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Abstract 

Chemical controls for agricultural pests and diseases can have detrimental effects on 

human health and the environment. One alternative is to introduce soil microbes, such as 

arbuscular mycorrhizal fungi (AMF), that can improve crop resilience to pests and pathogens. 

While many plants form symbioses with AMF, not all crops benefit from inoculation. We 

conducted three studies that questioned the effect of AMF from various sources on R. idaeus 

growth and resilience to pests/pathogens. First, in a small observational study, we investigated 

whether AMF colonization of raspberry roots covaried with stand vigor. In two subsequent 

greenhouse experiments, we asked (1) if AMF inoculation could increase the growth of Rubus 

idaeus cv. Meeker (red raspberry), (2) if AMF inoculation would improve plant resistance to the 

pathogen Phytophthora rubi and parasitic nematode Pratylenchus penetrans, and (3) if the 

source of AMF mattered.  

In each greenhouse study, we grew R. idaeus with differing AMF inoculum prior to 

exposing them to pest/pathogens. Plants in the first greenhouse study were inoculated with no 

AMF, a constructed AMF community, or whole-soil inoculum from the root zone of wild Rubus 

parviflorus or farmed R. idaeus. All plants received small microbes (<11 𝜇m) from mixed 

inocula. After 10 weeks, those plants were challenged with neither, either, or both P. rubi and 

P. penetrans. We measured plant biomass and height, shoot nutrients, AMF colonization of 

roots, and nematode densities. The second greenhouse study was conducted earlier in the 

spring and with younger plants. Plants first received AMF from the root zone of farmed R. 

idaeus, commercial AMF inoculum, or no AMF. After 5 weeks, half the plants were challenged 

with P. rubi. Plant height, biomass, and survivorship was assessed. 
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In contrast with our expectations, we found R. idaeus farm soil harbored AMF 

propagules at a similar density and infectivity as wild soil – both colonized 91% of roots despite 

high soil phosphorous. A lack of biomass or nutrient differences in plants receiving P. rubi and 

P. penetrans in the first experiment indicates we did not achieve pest/pathogen densities that 

impact plant growth. In contrast, conditions more favorable to P. rubi in the second experiment 

led to high rates of pathogen infection. In this experiment, whole-soil inoculum from the 

commercial farm increased the survival rate of young R. idaeus challenged with P. rubi by 300%, 

while commercial inoculum offered no benefit. We found no evidence that mycorrhizal 

inoculum altered nematode densities in roots or soil. Plants receiving P. penetrans had 315-680 

nematodes/g root, with 55% lower densities in plants that also received P. rubi, suggesting an 

interaction between these organisms. 

We conclude that the soil microbial communities on mature R. idaeus farms contain 

beneficial AMF, and that these biotas increase plant resilience to the pathogen P. rubi, at least 

under greenhouse conditions. These results are a promising step in the development of 

strategies to promote crop resilience and long-term sustainability of raspberry production. 
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1. Introduction 

 

Microbiota for Sustainable Agriculture 

To feed a growing population with limited arable land will require innovative methods that 

improve crop productivity in conjunction with long-term soil health. Soil microbes can either 

help or hinder plant growth, and are considered a largely untapped toolbox for improving plant 

productivity (Mariotte et al. 2018). Conventional agricultural practices can diminish the 

biomass, diversity, and species richness of beneficial microbes in the soil—microbes which can 

support plants via nutrient acquisition, pathogen protection, and more (Banerjee and Anderson 

1992, Barrios 2007, Friesen et al. 2011, Köhl et al. 2014, Dangi et al. 2015, Mariotte et al. 2018). 

Diminished soil microbial biomass and diversity can lead to increased pathogen pressures and 

increased leaching of nutrients from soil, thus reducing plant productivity over time (Mazzola 

2004, de Kroon et al. 2012, Köhl et al. 2014, Mariotte et al. 2018). Managing crops to promote 

healthy soil communities could vastly improve the sustainability of agricultural ecosystems. 

Agricultural practices shown to improve crop productivity through effects on soil biota include 

plant diversification (intercropping or crop rotations), mulching, reduced tillage, and active 

introduction of key beneficial biota (Mariotte et al. 2018, Bender et al. 2016, Forge and Kempler 

2009, Zhu et al. 2000). Each strategy for long-term crop productivity supported by soil microbial 

communities may not have equal benefits in all cropping systems. 

Management of one group of soil biota, arbuscular mycorrhizal fungi (AMF), has high 

potential to improve agricultural outcomes. Through a symbiosis with plant roots, AMF can 

promote beneficial soil communities, suppress soil pathogens, and cause changes in plant 
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nutrition, physiology, and exudation that improve growth and/or reduce disease severity (Fitter 

and Garbaye 1994, Brussaard et al. 2001, Whipps 2004, Schouteden et al. 2015). Yet, AMF 

abundance is negatively correlated with land use intensity in agroecosystems around the world 

(Fester and Sawyers 2011). Given the range of potential benefits of symbioses with AMF, crop 

inoculation with AMF could be a sustainable strategy to improve resilience to both biotic and 

abiotic stressors.  

Despite great potential to benefit plants, there are concerns that AMF lack a strong role 

in production agriculture (Ryan and Graham 2002). High nutrient conditions may limit the utility 

of AMF; soil phosphorous in excess of plant requirements has been shown to inhibit the 

formation of symbioses between AMF and plants (Kahiluoto et al. 2001, Bittman et al. 2005, 

Jansa et al. 2009) and to reduce benefits to plant nutrition and biomass (Johnson 2010), yet 

AMF also influence plant tolerance to abiotic and biotic stressors such as drought and 

pathogens (Harrier and Watson 2004, Gianinazzi et al. 2010). Furthermore, the quality of 

symbiosis between plants and AMF is highly dependent upon both species involved, 

environmental factors, and the soil microflora (Vestberg et al. 1994, Artursson et al 2006, Jacott 

et al. 2007, Veresoglou et al. 2012), therefore the capacity for AMF to benefit plants under high 

nutrient conditions could vary as well. Broad generalizations about AMF capacities and 

limitations may fail to reflect the range of outcomes from their partnership across crops and 

cropping systems, and focused research is needed to elaborate the potential benefits of AMF 

within specific cropping systems. 

Whole-soil inoculum from local sources may be the most effective means of introducing 

beneficial AMF for agricultural uses. Utilizing whole-soil inoculum retains the complexity of the 
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natural system, including bacteria which often act synergistically with AMF to increase plant 

nutritional or defense responses (Artursson et al. 2006, Adesemoye et al. 2008, Turrini et al. 

2018). Studies have further demonstrated that local inocula have more beneficial effects on 

plant growth than foreign inoculum, due to adaptations to local climate and species-specific 

interactions (Antunes et al. 2011, Emam et al. 2015, Rúa et al. 2016). Most of these studies 

demonstrating the benefit of local inoculum have focused on natural systems, so the question 

remains whether comparable benefits would result from local agricultural soil microbial 

communities. Disturbances such as fertilization, fumigation, and tillage can reduce AMF taxa 

richness (Verbruggen et al. 2012) and favor parasitic symbionts (Johnson 2010, Porter and 

Sachs 2020). In a metanalysis, Hoeksema et al. (2018) brought evidence of coevolution of plants 

and AMF, which suggests that plants of a similar phylogenetic lineage are likely to respond 

similarly to a given genera of AMF. Therefore, when considering microbial inoculants for use on 

cultivated crops, it may be valuable to consider whole soil inoculum from nearby, undisturbed 

systems that contain phylogenetically similar plant species.  

 

Raspberry - Challenges and Prospects 

Red raspberry, Rubus idaeus, is a valuable perennial crop in Washington state which 

faces challenges that likely stem from negatively impacted soil communities. The average 

productive lifespan of R. idaeus plantings in the region has declined from 10-20 years 

historically to a mere 5-7 years in 2013 (Gigot et al. 2013). Common management practices 

include tillage, fertilization, and the use of fungicides and pesticides; all of which are known to 

affect abundance and diversity of beneficial biota (Ibekwe et al. 2001, Mazzola 2004, Dangi et 
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al. 2015, Hage-Ahmed et al. 2019). While no study has yet assessed whether beneficial 

microbiota is impacted in R. idaeus fields, increases in pathogens and parasitic nematodes have 

been observed and are likely contributing to the decline in productivity, especially the root 

pathogen Phytophthora rubi and migratory endoparasitic nematode Pratylenchus penetrans 

(Gigot et al. 2013). These organisms damage the fine roots of plants, thus reducing nutrient and 

water uptake, and can impair the establishment of new plants, stunt plant growth, and reduce 

crop vigor and yield (Barney and Miles 2007, Gigot et al. 2013, Rudolph and DeVetter 2015, Han 

et al. 2014).  

Of the beneficial biota which may be reduced in this crop system, AMF have a high 

probability of improving raspberry establishment and resilience to such crop-specific pests and 

pathogens, whether or not AMF are currently lacking in the field. Early inoculation is 

advantageous because it can take weeks for plants to establish the symbiotic association with 

AMF, and inoculation of plants prior to planting in the field has been observed to counter the 

negative effects of pathogens on growth and yields significantly better than co-inoculation or 

late-stage inoculation (Forge et al. 2001, Talavera et al. 2001). AMF have been observed to 

alleviate impacts of both P. penetrans and Phytophthora sp. in agricultural systems (Talavera et 

al. 2001, Forge et al. 2001, Pozo et al. 2002, Whipps 2004). However, to our knowledge no 

studies have yet investigated the interaction of AMF symbioses with P. rubi infection, nor 

whether AMF symbioses improves growth of R. idaeus challenged with P. penetrans. The effect 

of mycorrhizal inoculation on establishment and growth of raspberry challenged by either pest 

or pathogen merits further investigation. 
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Research Objectives 

In a small observational study, we investigated whether AMF colonization of R. idaeus roots and 

stand vigor covaried. Through two subsequent greenhouse experiments, we assessed the 

following research questions: 

1. Can AMF inoculation increase the growth of R. idaeus? 

2. Can AMF inoculation improve R. idaeus resilience to the soilborne pathogen 

Phytophthora rubi or plant-parasitic nematode Pratylenchus penetrans? 

3. Will plants respond differently to AMF available in managed R. idaeus fields compared 

to other sources? 

 

Due to the tradeoff costs of AMF symbioses (Jacott et al. 2017), we hypothesized that 

plant growth would be reduced by AMF inoculation under unstressed conditions, but that 

survival and growth of plants colonized by AMF would be better than uncolonized plants 

stressed by P. penetrans and/or P. rubi. Furthermore, we hypothesized that raspberry resilience 

to pest and diseases would differ based on the source of prior AMF inoculation. Due to 

evidence that AMF diversity is correlated with improved productivity (Maherali and Klironomos 

2007) we hypothesized that plants inoculated with a community of AMF which was built to 

maximize phylogenetic diversity (8 species representing two orders of AMF) would result in 

greater biomass production than with either of the other AMF sources. Under the premise that 

agricultural manipulation and high nutrient conditions impair AMF communities, we 

hypothesized that AMF of a field soil would lead to lower colonization rates than AMF from a 

wild soil. 
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2. Materials and Methods 

 

2.1 Experimental Overview 

We began with a Preliminary Observational Study (section 2.2), which investigated whether 

AMF colonization of raspberry roots and plant vigor covaried. This motivated the “Summer 

Long Study” (section 2.3) which assessed whether AMF available in farm soil or other sources 

could affect R. idaeus growth or susceptibility to two common problematic soil-borne 

organisms in Western Washington: the plant-parasitic nematode Pratylenchus penetrans, and 

the pathogen Phytophthora rubi. Due to the promising colonization levels observed in the 

Summer Long Study, but lack of infection by P. rubi, we conducted a “Spring Short Study” 

(section 2.4) to verify whether P. rubi would be infective with younger plants under cooler 

environmental conditions, and to test whether AMF inoculation affected subsequent plant 

susceptibility. 

 

2.2 Preliminary Observational Study 

Within a production field near Lynden, WA, differences in plant vigor were identified and 

quantified as a difference in the density of fruiting floricanes; averaging only 77 floricanes per 

25 ft in the “low vigor” rows, compared with 101 floricanes per 25 ft in the “high vigor” rows 

(Tim Miller, personal communication).  

To assess whether vigor and root colonization covaried, we assessed colonization in 

roots from these rows. On September 11, 2018, we collected soil from the root zone of plants 

in 10 rows of each vigor category. Ten samples of soil were dug at regular intervals along each 
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row, 10 cm wide by 20 cm deep, and combined with the other samples from that row. From 

combined soils, we then collected fine roots connected to larger woody roots, washed them 

free of soil, then proceeded to clear, stain, and plate those fine roots following the protocol 

described in section 2.37. AMF colonization for each root fragment was examined at 200x 

magnification on a Nikon Eclipse 80i compound microscope. Colonization within each fragment 

was categorized as ‘high’ (>50% containing AMF structures), ‘low’ (<50% containing AMF 

structures), or ‘absent’ (no AMF).  

 

2.3 Summer Long Study 

The first greenhouse experiment was conducted from May – September 2019. This was a 24-

week, full factorial greenhouse experiment (4 AMF x 4 stress, 10 reps; Table 1). During Phase 1 

(10 weeks) we compared the growth of unstressed plants inoculated with AMF from three 

sources to a control, to discern whether raspberries differ in their response to the AMF 

available in those sources. After that, we exposed those plants to Pratylenchus penetrans, 

Phytophthora rubi, neither, or both, to test the impact of the different plant-mycorrhizal 

associations on disease progression and plant growth under stress during Phase 2 (14 weeks). 

All plants received small microbes (<11 µm) from mixed inocula. 

To account for differences throughout the greenhouse in light, proximity to heating and 

cooling mechanisms, and other environmental variables, we arranged plants in a randomized 

block design. One replicate from each treatment was randomly located within each block.  
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Table 1: Illustrates the number of replicates in each treatment combination. Phase 1 AMF 
treatments were applied at the start of the experiment, and Phase 2 stress treatments were 
applied after 10 weeks. 
 

  Phase 2 Stress Treatments 

No stress P. penetrans P. rubi P. penetrans 
& P. rubi 

Ph
as

e 
1  

AM
F 

Tr
ea

tm
en

ts
 Control 

16 treatment combinations 
n=10 each 

Built  
Farm  
Wild  

 

2.31 Experimental Parameters 

Planting stock 

We utilized plugs of tissue cultured Rubus idaeus cv. Meeker, provided by the Northwest Plant 

Co LLC (Ferndale, WA), which averaged 17 cm tall and 0.5 grams dry weight (GDW). ‘Meeker’ is 

one of the most commonly grown raspberry cultivars for the Pacific Northwest, accounting for 

over 70 percent of commercial plant sales (Hoarshi-Erhardt and Moore 2020). As a summer-

bearing cultivar with biennial canes, ‘Meeker’ plants produce vegetative primocanes in the first 

year, then fruit-bearing floricanes in the second year before they senesce. Once established, 

this cultivar is somewhat sensitive to root rot (Finn et al. 2014). 

Baseline properties of the planting stock were determined by destructively harvesting 

eight raspberry plugs when the rest were potted into their Phase 1 AMF treatments. On these 

plants, we separated shoots from roots at the crown, then dried each separately at 60°C for 48 

hours in a Heratherm Oven (Thermo Fisher Scientific; Waltham, MA) before weighing on an 

electronic scale (Denver Instruments SI-4002; Bohemia, NY). A subsample of roots from each 
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plant were stained and microscopically examined for AMF, following the protocol described in 

section 2.37. Twelve root segments were assessed per plant. 

 

 
Figure 1: A plug of R. idaeus cv. Meeker from Northwest Plant Co LLC (Ferndale, WA) utilized in 
the Summer Long Study. Photograph was taken on Day 0, just before plants were potted into 
their Phase 1 AMF treatments. 
 

Potting Mix 

Potting mix used for both phases of the experiment contained a 2:1:1 mixture of farm soil 

(described in section 2.32), play-sand (Sakrete; Atlanta, GA), and Turface MVP soil conditioner 

(Turface Athletics; Buffalo Grove, IL). The farm soil was passed through an 8mm diameter USA 

Standard soil sieve prior to mixing, and the whole blend was steam sterilized twice (80°C, 1 

hour) 24 hours apart, using an electric soil sterilizer (SS-30 Electric Soil Sterilizer, Pro-Grow; 

Phoenix, AZ). Nutrient content of the sterilized potting mix and whole-soil inoculum sources 

(Table 2) were determined by Exact Scientific Services Inc following protocols described in 

Miller et al. (2013). 
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Table 2: Abiotic soil characteristics for final autoclaved potting mix used in each phase of the 
experiment. Asterisks indicate how nutrient levels compare to normal recommended ranges in 
agricultural soils. Comparisons for P, K, and pH (Bouska et al. 2018), and OM (Cornell 2020) are 
raspberry-specific. Comparison for total N is general, sourced from Horneck et al. (2011). No 
information was available to compare for available N. 
 

 
Available  
N (ppm) Total N (%) Bray- 

P (ppm) K (ppm) pH Organic 
Matter (%) 

Potting mix (Phase 1) 15.1 0.07* x 351** 191** 6.78** 1.65* I 
Potting mix (Phase 2) 16.8 0.08* x 280** 227** 6.50** 1.18* I 
Farm inoculum 12.7   0.15 xx 579** 253** 7.40** 3.20 I I  
Wild inoculum 8.29 0.33** 237** 345** 6.04** 9.19** 

*     Lower than normal range 
** Higher than normal range 

 

 
Greenhouse Conditions 

In both phases of the Summer Long Study, plants were grown in a greenhouse set to maintain 

temperatures between 15.6 – 21.1°C (60 – 70°F), though temperatures fluctuated from 15 – 

43.3°C (59 – 110°F) and averaged 21.7°C (71°F). Average relative humidity was 62%. Light 

averaged 262 ± 24 𝜇mol/m2/sec at midday. Plants received at least 12 hours of light per day: 

supplemental lighting was on a 12:12 period cycle while natural light was longer than that, 

increasing toward the summer months. Detailed environmental data are in appendix A.  

 

Nutrients 

Using the strategy of Taylor and Harrier (2000), we gave plants only water for the first 6 weeks 

to promote AMF colonization. We then fertilized weekly with 10 – 30 mL of Hoagland’s nutrient 

solution modified to be phosphate-free. At 1X concentration, the modified Hoagland’s included:  
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5 mM Ca(NO3)2, 5 mM K(NO3), 2 mM MgSO4, 1 mM Fe(III)EDTA, 46.3 µM H3BO4,  

9.1 µM MnCl2×4H20, 8 µM ZnCl2, 4 µM CuCl2×2H20, 1 µM Na2MoO4×2H20 

The volume and concentration of nutrient solution was increased in response to signs of 

nutrient stress. Each plant received 153.3 mg N total over the course of the experiment.  

 

Water 

Plants were drip irrigated using ½ GPH emitters (31.6 mL/minute). Water volume and frequency 

was increased over the course of the experiment to maintain moist but not saturated soils 

(except during Phase 2, detailed in section 2.33). 

 

2.32 Phase I 

The raspberry plugs were potted into 650 mL Deepots (D40H; Stuewe and Sons Inc., Tangent, 

OR) using one of four AMF treatments described below, and the sterile potting mix described 

above. The AMF treatment was sandwiched between sterile soil, where plant roots would 

quickly encounter the inoculum (Figure 2). To homogenize the microbial community smaller 

than 11 µm across treatments, all plants received 10 mL of a “microbial wash” prepared by 

blending equal volumes of all AMF inocula with distilled water and filtering the slurry 

progressively down to 11 µm. The final filtrate was passed through 11 µm filter paper three 

times to ensure exclusion of AMF (spores and colonized root fragments). 
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Figure 2: Diagram of potting method for Phase 1 AMF treatments. One of four AMF treatments 
(white band) was located directly below each plant plug (black cylinder), sandwiched between 
sterile potting mix (grey fill). Small microbes were applied to all plants as an aqueous mixture, 
so the microbial community <11 µm would be consistent between treatments.  
 
 

Description of AMF Treatments 

1. Control: No AMF inoculum 

2. Built: 10 g per plant of an AMF blend which is a phylogenetically diverse community of AMF 

species. High species diversity may correlate with functional diversity, and thus increase 

potential benefits to plants (Verbruggen and Kiers 2010). This blend contained spores of 8 

species from 2 orders in sand as a carrier. 

Each species in the blend was obtained by the MPG Ranch (Florence, MT, USA) as a 

pure culture sourced from the International Culture Collection of Vesicular Arbuscular 

Mycorrhizal Fungi (INVAM). The species were chosen to represent a diverse phylogeny, while 

selecting fairly cosmopolitan species that had morphologically distinct spores to facilitate 

visual analyses of community composition. Each pure culture was increased by pot culture 

on Plantago lanceolata from May to August 2018 at the MPG ranch in Florence, MT, USA 

(46.673 N, 114.016 W). A combined blend of these spores in sand was sent to our lab, and in 

March 2019 we extracted and quantified spores by species (methods below) to obtain initial 

relative abundance of each species (Table 3).  
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Table 3: Abundance of spores within the Built inoculum, by species. Data are means ± standard 
errors from five sample extractions. 
 

AMF Species Spores / 10g Inoculum 

Claroideoglomus etunicatum  80 ± 26 

Claroideoglomus lamellosum 307 ± 49 

Dentiscutata heterogama 850 ± 81 

Funneliformis mosseae 303 ± 69 

Gigaspora albida 13 ± 3  

Gigaspora rosea 3 ± 3 

Rhizophagus irregularis 460 ± 162 

Rhizophagus sinuosum 7 ± 3 
 

3. Farm: 30 g per plant of whole-soil inoculum containing colonized root fragments, fungal 

hyphae, and spores from the root zone of commercially cultivated R. idaeus, which would 

represent agriculturally managed soil.  

We selected a commercial farm in Whatcom County, WA, USA (48.938 N, 122.537 W; 

elevation 24m) which undergoes management typical for commercial raspberry growers, 

specifically the use of fumigation to control pests, application of conventional fungicides and 

insecticides, and fertilization to support plant growth. Importantly, this farm had no history 

of root-rot nor P. penetrans infection. At the time of soil collection, the commercial planting 

consisted of 18-month old ‘WakeHaven’ raspberries in raised beds. In June 2017, 

approximately 21 months prior to our soil harvest, the soil had been bed fumigated with 

Telone C-35 (Dow Agrosciences, Indianapolis, IN), and broadcast fertilized after fumigation 

(11N–52P–0K; 145 kg·ha−1). The soil at this site is mapped as a Laxon loam: a coarse-loamy, 

moderately well drained soil formed from volcanic ash, loess, and glacial outwash (Soil 

Survey Staff, 2020). 



 

 
 14 

4. Wild: 30 g per plant of whole-soil inoculum containing colonized root fragments, fungal 

hyphae, and spores from the root zone of a mature stand of Thimbleberry, Rubus parviflorus, 

which would represent an undisturbed soil of the closest wild relative of R. idaeus occurring 

in our region. 

We selected a 20-year-old patch of R. parviflorus naturally occurring in a clearing 

adjacent to the forested Sehome Hill Arboretum and Western Washington University 

(Whatcom County, WA; 48.728 N, 122.486 W; elevation 74 m). The patch measured 3 m in 

diameter and more than 1.5 m tall. Soils at this site are mapped as a Squalicum-urban land 

complex, which is Squalicum soil among urban developed areas. Squalicum soil is a gravelly 

loam, moderately well-drained and formed from volcanic ash, loess, and alluvium over 

glacial till (Soil Survey Staff, 2020).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Photos of the sources where each whole soil inoculum was collected. The Farm 
treatment came from a commercial planting of Rubus idaeus cv. WakeHaven near Lynden, WA 
(A). The Wild soil came from an uncultivated, 20-year old patch of Rubus parviflorus in 
Bellingham, WA (B). 
 

A B 
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Preparation of whole soil inoculum 

We collected the Farm and Wild whole-soil inoculum on March 14th and March 15th 2019, 

respectively. At each site, we used a square blade shovel to remove 10 cores (25 x 25 x 25 cm) 

from the root zone of several plants within a single thimbleberry patch (Wild) or within a single 

row of raspberries (Farm), respectively. Replicate cores were brought immediately back to the 

lab and sieved using an 8 mm soil sieve to remove large chunks of debris, then mixed 

thoroughly. Soil was stored at 4°C until use. 

 

Determination of AMF spore density 

To assess initial differences in inoculum density, AMF spores were extracted from 10 g soil 

samples (fresh weight) following a sucrose gradient method adapted from Allen et al. (1979) 

and Ianson and Allen (1986). We suspended fine sediments and spores by repeat agitation of 

the soil in a generous amount of water, and concentrated the suspended fine fraction by 

filtering through a 250 μm USA Standard Testing Sieve onto a 25 μm sieve. Spores retained in 

the large fraction on the 250 μm sieve were collected in a petri dish and counted. The spores 

and soils were rinsed from the 25 μm sieve into a 50 mL centrifuge tube and pelletized by 

centrifugation and then the spores resuspended and separated from soils by centrifugation in 

2M sucrose solution (Allen et al. 1979). Rather than using a separatory funnel, we then 

extracted the spores from aqueous solution by vacuum filtration onto GVS MagnaTM Nylon 

Membrane Filters: 10 μm pore size (Bologna, Italy), prepared with 5 mm2 gridlines. During 

vacuum filtration, the walls of the funnel were rinsed with deionized water to reduce 

electrostatic adhesion of spores.  
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Spores were immediately quantified using a Leica S6 E stereomicroscope (Leica 

Microsystems; Wetzlar, Germany). For plants inoculated with Built AMF, we could identify the 

unique spores to species. For all other treatments, AMF spores were categorized by size and 

color. Size categories utilized were small (<100 microns), medium (100-150 microns) and large 

(>150 microns). 

We found that the Built inoculum contained approximately 6X the AMF spore density of 

the whole-soil communities (Table 4), though we could not quantify other sources of AMF 

inoculum such as live hyphae and colonized root fragments which would be present in whole-

soil but not in the Built inoculum. To make the initial inoculum density more consistent 

between treatments, we decided to apply 3X more whole-soil inoculum than Built inoculum, by 

volume.  

 

Table 4: Spore density of AMF in each inoculum source used in the Summer Long Study. Spore 
density measures are means ± standard error from 5 replicate samples. Spores per pot were 
estimated based on the application rate; 30 g/pot for Farm and Wild, 10 g/pot for Built. Farm 
and Wild also contained AMF propagules in the form of hyphae and colonized root fragments 
(not quantified).  
 

Inoculum Spores/g  
dry soil Spores/pot 

Built 202 ± 10 a 2023 ± 103 

Farm 2 ± 0.2 b 50 ± 5 

Wild 5 ± 0.4 b 150 ± 13 
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2.33 Phase 2 

After 10 weeks, ten plants from each Phase 1 AMF treatment were introduced to one of four 

Phase 2 stress treatments with which they would grow for another 14 weeks. At the start of 

Phase 2, plants averaged 30 ± 4 cm tall. 

 

Phase 2 Stress Treatments 

1. Control: potted into sterile soil 

2. Phytophthora: potted into soil containing the pathogenic oomycete P. rubi 

3. Nematode: potted into sterile soil, then received root-lesion nematodes, P. penetrans 

4. Both: potted into soil containing P. rubi, then received P. penetrans 

 

Phytophthora treatments: Jars of vermiculite, V8 broth, and oat mixture were prepared as 

described in Stewart et al. (2014), and autoclaved for 55 minutes at 120°C. After cooling for 24 

hours, half of the jars were each inoculated with five 6-mm segments of P. rubi on PARP media 

plates (F-145; USDA, Corvallis), while the other jars were kept sterile. All jars were incubated in 

the dark at room temperature for 4 weeks, shaken once a week to redistribute the hyphae, as 

recommended by Stuart et al. (2014). The jars of cultivated P. rubi were mixed with sterile 

potting mix resulting in an approximate inoculum to soil ratio of 1:10 (vol/vol). Similarly, the 

jars containing only growing media were mixed with sterile potting mix resulting in a 1:10 ratio 

(vol/vol).  

We carefully removed plants from their Deepots so the soil plug could be dropped 

whole into 1000 mL Mini-Treepots (MT310; Stuewe and Sons Inc., Tangent, OR) filled with 
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either the sterile potting mix or the P. rubi potting mix. Following transplanting, plants were 

overhead watered to saturation, then returned to drip irrigation that would saturate plants four 

times daily. At two-week intervals, plants were flooded to encourage infection from P. rubi (July 

16th – 18th, and July 29th – August 2nd).  

 

Nematode treatments:  Nematodes were extracted from the roots of established raspberry 

plants, sourced from several Whatcom county raspberry farms. We extracted nematodes via 

aerated incubation in 1000 mL beakers, using roots rinsed free of adhering soil to limit the 

presence of other nematode species. For each extraction, a handful of roots were rinsed 

thoroughly, then chopped into 1 cm segments and wrapped in a mesh basket. These bundles 

were then submerged in deionized water for 3-4 days in low light, air was introduced via 

bubbling with a Whisper40 Air Pump (method adapted from Barker (1985) and EPPO (2013)). 

Nematode densities from each round of extractions were calculated by taking five replicate 2 

mL samples and counting the number of moving nematodes using a gridded McMaster slide at 

100x magnification on a Nikon Eclipse 80i compound microscope. 

We applied nematodes twice weekly until each pot in the nematode treatments 

received 1000 nematodes total.  Each application consisted of a tap water suspension of 

nematodes pipetted into two holes at the base of each plant, and occurred between June 13th 

to July 18th, 2019. 
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Midpoint Harvest 

To obtain midpoint biomass and root colonization data, we destructively harvested three plants 

from each AMF treatment on the same day as the rest were introduced to Phase 2 stress 

treatments. Shoots and roots were dried separately for 48 hours at 60°C, and weighed on an 

electronic scale. A subsample of fine roots from each plant were cleared, stained, and inspected 

for AMF colonization as described in section 2.37. 

 

2.34 Growth Measures 

We measured above-ground features of each plant every 2 weeks: including plant height, leaf 

chlorophyll, and the number of nodes.  

• Plant heights were measured in centimeters from the base of the plant to the furthest distal 

end of the leaf tip.  

• Leaf chlorophyll was measured with a SPAD-50 Chlorophyll Meter (Spectrum Tech Inc.; 

Aurora, IL), recording an average of 5 locations from the third fully expanded leaf. 

• Nodes were counted whether or not active leaves were present. 

 

2.35 Destructive Harvest 

Harvest occurred from September 16th to September 27th. One block at a time, we removed 

plants from their pots, and gently shook plants to collect soil from roots. We then carefully 

rinsed roots in cold water to remove any remaining soil. Tops of plants were separated from the 

roots at the crown, and samples were removed and weighed for various analyses as described 

below.  
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2.351 Shoots 

Shoot Biomass: Shoots were weighed, placed in paper bags and dried for at least 48 hours at 

60°C, then weighed on an electronic scale. 

 

Plant Tissue Nutrients: After drying, shoots (leaves and stems) were ground and then shipped 

to Brookside Laboratories, Inc. (New Bremen, OH) for tissue analysis. Analyses were performed 

following standardized protocols outlined in Miller et al. (2013) – total carbon and nitrogen 

were determined using a C/N combustion analyzer (method P2.02), while all other elements 

were assessed following the nitric acid and hydrogen peroxide digestion method (method 

P4.30). 

 

2.352 Roots 

Fine Root Sampling: Samples of fine roots were cut from five separate locations around the 

root mass, combined and the wet weight determined. A cross section of this subsample was 

frozen at -10°C for later molecular analysis (data not presented). The remainder of the 

subsample was divided into two replicates to be assessed for mycorrhizal colonization.  

 

Nematode Sampling: For those plants which received nematodes, approximately 8 g of roots 

were removed by cutting with sterile scissors straight up from the bottom to the top of the root 

mass, so that roots at every depth would be represented in the sample. This sample of roots 

was weighed and placed in a Ziploc bag with 100 cm3 of soil from that plant’s pot. These 

combined samples of root and soil were refrigerated at 4°C for less than a week before mailing 
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to the Zasada Laboratory in Corvallis for analysis. Following the methods described in Zasada et 

al. (2015), root densities were measured by extracting nematodes from fine roots by misting. 

Soil densities were assessed using the Baermann funnel method. 

 

Phytophthora Sampling: To assess infection by P. rubi, we sent root and shoot samples of 24 

plants to the USDA in Corvallis for re-isolation of P. rubi. Two replicates from each treatment 

combination containing P. rubi (Blocks 7 & 8), and one replicate from each treatment without P. 

rubi (Block 7) were sent. Following all other subsampling, the upper 6 cm of roots were 

separated from the rest and weighed, then placed in a Ziploc bag. The stalk was cut 15 cm from 

the base, and the lower portion was weighed and included in the same Ziploc bag. Samples 

were stored at 4°C for less than 4 days before shipping. At the USDA Corvallis, surface sterilized 

root & shoot fragments were plated onto selective media (PARP) and examined for P. rubi 

growth. 

 

Root Biomass: After all subsamples had been removed and weighed, the remainder of the 

roots were weighed, and placed in a paper bag. These were dried at 60°C for 48 hours and re-

weighed.  

 

2.36 Reconstructing Biomass 

Dry weights of samples which were removed for other analyses were estimated by constructing 

a linear regression of Dry (g) ~ Wet (g) from closely related plant samples. Presented biomasses 
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are the addition of weighed dry biomass plus estimated dry biomass of any subsamples 

removed prior to drying.  

Biomass = DWmeasured + DWestimated 

 

Linear Models 

The best fit linear models used to estimate the weight of each subsample are as follows: 

 

Nematode subsamples: To estimate the dry biomass of the roots that were sent away for 

nematode analysis, we used a regression on the wet weights of all root samples, excluding 

blocks 7 - 9 which were not representative because they had disproportionately fewer woody 

root segments after their upper root mass was sent away. 

 Dry Weight [nematode subsample] = 1.179 + 0.164(Wet Weight) 

 (R2 = 0.78) 

 

Fine root subsamples: To estimate the dry biomass of the fine roots that were partitioned for 

various samples, we used a regression on the roots from blocks 7 – 8 which had their upper 

root mass sent away, including the bulk of their woody roots. 

 Dry Weight [fine roots subsample] = 0.434 + 0.207(Wet Weight) 

 (R2 = 0.93) 
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Phytophthora subsamples: To estimate the dry weight of root chunks and stem segments sent 

for P. rubi re-isolation, we replicated the sampling on 24 additional plants (the remainder of 

Block 7 and all of Block 9) and dried those to build the regression. 

Dry Weight [upper roots subsample] = 0.539 + 0.159(Wet Weight) 

(R2 = 0.79) 

Dry Weight [lower stem subsample] = 0.199 + 0.429(Wet Weight) 

(R2 = 0.69) 

 

2.37 Mycorrhizal Colonization 

To clear pigment from roots, samples were soaked in 3% potassium hydroxide (KOH) at 40°C for 

2 – 5 hours. Samples were then rinsed 3X with deionized water, followed by soaking in 5% 

hydrochloric acid (HCl) in water overnight at 4°C. Roots were then stained for 12 hours with 

0.05% w/v trypan blue in lactoglycerol (1:1:1 lactic acid, glycerol and water). This clearing and 

staining process was adapted from Brundrett et al. (1996). Samples were destained for a 

minimum of 24 hours in lactoglycerol at 4°C, then were stored in fresh lactoglycerol at 4°C until 

slides could be prepared. One slide was prepared for each plant; twelve 1-cm root segments 

were mounted on each slide. We counted colonization using the magnified intersections 

method (McGonigle et al 1990). Slides were viewed at 200x on a Nikon Eclipse 80i compound 

microscope and approximately 72 intersections were assessed for each plant. 
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2.38 Spore production 

Soil of each plant was homogenized within their unique treatment combinations, and 500 cm3 

from each treatment was dried in paper bags at room temperature. We followed the same 

spore extraction method as before, except that only 1 g dry soil was utilized in each extraction. 

For plants inoculated with Built AMF, we knew the relative abundance of each AMF species in 

the initial inoculum and could identify the spores to species. For all other treatments, AMF 

spores were categorized by size and color. 

 

2.4 Spring Short Study 

The second experiment was a 15-week, full factorial greenhouse experiment (3 inoculum x 2 

pathogen, 10 reps; Table 5) conducted from February to May 2020. We inoculated plants with 

Farm soil, commercial AMF inoculum, or no AMF, then after 5 weeks we exposed half of those 

plants to P. rubi, to test the impact of the different plant-AMF associations on disease 

progression and plant growth. We arranged plants in a randomized block design with two 

replicates from each treatment randomly located within each block.  

 

Table 5: In the Spring Short Study 10 plants received each combination of AMF treatment and 
stress treatment. AMF treatments were applied at Week 0. Stress treatments were introduced 
at Week 5. 
 

  Stress Treatments 
Control P. rubi 

AM
F 

Tr
ea

tm
en

t
s 

Control 
6 treatment combinations 

n=10 each Mykos 

Farm 
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2.41 Experimental Parameters 

Planting stock 

We utilized 2 cm tall tissue culture Rubus idaeus cv. Meeker plantlets in agar provided by the 

Northwest Plant Co LLC (Ferndale, WA) (Figure 4). 

 

 
Figure 4: Photo of a tissue culture plantlet utilized in the Spring Short Study. Each plantlet was 
planted with agar retained around developing roots. 
 

Potting Mix 

Potting mix was prepared as described for the Long Summer Study. 

 

Greenhouse Conditions 

The average daily range was 17.8 – 25°C (64 – 77°F), with an overall average of 20°C (68°F) over 

the experiment. Average relative humidity was 48%. Before pathogen introduction, light 

averaged 161 ± 87 𝜇mol/m2/sec at midday. Plants received at least 12 hours of light per day: 

supplemental lighting was on a 12:12 period cycle, with natural light increasing toward the 

summer months. 
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Nutrients 

We gave plants only water for the first 5 weeks to promote mycorrhizal fungal colonization. 

After that, we fertilized weekly with 30 mL of Hoagland’s nutrient solution, again modified to be 

phosphate-free. Each plant received 63 mg N total over the course of the experiment.  

 

Water 

Plants were watered for 1 minute every 12 hours using a drip irrigation system with ½ GPH 

emitters (31.6 mL/minute). 

 

2.42 AMF Treatment (5 weeks) 

This experiment started on February 6, 2020; when we planted tissue culture plantlets into 6 x 

2 seedling trays (150 mL wells). Each plantlet was carefully lifted with a square of agar 

remaining around its base (Figure 5) and planted into a well containing sterile potting mix with 

one of the three AMF treatments described below. The AMF inoculum was again layered 

beneath the plants and between sterile soil as depicted in Figure 2. This time, no microbial 

wash was applied to the plants. AMF treatments were as follows: 

1. Control: No AMF inoculum 

2. Mykos: 1 cm3 per plant of Mykos™ commercial mycorrhizal fungal additive, which 

contained 300 propagules/gram Rhizophagus intraradices 

3. Farm: 10 cm3 per plant of whole-soil inoculum containing colonized root fragments, 

fungal hyphae, and spores. Soil was sampled from the same row of R. idaeus utilized in 

the Summer Long Study, which contained approximately 2 ± 0.2 spores per gram soil. 
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2.43 Stress Treatment (8.5 weeks) 

After growing with AMF treatments for 5 weeks, plants were then potted into 650 mL Deepots 

(D40H; Stuewe and Sons Inc., Tangent, OR) containing either sterile soil mix or P. rubi infested 

soil mix (prepared as in section 2.33). At this stage, plants averaged 4.9 cm tall (0.06 GDW).  

 

 
Figure 5: This photo was taken at Week 5 of the Spring Short Study, immediately after these R. 
idaeus were potted into their stress treatments. 

 

2.44 Response Measures 

Starting at Week 5, we measured plant height and assessed survivorship every 1-2 weeks. 

When plants had fully wilted and begun to dry, they were deemed dead and the date of death 

recorded (Figure 6). After 8.5 weeks had passed (May 12, 2020) we harvested the surviving 

plants to assess dried biomass. We separated roots from shoots on each plant and dried these 

samples at 60°C for one week in a Heratherm Oven before weighing on an electronic scale. 
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Figure 6: This photo illustrates a plant considered ‘dead’ following inoculation with P. rubi in the 
Spring Short Study; it is clearly wilted and the leaves mostly dried. 
 

2.5 Statistical Analyses 

Sensitivity analysis was performed in G*Power Statistical software (Faul et al. 2007) and all 

other analyses were performed in R 3.6.0 (R Core Team 2020) via the RStudio user interface (R 

Studio Team 2020).  

 

Preliminary Observational Study 

Due to highly unequal variances and abnormally distributed data, we used the Kruskall Wallace 

nonparametric test to assess whether there was a statistically significant difference in the 

percent of colonized root fragments from each plant vigor category.  

 

Sensitivity Analysis 

We ran a sensitivity analysis on the Summer Long Study design to define the effect size 

(Cohen’s f statistic) that could be detected for each response variable, given our sample size    

(n = 160), alpha of 0.05, and desired power of 0.8. We then compared the sensitivity of the 
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research design with the actual effect sizes observed—presented as Cohen’s partial f statistic, 

which takes into account the distribution of variance among multiple independent variables. 

Theoretical effect sizes our design could have detected were found using G*Power 

Statistical software (Faul et al. 2007). The study was parameterized as a 2-way ANOVA; AMF 

treatment was a factor with 4 levels (Control, Built, Farm, Wild), and stress treatment was a 

factor with four levels (Nematode, Phytophthora, Both, and Neither). Observed effect sizes 

were calculated using the “effectsize” package in R (Ben-Shachar et al. 2020). 

 

Mixed Models 

All mixed models were constructed in the R package “lme4” (Bates et al. 2015). Mixed models 

included Block as a random effect and all explanatory variables of the experimental design as 

fixed effects.  

First, to determine whether the explanatory variables helped to predict the response 

variable (null vs full model), and whether there was an interaction between stress and AMF 

treatments worth retaining in the model (full vs interaction models), I used Chi-Square 

goodness of fit tests and residual plots. For example, the null, full, and interaction models 

tested for the Summer Long Study were: 

• Null Model: Response ~ 𝜇 +	(1|Block) 

• Full Model: Response ~ 𝜇 + 	𝑀𝑇𝑚𝑡 + 𝑃ℎ𝑦𝑇𝑚𝑡 + 𝑁𝑒𝑚𝑇𝑚𝑡 + 𝑃ℎ𝑦𝑇𝑚𝑡:𝑁𝑒𝑚𝑇𝑚𝑡 +

	(1|Block) 

• Interaction Model: Response ~ 𝜇 + 	𝑀𝑇𝑚𝑡 + 𝑃ℎ𝑦𝑇𝑚𝑡 +𝑀𝑇𝑚𝑡: 𝑃ℎ𝑦𝑇𝑚𝑡 + 	𝑁𝑒𝑚𝑇𝑚𝑡 +

𝑀𝑇𝑚𝑡:𝑁𝑒𝑚𝑇𝑚𝑡 + 𝑃ℎ𝑦𝑇𝑚𝑡:𝑁𝑒𝑚𝑇𝑚𝑡 + 	𝑀𝑇𝑚𝑡: 𝑃ℎ𝑦𝑇𝑚𝑡:𝑁𝑒𝑚𝑇𝑚𝑡 +	(1|Block) 
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With the optimal base model, we then varied the error terms to assess whether random slopes 

or intercepts improved the model fit, again comparing models using a Chi-Square goodness of 

fit test. Once the best model was fit, we assessed the residuals to confirm that they were 

normal and randomly distributed before proceeding to use a Type II Wald Chi-Square goodness 

of fit test (Venables and Ripley 2002) to determine which variables were significant predictors 

of the response. 

 

Contrasts 

Using the best fitted mixed model, we then ran post-hoc comparisons to find which treatment 

combinations of interest differed. Type I error was limited by using the Tukey single-step 

method within the “multcomp” package (Hothorn et al. 2008). When there was a significant 

interaction between stress or AMF treatments, simple main effects contrasts were used to 

determine which of those combinations had a significant response. These contrasts were done 

using the “emmeans” package in R (Lenth 2020). 
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3. Results 

 

3.1 Preliminary Observational Study 

Preliminary root assessments revealed that within a single Lynden farm, higher plant vigor was 

associated 32% with higher rates of mycorrhizal colonization (Kruskall-Wallace, c2 = 4.6, p = 

0.03). While 92% of root fragments from the “high vigor” rows (n=42) contained AMF 

colonization, merely 60% of fragments from the “low vigor” rows (n=37) were colonized. 

 

3.2 Summer Long Study 

AMF Colonization Potential 

Abundance and structural characteristics of root colonization differed between the AMF 

treatments. Despite differences in initial propagule density (Table 4), both whole-soil inoculum 

sources resulted in 91% of fine roots containing AMF (hyphae, arbuscules, and/or vesicles), 

while plants inoculated with AMF from the Built community had 15% lower colonization (Tukey 

HSD, p < 0.01; Table 6). Roots colonized by Built AMF had the highest density of arbuscules 

(Tukey HSD, p < 0.001). In contrast, the highest abundance of vesicles occurred in plants with 

AMF from Farm and Wild soils (Table 6). Stress treatments did not significantly affect the total 

colonization levels observed within any AMF treatment (Wald Chi-Square, c2 < 2.82, p > 0.093).  
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Table 6: AMF colonization observed in fine roots of R. idaeus cv. Meeker grown with different 
AMF inocula for 24 weeks. Data displayed are mean percent of intersections ± standard errors 
from 28 replicate plants. Approximately 72 intersections were assessed per plant. Letters 
indicate significantly different means (Tukey HSD, p < 0.05).  

 

AMF 
Treatment 

% Hyphae 
only 

% Vesicles 
& Hyphae  

% Arbuscules 
& Hyphae  

% Vesicles, 
Arbuscules, 
and Hyphae 

Total % AM 

Control 40 ± 4 c 6 ± 2 b 9 ± 2 b 0 ± 0 b 55 ± 6 c 

Built 55 ± 2 b 3 ± 1 b 17 ± 2 a 0 ± 0 b 76 ± 2 b 

Farm 55 ± 2 b 22 ± 2 a 11 ± 1 b 3 ± 1 a 91 ± 2 a 

Wild 66 ± 3 a 15 ± 2 a 8 ± 2 b 2 ± 1 ab 91 ± 1 a 
 

 

Though control plants were colonized by the end of the experiment, a lack of 

relationship between stress treatments and colonization levels detected in those control plants 

(Wald Chi-Square, c2 < 0.92, p > 0.34) indicates that the AMF contamination was consistent 

across all treatments. AMF spores extracted from soils of control plants were dominantly small-

medium sized (Figure 7). 

 
Figure 7: Spore counts per gram of dry soil, extracted from the AMF Control treatment, grouped 
by Phase 2 stress treatments. Points indicate counts from each of 3 samples taken from pooled 
soils; boxplots represent median and interquartile range of those three samples. Spore sizes 
were categorized as small (<100 microns), medium (100-150 microns) and large (>150 microns). 
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Plant Growth  

Overall, R. idaeus inoculated with AMF tended to be as tall or shorter than control plants, had 

equivalent or less total biomass, and had higher leaf chlorophyll than uninoculated controls. 

Plants with Wild AMF were the most reduced in size, averaging 18 ± 3 cm shorter than control 

plants (Table 7). The number of nodes on R. idaeus canes was related to cane length, but the 

density of nodes did not differ between AMF Treatments (Appendix H). Plants with Farm and 

Wild AMF had on average 8.5% less root biomass than plants with Built AMF and Control plants 

(Table 7). Aside from the difference in root biomass, plants with AMF from the Built community 

were similar to those with Farm AMF (Tukey HSD, p>0.05; Table 7).  

 
Table 7: Physical features of 24-week old harvested ‘Meeker’ raspberry plants. Data displayed 
are means ± standard errors from 40 replicates, averaged over Phase 2 stress treatments. 
Different letters indicate significantly different means (Tukey HSD, p < 0.05). 
 

AMF 
Treatment  

Shoot mass 
(g/plant) 

Root mass 
(g/plant)  

Total Biomass 
(g/plant) 

Chlorophyll 
(SPAD) 

Height (cm) 

Control 12.6 ± 0.2 a 6.4 ± 0.1 a 19 ± 0.3 a 31 ± 0.2 b 145 ± 4 a 

Built AMF 12 ± 0.2 ab 6.2 ± 0.1 a 18.2 ± 0.2 ab 33 ± 0.2 a 141 ± 3 a 

Farm AMF 11.8 ± 0.3 b 5.8 ± 0.1 b 17.6 ± 0.3 bc 33 ± 0.3 a 138 ± 4 ab 

Wild AMF  11 ± 0.2 c 5.7 ± 0.1 b 16.7 ± 0.2 c 33 ± 0.2 a 127 ± 3 b 
 

AMF source strongly predicted plant growth (Appendix H), while colonization intensity 

was only weakly correlated (R2 = 0.14, Tau = -4.89, p<0.001) and did not improve the biomass or 

height models (Chi-Square, c2 < 2.1, p > 0.078). Plants with Farm and Wild AMF had the same 

average colonization intensity, yet plants with Farm AMF averaged 11 cm taller and 1 g heavier 

than those with Wild AMF (Table 7). Differences in plant height were negligible at the end of 

Phase 1, yet continued to increase over time (Figure 8). 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

Figure 8: Heights of R. idaeus prepared with different AMF treatments, displayed as means ± 
standard errors from 40 replicates, averaged over stress treatments (a) during Phase 1 AMF 
treatments, and (b) after introduction of Phase 2 Stress treatments. Small differences in plant 
heights by treatments increased over time. 
 

Plants which received P. rubi, P. penetrans, or both had similar height, total biomass, 

and leaf chlorophyll compared to plants with neither pest nor pathogen (Wald Chi-Square Test, 

p > 0.05). Plants which received nematodes had an average of 12% greater estimated dry root 

biomass than those which had no nematodes applied, but these differences may be an artifact 

of sample processing. Only plants with Wild AMF had no appreciable increase in root biomass 
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when nematodes were present (Table 8). The difference in root biomass between plants with 

and without nematodes was 22% larger in plants that received no AMF than it was for plants 

which received Farm AMF.  

 
Table 8: Results of main effects contrast comparing root biomass (grams dry weight) of plants 
with and without nematodes applied. Bolded p-values highlight AMF treatments which had a 
significant root biomass response to nematodes.  
 
 
 
 
 
 
 
 
 
 
 

Plant Nutrition 

Shoot nutrient analyses revealed shoot nitrogen, phosphorous, and potassium content differed 

by ≤0.1% average difference between treatments. Phosphorous (P) was higher in plants with 

Farm or Wild AMF compared to those with Control or Built AMF (Tukey HSD, p<0.001; Table 9). 

AMF did not increase plant uptake of the other macronutrients under these greenhouse 

conditions (Appendix H).  

 
Table 9: Plant nutrients measured in dried raspberry shoots. Plants were harvested following 24 
weeks of growth. Data displayed are means ± standard errors from 40 replicates. Letters 
indicate significant differences following Tukey’s pairwise comparisons. 
 

AMF Treatment  N (%) P (%) K (%) 

Control 0.9 ± 0.02 a 0.14 ± 0.004 b 1.19 ± 0.03 a 

Built 0.9 ± 0.02 ab 0.15 ± 0.003 b 1.17 ± 0.02 a 

Farm 0.8 ± 0.02 b 0.17 ± 0.004 a 1.26 ± 0.03 a 

Wild 0.8 ± 0.02 ab 0.18 ± 0.004 a 1.19 ± 0.03 a 

AMF 
Treatment 

Root Biomass (g) Stats 
Without With Difference T P-value 

Control 5.9 ± 0.1 6.8 ± 0.2 1.0 ± 0.2 4.01 <0.001 

Built 5.4 ± 0.1 6.2 ± 0.1 0.8 ± 0.2 3.60 0.001 

Farm 5.8 ± 0.2 6.6 ± 0.1 0.8 ± 0.2 3.29 0.003 

Wild 5.6 ± 0.2 5.9 ± 0.1 0.3 ± 0.2 1.22 0.233 
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Stress Treatment Analyses 

Plants in all stress treatments had similar heights and biomass compared to controls in the 

Summer Long Study, indicating we did not achieve levels sufficient to stunt plant growth 

(Appendix H). No P. rubi was isolated from the plant samples assessed.  Plants receiving P. 

penetrans had 315-680 P. penetrans/g root at the time of harvest, with 44% lower densities in 

plants that also received P. rubi (Kruskal-Wallis test, c2 = 4.28, p = 0.038), suggesting an 

interaction between these organisms (Figure 9).  

 

 

Figure 9: Density of nematodes within roots of R. idaeus at harvest (week 24). Boxplots show 
median and interquartile range of ten replicates per treatment combination. Root density of 
nematodes was 188 nematodes/gram root lower in plants inoculated with P. rubi compared to 
those without (Kruskal-Wallis test, c2 = 4.28, p = 0.038). 
 

Spore Extractions 

The effect of pests/pathogens on AMF spore production was dependent on whether plants 

received early AMF inoculation. Within the AMF ‘control’ treatment, plants which received 

pest/pathogens had dramatically lower spore production than those which did not (Figure 10). 
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In contrast, within treatments that received early inoculation with AMF, there was not a 

significant difference in spore production (Figure 10).  

 

 
 

AMF 
Treatment 

Spore Density (count / g dry soil) Stats 

Without With Difference T P-value 

Control 141 ± 6 53 ± 3 36 ± 15  2.5 0.018 
Built 187 ± 3 225 ± 13 -15 ± 15 -1.1 0.288 
Farm 88 ± 9 98 ± 7 -13 ± 15 -0.9 0.377 
Wild 34 ± 8 38 ± 7 -5 ± 15 -0.35 0.733 

 

Figure 10: Effect of exposure to P. rubi or P. penetrans on spore density in soils. Boxplots show 
median and interquartile range of three replicates per treatment combination. Data in table are 
means ± standard error from 3 replicates for ‘without’, and from nine replicates for ‘with’ 
(three replicates of each stress treatment). 
 
 

3.3 Spring Short Study 

Plants were more resilient to P. rubi when they were inoculated with Farm AMF, compared to 

those which received either Mykos AMF or no AMF. Survival to the end of the experiment was 

increased 300% by pre-inoculation with Farm soil, compared to controls (Figure 11). Though 
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Farm AMF reduced growth of unstressed plants, plants stressed by the pathogen P. rubi grew 

taller when colonized by Farm AMF compared to those with Mykos AMF or no AMF (Figure 11).  

Of the plants which survived to the end of the experiment, those which were inoculated 

with Farm AMF were similar in size and height regardless of P. rubi exposure (Figure 12; Table 

10). In contrast, plants prepared with no AMF or Mykos were stunted following exposure to P. 

rubi; averaging 6.3 g lower total biomass and 16.5 cm shorter than their unstressed 

counterparts (Table 10). 

 
 

(A)  

 

 

 

 (B)  

 

 

 

 

 

 

 
Figure 11: Survival and growth of R. idaeus prepared with different AMF treatments over the 
weeks following introduction of the stress treatments. (A) The number of plants surviving 
Phytophthora rubi, by AMF treatment. (B) Heights of live plants are displayed as means ± 
standard errors. The number of replicates varied; n=10 for all ‘Control’ stress treatment 
combinations, while n depended on survivorship for ‘Phytophthora’ treatments. 
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Table 10: Response of plants prepared with different AMF inoculum to P. rubi. Data presented 
are means ± standard errors; number of replicates (n) varies by treatment. For all treatments 
without P. rubi, n=10. For treatments which received P. rubi, n depends on survivorship at the 
end of the experiment: n = 2 for Control, n=3 for Mykos, and n=8 for Farm.  
 

AMF Treatment With P. rubi Without P. 
rubi Difference T P-value 

Height (cm)      
Control 18 ± 2 c 36 ± 2 a – 18 ± 4.9 3.8 0.001 

Mykos  19 ± 5 c 34 ± 2 ab – 14 ± 4.2 3.6 0.001 

Farm 27 ± 2 bc 29 ± 1 abc – 2 ± 3.0 0.7 0.518 

Shoot Biomass (GDW)      

Control 0.9 ± 0.1 d 3.9 ± 0.1 a – 3.0 ± 0.4 7.6 <0.001 

Mykos  1.5 ± 0.5 cd 3.5 ± 0.2 b – 2.0 ± 0.3 5.8 <0.001 

Farm 2.1 ± 0.1 c 2.2 ± 0.1 cb – 0.1 ± 0.2 0.5 0.616 

Root Biomass (GDW)      

Control 0.4 ± 0.1 b 6.1 ± 1.5 a – 5.7 ± 2.0 2.8 0.008 

Mykos 2.3 ± 0.6 ab 4.2 ± 0.4 ab – 1.9 ± 1.2 1.1 0.267 

Farm 2.6 ± 0.4 ab 1.8 ± 0.2 b + 0.8 ± 1.9 0.7 0.499 
 

 

 
 
Figure 12: Typical plant condition for each treatment, photographed 8 weeks following 
introduction of P. rubi. Plants in each column received the same AMF treatment (black labels). 
Rows contain plants in the same stress treatment (blue labels).  Those with Farm AMF tended 
to grow well regardless of P. rubi exposure. 

Control Mykos Farm 

None 

Phy 
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4. Discussion 

 

Farm soil inoculum improved tolerance to Phytophthora rubi 

Inoculation of red raspberry (R. idaeus) with appropriate microbial communities prior to out-

planting into fields could promote successful establishment in risk-prone soils. In our Spring 

Short Study, inoculation of young R. idaeus cv. Meeker with a mature soil community improved 

subsequent disease resistance of transplanted plants, though inoculation with a commercial 

AMF product did not (Table 10). Plants inoculated with Farm soil not only survived P. rubi 

exposure 300% more than uninoculated controls (Figure 10), but the surviving plants were also 

taller and more robust than uninoculated controls (Table 10). Although we did not ascertain the 

specific mechanisms by which beneficial biota within the farm soil, such as AMF, could have 

mitigated damage by P. rubi, both direct and indirect mechanisms have been well documented 

in other plant-pathosystems. Direct interactions between the soil microbial community and P. 

rubi that could have limited detrimental impacts to plants include competition between AMF 

and the pathogen for infection sites on roots (Vigo et al. 2001), and production of compounds 

antagonistic to pathogen growth by soil microbes such as plant-growth promoting bacteria 

(Azcón-Aguilar and Barea 1997). Indirect effects of the soil microbial community which are also 

known to impact pathogen success include changes to root exudation (Norman and Hooker 

2000), and induction of plant’s systemic defenses by AMF infection (Pozo et al. 2002).  

While these results are promising, survival at this stage is only one indicator of future 

plant success. Even if AMF colonization can improve tolerance of Phytophthora infection, 

infected plants can fail later in the season or in later years– through a lack of bud break on 
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floricanes, or the collapse of fruiting laterals before or during fruiting (CABI and EPPO 1996). 

That said, as suggested already, older plants may be more capable of resisting P. rubi, so 

increases in establishment success may constitute an important step toward sustainable crop 

productivity. 

Specific temporal and environmental conditions have a strong influence on plant 

succeptibility to P. rubi. In our studies, infection only occurred in the Spring Short Study where 

we inoculated younger plants, maintained cooler temperatures, and sustained saturation. A 

lack of plant biomass response to P. rubi in the Summer Long Study (Table H1) indicated failure 

of P. rubi to cause disease, likely due to high greenhouse temperatures directly following 

introduction of the pathogen, combined with the age of the plants. Temperatures exceeding 

30°C (86°F) impair growth and infectivity of P. rubi (Duncan 1985). During the Summer Long 

Study, greenhouse temperatures exceeded that threshold for 1-3 hours every day in the week 

following inoculation, and spiked over 38°C (100°F) three times during that week (Appendix A). 

Use of older plants probably further reduced their vulnerability to the pathogen – while plants 

in our Summer Long Study were over 10 weeks old at the time of pathogen introduction, most 

greenhouse experiments demonstrating mortality of R. idaeus due to P. rubi infection have 

introduced the pathogen to young plants (Gigot et al. 2013; Wilcox et al. 1993). Although the 

mechanism is unknown, Raftoyannis and Dick (2006) observed higher rates of Phytophthora 

zoospore encystment – the loss of motility and structural changes that precede germination 

and infection by the pathogen – on young plants than older plants. 

The benefits of AMF colonization were only observed under conditions favorable to 

pathogen growth, leading us to conclude that that benefits of AMF colonization of raspberry 
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change across environmental and temporal gradients. In the absence of stressors, AMF 

colonization led to moderate reductions in plant heights and biomass, indicating that AMF may 

be parasitic on raspberries under those conditions. In the Summer Long Study, where no plants 

had responses to the pest/pathogens, higher levels of AMF colonization were coupled with an 

8-14% reduction in plant biomass. Similarly, in our Spring Short Study, uninoculated plants grew 

almost twice as tall as those with AMF in the absence of stressors, but with a pathogen present 

this pattern was reversed (Figure 10). This is consistent with other studies that find there is a 

tradeoff in the plant-AMF symbioses; even if costs to plants exceed benefits in the absence of 

stressors, the symbiosis might offer substantial benefits in the presence of stressors (Jacott et 

al. 2017; Johnson 2010). This highlights the importance for research into the potential roles of 

AMF in sustainable crop management to incorporate stressors that host plants would 

encounter in field conditions. 

 

Raspberry farm soil outperformed other AMF sources 

In contrast with our expectations, we found that beneficial AMF persist under 

commercial raspberry cultivation. Farm soil harbored AMF propagules at a similar density 

(Table 4) and infectivity (Table 6) as Wild soil – both colonized 91% of roots by 24 weeks. This 

was unexpected since fumigation and fertilization, common practices in commercial raspberry 

production, have long been associated with diminished abundance, species diversity, and 

infectivity of AMF (Belay et al. 2015; Dangi et al. 2015; Verbruggen et al. 2012; Jansa et al. 

2009). That said, a review by Ryan and Graham (2018) concluded that AMF literature may 
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overstate the magnitude of detrimental impacts to AMF communities by common agricultural 

practices, which may be the case for WA raspberry production.  

The abundance and viability of AMF in this farm soil may be explained in several ways. 

First, the specific soil fumigant used at this site, Telone C-35, is less detrimental to AMF than 

many other fumigants (Dangi et al. 2015; De Cal et al. 2005; Ibekwe et al. 2001). Second, there 

may be sufficient dispersal of AMF from adjacent fields and wild lands to replenish 

management-derived reductions in abundance. Although AMF spores are formed underground 

in roots and in soil, they can be dispersed by animals (Vernes and Dunn 2009, Lekberg et al. 

2011) and are commonly dispersed by wind, especially during dry seasons (Warner et al. 1987, 

Allen et al. 1989). Third, AMF communities shift in response to land use, and it is possible that 

the AMF present in the Farm soil represent local adaptation to that management regime 

(Pellegrino et al. 2020), thus colonization may be less inhibited by nutrient levels present in 

those systems. Although AMF communities and resulting colonization are likely to differ 

between and within farms, as observed in our Preliminary Observational Study (Section 3.1), it 

is possible that other raspberry fields undergoing similar management could have sufficient 

AMF to colonize their plants.  

Plants derived greater net benefits from local Farm soil than any other AMF source 

tested. In our Summer Long Study, inoculation with Farm or Wild AMF resulted in 15% higher 

levels of colonization (Table 6) and 21% higher shoot phosphorous than plants in Control or 

Built treatments (Table 9). While these benefits were offset by a large height reduction for 

plants with Wild AMF (Table 7), heights of those with Farm AMF were not significantly reduced 

(Table 7). High colonization by the Wild and Farm AMF in the Summer Long Study may have 
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been supported by the synergistic effects of bacteria endemic to those AMF communities 

(Artursson et al. 2006), the benefits of which can be taxa-specific (Turrini et al. 2018). These 

AMF-associated bacteria can improve germination and growth of AMF, colonization by AMF, 

and even increase plant benefits from colonization, although the mechanisms underlying these 

effects are not well understood (Artursson et al. 2006). Although all plants in our Summer Long 

Study received the same microbial wash, only Wild and Farm inoculum contributed intact soil 

communities to that wash, therefore small microbes that act synergistically with the AMF taxa 

in those treatments may have been present while those naturally associated with the AMF in 

the Built inoculum were lacking.  

Similarly, in the Spring Short Study, inoculation with Farm soil offered dramatic benefits 

to stressed plants, while the commercial Mykos AMF inoculum did not (Section 3.3). Such 

heightened benefits from Farm inoculum might be explained by local adaptation of AMF 

available in the Farm soil to raspberry plants, or by the presence of other microbiota in the 

Farm soil, which were absent in the Mykos treatment. Various soil microbes have the potential 

to contribute to pathogen suppression and plant resilience through direct effects (Azcón-

Aguilar and Barea 1997) and through synergism with AMF (Artursson et al. 2006).  In agreement 

with the findings of other studies primarily focused on natural systems (Emam 2016, Rúa et al. 

2016, Antunes et al. 2011), these results suggest that local adaptation or species specificity of 

the Farm soil microbial community may improve raspberry plant responses to inoculation. 
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The importance of timing 

Availability of beneficial biota in Farm soil does not preclude the utility of inoculating 

plants prior to planting in the field. The Farm soil inoculum used in our studies was obtained 

from an 18-month old raspberry stand, and the microbial community there could be very 

different from that present at the time of crop planting. Techniques used to prepare a field, 

such as tillage, can substantially reduce AMF abundance in the short term even if those AMF 

populations recover over time (Rasmann et al. 2009). Additional research would be needed to 

determine if similar benefits could be derived from the microbial community present following 

the processes that growers use to prepare fields before planting R. idaeus.  

Inoculation of plants with beneficial microbial communities before field exposure to 

potential pests and pathogens may maximize potential benefits to raspberry crops. Early 

inoculation with AMF can have lasting effects, and the importance of timing has been 

demonstrated both in our experiments and in prior studies (Emam 2016; Forge et al. 2001; 

Talavera et al. 2001). For example, Forge et al. (2001) found that AMF inoculation improved 

resilience to parasitic nematodes only if the AMF were introduced before the pests. In our 

Summer Long Study, all plants received additional airborne inoculum from the open venting 

greenhouse, similar to conditions that might be found in fields, leading to all plants, including 

control treatments, becoming colonized with AMF by the end of the study (Table 6). However, 

biomass differences between AMF treatments continued to increase over the course of the 

experiment, suggesting that early inoculation had a greater influence than subsequent 

inoculation (Figure 8).  
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Stress treatments had a greater effect on AMF spore density when AMF arrived later, 

suggesting that early AMF success (infectivity or reproduction) might be negatively affected by 

root pathogens. Within the Summer Long Study ‘Control’ AMF treatment, which had minimal 

colonization by AMF contaminants at the time of pest/pathogen introduction (Table B1), soil 

density of AMF spores was 36 spores/GDW higher in the stress-control pots, and colonization 

was 26% higher for plants in stress-control treatments (Table E1). In contrast, all other AMF 

treatments had fairly consistent spore densities across all stress treatments, less than 10% 

difference (Table E1). Reduced AMF colonization and spore production when pest/pathogens 

were already present could be to increased competition in the soil, either for nutrients or 

infection sites on the roots, or because plants’ defense systems were upregulated in response 

to the biotic stressors such that AMF were unable to colonize the roots to the same extent that 

they otherwise could have (De Souza et al. 2016, Azcón-Aguilar and Barea 1997).  

 

Mycorrhizae formation regardless of high soil phosphorous 

A primary argument against the utility of AMF in production agriculture is their 

sensitivity to high soil nutrients, yet we have demonstrated R. idaeus is capable of forming 

mycorrhizae even under high soil phosphorous conditions common to commercial raspberry 

farms. Both our studies utilized soils with 280 – 351 ppm phosphorous, and despite this AMF 

inoculation led to high colonization (60-100%) across all our AMF treatments. While this 

contrasts with many studies demonstrating that high phosphorous inhibits the formation of 

mycorrhizae (Ryan & Graham 2002; Thomson et al. 1986), others have demonstrated AMF 

populations persist in high phosphorous soils, though the community composition changes (Van 
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Geel et al. 2015; Verbruggen et al. 2012), presumably toward AMF tolerant of those conditions. 

In our experiments, both Farm and Wild AMF were sourced from P-rich soils (Table 2), and local 

adaptation to those conditions may supported colonization capacity. Successful colonization 

occurring in all AMF treatments could also be due to the plant cultivar involved as much as the 

AMF. The capacity of plants to exclude AMF under sufficient nutrient conditions, or to exclude 

uncooperative AMF, varies by plant taxa (Johnson 2010) and cultivar, and could be impaired in 

domesticated plants (Porter and Sachs 2020, Xing et al. 2012). 

 

Pest/Pathogens may shift AMF community composition 

Though pest/pathogens introduced after AMF community establishment had a 

negligible effect on total spore density, the AMF community composition was altered. We were 

able to quantify this change within the Summer Long Study ‘Built’ treatment, where plants 

receiving parasitic nematodes had a significantly higher density of D. heterogama spores at the 

end of the experiment, and somewhat lower densities of C. etunicatum spores (Figure I1). 

Although there is limited research into such interactions between plant pests/pathogens and 

AMF community structure, the mechanism could fall into two categories: either direct effects of 

the pest on particular fungal species, or indirect effects of changes to the plant-fungal 

relationship. If the effects (direct or indirect) of nematode pressure are unequal across AMF 

taxa, that could lead to a shift in community composition, such as we observed. The results of 

Brito et al. (2018) highlighted unequal effects of nematodes on AMF spore production – 

between six AMF species cultivated separately on maize (Zea mays L.), the they found 
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increased spore production by Rhizophagus clarus in the presence of plant-parasitic nematodes 

(Pratylenchus brachyurus), but no significant changes for other AMF species.  

 

Nematodes did not challenge plants, and might be inhibited by P. rubi 

Nematodes did not impair plant growth at our treatment densities. Our observed lack of 

plant biomass response is consistent with the results of Gigot et al. (2013) who also applied P. 

penetrans at the action threshold of 1 nematode/gram soil, and observed no plant biomass 

response. Higher densities of nematodes have been observed to significantly impair R. idaeus 

establishment and productivity, as demonstrated in the experiment by Zasada et al. (2015) 

which had a treatment containing 100x as many nematodes per gram soil, and 16x as many 

nematodes per gram root, compared with the final densities in our study (Table F2).  

Against our expectations, plants which received nematodes had significantly more root 

biomass than those which did not receive nematodes, regardless of AMF treatment (Table 8). 

While this could be an artifact of estimating dry biomass from wet weights of roots which were 

sent away for analysis, the increase in root biomass was not observed for one AMF treatment 

(Wild), and so this is unlikely. While such a positive plant biomass response to herbivorous 

nematodes has not been documented for raspberry (R. idaeus), several studies demonstrated a 

positive response by grasses (Bardgett et al. 1999, de la Pena et al. 2005, Gebremikael et al. 

2016). For example, biomass of beach grass (Ammophilia brevigulata), was increased by co-

inoculation with AMF and similar densities of nematodes (P. penetrans) as used in our study (de 

la Pena et al. 2005). Plausible mechanisms for such positive biomass effects include soil 

community-level responses in which herbivory stimulates the release of C-rich root exudates 
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into the soil, which increases soil microbial activity and nutrient availability for plant growth 

(Bardgett et al. 1999, Gebremikael et al. 2016) and can lead to stimulation of plant growth 

hormones by these soil biota (Mao et al. 2006). Other biological explanations could include the 

introduction of plant-beneficial microbes along with the nematode extracts (Adesemoye et al. 

2008), or a small nutrient effect from the additional organisms available to the soil food web for 

decomposition.  Whether the increase in root biomass was a real treatment effect or an artifact 

cannot be determined, as the amount of roots estimated was largest for plants in the 

nematode treatment, and every plant in the nematode treatment had a large volume of roots 

estimated, thus confounding the treatment effect with the effects of estimation. Approximately 

half of the total root mass for each plant with nematodes was sent for analysis, and the weight 

estimated using a linear regression (R2 = 0.78), which could not include other features that 

would have influenced the relationship between wet and dry weight such as the proportion of 

fine vs woody roots. 

Interestingly, P. penetrans may be inhibited by P. rubi. Presence of P. rubi significantly 

reduced density of nematodes both in plant roots and soil (Figure 9). This could be due to direct 

interactions between P. rubi and P. penetrans in the soil, or due to indirect effects such as 

altered root exudation or upregulation of plant defenses in response to P. rubi. Although we did 

not observe successful infection by P. rubi, plant defenses primed by early detection of 

pathogens can improve resilience to subsequent invaders. Many species of Phytophthora 

release elicitors that can be recognized by the host plant even before infection begins, such as 

cell wall glucans released during the germination of encysted zoospores (Waldmueller et al. 

1992, Taylor 2002). Recognition of such elicitors can prime defense pathways important for 
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plant’s resistance to infection by a variety of other organisms, including nematodes (Keller et al. 

1999, Cooper et al. 2005, Pieterse et al. 2014, Schouteden et al. 2015). Beneficial biota, such as 

AMF, also trigger plant defense pathways during infection, which leads to a similar induction of 

systemic resistance to pests and pathogens (Pozo et al. 2002, Schouteden et al. 2015). The 

observed reduction in nematodes was greater for those plants with Farm or Built AMF, while 

those with Wild AMF had low nematode numbers regardless of whether they were exposed to 

P. rubi (Figure 9). This could indicate that the mechanism by which P. rubi led to reduced 

nematodes is not a direct interaction between P. rubi and P. penetrans, but rather an indirect 

effect which could be triggered by other species, such as AMF. Our results contrast with an 

earlier study by Gigot et al. (2013) which found the opposite; the highest densities of P. 

penetrans were observed in root tissues when plants were inoculated with the highest densities 

of P. rubi. The difference in observed results could be an effect of timing, plant age, or inoculum 

densities. In our study the plants were exposed to P. rubi before the first nematode application, 

plants were weeks older, pest and pathogen applications differed, and environmental 

conditions were less conducive to P. rubi growth than in Gigot et al. (2013). 
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5. Conclusion 

In conclusion, our data shows that ‘Meeker’ R. idaeus associate readily with AMF under 

high-phosphate conditions common in managed fields, and that viable communities of AMF can 

persist in commercial production fields. These data cast doubt on the utility of introducing 

foreign AMF to fields which may already have abundant and more supportive endogenous AMF 

present. We have also demonstrated for the first time that R. idaeus inoculated with a healthy 

soil community can have enhanced resistance or tolerance to disease caused by P. rubi. 

Furthermore, both studies highlight that the source of AMF matters; AMF naturally occurring in 

an agricultural soil resulted in higher colonization and improved survivorship of the plants 

which they colonized compared to AMF from either constructed or commercial inoculum 

sources. 

While this study provides only a snapshot of the possibilities based upon the AMF 

community available on one farm, we believe there is potential to harness the benefits of that 

symbioses to improve raspberry tolerance to stressors. These results suggest that the slight 

tradeoff in plant biomass resulting from partnership with AMF is offset by the benefits derived 

when exposed to root pathogens, such as P. rubi. For growers seeking to reduce dependence 

on chemical pathogen control, there is clear potential for the inoculation of tissue culture 

plantlets with beneficial soil biota to improve survival following transplanting into production 

fields. Further research should be directed to investigate how these findings might be altered 

by higher levels of nitrogen fertilization, whether similar improvements in plant-soil-feedback 

will be observed in field conditions over longer time spans.  
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Appendix A: Environmental Data 

Throughout the Summer Long Study, Environmental data (temperature and humidity) was 

tracked using an Onset® HOBO data logger (Bourne, MA), located at soil surface height 

between plants of Block 2. Light data was collected around noon every other week using a LI-

250A light meter (LI-COR Biosciences; Lincoln, NE), recorded as a 10 second average across each 

block.  

 

Light 

Average light was highest in May and June (Table A1), when the greenhouse shade was not 

drawn. After we began regularly closing the greenhouse shade to reduce heat in the 

greenhouse, plants received less afternoon light. 

 

Table A1: Light levels experienced by plants in each block around noon. Data presented are 
mean light levels recorded at each block, averaged by month. 
 

 Average Light (mmols/second) 

Block April May June July August September 

1 314.9 543.5 295.8 286.0 107.4 213.7 

2 118.8 450.5 400.8 239.5 95.8 200.6 

3 262.5 389.3 393.0 245.8 101.2 243.0 

4 232.7 514.5 391.1 293.2 124.8 238.1 

5 233.8 437.7 403.4 228.5 119.8 280.9 

6 233.8 437.7 448.8 151.4 95.5 133.2 

7 232.7 514.5 302.8 216.7 103.7 126.0 

8 262.5 389.3 389.7 317.3 113.8 156.9 

9 118.8 450.5 282.9 250.0 111.3 178.9 

10 314.9 543.5 357.3 191.2 106.5 159.8 
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Temperature Data 

Maximum temperatures exceeded the ideal growing range for raspberry (70 – 75°F) on 145 

days of the experiment, topping 100°F on 10 days. That said, the daily average temperatures 

were within the “ideal growing range” on 92% of days (Figure A1). 

 
 
 

Month Average Temp (°C) Average Daily High (°C) Average Daily Low (°C) 

April 19.9 26.7 16.5 

May 21.9 29.9 17.6 

June 23.2 35.0 18.1 

July 22.6 29.0 18.2 

August 21.9 27.9 18.2 

September 20.6 27.7 18.1 
 
Figure A1: Greenhouse temperature trends for the Summer Long Study (2019). The plot shows 
trends in daily average (green), highs (red) and low (blue) temperatures over the course of the 
experiment, with days on the x-axis. Vertical dashed line marks the date at which plants were 
introduced to their Phase 2 Stress treatments. The table further summarizes these trends by 
month (means).  
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Appendix B: Midpoint Harvest 
 
Three plants in each Phase 1 AMF treatment of the Summer Long Study harvested at the same 

time that all other plants would be repotted into their Phase 2 Stress treatments (Week 10). 

These plants had all grown together in Block 11 (between Blocks 1 and 6).   

 Small differences in growth of this small subset of plants were not significant; plants with 

Wild AMF were just slightly taller and larger than those in other treatments (Table B1), which is 

consistent with the trends observed outside this block at week 10 (Figure 8).   

 
Table B1: Dry weight, heights, and leaf chlorophyll of three 10-week old ‘Meeker’ raspberry 
plants from each treatment, harvested before the rest of the plants were introduced to Phase II 
treatments. Phase I treatment is shown in the left column. Data displayed are means ± standard 
errors from 3 replicates. 
 

AMF 
Treatment  

Shoot 
biomass 
(g/plant) 

Root 
biomass 
(g/plant) 

Total 
biomass 
(g/plant) 

Leaf 
chlorophyll 

(SPAD) 

Height  
(cm) 

Nodes 
(count) 

Control 2.2 ± 0.2 0.6 ± 0.0 3.6 ± 0.2 22 ± 0.5 31 ± 0.6 12 ± 0.7 

Built 2.2 ± 0.2 0.6 ± 0.0 3.5 ± 0.2 20 ± 0.6 30 ± 1.1 11 ± 0.7 

Farm 2.2 ± 0.2 0.6 ± 0.1 3.4 ± 0.3 21 ± 0.9 30 ± 0.8 11 ± 1.2 

Wild 2.4 ± 0.3 0.8 ± 0.1 4.1 ± 0.5 20 ± 1.2 32 ± 0.7 11 ± 0 

ANOVA  F3,8 = 0.3, 
p=0.8 

F3,8 =1.5, 
p=0.3 

F3,8 = 1.0, 
p=0.5 

F3,8 = 0.8, 
p=0.5 

F3,8 = 1.9,  
p= 0.2 

F3,8 = 0.13, 
p=0.9 

  

 Plants in all treatments had higher total colonization at the end of 24 weeks (Table 6) 

than observed in the small subset harvested at Week 10 (Table B2). Colonization trends at 

Week 10 were also much different than would be observed by the end of the main experiment 

(Table 6). Specifically, though Farm and Wild AMF would result in similar total colonization by 

week 24 (Table 6), this harvest indicated those with Wild AMF had only about half the root 

colonization as those with Farm AMF (Table B2). Additionally, plants with Built AMF had the 
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highest colonization rates of any group (Table B2), though by the end they would have only 

about half the colonization rate observed in plants of the Farm and Wild treatments. 

 
Table B2: Colonization observed in fine roots of 10-week old ‘Meeker’ raspberry plants. Data 
displayed are means ± standard errors from 3 replicates. Approximately 72 intersections were 
assessed for each plant. 
 

AMF 
Treatment  

Vesicles 
(%) 

Arbuscules  
(%) 

Both V & A 
(%) 

Hyphae 
(%) 

Total  
% AM 

Control 0 6 ± 3 0 2 ± 0 8 ± 3 

Built 2 ± 0 39 ± 4 0 19 ± 2 59 ± 6 

Farm 2 ± 2 22 ± 1 1 ± 1 21 ± 5 44 ± 5 

Wild 2 ± 1 5 ± 2 0 22 ± 2 29 ± 2 
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Appendix C: Growth Measures 

Results of the destructive harvest for the Summer Long Study. All plants in the study survived to 

the end of the 24-week experiment, regardless of stress treatments.   

 

Table C1: Dry weight, heights, and leaf chlorophyll of 24-week old ‘Meeker’ raspberry plants. 
Plants received inoculation with AMF from sources in the first column on day 0, and received 
the stress treatments in the second column at week 10. Data displayed are means ± standard 
errors from 10 replicates. 
 

Treatment combination (n=10) 
Shoot 

biomass 
(g/plant) 

Root 
biomass 
(g/plant) 

Total 
biomass 
(g/plant) 

Leaf 
chlorophyll 

(SPAD) 

Height 
(cm) Nodes 

Control 

Control 12.9 ± 0.6 6.0 ± 0.2 19.0 ± 0.8 32 ± 0.6 152 ± 9 41 ± 1 

Pratylenchus penetrans 12.1 ± 0.5 7.0 ± 0.3 19.1 ± 0.8 31 ± 0.5 134 ± 11 41 ± 2 

Phytophthora rubi 12.4 ± 0.3 5.7 ± 0.2 18.1 ± 0.4 32 ± 0.3 145 ± 4 42 ± 2 

Both 13.0 ± 0.5 6.7 ± 0.2 19.8 ± 0.6 30 ± 0.5 149 ± 4 43 ± 1 

Built 

Control 12.2 ± 0.4 5.8 ± 0.3 18.1 ± 0.6 32 ± 0.4 140 ± 9 40 ± 2 

Pratylenchus penetrans 11.8 ± 0.4 6.5 ± 0.2 18.3 ± 0.5 33 ± 0.4 134 ± 7 42 ± 2 

Phytophthora rubi 11.9 ± 0.3 5.7 ± 0.2 17.6 ± 0.3 33 ± 0.3 144 ± 6 38 ± 2 

Both 12.1 ± 0.2 6.7 ± 0.2 18.8 ± 0.4 33 ± 0.2 145 ± 4 41 ± 1 

Farm 

Control 12.2 ± 0.5 5.5 ± 0.1 17.7 ± 0.5 32 ± 0.5 139 ± 7 40 ± 2 

Pratylenchus penetrans 11.8 ± 0.6 6.1 ± 0.2 17.9 ± 0.7 33 ± 0.6 147 ± 8 39 ± 2 

Phytophthora rubi 11.1 ± 0.4 5.3 ± 0.1 16.4 ± 0.4 34 ± 0.4 122 ± 12 42 ± 1 

Both 12.0 ± 0.5 6.2 ± 0.2 18.3 ± 0.6 31 ± 0.5 145 ± 7 42 ± 1 

Wild 

Control 11.0 ± 0.3 5.8 ± 0.2 16.8 ± 0.4 34 ± 0.3 122 ± 6 38 ± 1 

Pratylenchus penetrans 10.5 ± 0.2 5.8 ± 0.2 16.3 ± 0.3 34 ± 0.2 127 ± 3 38 ± 1 

Phytophthora rubi 11.3 ± 0.3 5.3 ± 0.3 16.6 ± 0.5 34 ± 0.3 132 ± 4 38 ± 1 

Both 11.1 ± 0.5 5.9 ± 0.2 17.1 ± 0.5 32 ± 0.5 127 ± 9 37 ± 2 
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Appendix D: Shoot Nutrient Data 

Shoot nutrient content differed by an average of under 0.1% between treatments. When 

nematodes were applied, potassium (K) content was modestly but significantly reduced for 

plants in the Control and Farm AMF treatments (Main Effects Contrast, p <0.05).  

Table D1: Shoot nutrient content of 24-week old R. idaeus cv. Meeker. Plants received early 
inoculation with AMF treatments in the first column, and received the stress treatments in the 
second column at week 10. Data displayed are means ± standard errors from 10 replicates. 
 

Treatment combination Nitrogen 
(%) 

Phosphorous 
(%) 

Potassium 
(%) 

Magnesium 
(%) 

Copper 
(ppm) 

Control 

Control 0.9 ± 0.04 0.1 ± 0.01 1.2 ± 0.05 0.3 ± 0.01 1.8 ± 0.23 

Pratylenchus penetrans 0.9 ± 0.03 0.1 ± 0.01 1.2 ± 0.04 0.3 ± 0.02 1.8 ± 0.18 

Phytophthora rubi 0.9 ± 0.03 0.2 ± 0.01 1.3 ± 0.04 0.3 ± 0.01 2.1 ± 0.28 

Both 0.9 ± 0.03 0.1 ± 0.01 1.1 ± 0.04 0.3 ± 0.02 1.2 ± 0.15 

Farm 

Control 0.8 ± 0.03 0.2 ± 0.01 1.3 ± 0.07 0.3 ± 0.02 2.6 ± 0.32 

Pratylenchus penetrans 0.9 ± 0.05 0.2 ± 0.01 1.2 ± 0.04 0.3 ± 0.02 2.4 ± 0.27 

Phytophthora rubi 0.9 ± 0.04 0.2 ± 0.01 1.3 ± 0.04 0.4 ± 0.01 2.8 ± 0.20 

Both 0.8 ± 0.04 0.2 ± 0.01 1.2 ± 0.05 0.3 ± 0.01 2.4 ± 0.17 

Wild 

Control 0.9 ± 0.05 0.1 ± 0.01 1.1 ± 0.03 0.3 ± 0.01 1.8 ± 0.13 

Pratylenchus penetrans 0.8 ± 0.03 0.1 ± 0.01 1.1 ± 0.04 0.3 ± 0.01 1.9 ± 0.17 

Phytophthora rubi 0.9 ± 0.02 0.1 ± 0.00 1.2 ± 0.04 0.3 ± 0.01 2.0 ± 0.06 

Both 0.9 ± 0.03 0.1 ± 0.01 1.2 ± 0.04 0.3 ± 0.01 1.9 ± 0.09 

Built 

Control 0.8 ± 0.03 0.2 ± 0.01 1.2 ± 0.04 0.3 ± 0.01 2.9 ± 0.17 

Pratylenchus penetrans 0.8 ± 0.04 0.2 ± 0.01 1.1 ± 0.05 0.3 ± 0.02 2.9 ± 0.15 

Phytophthora rubi 0.9 ± 0.05 0.2 ± 0.01 1.2 ± 0.07 0.3 ± 0.02 2.8 ± 0.26 

Both 0.9 ± 0.05 0.2 ± 0.01 1.2 ± 0.03 0.3 ± 0.01 2.9 ± 0.28 
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Appendix E: Colonization 

Colonization was assessed for 7 of 10 replicates in each treatment combination of the Summer 

Long Study (Table E1). Plants with Built AMF tended to have more arbuscules, while those with 

Farm and Wild AMF exhibited the highest number of vesicles.  

 
Table E1: Colonization observed in fine roots of 24-week old R. idaeus cv. Meeker plants. Plants 
received early inoculation with AMF treatments in the first column, and received the stress 
treatments in the second column at week 10. Data displayed are means ± standard errors from 
7 replicates. Approximately 72 intersections were assessed for each plant. 
 

Treatment combination Vesicles 
(%) 

Arbuscules  
(%) 

Both V & A 
(%) 

Hyphae 
(%) 

Total  
% AM 

Control 

Control 5 ± 2.3 13 ± 1.3 0 ± 0.1 45 ± 4.1 62 ± 4.6 

Pratylenchus penetrans 4 ± 1.1 7 ± 1.1 0 ± 0.1 36 ± 3.9 46 ± 5.5 

Phytophthora rubi 8 ± 2.1 9 ± 2.3 2 ± 0.7 40 ± 5.2 57 ± 7.7 

Both 6 ± 1.5 8 ± 0.8 4 ± 0.8 41 ± 3.3 56 ± 4.4 

Built 

Control 3 ± 0.5 19 ± 1.5 0 ± 0.2 55 ± 1.9 76 ± 1.5 

Pratylenchus penetrans 3 ± 0.6 17 ± 0.9 0 ± 0.1 59 ± 1.3 80 ± 1.5 

Phytophthora rubi 2 ± 0.3 15 ± 1.5 1 ± 0.4 61 ± 2.2 79 ± 1.6 

Both 3 ± 0.6 18 ± 2.1 3 ± 0.4 46 ± 2.2 67 ± 2 

Farm 

Control 16 ± 2 9 ± 1 1 ± 0.3 56 ± 1.8 85 ± 1.7 

Pratylenchus penetrans 18 ± 0.8 13 ± 1.1 1 ± 0.1 56 ± 2.1 90 ± 1.4 

Phytophthora rubi 34 ± 2.7 11 ± 1 1 ± 0.2 48 ± 2 96 ± 1.2 

Both 19 ± 1.4 11 ± 1.2 2 ± 0.6 61 ± 1.9 92 ± 1.5 

Wild 

Control 20 ± 3.6 11 ± 2 0 ± 0.2 63 ± 4.4 96 ± 1.2 

Pratylenchus penetrans 12 ± 1.2 6 ± 0.6 0 ± 0.1 68 ± 1.8 87 ± 1 

Phytophthora rubi 20 ± 1.9 6 ± 1.1 4 ± 0.8 64 ± 3 94 ± 0.9 

Both 7 ± 1.3 10 ± 2.7 3 ± 0.5 68 ± 2.1 86 ± 1.2 
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Appendix F: Nematodes 

Nematodes were quantified prior to application (Weeks 10 – 15) by counting on a McMaster 

slide. At the end of the experiment (Week 24), nematode densities were quantified both within 

roots and within soil.  

 

Applications 

In the Summer Long Study, nematode treatments were sourced from harvested roots of 

infected mature plants. We applied nematodes to plants as quickly as we could extract them 

from source roots, which was approximately biweekly. Over the course of 40 days, we applied 

approximately 1558 ± 121 nematodes to each plant in the nematode treatment (Table F1).  

 
 

Date Nematodes / plant 

6/13 95 ± 6 

6/17 39 ± 4 

6/20 38 ± 10 

6/24 59 ± 11 

6/27 4 ± 2 

7/1 3 ± 2 

7/4 153 ± 18 

7/8 185 ± 21 

7/11 305 ± 21 

7/18 126 ± 14 

7/22 551 ± 12 

Total 1558 ± 121 

 
Figure F1: Nematode applications for the Summer Long Study, Phase 2. Average nematodes 
applied per plant was calculated by multiplying the mean density of five replicate 1 mL samples 
by the volume applied to each plant. Data presented are means ± standard error from five 
replicates. Photos A – C are at 10x magnification, documenting sample specimen extracted. 
 

100 µm 

A 

B C 
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Post-harvest nematode densities 

By the end of the experiment, nematode numbers in each pot had increased. Table F2 displays 

the average densities of nematodes in roots and soil, by treatment combination. While there 

were no significant differences in final densities by AMF treatment, there were significant 

differences in root densities due to inoculation with P. rubi (Table F3). Nematode soil density 

was not predicted by either AMF treatment nor Phytophthora treatment (Table F3).  

 

Table F1: Density of nematodes recovered from root samples from harvested plants. Data 
displayed are means ± standard errors from ten replicates. 
 

Treatment Combination Nematodes / 100g 
soil Nematodes / g root 

Control 
P. penetrans 129 ± 74 474 ± 161 

P. penetrans & P. rubi 67 ± 50 348 ± 116 

Built 
P. penetrans 224 ± 206 633 ± 116 

P. penetrans & P. rubi 89 ± 55 315 ± 40 

Field 
P. penetrans 145 ± 93 679 ± 157 

P. penetrans & P. rubi 181 ± 101 325 ± 39 

Wild 
P. penetrans 201 ± 267 321 ± 75 

P. penetrans & P. rubi 170 ± 161 366 ± 110 

 
 
Table F3: Results of Wald Chi-square test, indicating significance of each treatment variable for 
predicting the response variable. Mixed models selected as described in the methods. Inclusion 
of the AMF:Phytophthora interaction did not improve the model for either response variable. 
 

 AMF  
(df =3) 

Phytophthora  
(df = 1) 

Response Variable c2 p c2 p 

Root Density 2.95 0.399 7.04 0.008 

Soil Density 4.20 0.241 2.29 0.130 
 
  



 

 
 70 

Appendix G: Sensitivity Analysis 
 
Results from G*Power indicated that there was ample power to detect main effects in our 

study, but the capacity of our design to detect interactions between pest and AMF treatments 

was limited medium-large effects (Cohen’s f = 0.34). This suggests that in our analysis, where 

the interaction between AMF treatment and pest treatment was found to be non-significant, it 

would be safer to conclude that if any interaction existed, it was not a large effect.  

 

All the interaction effect sizes were smaller than the minimum effect size that we could have 

detected with high probability given our research design (Table 5). For this reason, we used 

plots and simple main effects contrasts to assess potential interaction effects even where the 

interaction was not found to be significant. The main effects observed in response to AMF 

treatment were mostly large effects, and larger than the minimum effect size needed to have 

confidence that we could detect such an effect (Table 5). 

 
Table G1: Results of sensitivity analysis. The smallest effect that we could have detected with 
high probability given our research design and measured error variance is reported as Cohen’s 
f. Subsequent values are the effect size (partial Cohen’s f) for each response variable. Values 
with a star are smaller effects than the minimum effect we could have detected with 80% 
confidence. 
 

 Minimum 
Cohen’s f for 
power = 0.80 

Total Biomass 
(partial 
Cohen’s f) 

Root Biomass 
(partial 
Cohen’s f) 

Root:Shoot 
Ratio (partial 
Cohen’s f) 

SPAD 
(partial 
Cohen’s f) 

AMF (k = 4) f = 0.27 0.42 0.44 0.15 * 0.43 

Pest (k = 4) f = 0.27 0.22 * 0.48 0.32 0.23 * 
Interaction 
(k=16) f = 0.34 0.16 * 0.24 * 0.25 * 0.32 * 
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Appendix H: Regression Results 

After the best mixed model regressions were fit to each response variable, we used a Wald Chi-

square test to describe the significance of each predictor variable in the model. AMF 

treatments had highly consistent effects, while there was never a significant main effect of 

Phytophthora on either plant growth or AMF colonization (Table H1). 

 
Table H1: Results of Wald Chi-square test, indicating significance of each term in the best fit 
regression model fora given response variable. Models selected as described in the methods; 
inclusion of AMF:Nem:Phy did not improve the models. 
 

 AMF  
(df =3) 

Phytophthora  
(df = 1) 

Nematode  
(df =1) 

Nem:Phy 
Interaction (df = 1) 

Response Variable c2 p c2 p c2 p c2 p 

Physical Measures         

Height 14.69 0.002 0.27 0.603 0.15 0.701 1.49 0.222 

Nodes / 10cm 2.22 0.528 0.01 0.928 0.19 0.660 1.72 0.190 

SPAD 24.71 <0.001 0.50 0.481 1.61 0.205 4.85 0.028 

Dry Weights         

Root Biomass 33.66 <0.001 1.33 0.248 19.65 <0.001 3.34 0.068 

Shoot Biomass 32.63 <0.001 0.06 0.800 0.11 0.746 4.76 0.029 

Total Biomass 47.90 <0.001 0.05 0.826 7.5 0.006 6.3 0.012 

Shoot Nutrients         

Nitrogen (%) 9.92 0.019 0.24 0.624 0.02 0.885 1.58 0.209 

Phosphorous (%) 84.06 <0.001 0.42 0.516 1.49 0.222 0.72 0.396 

Potassium (%) 8.00 0.046 3.45 0.063 8.14 0.004 2.75 0.097 

Calcium (%) 10.13 0.017 1.12 0.289 4.67 0.031 3.76 0.052 

Magnesium (%) 11.86 0.008 0.04 0.841 2.37 0.124 5.91 0.015 

Colonization         

Total Colonization 
(%) 

84.48 <0.001 0,03 0.855 2.82 0.093 0.08 0.773 

Arbuscules (%) 34.15 <0.001 0.68 0.410 0.17 0.681 2.54 0.111 

Vesicles (%) 76.50 <0.001 2.25 0.133 6.72 0.009 2.52 0.112 
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Appendix I: Spore Production 

Soils from every treatment combination in the Summer Long Study were dried and spore 

abundances were later assessed. Plants with Built AMF had the highest final spore densities, 

regardless of stress treatment (Table I1). 

 
Table I1: AMF spore densities in soil following the Summer Long Study, by treatment 
combination. Plants were first grown with the AMF treatment in the first column, then 
introduced to the stress treatment in the second column at week 10. Soils were pooled by 
treatment combination. Data displayed are means ± standard errors from 3 replicates.  
 

Treatment combination Spores per g 
dry soil  

Control 

Control 141 ± 6 

Pratylenchus penetrans 57 ± 2 

Phytophthora rubi 46 ± 7 

Both 57 ± 3 

Built 

Control 187 ± 3 

Pratylenchus penetrans 231 ± 4 

Phytophthora rubi 228 ± 43 

Both 215 ± 15 

Farm 

Control 88 ± 9 

Pratylenchus penetrans 94 ± 9 

Phytophthora rubi 91 ± 16 

Both 110 ± 13 

Wild 

Control 34 ± 8 

Pratylenchus penetrans 38 ± 6 

Phytophthora rubi 35 ± 6 

Both 41 ± 22 
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For the Built treatment, spores were identified to species, because we knew the species 

profile of the original inoculum which was comprised of species with morphologically distinct 

spores. Community structure, approximated as the relative abundance of spores, changed 

following 24 weeks of culture with R. idaeus subjected to various pest/pathogens. The most 

obvious change was that plants receiving nematodes, with or without P. rubi, had a significantly 

higher density of D. heterogama spores at the end of the experiment (Figure I1).  Shannon’s 

Diversity Index H was calculated using the relative abundance of each species spores. 

Community diversity, as described by Shannon’s H, was reduced by the presence of pests, 

especially nematodes (Figure I1). 

Because all spores in the Built inoculum were identified by matching their morphology 

to the 8 species in the inoculum, there is a chance that some windborne contaminants were 

mistakenly included in those numbers. That said, just as the contaminants did not establish and 

sporulate as prolifically in Control treatment pots where there were pests also competing for 

resources (Figure 7), those contaminants would have faced similar competition from the 

established AMF communities in the Built, Farm and Wild treatments. Windborne contaminants 

identified in the Control treatments were mostly small (<100 microns) and medium (100-150 

microns), yet in the Built treatment the species with the largest increase in spore density was D. 

heterogama, which has amber colored, medium-large spores averaging 159 microns in 

diameter (West Virginia University INVAM). That said, we should interpret these preliminary 

community results with caution, due to the risk of including mis-identified contaminants. 
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Treatment Pre Both Nem None Phy 

Shannon’s H 1.46 0.92 0.73 1.35 1.26 

 
Figure I1: Summary of spore abundance within plants receiving Built AMF in Phase 1. Phase 2 
stress treatments are on the x-axis, in addition to “Pre” which is the species abundance 
measured within an equivalent volume of the Built inoculum before the start of the 
experiment. Boxplots are based upon median and interquartile range of three replicates per 
treatment combination. Table contains Shannon Diversity index for “Pre” and each treatment.  
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 75 

Appendix J: Spring Short Study 

Environmental Conditions 

The daily average temperatures were within the “ideal growing range” of raspberry on 95% of 

days (Figure A1), while never topping 38°C (100°F). 

 
 

 
Month Average Temp (°C) Average Daily High (°C) Average Daily Low (°C) 

February 18.6 21.1 17.3 

March 20.0 25.6 17.7 

April 20.7 27.3 18.1 

May 21.8 27.4 18.3 
 
Figure J1: Greenhouse temperature trends for the Spring Short Study (2020). The plot shows 
trends in daily average (green), highs (red) and low (blue) temperatures over the course of the 
experiment, with days on the x-axis. Vertical dashed line marks the date at which plants were 
introduced to their Phase 2 stress treatments. The table further summarizes these trends by 
month (means). 
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