5076 H

DFTB+ (ground) -35.5076 H

Table 6.2 Final converged ener-
gies of multiple methods, shows
an excited state that MOM 17.2
and ∆DFTB 17.2 were able to
capture that TD-DFTB could
not, as well as higher energies of
strained structures.
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In this iteration of the code, there was not an issue of erroneous SCC convergence, and the

failed calculations produced errors relating to a lack of SCC convergence. The final energies

were taken from the last successful SCC iteration for the table above.

This approach was carefully reworked in DFTB+ 19.1 so as to avoid the pitfalls that have

been presented here. Once the determinant loop was added, there was explicit logic that

allowed the eigenvectors from the previous determinant to be explicitly overwritten with a

new initial guess. Also, the determinants previous would not affect the geometry of that

iteration of the geometry cycle. These together solved the issues of hydrogen migration,

node formation, and general wadding up that tended to happen before.
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6.2 TI-DFTB 19.1

6.2.1 Numerical Gradients of Hydrogen

Figure 6.3 Difference between analytically and numerically calculated gradients of
TI-DFTB energy for H2 showing smooth convergence at zero.

A hydrogen (H2) molecule with a reference bond length of 1.000Å was evaluated with

∆DFTB for the analytical gradient (∇0E=-0.14 H/a0). The numerical gradients were calcu-

lated by evaluating the ∆DFTB energy for H2 at 100 increments (x) of ±0.001x Å past the

reference bond length. These energies (E(±x)) were used to calculate the numerical gradients

as follows:

∇nE =
E(−x) − E(+x)

2× 0.001x
(6.1)

The difference between∇0E and∇nE is plotted in Figure 6.3. This chart shows a smooth

convergence at zero on the x-axis, which indicates that for ∆DFTB:

lim∆x→0
∆E

∆x
=
δE

δx
(6.2)
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6.2.2 Geometry Optimization of Acridinium Salts

In TI-DFTB 19.1, geometry optimizations of six acridinium salts were run, calling non-

Aufbau fillings, spin-purification and the ground-guess functions. These molecules are promis-

ing organic catalysts,114,115 have been investigated by our lab in the past,116 and are a good

size for methodological speed comparisons and also possess high levels of conjugation to test

convergence strategies. These optimizations were performed with the Broyden mixer and

Conjugate Gradient as above, and allowed to run for up to 1,000 steps although many con-

verged at the excited state in under 300 steps. Their final GS and spin-purified ES energies

are shown in Table 6.3, and the geometry optimization paths are plotted in Figure 6.4 to

show a general proof of concept for ∆DFTB 19.1 and the ground-guess function.

A B C D E F

Functional

Group
naphthalene benzene toluene mesitylene anthracene xylene

Ground-State

Energy (H)
-50.24 -42.59 -45.07 -50.25 -57.89 -47.56

Excited-State

Energy (H)
-50.18 -42.52 -45.00 -50.21 -57.83 -47.49

HOMO-LUMO

Gap (eV)
1.765 1.967 1.913 1.056 1.438 1.903

Table 6.3 Final excited- and ground-state energies of six acridinium salts and ex-
citation energies in eV.

These figures show a clear and dramatic difference when compared to the figures in

section 6.1. Figure 6.4 has clean smooth total energy values near the end of the calculation,

and after the initial changes to the geometry are constantly decreasing in value. These

calculations have a three-determinant loop called due to the spin-purification and ground-

guess functions, yet manage to maintain discrete energy calculations for each state.
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Figure 6.4 TI-DFTB geometry optimizations of six acridinium salts showing func-
tionality of the ground-guess, and preservation of the HOMO-LUMO gap through-
out geometry changes. Geometry optimizations are driven by the geometry of the
excited-state, and 4 examples were able to converge in less than 300 steps. C and F
required more steps; 825 and 1133 respectively.
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Qualitatively, one can observe in these representations a relative proportionality between

HOMO-LUMO gaps and total energy that are consistent with chemical intuition. In Fig-

ure 6.4F we find the lowest overall energy for both the ES and GS, which would be expected

from something so highly conjugated as the anthracene group. This example also has one

of the lower HOMO-LUMO gaps at 1.77 eV, second only to the mesitylene functionalized

salt (Table 6.3). Acridinium salt D functionalized with mesitylene has a higher energy than

E, but a lower vertical excitation energy potentially due to the favorably placed electron

donating groups. Conversely, Figure 6.4B shows the energy of an acridinium salt with a

basic phenyl group that has one of the highest energies, that is the least stable of the set.

This instability is consistent with the largest vertical excitation energy of nearly 2 eV.

Possible future work involves varying the driver and basis sets used for these kind of

calculations. There has been studies that find there are accelerated drivers that might speed

the optimization even more,117,118 and different basis sets or higher levels of parameterization

may positively affect the accuracy of this data.119,120
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6.2.3 Single Point Energy Calculation of Coronene

Along with the new determinant loop in DFTB+ 19.1 removing the earlier code’s error when

updating the geometry cycle, new efforts to implement MOM, IMOM and DAD resulted

in much higher fidelity when using these methods. In DFTB+ 1.2, coronene geometry

optimizations failed for ∆DFTB, MOM, and DAD 10. IMOM, DAD1-DAD9, and DAD11-

DAD15 all converged, but these methods resulted in six different final energies for singly

excited coronene (Table 6.1). Using TI-DFTB 19.1, single point calculations for coronene

from the same initial geometry as used for Table 6.1 were used to construct the plots in

Figure 6.5.

In Figure 6.5-Delta, ∆DFTB fails after 100 SCC iterations due to evident trapping of

the calculation in some potential well. The steps taken in this example show the calculated

energy bouncing back and forth between two solutions with some periodicity. A possible

reason for this phenomenon could be a poor initial guess, which is evidenced by the three

large and distinct energy spikes in the first 10 iterations of the calculation.

Figure 6.5-MOM shows that with the addition of MOM to this calculation, the previously

difficult to converge SCC energy is optimized in under 20 iterations. By influencing the

subsequent SCC iterations with the eigenvectors previous, the calculation does not make

such dramatic swings in energy as the space is optimized. Because this system is large and

conjugated the virtual orbitals are low-lying and nearly degenerate, so allowing population

of different virtual orbitals results in the optimization more easily finding the lowest energy

solution.

In a visually stimulating reinforcement of the hypothesis about a poor initial guess,

Figure 6.5-IMOM shows a compounding oscillation about the theorized potential well. Con-

tinually projecting onto the initial space, which was probably defined poorly, exacerbated

the periodic energy spikes seen by using ∆DFTB for this system.

DAD was employed slightly differently than previously reported in Table 6.1, for instead
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Figure 6.5 TI-DFTB geometry optimizations of six acridinium salts showing func-
tionality of the ground-guess, and preservation of the HOMO-LUMO gap through-
out geometry changes. Geometry optimizations are driven by the geometry of the
excited-state, and 4 examples were able to converge in less than 300 steps. C and F
required more steps; 825 and 1133 respectively.
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of blindly projecting onto any of the first several spaces, DAD was used strategically to

project onto a local minimum present in the first steps of the ∆DFTB calculation. Local

minima were found at step 3, 5 and 11, therefore DAD3, DAD5 and DAD11 were calculated

for this system. As shown in Figure 6.5-DAD3, this higher energy minimum trapped the

calculation in a higher energy state along the well compared to the ∆DFTB path, while

Figure 6.5-DAD5 shows an increased frequency and amplitude of the energy oscillation from

∆DFTB. These two representations are a strong proof of concept for the functionality of

DAD, as well as a beautiful representation of a small and mysterious piece of the multi-

dimensional potential energy surface. Figure 6.5-DAD11 converges at the energy minimum

found by using MOM on this system (Figure 6.5-MOM).

This data, compared to the data from section 6.1, shows a much more clear physical

representation of the mathematical intention behind the programming of MOM, IMOM and

DAD. These functions of TI-DFTB 19.1 allow the user to make informed guesses as to how

to calculate the ES energy of their systems, and how to overcome convergence issues in even

large conjugated systems like coronene.
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6.3 Transition Dipole Moments in TI-DFTB 19.1

6.3.1 TDM Analysis of Nitrogen

Let’s jump right in to a real example of SVD and COT being applied to a ∆DFTB output

of the α spin channel of N2, using a mixed-state (E) and a GS (G) MO coefficient matrix

to calculate the non-diagonal overlap matrix, M. For each C matrix, the rows indicate the

AO contribution to each MO. From top to bottom the AO index of the rows for dinitrogen

C are: from N1

{
2s, 2px, 2py, 2pz

}
, and from N2

{
2s, 2px, 2py, 2pz

}
. The columns indicate the

MO’s comporised of AO character. The columns from right to left for dinitrogen C are:{
1σg, 1σu, π

x
u, π

y
u, 2σg, π

x
g , π

y
g , 2σu

}
.

G =


0.56 0.62 0.00 0.00 0.32 0.00 0.00 −0.71
0.09 −0.20 0.01 -0.54 −0.35 -0.61 0.17 −0.53
0.09 −0.20 -0.47 0.26 −0.35 0.16 -0.61 −0.53
0.09 −0.20 0.46 0.28 −0.35 0.45 0.44 −0.53
0.56 −0.62 0.00 0.00 0.32 0.00 0.00 0.71
−0.09 −0.20 0.01 -0.54 0.35 0.61 -0.17 −0.53
−0.09 −0.20 -0.47 0.26 0.35 -0.16 0.61 −0.53
−0.09 −0.20 0.46 0.28 0.35 -0.45 -0.44 −0.53



E =


0.56 0.62 0.00 0.00 0.32 0.00 0.00 −0.71
0.09 −0.20 -0.51 -0.16 −0.35 0.18 -0.60 −0.53
0.09 −0.20 0.39 -0.37 −0.35 0.43 0.46 −0.53
0.09 −0.20 0.12 0.52 −0.35 -0.61 0.14 −0.53
0.56 −0.62 0.00 0.00 0.32 0.00 0.00 0.71
−0.09 −0.20 -0.51 -0.16 0.35 -0.18 0.60 −0.53
−0.09 −0.20 0.39 -0.37 0.35 -0.43 -0.46 −0.53
−0.09 −0.20 0.12 0.52 0.35 0.61 -0.14 −0.53


(6.3)

Notice the bold columns in Equation 6.3. The difference between these columns in G and

E indicate where the ∆DFTB excitation from GS to ES affected the shape of the πxyu and

πxyg molecular orbitals. The predicted HOMO in this system is column 5, the 2σg orbital,

and the LUMO is column 6, one of the degenerate πxyg . The inner products of the columns

of G called ~gi and the columns of E, ej indicate that these two matrices though individually

orthogonal are not mutually orthogonal, that is 〈~gi|~ej〉 6= δij. For example, the inner product

of ~g4 and ~e4 is not 1 as would be necessary, the value of ~g4 × ~e4 = 0.27. The inner product

of ~g3 and ~e4 is not 0, the value of ~g3 × ~e4 = 0.82.
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Now let us calculate GTE = M.

M =


0.69 0.00 0.00 0.00 0.16 0.00 0.00 0.00
0.00 1.01 0.00 0.00 0.00 0.00 0.00 -0.26
0.00 0.00 -0.27 0.82 0.00 0.00 0.00 0.00
0.00 0.00 0.82 0.27 0.00 0.00 0.00 0.00
0.16 0.00 0.00 0.00 0.95 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -0.64 1.00 0.00
0.00 0.00 0.00 0.00 0.00 -1.00 -0.64 0.00
0.00 -0.26 0.00 0.00 0.00 0.00 0.00 2.69


(6.4)

This matrix M tells us a lot of what has happened by this excitation. Columns 3, 4, 6 and

7 inform us that the effect of excitation upon the πxyu and πxyg were rotations of these MO.

Columns 3 and 4 show an improper rotation of πxyu with the matrix form
(

cos θ sin θ
sin θ − cos θ

)
, and

columns 6 and 7 show a proper rotation of πxyg with the matrix form
(

cos θ − sin θ
sin θ cos θ

)
. Rotations

of these MO indicate a rotation of the N2 bond in response to excitation. Math is beautiful!

Notice too column and row 5. This is the HOMO from which the electron was excited,

so it is in G an occupied orbital and in E a virtual orbital. The off diagonal elements of

these indices are therefore important information when calculating transition properties.

However, concerning SVD, this matrix is not symmetric. It is nearly so however columns

6 and 7 have a discrepancy. How does this affect SVD?

Let us first construct the rows of VT which will be composed of orthonormal eigenvectors

of MTM. In Equation 6.5 again we see many pairs of vectors forming rotation matrices.

VT =


0.91 0.00 0.00 0.00 -0.42 0.00 0.00 0.00

-0.42 0.00 0.00 0.00 -0.91 0.00 0.00 0.00
0.00 0.15 0.00 0.00 0.00 0.00 0.00 -0.99
0.00 -0.99 0.00 0.00 0.00 0.00 0.00 -0.15
0.00 0.00 -0.97 -0.26 0.00 0.00 0.00 0.00
0.00 0.00 0.26 -0.97 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.97 -0.25 0.00
0.00 0.00 0.00 0.00 0.00 -0.25 -0.97 0.00


(6.5)

Then we solve for the singular values of MTM, or the eigenvalues of M as described by

Equation 6.6. The HOMO and LUMO are in bold. The depopulated HOMO has shrunk, and

the newly populated LUMO has grown. The other virtual orbitals have also been stretched,

and the πxyu and πxyg have equally shrunk and stretched respectively.
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σi =

{
0.61 1.03 0.86 0.86 0.97 2.73 1.18 1.18

}
(6.6)

Now we calculate the column vectors of U which will form an orthonormal basis of ColM.

Here is where the asymmetry plays a part. Notice in Equation 6.7 that the columns of U

also form rotation matrices!

U =


0.15 0.00 0.00 0.00 -0.99 0.00 0.00 0.00

-0.99 0.00 0.00 0.00 -0.15 0.00 0.00 0.00
0.00 -0.74 -0.68 0.00 0.00 0.00 0.00 0.00
0.00 -0.68 0.74 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -0.42 0.00 0.00 0.00 0.91
0.00 0.00 0.00 -0.91 0.00 0.00 0.00 -0.42
0.00 0.00 0.00 0.00 0.00 0.06 -1.00 0.00
0.00 0.00 0.00 0.00 0.00 -1.00 -0.06 0.00


(6.7)

What does this tell us about the fundamental difference between the ground state G and

the excited state E? As described in subsection 5.1.2, the SCC pathway rotates the MO

spaces within an AO basis to correctly describe the electronic space in question. We have

formed two rotation transformation matrices in the pursuit of the left singular vectors and

right singular vectors of the overlap matrix M between the GS and ES of N2. These results

make intuitive sense in light of a rotating SCC pathway. Also, we have calculated singular

values for the overlap matrix M that make chemically intuitive sense with regards to how

the MO will react to an excited electron.

These transformation matrices and the singular values will play the integral part in cal-

culating the information about transition between these two states. Applying these matrices

to G and E as described in Equation 5.30 rotates these spaces so that they are mutually

orthogonal.
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GU = Cg =


0.79 0.00 0.00 -0.53 -0.51 0.00 0.00 0.38
0.49 0.33 0.53 0.28 0.27 0.54 0.02 0.23
0.49 0.30 -0.55 0.28 0.27 −0.28 0.46 0.23
0.49 -0.63 0.02 0.28 0.27 −0.25 −0.47 0.23

-0.79 0.00 0.00 -0.53 0.51 0.00 0.00 0.38
0.49 -0.33 -0.53 -0.28 0.27 0.54 0.02 −0.23
0.49 -0.30 0.55 -0.28 0.27 −0.28 0.46 −0.23
0.49 0.63 -0.02 -0.28 0.27 −0.25 −0.47 −0.23



EV = Ce =


0.79 0.00 0.00 -0.53 −0.51 0.00 0.00 0.38
0.49 0.33 0.53 0.28 0.27 0.54 0.02 0.23
0.49 0.30 -0.55 0.28 0.27 -0.28 0.46 0.23
0.49 -0.63 0.02 0.28 0.27 -0.25 −0.47 0.23

-0.79 0.00 0.00 -0.53 0.51 0.00 0.00 0.38
0.49 -0.33 -0.53 -0.28 0.27 0.54 0.02 −0.23
0.49 -0.30 0.55 -0.28 0.27 -0.28 0.46 −0.23
0.49 0.63 -0.02 -0.28 0.27 -0.25 −0.47 −0.23


(6.8)

Notice that Cg = Ce, and therefore a linearly independent set of column vectors have

been produced that span all of R8. The individually orthogonal vectors of G and E have

been rotated onto a space that can be loosely interpreted as the discrete electronic densities,

or orbitals of transition. These orbitals are then used to calculate the electronic density of

transition (ρg→e) by selecting only the occupied transition orbitals (in bold in Equation 6.8)

according to Equation 6.9.

ρg→e = C occ
g (C occ

e )T

ρg→e =


0.79 0.00 0.00 −0.53 −0.51
0.49 0.33 0.53 0.28 0.27
0.49 0.30 −0.55 0.28 0.27
0.49 −0.63 0.02 0.28 0.27
−0.79 0.00 0.00 −0.53 0.51

0.49 −0.33 −0.53 −0.28 0.27
0.49 −0.30 0.55 −0.28 0.27
0.49 0.63 −0.02 −0.28 0.27




0.79 0.00 0.00 −0.53 0.00
0.49 0.33 0.53 0.28 0.54
0.49 0.30 −0.55 0.28 −0.28
0.49 −0.63 0.02 0.28 −0.25
−0.79 0.00 0.00 −0.53 0.00

0.49 −0.33 −0.53 −0.28 0.54
0.49 −0.30 0.55 −0.28 −0.28
0.49 0.63 −0.02 −0.28 −0.25


T

ρg→e =


0.91 −0.03 0.39 0.37 −0.36 0.27 0.69 0.67
0.24 0.87 0.05 0.06 −0.54 −0.08 0.28 0.29
0.24 0.27 0.64 0.06 −0.54 0.51 −0.31 0.29
0.24 0.27 0.05 0.65 −0.54 0.51 0.28 −0.30
−0.36 −0.27 −0.69 −0.67 0.91 0.03 −0.39 −0.37

0.54 −0.08 0.28 0.29 −0.24 0.87 0.05 0.06
0.54 0.51 −0.31 0.29 −0.24 0.27 0.64 0.06
0.54 0.51 0.28 −0.30 −0.24 0.27 0.05 0.65


(6.9)

ρg→e is then packed into a sparse matrix representation, and fed into a subroutine that

calculates the transition Mulliken populations on each atom. For N2 these transition charges

for this alpha spin channel (qα) are shown below in Table 6.4, as well as the neutral atomic

charge populations (q0).
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qα q0

σ N1 N2 N1 N2

2s 0.50 0.50 2.00 2.00

2px 0.65 0.67 1.00 1.00

2py 0.42 0.41 1.00 1.00

2pz 0.43 0.42 1.00 1.00
.

Table 6.4 TI-DFTB calculated charge per atomic orbital for N2

These charges were used to calculate the TDM in accordance with ground state dipole

moment calculations from other parts of the program. The final TDM of N2 was calculated

to be 0.94 au, and is depicted visually below showing transition charge localization on N1.
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6.3.2 Charge Analysis of 1-methyl-thymine

TI-DFTB was used to optimize the ES energy of 1-methyl-thymine so that the transition

dipole moment (TDM) could be analyzed. This molecule was chosen due to a recent study

by Kistler et al.121 which decomposed this molecules atom centered Mulliken population of

transition charge from the total transition density. The natural product of the TI-DFTB

TDM routine results in atom centered Mulliken populations that are subsequently summed

in order to calculate the TDM, therefore this was an excellent reference to compare early

coding efforts against, as shown in Figure 6.6.

Figure 6.6 Total atom centered transition charges calculated by TD-DFT using the
B3LYP functional in [121] compared to transition charges calculated with TI-DFTB
for four different charge mixing schemes. A.) UD density and α channel, B.) UD
density with α and β contributions, C.) QM density with α channel, D.) QM density
with α and β contributions.

Using data similar to what is represented in Table 6.4, 1-methyl-thymine was used to test

a few charge mixing schemes for the ultimate TDM summation shown in Listing 5.1. There
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was some ambiguity as to the form of the sparse density matrix during TDM calculation,

namely whether the variable should be in a charge/magnetization (QM) or in a spin-up/spin-

down (UD) form during the summation. The general concept represented by the two columns

that form the sparse density matrix have been referred to thus far as the α- and β-channel,

which evokes a UD framework with its connotation. However, it was discovered that the

ground state dipole moment calculation in DFTB+ only used the previously termed α-

channel in the summation. This is nonsensical given the general notion of dual-spin systems.

The total atom centered transition charges were amassed for 1-methyl-thymine using the

sparse transition density in both a QM and UD form (as the variable was altered easily using

a local subroutine to DFTB+ called qm2ud()). It was then tested whether both the α and β

spin-channels should be used. Figure 6.6A shows the total charges from a UD density using

only the α-channel, Figure 6.6B shows the same but with a summation of both α and β

contributions. Figure 6.6C uses a QM density form, but only calculates a TDM with values

from the α spin-channel. Figure 6.6A-C are all clearly different than the literature values

for 1-methyl-thymine atom centered transition charges. The final programming form was

decided upon with creation of Figure 6.6D which used a QM transition density and both

spin-channels.
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6.3.3 TDM Benchmarking for Small Molecule Test Set

A benchmarking of TDM calculated using the wave function (WF) approach EOM-CCSD

(section 2.3.2) as a reference, and TD-DFT with differing functionals across Jacob’s ladder

(subsection 3.1.1) were used as a comparison for the cost and accuracy of TI-DFTB TDM.

The molecules used in this benchmarking were pulled from a test set used by Martin Head-

Gordon,122 and selected based on the stipulation that they contain only C, N, O and H

atoms. This is simply for ease of comparison to TI-DFTB as the mio-1-1 Slater-Koster files

have been used in all other DFTB calculations for this work. The geometries provided by the

Head-Gordon group were determined experimentally, and no geometry optimizations were

performed on them. This set was honed based upon which calculations had converged for

EOM-CCSD and TD-DFT attempts, as well as what had converged for TI-DFTB. From this

a test set of 20 small molecules remained, and the data from a subsection of this list for 10

small molecules is accounted for below.

Each higher level calculation was performed with the cc-pVQZ basis and a def2/J aux-

illiary basis set where appropriate. This basis was chosen to be reasonably descriptive and

compatible with both TD-DFT and WF calculations like EOM-CCSD.

The functionals for the TD-DFT calculations were chosen to represent each rung on

Jacob’s ladder. The first rung, or local functionals, is represented with PWLDA and the

second rung, or generalized gradient approach (GGA) type, with PBE and B97-D. The third

rung is comprised of meta-GGAs that include a kinetic energy piece, and are represented

with with the functional TPSS. The fourth rung begins to consider exact Hartree-Fock

(HF) exchange correlation and are termed hybrid functionals. This class is represented with

B3LYP and PBE0. The fifth rung consists of virtual orbital dependant functionals that tout

improved accuracy for transition states. This was represented with B2PLYP. ω-B97X was

used to represent the range-separated class of functionals which include a long-range HF

exchange and short range DFT type exchange.
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The EOM-CCSD calculations were performed in QChem 5.0 probing for singlet excita-

tions.123,124 The TD-DFT calculations in QChem 5.0 were set to define 8 excited states, and

the associated TDM were selected by the lowest energy transition with a non-zero oscilla-

tor strength. TI-DFTB calculations were performed calling for ground-guess, spin-purified

∆DFTB and TI-TDM for single point energy optimizations. MOM was used in circum-

stances where the SCC energy did not converge in under 100 iterations. EOM-CCSD values

were used as a standard against which the other methods were evaluated.

Relative Error in Magnitude

TDM from EOM-CCSD, TD-DFT and TI-DFTB were calculated and compiled in terms of

Cartesian coordinates in a.u. from which magnitudes were calculated. The magnitudes (|~r|)

of 10 small molecule TDM from TD-DFT and TI-DFTB were compared to to the values

calculated by EOM-CCSD to find the absolute relative error (ARE) according to;

Figure 6.7 Absolute relative error of single point TDM of small molecule calcula-
tions for TD-DFT and TI-DFTB according to Equation 6.10. Logarithmic scale to
show orders of magnitude in difference between methods.
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∣∣∣∣∣ |~r|method − |~r|EOM−CCSD

|~r|EOM−CCSD

∣∣∣∣∣ (6.10)

As shown in Figure 6.7 there was not a strong correlation between higher level functional

and minimization of ARE, nor was there a strong tendency to decrease the standard deviation

of these calculated errors. In this way, we can suppose that higher level functional do not

improve accuracy compared to EOM-CCSD, nor do they improve precision for this test set.

The ARE for the TD-DFT calculations hover near 0.5, meaning that these predicted values

were often 50% larger than the EOM-CCSD TDM. TI-DFTB calculations had a higher error,

averaging near 5 (or 500% larger than the EOM-CCSD values).

It was not hypothesised that all TD-DFT calculations could be considered to have the

same ARE compared to EOM-CCSD regardless of functional, but the data here supports

that statement. If one can generalize that TD-DFT calculations have an ARE of 0.5, then

we can say with the same certainty that TI-DFTB calculations are one order of magnitude

less accurate than TD-DFT calculations with an ARE of 5 when compared to EOM-CCSD.

Directionality of Predicted TDM

The Cartesian coordinates of predicted TDM vectors were recorded for TD-DFT and TI-

DFTB and compared to values calculated with EOM-CCSD. The direction of a TDM vector

indicates the spatial location of the transition electron density for TD-DFT, and transition

charge density in the case of TI-DFTB. Due to the many approximations in DFTB with

regards to representing the electronic density of the system, it was hypothesised that this

test is where TI-DFTB would perform the most poorly, and non-normative results were

expected as a result.

As shown in Figure 6.8 there was only a small percentage of most methods to predict

TDM vectors that pointed the same direction as the EOM-CCSD TDM. The most successful

methods in this regard were PWLDA and PBE0, while B3LYP had the worst performance
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Figure 6.8 The distribution of normalized dot products between predicted TDM
from TD-DFT calculations and TI-DFTB calculations with EOM-CCSD predic-
tions. A normalized dot product of one indicates perfect continuity of direction
between the method and EOM-CCSD, zero indicates an orthogonal prediction, and
negative one indicates a vector that points in the exact opposite direction. All results
labeled "other" were some value between one and negative one that was non-zero.

in this study. TI-DFTB has the same fidelity in direction as B2PLYP and ωB97x compared

to EOM-CCSD.

The TDM with non-zero normalized dot products between one and negative one remained

fairly consistent across all methods, with TI-DFTB reporting the fewest non-normative val-

ues. TI-DFTB also reported the fewest instances of a normalized dot product of negative

one, where the TDM vector points in the exact opposite direction as the TDM predicted

by EOM-CCSD. TI-DFTB had primarily orthogonal predictions compared to EOM-CCSD

TDM.

Average Calculation Run Time for Methods

If the continuity of ARE between DFT functionals was surprising, the differentiation of TD-

DFT calculations based on increasing functional complexity was found in the computational

cost of these calculations. As observed in Figure 6.9, the functionals proportionally ascend

in average run times for single point TDM calculations of molecules composed of less than
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Figure 6.9 The average run-time of single-point TDM calculations of small
molecules for TD-DFT functionals and TI-DFTB. Logarithmic scale to show or-
ders of magnitude in difference between computational speeds.

five atoms for increasing functional complexity. The calculation that ran for a little under

two minutes for PWLDA would take nearly three hours using ω-B97x. For these same

calculations, TI-DFTB would take a fraction of a second.

If TI-DFTB is one order of magnitude less accurate than all TD-DFT calculations, it is

conservatively between three and five orders of magnitude faster. When discussing computa-

tional cost it is implied that with any method there will be a certain amount of uncertainty

and error compared to experimental data, and so there is always a balancing act between

what is feasible and what is the most correct. For small molecules it would not necessarily

be in ones best interest to use TI-DFTB as the error is large enough to verge on not useful,

however one could say similar things about TD-DFT based on the error calculated there.

Where TI-DFTB TDM are useful is when the system is large, and neither TD-DFT nor

EOM-CCSD calculations are necessarily feasible. The next case study will explore this idea

using acridinium salts.
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6.3.4 TDM of Acridinium Salts by TD-DFT and TI-DFTB

The ground and excited electronic states resulting from a ∆DFTB calculation are made mu-

tually orthogonal by a corresponding orbital transformation, thereby allowing calculation of

transition properties like the transition dipole moment (TDM). This allows for prediction of

spectral peak intensity which can be used to derive energy transfer rates for even large pho-

toactive systems.90,93 Acridinium salts have previously been toted as organic alternatives to

precious-metal photoredox catalysts, allowing for comparable excited state lifetimes and at-

tenuated redox potentials within a sustainable framework. Using a time-independent DFTB

(TI-DFTB) platform a subset of this class of molecules can be characterized in the ground-

and excited-states to infer photophysical information, bolstering the working knowledge of

these compounds and benchmarking the proposed method.

The TDM of the six acridinium salts from subsection 6.2.2 were calculated using TD-

DFT and TI-DFTB. There was no EOM-CCSD data for this set, as there was not a time

period of several months in the budget for this type of calculation. Figure 6.10 shows the

average run times for the calculations that converged in under 90 days, and lists for each

functional the converged structures associated with it.

The numerical results of this study can be found in Table 6.5, where the average TDM

from TD-DFT is compared to the TDM calculated with TI-DFTB and TI-DFTB with MOM.

When looking at Table 6.5 it is perhaps useful to notice that for structure E there were

five functionals that could not be factored into the standard deviation of the mean TDM,

which might explain its precision in average calculated TDM. Notice too that the functional

B2PLYP had only calculated one half of the structures’ TDM in the allotted time frame, so

the relatively low average run time is the result of not including this data in Figure 6.10.

TI-DFTB and MOM show run times that are four to six orders of magnitude faster than

TD-DFT - so where functionals like TPSS0 took on average 41 days, TI-DFTB performed

the same calculation in fewer than 10 seconds.
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Figure 6.10 The average run-time of single-point TDM calculations of acridinium
salts for TD-DFT functionals and TI-DFTB. Logarithmic scale to show orders of
magnitude in difference between computational speeds. Calculations were allowed
to run for 90 days, A-E correspond to acridinium salts as described in Table 6.5
that converged in that amount of time.

From the results for structure A, C, D and E, one can see differences in predicted TDM

with and without MOM, which is to be expected as the MO spaces of MOM calculations

are different than those defined by TI-DFTB alone. Using MOM can allow you to calculate

transitions between the HOMO and a virtual orbital that is not the LUMO of the system,

which is one explanation of the difference in results from these MOM calculations compared

to TD-DFT. It is a shortcoming of MOM that the user cannot tell if this is the case when

calculating a TDM, therefore MOM is not currently advised for people using the TI-TDM

functionality.

The Cartesian coordinates of these predicted TDM were compiled for all methods, and the

direction of both TI-DFTB and MOM predicted TDMwere compared to each TDM predicted

by the TD-DFT functionals. This data is presented in Figure 6.11, though according to the
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Functional

Group

Average TDM

From TD-DFT
TI-DFT

SD

from mean
+MOM

SD

from mean

A naphthalene 3 ± 1 11.73 9 10.28 7

B benzene 1 ± 2 10.60 5 10.60 5

C toluene 4.37 ± 0.07 9.43 72 14.43 144

D mesitylene 2.8 ± 0.4 10.79 20 15.80 32

E anthracene 3.68 ± 0.08 8.60 62 33.55 311

F xylene 1.2 ± 0.2 6.51 26 6.51 26

Table 6.5 Magnitudes of calculated TDM from TD-DFT and TI-DFTB with and
without MOM. TD-DFT TDMmagnitudes were averaged across the nine functionals
from Figure 6.11 that were able to complete the calculation in less than 90 days. A
reference for which structures converged in the 90 days can be found in Figure 6.10.

Figure 6.11 Box and whisker plots showing the normalized dot products of TI-
DFTB and MOM TDM with each TD-DFT value. These values are grouped by
TD-DFT functional for both TI-DFTB and MOM data sets. These plots represent
the inclusive median of these values, and the mean is indicated by an x for each
comparison. All data points are represented.
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data in Figure 6.8 values near one are not necessarily to be trusted.

The accuracy of TI-DFTB calculated TDM may raise some questions as to the use of such

a method if the values are so different than what is predicted by more expensive methods.

As TI-DFTB inherits all of the approximations of the parent method DFTB, we predict

a certain amount of systematic error in our calculations. This can be investigated in the

future by attempting to create better basis sets for the method, or replicating these results

in DFTB3, the third-order Taylor expansion of the DFTB energy. As this method stands

presented in this work there is the possibility of ranking potential target molecules based on

the approximate TDM, using these values to spot trends and speculate as to the optimal

functionalization of the target. As this method is not inherently high resolution, and is useful

primarily in high-throughput molecular screening, this possibility to see trends at such a low

cost is precisely the outcome we hoped to produce. The accuracy of this trend prediction

falls under future work for this lab, as well as compiling a data set of EOM-CCSD results

for acridinium salt TDM so that these comparisons can be made to a standard, and then

performing a cost to accuracy analysis of TI-DFTB.
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Chapter Seven

CONCLUDING REMARKS

We have developed a time-independent excited state method within the electronic struc-

ture package, DFTB+. TI-DFTB as implemented in DFTB+ 19.1 consists of ∆DFTB for

non-Aufbau electronic orbital populations to probe time-independent excited states, maxi-

mum overlap method options that aid in energy convergence, and the corresponding orbital

transformation to probe transition dipole moments. These methods have been preliminary

tested and show good agreement between algorithmic behavior and mathematical formal-

ism. ∆DFTB has been updated and shows clean and predictable convergence behavior,

as evidenced by the gradient analysis as well as geometry optimizations of several organic

molecules. The maximum overlap methods have proven useful tools for evaluating the excited

states of conjugated molecules, systems which can often be plagued with variational collapse.

The corresponding orbital transformation has been given a strong mathematical foundation,

and proof. As it is implemented in DFTB, the corresponding orbital transformation shows

early success as a rapid transition dipole moment method.

∆DFTB in DFTB+ 19.1 has been merged upstream with the master branch of the

DFTB+ repository. Successful merging of ∆DFTB with the publicly available DFTB+

codebase occurred on October 23, 2020. The ∆DFTB method developed by this lab will be

included in the publicly available DFTB+ 20.2 electronic structure package which is to be

released by the end of 2020.
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