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Abstract 

Climate change is expected to have widespread impacts on future ecosystem services in the 

Puget Sound and around the world. It is important that climate change be included in ecological 

risk assessment so that changing climate variables and potential interactive effects with 

chemical stressors can be taken into account. In this research, I focused on the question of how 

water temperature changes generated by climate change interact with organophosphate 

pesticide toxicity to affect Chinook salmon (Oncorhynchus tshawytscha) population size in the 

Skagit River, WA. To answer this question, I conducted an ecological risk assessment using the 

Bayesian network relative risk model (BN-RRM). It is a quantitative, probability-based approach 

that calculates complex relationships between ecological variables in a cause-and-effect 

framework to provide estimates of risk to valued receptors (endpoints). I used region and 

season specific measurement data for water temperature, dissolved oxygen, chlorpyrifos 

concentration, and diazinon concentration as the model input. Climate predictions were based 

on model output between the years 2071 and 2100 from an ensemble of global climate models 

(GCMs) selected from the Fifth Coupled Model Intercomparison Project (CMIP5). The 

probability of Chinook salmon population decline, before climate change predictions were taken 

into account, ranged between 77.1% and 64.0% depending on region and season. I found 

climate change caused changes in water temperature influenced risk in different ways 

depending on the region and season. The probability of Chinook population decline increased 

by up to 4.2% in different regions and seasons. I used sensitivity analysis of the BN-RRM to 

analyze which stressors had the most influence on Chinook salmon population size. I found that 

the environmental stressors of water temperature and dissolved oxygen had the most influence, 

which suggests habitat remediation may be an effective strategy for addressing risk to Chinook 

salmon in the Skagit River. This research demonstrates that climate change scenarios can be 
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successfully incorporated into ecological risk assessment using the BN-RRM. This approach 

can be easily adapted to other watersheds and allows for the inclusion of additional stressors 

and/or endpoints. 
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1. Introduction 

My research incorporated climate change caused variations in water temperature into the 

Bayesian network relative risk model (BN-RRM) to assess risk to Chinook salmon 

(Oncorhynchus tshawytscha) in the Skagit River Watershed. I adapted the BN-RRM from 

current research on ecological risk assessment of Chinook salmon in multiple watersheds in 

Washington State (Landis et al. 2020) to focus on the Skagit River Watershed, using sub-basin 

specific data to incorporate spatial and temporal variability within the watershed. I compared 

relative risk from multiple stressors: water temperature under different climate scenarios, 

dissolved oxygen, and two organophosphate pesticides: diazinon and chlorpyrifos. 

Landis et al. (2013) outlined an approach to incorporating climate change into ecological risk 

assessment following seven guiding principles that I followed in my research:  

1. Consider the importance of climate change related factors in the context of a particular 

ecological risk assessment.  

2. Use ecosystem services as the assessment endpoints.  

3. Climate change can influence end points in both positive and negative ways.  

4. Using a multiple stressor approach is necessary to take into account the complex 

ecological context.  

5. Use a cause and effect conceptual model to take into account management decisions 

and use appropriate spatial and temporal scales to represent direct and indirect climate 

change effects.  

6. Determine sources of uncertainty and address them quantitatively when possible.  

7. Use adaptive management for adapting to changing ecological conditions and 

ecosystem services. 
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1.1 Ecological Risk Assessment 

Ecological risk assessment is a science for characterizing risk to endpoints from a variety of 

stressors (Landis and Wiegers 2005). Ecological risk assessment is also a tool to facilitate the 

process of environmental resource management and decision-making. As such it is important 

that endpoints with ecological, social, and economic relevance are chosen. 

1.2 The Bayesian Network Relative Risk Model (BN-RRM) 

The relative risk model (RRM) with the later inclusion of Bayesian networks (BN-RRM) was 

developed as a quantitative method to carry out risk assessment that can incorporate multiple 

stressors and endpoints on a regional scale (Landis and Wiegers 1997, 2005; Ayre and Landis 

2012). Sources of stressors are linked to impacts (endpoints) through a cause and effect 

framework (Figure 1). The BN-RRM has been successfully implemented in several ecological 

risk assessments for the purposes of assessing risks to habitats and resources from wildfire, 

grazing, forest management practices, and insects (Ayre and Landis 2012), evaluating low 

impact development remediation effects to Coho salmon prespawn mortality (Hines and Landis 

2014), assessing risk from whirling disease to cutthroat trout populations (Ayre et al. 2014), 

assessing risk from nonindigenous species (Herring et al. 2015), assessing risk from climate 

change stressors (Gaasland-Tatro 2016, Landis et al. 2017a), evaluating remediation options 

for mercury contamination (Johns et al. 2017), integrating ecological and human health risk 

assessment (Harris et al. 2017) and assessing risk to estuary water quality using eukaryote 

environmental DNA as a measure of benthic community structure (Graham et al. 2019). 

The incorporation of Bayesian networks into the relative risk model (BN-RRM) provided many 

advantages to ecological risk assessment (Ayre and Landis 2012). Bayesian networks are 

acyclic models that relate ecological variables in a cause and effect framework based on 

probabilistic calculations generated from conditional probability tables (CPTs; Marcot et al. 

2007). The probability of effects to endpoints with associated uncertainty are calculated based 



3 
 

on input from a variety of data sources. Different types of data such as toxicological, spatial, and 

temporal can be integrated into a Bayesian network as they are all related by conditional 

probabilities (Barton et al. 2012). Sensitivity analysis can determine which stressors have the 

most influence on which endpoints (Ayre and Landis 2012, Marcot 2012). Bayesian networks 

are gaining popularity in risk assessment and modeling ecological systems (Keshtkar et al. 

2013; MacDonald et al. 2105; Franco et al. 2016; O’Brien et al. 2018; Sperotto et al. 2017, 

2019). 

  

Figure 1. The relative risk model (RRM), adapted from Landis and Wiegers (1997, 2005). The 
RRM is a causal pathway linking sources of stressors to impacts. Stressors that are present in a 
habitat cause effects that impact assessment endpoints. 

 

1.3 Causality and Counterfactuals 

Another benefit of using Bayesian networks is the ability test counterfactuals, which are “what if” 

questions within a causal framework (Balke and Pearl 1994, Bottou et al. 2013). When 

relationships between variables are understood to be causal within a Bayesian network, the 

modeler can test counterfactuals by altering the states of the nodes to create hypothetical 

scenarios and see how those effect the states of the other nodes. This is particularly useful in 

the context of ecological risk assessment where setting the state of the endpoint nodes to the 

desired management goals will calculate the hypothetical states of environmental parameters to 

meet those goals. 

  

Sources Stressors Habitats Effects Impacts
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1.4 The Skagit River Watershed 

I used the Skagit River Watershed as my study area. It is located in northwestern Washington 

State and partially in British Columbia, Canada. The Skagit River drains into the Salish Sea from 

an agriculturally important delta region. It contains habitat for many wildlife species including all 

species of salmon native to Salish Sea including Chinook (Oncorhynchus tshawytscha), large 

wintering populations of bald eagles (Haliaeetus leucocephalus) and waterfowl (Lee and Hamlet 

2011). The wildlife provides important cultural and economic ecosystem services to residents, 

tribes, tourists, and businesses (Lee and Hamlet 2011). Habitats and the ecosystem services 

they provide at the Skagit River were identified as particularly vulnerable to climate change 

effects such as increased temperature and changing precipitation (Lee and Hamlet 2011). 

Stakeholders in the Skagit River Watershed include three Native American Tribal governments, 

three county governments, the Puget Sound Partnership, the Canadian federal government, city 

governments, businesses, and residents. 

Land use is diverse in the Skagit River Watershed. There are federal, state, and county owned 

forest and conservation lands. The delta region and the Lower Skagit have been heavily 

developed for agriculture and urban city areas. Extensive agriculture and urban areas in the 

lower Skagit River Delta contribute pesticides through runoff. Juvenile salmon rearing habitat in 

the delta region is also under threat by the rapid agricultural and urban development in recent 

history (Beamer et al. 2005a, 2005b). 

Changes in precipitation due to climate change within the Skagit River Watershed and in the 

wider Pacific Northwest is projected to cause relatively wetter winters and drier summers (Lee 

and Hamlet 2011). Glacier meltwater is an important source of water to maintain stream flow 

during the summer months but flows are decreasing along with decreasing glaciation in the 

Skagit River watershed (Lee and Hamlet 2011, Riedel and Larrabee 2016). 
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Figure 2. The Skagit River Watershed with risk regions. 
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1.5 Climate Change 

Climate change affects endpoints relevant to ecological risk assessment directly or indirectly on 

broad temporal and spatial scales. Researchers have called for more research on interactions 

between climate change caused stressors and chemical stressors and incorporation of those 

effects into ecological risk assessment (Noyes et al. 2009; Landis et al. 2013; Moe et al. 2013; 

Sperotto et al. 2017, 2019). Effects from climate change can alter the toxicity of chemical 

stressors in the environment (Hooper et al. 2013). Similarly, stress from chemical contaminants 

can make species more sensitive to changes in climate (Hooper et al. 2013). Therefore, it is 

important that climate change be included in ecological risk assessment so that changing 

climate variables and potential interaction effects with chemical stressors can be taken into 

account and better inform environmental resource management. 

Climate change is a “wicked problem”, meaning that the complexity of the issue, including the 

vast spatial and temporal scales and difficulty defining the issue prevent any kind of 

straightforward solution (NRC 2012, Burke et al. 2017). When addressing wicked problems, it is 

necessary to use a systems-based approach that is iterative and allows for incorporation of new 

data as they become available and to expand analysis to a multitude of scales (Burke et al. 

2017). 

1.5.1 Climate Models  

In my research I used air temperature projections from climate models from the fifth phase of 

the Coupled Model Intercomparison Project (CMIP5) which is a set of coordinated climate 

model experiments utilizing atmosphere-ocean global climate models (GCMs; Taylor et al. 

2012). The GCMs use future CO2 emission scenarios called representative concentration 

pathways (RCP) to make projections based on potential mitigation scenarios (Taylor et al. 

2012). The “high” scenario, RCP 8.5, represents continuing CO2 emissions at current trends 

with increasing radiative forcing reaching 8.5 W/m2 in the year 2100 (Taylor et al. 2012). The 
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RCP 2.6, RCP 4.5, and RCP 6 scenarios represent future scenarios with CO2 emissions 

reduced from current trends. 

The climate changed influenced stressor that I used in my model is water temperature. I used 

regressions to calculate water temperatures based on air temperature GCM projections. There 

are many other climate change related stressors that were not included in this model. For 

example, climate change is expected to effect stream flows in the Skagit River which will be an 

additional stressor and also influence water temperatures (Manuta et al. 2010). 

1.6 Ecosystem Services 

Ecosystem services are defined by Constanza et al. (1997) as the benefits human populations 

derive, directly or indirectly, from ecosystem functions. Ecosystem services are an 

anthropocentric method for assigning value to ecological processes that relate to human health 

and well-being. As such, they are valuable risk assessment endpoints that link ecological 

systems to human health and well-being (Harris et al. 2017). 

Risk assessment endpoints are selected by local stakeholders and regulators who decide which 

ecosystem services to prioritize. It is important when selecting endpoints to consider the 

appropriate level of biological organization from suborganismal to organism, population, and 

community level or higher (Suter et al. 2005). Any assessment endpoint consists of an entity 

and an associated attribute (Suter et al. 2005). Confusing entities with attributes can often lead 

to improper endpoints, especially in the context of whether an endpoint is referring to 

organismal, population or community level effects (Suter et al. 2005). 

1.7 Previous Ecological Risk Assessments Using the BN-RRM 

My work builds upon a previous ecological risk assessment using the BN-RRM by Landis et al. 

(2020) assessing the risk of organophosphate pesticide mixtures to Chinook salmon in the 

Skagit River along with several other locations in Washington State. My study builds upon that 
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research by incorporating climate projections into the ecological risk assessment framework and 

dividing the Skagit River Watershed into risk regions to account for spatial variability within the 

watershed. My work also builds upon the work of Gaasland-Tatro (2016) who successfully 

incorporated climate change stressors into an ecological risk assessment using the BN-RRM at 

the South River, Virginia mercury contaminated site. 

1.8 Uncertainty in Ecological Risk Assessment 

Uncertainty can be broadly categorized into epistemic and linguistic (Regan et al. 2002). 

Epistemic uncertainty deals with the uncertainty associated with an unknown true value or range 

of values, which is subcategorized into measurement error, systematic error, model uncertainty, 

and natural variation (Regan et al. 2002, 2003). Linguistic uncertainty arises from imprecise 

communication due to vagueness of limited scientific vocabulary, context dependency of 

language, and other ambiguities related to multiple meanings for certain words (Regan et al. 

2002). Some uncertainties are known and others are unknown, with the latter creating 

difficulties with model uncertainty in particular (Spiegelhalter and Riesch 2011). Therefore, 

uncertainty is analyzed through quantitative and qualitative methods. Several potential sources 

of uncertainty arise from cases of misuse or misinterpretation of the Bayesian network model 

such as unmeasurable node states, using too many parent nodes, not considering confounding 

variables, not testing model calibration or validation, conflating conditional probabilities with 

confidence in veracity, and conflating correlation with causation (Marcot 2017). 

There is always uncertainty in any model because it is a simplified representation of the real 

complex system. An important factor that contributes to model uncertainty is the limitations of 

current knowledge or data. In reality there may be countless factors that contribute risk to a 

particular endpoint. However, models are useful when there is a specific question to address 

and at least some basic knowledge of a system. In some cases, even when factors that are 
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known to contribute to a system are included, it may not have large enough of an effect to 

change the outcome of a model. Sensitivity analysis can be used to detect these factors. 

The BN-RRM addresses uncertainty within the model using probability. The uncertainty 

associated with the variability of input variables is addressed by using monitoring data and 

model output to generate probability distributions over multiple states of those nodes. 

Uncertainty associated with the relationships between ecological variables can also be built into 

the conditional probability tables. The risk that is calculated to the endpoints is also in the form 

of a probability distribution, which conveys the epistemic uncertainty within those results. 

1.9 Study Objectives 

The main objectives of this research were as follows: 

• Integrate climate change caused stressors into a BN-RRM of the Skagit River 

Watershed. 

• Conduct an ecological risk assessment of the Skagit River Watershed for combined 

impacts to the ecosystem service, Chinook salmon, from climate change and 

organophosphate pesticide stressors. 

• Characterize relative importance of climate and chemical stressors for different climate 

scenarios, risk regions, and seasons. 

• Develop a tool to serve as part of an adaptive management process for ecological 

resources in the Skagit River Watershed, and to similar rivers and estuaries. 



10 
 

2. Methods 

2.1 Study Area 

The study area included the lower Skagit River Watershed and the Samish River Watershed, 

located in northwestern Washington State (Figure 2). These watersheds combined make up 

Water Resource Inventory Areas (WRIA) 3 and 4. The Samish River watershed was included in 

the study area because it comprises a large part of the Skagit valley agricultural and urban 

center. The study area was divided into five risk regions based on hydrological units from the 

Watershed Boundary Dataset (USGS 2013). I did not include portions of the upper Skagit River 

Watershed (WRIA 4) as risk regions due to lack of pesticide and water quality monitoring data. 

2.2 Model Construction 

My model builds upon the BN-RRM constructed by Landis et al. (2020) assessing risk to 

Chinook salmon from water temperature, dissolved oxygen, and chlorpyrifos in four watersheds 

in Washington State. I restructured the water quality stressors input to include multiple climate 

scenarios and included a second organophosphate pesticide to include mixture toxicology 

methods. I used region and season specific data as input into the model. 

2.2.1 Endpoint 

Chinook salmon was the endpoint. The entity is Chinook salmon and the attribute is Chinook 

population size. Chinook population size includes the egg-to-emergence, juvenile, and adult life 

stages. Chinook salmon are an important ecosystem service for the people living in the Skagit 

River Watershed. Chinook salmon contribute to human wellbeing by contributing to commercial, 

tribal, and recreational fisheries, local economies, culture, and spirituality. Chinook salmon were 

identified as a vital sign by the Puget Sound Partnership (PSP) as an indicator for the Puget 

Sound (PSP 2017). The Puget Sound ecologically significant unit (ESU) of Chinook salmon are 

also listed as a threatened species by the Endangered Species Act (NOAA Fisheries 2020). 



11 
 

There are six identified stocks of Chinook in the Skagit River watershed, all containing stream 

and ocean-type juvenile life history types (Beamer et al. 2005a, 2005b). 

2.2.2 Sources and Stressors 

Chlorpyrifos and diazinon were the organophosphate pesticide stressors used to assess 

toxicological risk. These organophosphate pesticides are used in agricultural and urban systems 

within the Skagit River Watershed, leading to acute and chronic exposure through runoff to 

juvenile Chinook salmon rearing the rivers next to agricultural and urban land. Measured 

concentrations of pesticides specific to risk region and season were used as inputs into the 

model. These datasets were obtained through the Washington State Department of Ecology 

Environmental Information Management database (WADOE EIM 2019). 

Water quality stressors from Landis et al. (2020), dissolved oxygen and water temperature, 

were also used in my study. Although water temperature and dissolved oxygen are related 

variables, I kept them separate in this model to isolate the effects of temperature change. The 

dissolved oxygen is based on measured concentrations specific to risk region and season. 

2.2.3 Climate Change Projections 

I adapted methods from Gassland-Tatro (2016) to incorporate water temperature from two 

different climate scenarios into the BN-RRM. The historical climate scenario is based on 

observed climate data from 1981 to 2010 (Maurer et al. 2002) and the future climate scenario is 

based on climate projections from 2071 to 2100.  

The future climate scenario used an ensemble of three GCMs from CMIP5 (Table 1). The 

projections were downscaled using BCCA V2 to a 0.125 degree grid. The RCP 8.5 emission 

scenario was used to represent CO2 emissions under current trends. 
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For both the historical and future climate scenarios, I obtained the model output from the USGS 

Geo Data Portal website (https://cida.usgs.gov/gdp/, Blodgett et al. 2011). I uploaded a GIS 

shapefile of the risk regions to the website to obtain weighted means for daily maximum air 

temperature for each risk region for the selected model output and time range. 

Table 1. Global climate models (GCMs) selected from the Fifth Coupled Model Inter-
Comparison Project (CMIP5) used for the downscaled climate projections in this study. 

Access1.0 Commonwealth Scientific and Industrial Research 
Organization and Bureau of Meteorology 

Australia 

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 

CCSM4 National Center for Atmospheric Research USA 

 

2.2.4 Habitat 

Habitats are the spatial component of the relative risk model. When a stressor or stressors are 

present in a habitat, it leads to effects in the causal pathway. In this risk assessment the habitat 

was the Chinook salmon habitat in the Skagit River used for all life stages of Chinook salmon for 

migration, rearing, and spawning. 

2.2.5 Conceptual Model 

The conceptual model was based on comparing the climate and toxicity causal pathways within 

the RRM framework (Figure 3). The blue arrows represent the climate and water quality 

variables pathway and the orange arrows represent the toxicity pathway. Dissolved oxygen was 

kept separate from water temperature because dissolved oxygen was based on measured 

concentrations and water temperature was based on climate model output. The water quality 

pathway includes effects to all three life stages of Chinook salmon and the Chinook population 

endpoint. The toxicity pathway describes toxic effects from the OPs chlorpyrifos and diazinon to 

juvenile Chinook salmon only. 

https://cida.usgs.gov/gdp/
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Figure 3. Conceptual model following the relative risk model (RRM) framework showing water 
quality and toxicity causal pathways. The water quality pathway is in blue and the toxicity 
pathway is in orange. The toxicity pathway describes effects to juvenile Chinook salmon only 
and the water quality pathway describes effects to all three life stages of Chinook salmon. 

2.2.6 Bayesian Network Construction 

I constructed the Bayesian network using Norsys Netica software (Norsys Software Corp. 2017) 

following the structure of the conceptual model (Figure 3). The boxes from the conceptual model 

correspond to nodes in the Bayesian network and the causal links were retained (Figure 4). 

Netica calculates the posterior probabilities of the endpoint node by using probabilistic inference 

(Spiegelhalter et al. 1993). For a copy of the model viewable with the free version of Norsys 

Netica (Norsys Software Corp. 2017), see the online Supplementary Materials. For a complete 

description of each node, see Table S1 in the Supplementary Materials.
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Figure 4. Bayesian network relative risk model set for risk region 1 during the summer and future climate scenario. The water quality 
nodes are in blue, the toxicity pathway nodes are in orange, and Chinook effects and impact nodes are in purple.
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2.2.7 Specification Nodes 

In addition to the nodes that correspond to the conceptual model, I used specification nodes to 

allow the user to select between specific datasets. By setting the discrete states of a 

combination of specification nodes to 100% probability, the user selects that dataset. The 

timeframe node allows the user to select between historical and future climate scenarios, the 

season node allows the user to specify the season, and risk region allows the user to specify 

the risk region. 

The specification nodes in this model select datasets specific to each risk region, season, 

climate scenario and population model simulation time (Figure 4). Although the population 

model simulation time specification node is included in the model, I used only the 20 year 

simulation for all results. 

2.2.8 Node Parameterization 

Node parameterization within the BN-RRM follows a three-step process (Harris et al. 2017). 

First, I set the nodes into quantified discrete states. This is based on information relevant to the 

scientific question being asked. The average daily maximum water temperature and dissolved 

oxygen nodes were discretized into states based on freshwater regulatory criteria for optimal 

salmonid conditions (WAC 2011a, 2011b; Table 2). The organophosphate pesticide 

concentration nodes were discretized into states based on regulatory criteria, such as the 

Endangered Species level of concern (ESLOC, Tuttle 2014), and EC50 values from toxicity 

testing on Coho salmon (Laetz et al. 2009, Table 2). Second, I entered the known frequency 

distributions into the parent nodes. I used case-file learning, a machine learning function within 

Netica (Norsys Software Corp 2017). Third, I constructed CPTs to quantify the causal 

relationships between nodes. 
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Table 2 shows the parameterization details for the input nodes. Dissolved oxygen and 

organophosphate pesticide concentrations are based on actual field measurements at sampling 

stations specific to risk region and season. For parameterization of all nodes see Table S1 in 

the Supplementary Materials.
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Table 2. Input node parameterization, description, and data sources. Organophosphate pesticide concentration node discretization 

includes criteria based on USEPA National Aquatic Life Criteria (USEPA 2020), Endangered Species level of concern (ESLOC, 

Tuttle 2014), and 50% effective concentration (EC50) values from Laetz et al. (2009). 

Node States Discretization / Justification Description Data Sources 

Avg Daily Max Air 
Temp (°C) 

-16 to 0 

Discretization based on multiples of 10 with 
extreme values included in the highest and 

lowest state. 

Average daily maximum 
temperatures in °C from climate 

model output or historical 
meteorological data. 

Maurer et al. (2002), USGS 
Geo Data Portal (Blodgett et 

al. 2011) 

0 to 10 

10 to 20 

20 to 30 

30 to 42 

Avg Daily Water 
Temp (°C) 

0 to 13 

Discretization based on salmon optimal temp 
ranges for water temperature from table 200 

(1)(c) from WAC (2011a). 

Average daily maximum water 
temperature in °C calculated from 

air temperature using single 
regression or from direct 

measurements. 

WADOE EIM (2019), Maurer 
et al. (2002), USGS Geo 

Data Portal (Blodgett et al. 
2011) 

13 to 16 

16 to 18 

18 to 25 

25 to 36 

Dissolved Oxygen 
(mg/L) 

0 to 3.5 

Discretization based on salmon specific 
optimal ranges for dissolved oxygen from 

table 200 (1)(d) from WAC (2011b) 

Measured dissolved oxygen 
concentrations in mg/L. 

Tuttle (2014), WSDOE EIM 
(2019), Laetz et al. (2009) 

3.5 to 5 

5 to 6.5 

6.5 to 8 

8 to 9.5 

9.5 to 11 

11 to 15 

15 to 20 

Chlorpyrifos 
concentration 

(μg/L) 

0 to 0.15 0.15 is the ESLOC (Tuttle 2014) 
Measured chlorpyrifos 

concentrations. 
Tuttle (2014), WADOE EIM 
(2019), Laetz et al. (2009) 

0.15 to 0.4 0.4 is the 0.2 EC50 (Laetz et al. 2009) 

0.4 to 2 2 is the EC50 (Laetz et al. 2009) 

Diazinon 
concentration 

(μg/L) 

0 to 0.17 0.17 is the EPA Criteria (USEPA 2020) 

Measured diazinon 
concentrations. 

Tuttle (2014), USEPA (2020), 
WADOE EIM (2019), Laetz et 

al. (2009) 

0.17 to 4.5 4.5 is the ESLOC (Tuttle 2014)  

4.5 to 29 29 is the 0.2 EC50 (Laetz et al. 2009) 

29 to 145 145 is the EC50 (Laetz et al. 2009) 
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2.2.9 Relating Air to Water Temperatures 

Because model output from the climate models were in air temperature, I used a regression to 

predict water temperature from air temperature. The temperature measurements were from 

three WSDOE monitoring stations in the lower Skagit River Watershed located in risk regions 1 

- 3. At each location air temperature and water temperature are continuously and 

simultaneously measured and recorded every 30 minutes excluding during the spring and winter 

at the monitoring station in risk region 3.  I created a regression and prediction intervals for 

those datasets using the “drc” package in R statistical software (Ritz et al. 2015) for each 

sampling station and season, excluding spring and winter for risk regions 3 - 5. I calculated 

CPTs using the prediction intervals and discretization intervals for air and water temperature as 

inputs using R statistical software. I created the CPTs for risk regions 4 and 5 using the dataset 

for risk region 3 as that was the only sampling station located upstream of risk regions 1 and 2 

that had continuous air and water temperature monitoring. I used the regressions to construct 

the CPTs to predict water temperatures from both historical and future air temperatures. See 

Supplementary Materials (Section S5) for regression models. 

2.2.10 Toxicity Pathway 

The toxicity data used to construct the CPTs for the AChE Activity, Percent Mortality, and 

Change in Swimming Rate (% control) nodes were from a series of experiments on Coho 

salmon by NOAA fisheries (Sandahl et al. 2005; Laetz et al. 2009, 2013, 2014). I used the “drc” 

package in R statistical software to fit log-logistic models to the concentration-response data 

(Ritz et al. 2015). The log-logistic models were used to construct the CPTs with the “equation to 

table” function within Norsys Netica. For the AChE Activity node, a “toxic units” approach was 

used to relate the mixture of chlorpyrifos and diazinon concentrations to AChE inhibition. The 

EC50s calculated from the single chemical exposures were used to calculate the toxic units for 

chlorpyrifos and diazinon. I converted the concentrations from the binary mixture toxicity test for 
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chlorpyrifos + diazinon into toxic units and generated the log-logistic model for the mixture using 

summed toxic units as the concentration. I altered the log-logistic equation used to construct the 

AChE Activity CPT to convert the output from the pesticide concentration nodes into toxic units. 

The CPTs for Percent Mortality and Change in Swimming Rate (% control) nodes were 

constructed using log-logistic models generated from toxicology data relating AChE activity to 

mortality and swim speed. See Supplemental Material (Section S4) for more detail.  

2.2.11 The Baldwin-Mitchell Model (BMM) 

The Chinook population endpoint node was constructed using the Baldwin-Mitchell Model 

(Baldwin et al 2009, Mitchell et al. 2020). The BMM is a Leslie matrix population model 

developed by Baldwin et al. (2009) and modified by Mitchell et al. (2020) for stream-type 

Chinook salmon in the Yakima watershed. The model used a 500,000 starting population with 1, 

5, 10, 20, and 50 year simulations. 

2.3 Risk Calculation 

The Puget Sound Partnership set a management goal of no net loss of Chinook salmon 

population (PSP 2017). Therefore, I calculated risk as the probability of Chinook salmon 

population decline. I calculated risk by summing the population probabilities for states below 

500,000 within the Chinook population node for each combination of risk region, season, and 

timeframe. The 500,000 starting population represents the entire age range of salmon. Only 

1,382 of the initial 500,000 starting population are three to five year old spawners. 

2.4 Sensitivity Analysis 

The sensitivity analysis determines which inputs were most important for influencing the states 

of the endpoint node. Because the input nodes are comprised of discrete states, I measured 

sensitivity using entropy reduction calculations (also known as mutual information) within Netica 

(Woodberry et al. 2004, Pollino et al. 2007, Marcot 2012, Norsys Software Corp 2017). Mutual 
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information is a measurement of how much information two variables share, or how knowledge 

of one variable reduces the uncertainty of another variable. 

I analyzed the sensitivity to the Chinook population endpoint node for each combination of risk 

region, season, and timeframe. To characterize the relative importance of the different inputs of 

water temperature, dissolved oxygen, and pesticides, I focused on sensitivity for the water 

temperature, dissolved oxygen, and toxicological effects nodes. 

2.5 Counterfactual Analysis 

I performed the counterfactual analysis using Norsys Netica software (Norsys Software Corp. 

2017). I used the counterfactual analysis to answer the following question: what are the 

management goals for input variables to reach the Chinook salmon population size 

management goal of no net loss? By setting the state of the endpoint node to the desired 

management goal for Chinook Population Size, Netica calculates the node distributions for the 

rest of the Bayesian network to achieve that state. To perform the counterfactual analysis, I set 

the Chinook Population Size node to 100% probability of 500,000 to 1,000,000 population size 

for each combination of risk region and season and recorded the resulting node distributions for 

the input nodes: Avg Daily Water Temperature, Dissolved Oxygen, Chlorpyrifos Concentration, 

and Diazinon Concentration. 

2.6 Uncertainty Analysis 

I quantified and documented uncertainty in this study based on the classifications and 

descriptions from Regan et al. (2002, 2003). I divided sources of uncertainty into epistemic 

uncertainty, model uncertainty, and linguistic uncertainty. Epistemic uncertainty represents the 

quantifiable uncertainty arising from measurement error, systematic error, natural variation, and 

inherent randomness within input data. Model uncertainty pertains to the uncertainties 

associated with model limitations and assumptions. I addressed these quantitatively when 
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possible or qualitatively by documenting assumptions and limitations of the models used in this 

study. I addressed linguistic uncertainty by documenting potential sources of confusion and 

using clear and consistent language. 
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3. Results 

3.1 Understanding the Model Output 

The endpoint node is Chinook Population Size. Selecting the combination of timeframe, season, 

and risk region yields a Chinook salmon population distribution representing the probability of 

Chinook salmon population size given those conditions. The risk for each combination of 

timeframe, season, and risk region is the probability of Chinook population decline. I used the 

20 year population model simulation time for all results. 

3.2 Risk by Climate Scenario 

Table 3 shows the risk calculated as probability of Chinook salmon population decline for each 

combination of risk region, season, and climate scenario as well as the change in risk for each 

due to future climate scenarios. Risk regions 1 and 2 during the summer had the highest 

increase in risk due to climate change. The other combinations that had a notable increase in 

risk due to climate change were risk region 1 during the spring and risk region 2 during the fall. 

There was no change in risk during the winter for risk regions 1 and 2. Risk in risk regions 3 - 5 

had a slight decrease. 

Due to the lack of simultaneous air and water temperature monitoring data during the spring and 

winter for risk regions 3 – 5 I was unable to predict water temperatures for those regions and 

future risk was excluded for those scenarios. 
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Table 3. Percent probability of Chinook population decline from 500,000 starting population by 
risk region, season, and climate scenario and increase in risk due to climate change by risk 
region and season. The future risk for winter and spring in risk regions 3 – 5 are excluded due to 
lack of temperature sampling data.  

Risk Region Season Historical Risk Future Risk 
Increase in Risk Due 
to Climate Change 

1 

summer 77.1 81.3 4.2 

fall 69.5 70.2 0.7 

winter 67.1 67.1 0.0 

spring 70.1 72.7 2.6 

2 

summer 76.3 79.8 3.5 

fall 70.8 72.5 1.7 

winter 65.9 65.9 0.0 

spring 67.1 67.4 0.3 

3 

summer 64.0 63.7 -0.3  

fall 64.6 64.4 -0.2  

winter 65.2   

spring 64.6     

4 

summer 64.3 63.9 -0.4  

fall 64.6 64.5 -0.1  

winter 66.5   

spring 65.6     

5 

summer 64.2 63.9 -0.3  

fall 64.6 64.4 -0.2  

winter 66.5   

spring 65.6   

 

 

3.3 Sensitivity Analysis 

I used entropy reduction calculations to determine the importance of the ecological parameters 

water temperature, dissolved oxygen, and toxicological effects in influencing risk to Chinook 

salmon population. Figure 5 shows the results of the sensitivity analysis for Risk Region 1. The 

relative importance of nodes, represented by entropy reduction, changed based on the season, 
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climate scenario, and risk region. See Supplemental Materials for sensitivity analysis results for 

all risk regions. 

Changes in sensitivity due to climate change are represented by the change in entropy 

reduction between historical and future climate scenarios (Figure 5). The relative importance of 

water temperature increased in the summer, fall, and spring (Figure 5). During the summer, 

dissolved oxygen was the most important influence in the historical climate scenario, but water 

temperature became the most important influence during the future climate scenario (Figure 5). 

During the winter, there was no change in sensitivity due to climate change and water 

temperature had no influence on results (Figure 5). 

The Toxic Effects node is an intermediate summary node but was included in the sensitivity 

analysis to demonstrate the effect of uncertainty within the toxicity pathway. Diazinon and 

chlorpyrifos had little to no entropy reduction in each scenario, however the Toxic Effects node 

had an important effect on results (Figure 5). This is because the uncertainty within the AChE 

Activity, Percent Mortality, Change in Swimming Rate, and Toxic Effects nodes is propagated 

through the toxic effects pathway resulting in a wide probability distribution in the Toxic Effects 

node.  
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Figure 5. Entropy analysis results for risk region 1 comparing the relative importance of the 

nodes diazinon, chlorpyrifos, toxic effects, dissolved oxygen (DO), and daily average water 

temperature (Water Temp) in historical and future scenarios. See supplemental materials for 

entropy analysis results for each risk region.   

3.4 Counterfactual Analysis 

I conducted a counterfactual analysis to determine potential management goals for input 

variables to reach the Chinook salmon population size management goal of no net loss. Table 4 

shows the input node distributions under historical and future climate scenarios and calculated 

management goals for historical and future management goals for Risk Region 1 during the 

summer. Management goals changed between the historical and future climate scenarios for 

water temperature and dissolved oxygen (Table 4). 

  



26 
 

Table 4. Comparison of historical and future input node distributions with historical and future 
management goals in Risk Region 1 during the summer. The management goals were 
calculated using a counterfactual analysis, setting the Chinook Population Size node to 100% 
probability of 500,000 to 1,000,000 population size. See supplemental materials for 
counterfactual analysis results for each season and risk region. 

Node Node States Historical 

Historical 
Management 

Goal Future 

Future 
Management 

Goal 

Avg Daily Max 
Water Temp 

-0.1 to 13 9.58 12.2 0.21 0.31 

12 to 16 41.4 48.0 32.3 44.2 

16 to 18 29.2 32.7 29.9 39.7 

18 to 25 19.8 7.01 37.7 15.8 

25 to 36 0 0 0 0 

            

Dissolved 
Oxygen 

0 to 3.5 9.68 1.72 9.68 1.94 

3.5 to 5 6.97 2.38 6.97 2.40 

5 to 6.5 9.41 5.43 9.41 5.29 

6.5 to 8 9.32 6.73 9.32 6.49 

8 to 9.5 18.2 23.3 18.2 23.3 

9.5 to 11 37.2 48.5 37.2 48.7 

11 to 15 8.42 10.8 8.42 10.8 

15 to 23 0.81 1.06 0.81 1.07 

            

Chlorpyrifos 
Concentration 

0 to 0.15 99.2 99.3 99.2 99.3 

0.15 to 0.4 0.38 0.38 0.38 0.38 

0.4 to 2 0.38 0.37 0.38 0.37 

            

Diazinon 
Concentration 

0 to 0.17 98.9 98.9 98.9 98.9 

0.17 to 4.5 0.38 0.38 0.38 0.38 

4.5 to 29 0.38 0.37 0.38 0.37 

29 to 145 0.38 0.35 0.38 0.35 

      
 

3.5 Uncertainty Analysis 

I used the classifications and descriptions of uncertainty from Regan et al. (2002, 2003) in my 

uncertainty analysis.  
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3.5.1 Epistemic Uncertainty 

I quantified the epistemic uncertainty arising from measurement error, systematic error, natural 

variation, and inherent randomness within the sampling data and climate model output by 

including the entire frequency distribution generated by the case file learning of the input. This 

uncertainty within the input node was propagated through the Bayesian network through 

probabilistic inference. The probability distribution of the endpoint node represents this 

uncertainty within the model output.  

I addressed natural variation due to regional scale spatial variation by dividing the study area 

into risk regions. I used sampling data specific to each region for dissolved oxygen, pesticide 

concentrations, and simultaneous air and water temperature measurements used for the 

temperature regressions. Similarly, temporal variation was addressed at a seasonal scale for 

those datasets. 

3.5.2 Model Uncertainty 

Due to lack of data, I used the same temperature regression to predict water temperature for 

risk regions 3 – 5 for summer and fall and was unable to predict water temperatures for winter 

and spring. Also due to lack sampling data for pesticides in risk regions 4 and 5, I averaged the 

pesticide concentrations for the risk regions 1 – 3 to construct the CPTs for risk regions 4 and 5. 

These are both examples of uncertainty due to data limitations in the study area. 

There are several types of uncertainty in multi-model climate projections including sample 

uncertainties, model uncertainty, initial condition uncertainty, and projection uncertainty (Knutti 

and Sedlacek 2012). Downscaled climate projections also accumulate additional uncertainty 

with choices made in bias-correction and through the spatial downscaling process (Brekke et al. 

2013). I addressed uncertainty for climate modeling by including the model output for three 

GCMs over a 30-year range. All of the model output was used to populate the air temperature 
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nodes, thereby representing the full spectrum of model output. I accounted for uncertainty in 

using regressions to predict the water temperature by using prediction intervals to construct the 

CPTs. 

I addressed the uncertainty represented in the toxicity pathway by using the 95% confidence 

intervals for the entire dose-response model to construct the CPTs. There is additional 

uncertainty in this pathway due to using Coho salmon as a surrogate species for Chinook 

salmon. 

There is uncertainty associated with the population model due to its construction based on a 

generalized model of the Puget Sound region rather than using parameters specific to the 

Skagit River (Baldwin et al. 2009, Mitchell et al. 2020). For example, the model was based on 

ocean-type salmon but Chinook in the Skagit River have both ocean and stream-type life 

histories. 

There is also sampling uncertainty associated with using data from static sampling stations 

located within each of the risk regions and making the assumption that water temperature, 

dissolved oxygen, and pesticide concentration data from those sampling stations represent the 

variation within the entire risk region. It is likely that the true variation within these parameters is 

greater throughout the entire risk region than at the one sampling station. 

3.5.3 Linguistic uncertainty  

The PSP management goal of no net loss for Chinook salmon is a source of linguistic 

uncertainty in the results of this ecological risk assessment (PSP 2017). The full distribution of 

the Chinook population endpoint node is not fully utilized by this management goal. This can be 

addressed by asking more specific management questions that allow for the utilization of the full 

results. This also allows for more specific questions to be address using counterfactuals. 
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Another potential source of linguistic uncertainty is the use of a 500,000 starting population in 

the population model. This number seems very high but the majority of this number are fry and 

only a small percentage of this population are adults that will return to spawn. 
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4. Discussion 

I characterized risk to Chinook salmon population from climate change, dissolved oxygen, and 

organophosphate pesticide stressors and characterized the relative importance of those 

stressors under different climate scenarios taking into account spatial variability across risk 

regions and temporal variability across seasons. I also used a counterfactual analysis to 

calculate potential management goals for ecological variables. This model can serve as a tool 

within an adaptive management framework for ecological resources in the Skagit River 

Watershed that can be adapted to other watersheds. 

There are many uncertainties in this model. It is not meant to be a comprehensive risk 

assessment of the Skagit River Watershed but primarily to demonstrate the use of the BN-RRM 

as an effective tool for ecological risk assessment that can incorporate climate change 

stressors, characterize the relative importance of multiple stressors, quantify or otherwise 

address uncertainty, and fit into an adaptive management framework.  

4.1 The Influence of Climate Induced Changes in Water Temperature on Risk 

The overall change in risk due to climate change induced changes in water temperature was 

small. This might be due to the already high risk that Chinook are facing even before changes to 

water temperature were taken into account. The most notable increases in risk were during 

summer in risk regions 1 and 2 (Table 3). This is because the change in risk was entirely based 

on increased water temperature and salmon prefer colder water. The results of the sensitivity 

analysis also support this, showing that for the seasons and regions with colder temperatures, 

water temperature has little to no importance for determining risk and toxic effects becomes 

relatively more important. 
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4.2 Other Climate Change Factors 

It is important to keep in mind that this model was limited to the influence of only water 

temperature as a climate change stressor. Other factors like changes in precipitation and 

stream flow were not taken into account which can affect salmon habitat and alter the fate and 

behavior of pesticides in the environment (Noyes et al. 2009). Changes in flow may also be an 

important factor in influencing climate change induced changes in water temperature. 

Also, the interaction effects between temperature and pesticides are not incorporated into this 

model. In this model they are separate pathways but there are interactions that can influence 

risk. For example, increased temperature can increase the toxicity of pesticides and alter uptake 

and elimination (Noyes et al. 2009). 

4.3 Counterfactual Analysis 

In this study I used a counterfactual analysis to calculate potential management goals for 

environmental variables. This is an important benefit of using a Bayesian network based on 

cause-and-effect pathways. This is also important for adaptive management. The calculated 

management goals can be easily updated with new information as it is added to the model.  

4.4 Incorporating Climate Change in Ecological Risk Assessment 

I followed the principles laid out in Landis et al. (2013) for incorporating climate change in 

ecological risk assessment. In this and future ecological risk assessments, changing conditions 

due to climate change need to be addressed to better estimate risk.  

4.4.1 Ecosystem Services 

The assessment endpoint was expressed as a quantified ecosystem service, Chinook salmon 

population size. Ecosystem services tie directly into environmental management goals and 

decision making. Because of the direct and indirect effects from climate change, having clearly 
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defined and quantified ecosystem services allow climate change to be linked clearly to climate 

change effects in the BN-RRM. 

4.4.2 Positive and Negative Effects from Climate Change 

This study demonstrated that changes due to climate change can have both positive and 

negative effects on risk. In this case the positive and negative effects were due to variation in 

region and season. Salmonids prefer colder water temperatures and are therefore vulnerable to 

increases in water temperature due to climate change but there are other fish species that 

prefer warmer temperatures that might benefit from the same conditions. 

4.4.3 Using the BN-RRM to Incorporate Climate Change in Ecological Risk Assessment 

It is necessary to take in to account multiple stressors and causality when addressing climate 

change in ecological risk assessment. Climate change affects many ecological parameters 

directly and indirectly. The BN-RRM allows us to incorporate our knowledge about how these 

parameters interact and cause effects into a powerful ecological risk assessment model. 

Because Bayesian networks are probabilistic and can represent causality, we can use 

counterfactuals to predict management goals for parameters related to climate change. The BN-

RRM also allows for the inclusion of multiple climate scenarios, remediation options, and spatial 

and temporal variation. 

4.4.4 Uncertainty in Addressing Climate Change 

Incorporating climate change in ecological risk assessment presents real challenges in terms of 

uncertainty. All climate change projections have associated uncertainty and assumptions. I 

addressed this uncertainty by bounding the projections with prediction intervals and 

documenting the assumptions built into the climate models that I used. Continuing to evaluate 

and document uncertainty as part of an adaptive management process is key to incorporating 
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climate change into ecological risk assessment so that risk estimates become more accurate 

with improvements in climate models and knowledge of how climate change affects risk. 

4.4.5 Adaptive Management 

Adaptive management puts ecological risk assessment into the context of an iterative process 

for natural resource management and mitigation strategies for identified risks (Landis et al. 

2017b). Ecological risk assessment using the BN-RRM identifies relative risk to various 

endpoints, identifies which stressors are most important in influencing that risk, and uses 

counterfactuals to calculate management goals for ecological variables. This information can be 

valuable to environmental decision-makers on what stressors to prioritize with mitigation efforts 

and what the goals of those mitigation efforts should be. The BN-RRM allows for the inclusion of 

new data as they become available, providing new information to decision makers on progress 

of mitigation efforts as well as changing environmental factors. This iterative approach to 

ecological risk assessment and management is critical for addressing climate change because 

of the uncertainty associated with climate change projections and unforeseen effects. 

4.5 Next Steps 

Ecological risk assessment models are built to answer specific questions about ecological 

systems. Depending on the question being asked this model can be modified in many ways for 

future research and use in adaptive management. Bringing in additional stressors relevant to 

managing Chinook salmon populations would potentially address model uncertainty around the 

accuracy of risk estimations. Additional climate change stressors that can affect Chinook 

populations include changes in stream flow and sea-level rise. 

Recent efforts in Chinook recovery are focused on habitat restoration (Beamer et al. 2005a, 

2005b, Beechie et al. 2010, NIFC 2016). The results my study showing the higher relative 

importance of environmental variables over current pesticide concentrations agrees with this 
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approach. As demonstrated by Hines and Landis (2014), mitigation scenarios can be 

incorporated into the BN-RRM. To incorporate habitat restoration into this model, quantitative 

relationships between habitat and chinook population effects need to be developed. 

Alternatively, expert elicitation can be used to set a starting point. In this way habitat restoration 

projects and their impact on risk to Chinook populations can be included. 

Chinook population is an ecosystem service that influences human health and well-being. The 

PSP identified several vital signs related to human health and well-being that can serve as risk 

assessment endpoints such as economic vitality and cultural well-being (Stiles et al. 2015). 

Donatuto et al. (2016) also developed indigenous community health indicators that can be used 

as endpoints specifically for tribal communities. Establishing quantitative relationships between 

Chinook population and human health and these endpoints is critical for their use in this BN-

RRM.  

This BN-RRM can be easily adapted to other watersheds. The monitoring datasets for 

organophosphate pesticides, dissolved oxygen, and water temperature are available for 

watersheds across the Puget Sound. The Shared Strategy Development Committee (SSDC 

2007) running the Puget Sound salmon recovery plan currently have Chinook salmon recovery 

chapters for several watersheds in the Puget Sound including the Nooksack, Stillaguamish, 

Snohomish, Nisqually, and Green/Duwamish. 

The climate change projections can also be easily adapted for other watersheds by following the 

steps in this study with GIS shapefiles of risk regions in other watersheds. In any ecological risk 

assessment using the BN-RRM that includes parameters susceptible to climate change, climate 

change scenarios can be included by following the methods in this study to estimate risk and 

prepare our environmental decision makers for ongoing climate change effects.  
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Supplemental Materials 

S1. Node Discretization, Description, and Data Sources 

Table S1. Discretization, description, and data sources for each node. Organophosphate pesticide concentration node discretization 

includes criteria based on USEPA National Aquatic Life Criteria (USEPA 2020), Endangered Species level of concern (ESLOC, 

Tuttle 2014), and 50% effective concentration (EC50) values from Laetz et al. (2009). This model builds on the BN-RRM used in 

Landis et al. (2020). 

Node States Discretization / Justification Description Data Sources 

Avg Daily Max Air 
Temp (°C) 

-16 to 0 

Discretization based on multiples of 10 with 
extreme values included in the highest and 

lowest state. 

Average daily maximum 
temperatures in °C from climate 

model output or historical 
meteorological data. 

Maurer et al. (2002), USGS 
Geo Data Portal (Blodgett et 

al. 2011) 

0 to 10 

10 to 20 

20 to 30 

30 to 42 

Avg Daily Water 
Temp (°C) 

0 to 13 

Discretization based on salmon optimal temp 
ranges for water temperature from table 200 

(1)(c) from WAC (2011a). 

Average daily maximum water 
temperature in °C calculated from 

air temperature using single 
regression or from direct 

measurements. 

WADOE EIM (2019), Maurer 
et al. (2002), USGS Geo 

Data Portal (Blodgett et al. 
2011) 

13 to 16 

16 to 18 

18 to 25 

25 to 36 

Dissolved Oxygen 
(mg/L) 

0 to 3.5 

Discretization based on salmon specific 
optimal ranges for dissolved oxygen from 

table 200 (1)(d) from WAC (2011b) 

Measured dissolved oxygen 
concentrations in mg/L. 

Tuttle (2014), WSDOE EIM 
(2019), Laetz et al. (2009) 

3.5 to 5 

5 to 6.5 

6.5 to 8 

8 to 9.5 

9.5 to 11 

11 to 15 

15 to 20 

Chlorpyrifos 
Concentration 

(μg/L) 

0 to 0.15 0.15 is the ESLOC (Tuttle 2014) 
Measured chlorpyrifos 

concentrations. 
Tuttle (2014), WADOE EIM 
(2019), Laetz et al. (2009) 

0.15 to 0.4 0.4 is the 0.2 EC50 (Laetz et al. 2009) 

0.4 to 2 2 is the EC50 (Laetz et al. 2009) 

Diazinon 
Concentration 

(μg/L) 

0 to 0.17 0.17 is the EPA Criteria (USEPA 2020) 

Measured diazinon 
concentrations. 

Tuttle (2014), USEPA (2020), 
WADOE EIM (2019), Laetz et 

al. (2009) 

0.17 to 4.5 4.5 is the ESLOC (Tuttle 2014)  

4.5 to 29 29 is the 0.2 EC50 (Laetz et al. 2009) 

29 to 145 145 is the EC50 (Laetz et al. 2009) 
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Table S1. Continued. 

 

  

Node States Discretization / Justification Description Data Sources 

AChE Activity 

0 to 25 

Discretization based on multiples of 25. 
Change in AchE activity relative 

to control due to OP toxicity. 
Landis et al. (2020), Laetz et al. 

(2009, 2013) 

25 to 50 

50 to 75 

75 to 100 

100 to 125 

Percent Morality 

None 

Discretization based on mortality 
percentages as input to population modeling. 

Percent mortality due to AChE 
inhibition. 

Landis et al. (2020), Laetz et al. 
(2009) 

10 

20 

50 

90 

Change in 
Swimming Rate (% 

control) 

0 to 25 
Discretization adapted from Chu (2018) to fit 

range from dose-response model 

Percent change in swimming 
speed relative to control due to 

AChE inhibition from OP 
exposure. 

Laetz et al. (2009, 2013), 
Sandal et al. (2005), Tierney et 

al. (2007) 
25 to 50 

50 to 100 

Toxicological 
Effects 

None 

Discretization based on mortality 
percentages as input to population modeling. 

Summary node combining effects 
from mortality and swimming 

speed nodes. 

Landis et al. (2020), Coppage et 
al. (1975), Duangsawaski 
(1977), Laetz et al. (2009) 

10 

20 

50 

90 

Juvenile Water 
Quality Effects 

None 

Discretization based on mortality 
percentages as input to population modeling. 

Percent mortality to juvenile 
salmonids due to effects from 

water temperature and dissolved 
oxygen. 

Landis et al. (2020), Brett 
(1952), Carter (2005, 2008), 

Geist et al. (2006), Warren et al. 
(1973) 

10 

20 

50 

90 
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Table S1. Continued. 

Node States Discretization / Justification Description Data Sources 

Juvenile % 
Reduction in 

Survival 

None 

Discretization based on mortality percentages 
as input to population modeling. 

Percent mortality for juvenile 
salmonids due to combined OP 
toxicity and water quality effects. 

Brett (1952), Carter (2005), 
Landis et al. (2020), Coppage et 

al. (1075), Duangsawasdi 
(1997), Geist et al. (2006), 
Jager (2011), Laetz et al. 

(2009), McCullough (1999), 
Richter and Kolmes (2005), 

Warren et al. (1973). 

10 

20 

50 

90 

Egg to Emergence 
% Reduction in 

Survival 

None 

Discretization based on mortality percentages 
as input to population modeling. 

Percent mortality for egg and 
larval salmonids due to effects 

from water temperature and 
dissolved oxygen. 

Carter (2005, 2008), Landis et 
al. (2020) Geist et al. (2006), 

Jager (2011), McCullogh 
(1999), McCullough et al. 

(2001), Richter and Kolmes 
(2005) 

10 

20 

50 

90 

Adult % Reduction 
in Survival 

None 

Discretization based on mortality percentages 
as input to population modeling. 

Percent mortality for adult 
salmonids due to effects from 

water temperature and dissolved 
oxygen. 

Landis et al. (2020), Jager 
(2011), McCullough (1999), 

McCullough et al. (2001), Peery 
(2010), Richter and Kolmes 

(2005) 

10 

20 

50 

90 

Chinook 
Population Size 

0 to 1e5 

Discretization based on population modeling 
output. 

Chinook total population based on 
RAMAS GIS 6.0 software 

population modeling. 

Applied Biomathematics (2017), 
Mitchell (2020) 

1e5 to 5e5 

5e5 to 1e6 

1e6 to 5e6 

5e6 to 1e7 

1e7 to 7.2e8 
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Table S1. Continued. 

Node States Discretization / Justification Description Data Sources 

Simulation Year 

year1 One year simulation 

Selects population model duration. 
Applied Biomathematics (2017), 

Mitchell (2020) 

year5 Five year simulation 

year10 Ten year simulation 

year20 Twenty year simulation 

year50 Fifty year simulation 

Chinook 
Population Decline 

Loss Decline in Chinook population 
Probability of Chinook population 

decline from starting model 
population. 

Chinook Population Size Node 
NoLoss No decline in Chinook population 
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S2. Complete probability distributions for Chinook Population Size Node. 

Table S2. Chinook Population Size node probability distributions for each scenario. 

Timeframe Season 
Risk 

Region 
0 to 1e5 

1e5 to 
5e5 

5e5 to 
1e6 

1e6 to 
5e6 

5e6 to 
1e7 

1e7 to 
7.2e8 

Historical 

Spring 

1 54.5 15.5 10.5 16.6 2.3 0.6 

2 51.3 15.8 11.2 18.5 2.6 0.6 

3 47.8 16.8 11.9 20.2 2.8 0.7 

4 49.2 16.4 11.6 19.4 2.8 0.7 

5 49.2 16.4 11.6 19.4 2.8 0.7 

Summer 

1 64.0 13.2 8.2 12.4 1.7 0.5 

2 62.9 13.4 8.4 12.9 1.8 0.5 

3 47.6 16.4 11.9 20.5 3.0 0.7 

4 47.9 16.4 11.8 20.3 2.9 0.7 

5 47.8 16.4 11.8 20.4 2.9 0.7 

Fall 

1 55.0 14.6 10.2 17.2 2.5 0.6 

2 56.4 14.4 9.9 16.4 2.4 0.6 

3 48.0 16.6 11.9 20.0 2.9 0.7 

4 48.0 16.6 11.9 20.0 2.8 0.7 

5 48.0 16.6 11.9 20.0 2.8 0.7 

Winter 

1 50.9 16.2 11.3 18.4 2.6 0.6 

2 49.5 16.4 11.5 19.2 2.7 0.7 

3 48.5 16.7 11.8 19.6 2.8 0.7 

4 50.2 16.2 11.3 18.9 2.7 0.6 

5 50.2 16.2 11.3 18.9 2.7 0.6 

Future 

Spring 

1 58.1 14.7 9.6 15.0 2.1 0.6 

2 51.6 15.8 11.1 18.3 5.6 0.6 

3 64.6 12.8 8.1 12.2 1.7 0.5 

4 64.9 12.7 8.0 12.2 1.7 0.5 

5 64.9 12.7 8.0 12.2 1.7 0.5 

Summer 

1 69.4 11.9 6.9 9.9 1.4 0.5 

2 67.4 12.4 7.4 10.8 1.5 0.5 

3 47.4 16.3 11.9 20.7 3.0 0.7 

4 47.7 16.2 11.8 20.6 3.0 0.7 

5 47.7 16.2 11.8 20.6 3.0 0.7 

Fall 

1 55.7 14.6 10.0 16.7 2.4 0.6 

2 58.3 14.2 9.5 15.3 2.2 0.6 

3 47.8 16.5 11.9 20.2 2.9 0.7 

4 47.9 16.6 11.9 20.1 2.9 0.7 

5 47.9 16.6 11.9 20.2 2.9 0.7 

Winter 

1 50.9 16.2 11.3 18.4 2.6 0.6 

2 49.5 16.4 11.5 19.2 2.7 0.7 

3 65.1 12.7 8.0 12.0 1.7 0.5 

4 65.5 12.6 7.9 11.9 1.7 0.5 

5 65.5 12.6 7.9 11.9 1.7 0.5 
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S3. Complete Entropy Analysis Results. 

 

Figure S1. Entropy analysis results for risk regions 1 and 2.  
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Figure S2. Entropy analysis results for risk regions 3 and 4. 
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Figure S3. Entropy analysis results for risk region 5. 

 

  



49 
 

S4. Toxicity Pathway and Mixture Methods. 

I used the drc package in R (Ritz et al. 2015) to construct a model equation for the chlorpyrifos 

mixture results from Laetz et al. 2013. 

Single Chemical Analysis 

In order to use the toxic units approach, I needed to calculate the EC50s from the single 

chemical data. I used the data from Laetz et al. 2009.  

EC50s calculated from single chemical analysis: 

Diazinon EC50 = 39.55 ug/L 

Chlorpyrifos EC50 = 1.99 ug/L 

Diazinon Model 

I used the drc package in R to construct the Diazinon single chemical model (Figure S4). A log 

logistic five parameter model was chosen as best fit because it had the lowest residual variance. 

The parameters are: b: -1.072, c: 100.160, d: 26.859, e: 4.927, f: 6.803. 
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Figure S4. Diazinon single chemical model. Log logistic 5 parameter model. Data from Laetz et 

al. 2009. 
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Chlorpyrifos Model 

I used the drc package in R to construct the Chlorpyrifos single chemical model (Figure S5). A 

log-logistic three parameter model was chosen as best fit because it had the lowest residual 

variance. The parameters are: b: 1.479, d: 100.736, e: 1.990. 

 

 

Figure S5. Chlorpyrifos single chemical model. Log-logistic three parameter model. Data from 

Laetz et al. 2009. 
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Chlorpyrifos + Diazinon Mixture Model 

 

To convert the concentrations to toxic units, I used the equation: 

TU = Measured Concentration of OP X (ug/L) / EC50 value of OP X (ug/L) 

I constructed the mixture model using the drc package in R using the sum of toxic units as the 

concentration and the AChE % Control Inhibition as the response (Figure S6). A log logistic 3 

parameter model was selected as best fit based on the log logistic model with the lowest 

residual variance.  

Log Logistic 3 Parameter model from TU data: 

 

AChE % Control = 101.7768/ (1+exp(0.6127 *(((log(Toxic Units)) - log(0.8359))))) 

 

To enter this equation into Netica and use the Equation to Table function, I converted the 

pesticide concentrations into TU within the equation. The equation I used in Netica is: 

ache (chlorpyrifos,diazinon) =  101.7768/ (1+exp(0.6127 
*(((log((diazinon/39.552)+(chlorpyrifos/1.99))) - log(0.8359))))) 
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Figure S6. Chlorpyrifos + Diazinon mixture model. Log logistic three parameter model. Data 

from Laetz et al. (2009, 2013). 
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Mortality Model 

I used the drc package in R to construct the Mortality model (Figure S7). A log-logistic two 

parameter, binomial type model was chosen as best fit because it had the lowest residual 

variance. The parameters are: b: 2.523, e: 30.579. 

 

Figure S7. Log-logistic two parameter dose-response model for mortality as a response to 

acetylcholinesterase (AChE) inhibition with 95% confidence intervals. 
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Swim Speed Inhibition Model 

I used the drc package in R to construct the swim speed inhibition model (Figure S8). A log-

logistic three parameter model was chosen as best fit because it had the lowest residual 

variance. The parameters are: b: -1.8328, d: 88.6685, e: 12.019. 

 

Figure S8. Log-logistic three parameter dose-response model for swim speed inhibition as a 

response to acetylcholinesterase (AChE) inhibition with 95% confidence intervals. 
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S5. Air Temperature to Water Temperature Regressions 

I used R Statistical Software to create regressions of air temperatures to water temperatures. 

Figure S9 and Figure S10 show regressions specific to region and season for each region and 

season where simultaneous air and water temperature data were available. I used the 95% 

prediction intervals to construct the CPT for the water temperature node. The 95% confidence 

interval was not an accurate representation of uncertainty due to the large sample sizes. 

 

Figure S9. Temperature regressions for summer and fall in risk regions 1 to 3. The linear model 

equation, adjusted R2, p-value, and sample size (n) are included in each regression, along with 

the 95% prediction and confidence intervals. 
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Figure S10. Temperature regressions for winter and spring in risk regions 1 and 2. The linear 

model equation, adjusted R2, p-value, and sample size (n) are included in each regression, 

along with the 95% prediction and confidence intervals. 
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S6. Sample Location Maps 

 

 

Figure S11. Dissolved oxygen (DO) sample locations within the Skagit River Watershed study 

area. Data from WADOE EIM (2019). 
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Figure S12. Organophosphate Pesticide (OP) concentration sampling locations within the 

Skagit River Watershed study area. Data from WADOE (2019). 
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S7. Air Temperature: Historical and Climate Model Projections 

Figures S13 – S15 compare the distributions of average daily maximum air temperature 

between historical observed climate data and future climate projections by risk region and 

season. The historical climate scenario is based on observed climate data from 1981 to 2010 

(Maurer et al. 2002) and the future climate scenario is based on climate projections from 2071 

to 2100. The future climate projections are from an ensemble of GCMs from CMIP5 (Table 1). 

The RCP 8.5 projections were downscaled using BCCA V2 to a 0.125 degree grid. I obtained 

the model output from the USGS Geo Data Portal website (https://cida.usgs.gov/gdp/, Blodgett 

et al. 2011). 

 

https://cida.usgs.gov/gdp/
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Figure S13. Box and whisker plots comparing measured historical air temperatures with climate 

projections by season for risk regions 1 and 2. The box shows the median and interquartile 

range and the whiskers show the min and max values. 
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Figure S14. Box and whisker plots comparing measured historical air temperatures with climate 

projections by season for risk regions 3 and 4. The box shows the median and interquartile 

range and the whiskers show the min and max values. 
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Figure S15. Box and whisker plots comparing measured historical air temperatures with climate 

projections by season for risk regions 5. The box shows the median and interquartile range and 

the whiskers show the min and max values. 
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