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Abstract 

This paper addresses two applications of lidar remote sensing: an area-based watershed-

scale analysis of forest structure used to prioritize riparian restoration projects for salmon, and an 

individual-tree-based analysis for tree species classification. Salmon conservation is extremely 

important in the Pacific Northwest, but restoration efforts have been hampered by insufficient 

data on riparian stand conditions. I used lidar to map riparian stand structure and composition 

along the Nooksack River, Washington, and developed a restoration priority model based on six 

factors: riparian stand conditions, shade potential, cause of riparian impairment, susceptibility to 

climate change, position in the watershed, and proximity to intact riparian forest. Nine reaches 

(out of 268 total) were identified as priority targets for riparian restoration. Four of these reaches 

were on the upper South Fork, two were in the lower South Fork, two were in the lower Middle 

Fork, and one was in the North Fork near Maple Falls. 

At the individual tree level, I compared six different approaches using five different 

algorithms to sort a discrete-return lidar point cloud into segments representing individual trees. 

Using these segments, I built models to predict height, diameter, conifer/deciduous classification, 

and species. Using the best segmentation model, I was able to classify black cottonwood 

(Populus trichocarpa), Douglas fir (Pseudotsuga menziesii), and red alder (Alnus rubra) with 

user’s accuracies up to 89%, overall accuracies of 83-92%, and kappa values above 0.6. This was 

the first landscape-scale study attempting to classify tree species in natural landscapes in the 

Pacific Northwest. 
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1.0 - Introduction 

1.1. Salmon Recovery Planning in the Pacific Northwest 

Salmon have great economic, environmental, cultural, and spiritual importance in the 

Pacific Northwest. Pacific Northwest salmon stocks are declining, so conservation is a high 

priority in the region. Declines are partly due to reduced quality and availability of freshwater 

habitat (Gregory and Bisson 1997; Paulsen and Fisher 2001), and climate change is expected to 

worsen current problems (Grah and Beaulieu 2013; Croizer 2016). Millions of dollars are spent 

on restoration efforts in the Pacific Northwest every year (Roni et al. 2002), but most projects are 

small in scale (typically addressing less than 10 percent of the watershed), and they are not 

always optimally targeted to support overall salmon population goals (Roni et al. 2018). As such, 

it is important to strategize restoration efforts across the landscape and to find ways to focus 

restoration efforts onto the areas where they will do the most good. 

Restoration projects need to be designed to support overarching goals at the watershed 

level. Beechie et al. (2013a) proposed that an effective restoration plan would 1) determine what 

actions are necessary to restore habitat availability, quality, and diversity, 2) determine which 

habitats, if restored, will most affect overall salmon success, and 3) take into consideration how 

human infrastructure and land use may constrain restoration efforts. The relative priority of 

various habitat restoration actions (for example, reconnecting existing side-channel habitat or 

replanting riparian vegetation) is dependent on the scale of the proposed restoration project, the 

overall impairment status of the watershed, and the urgency of habitat needs (Roni et al. 2002). 

For example, if access to habitat is poor because of natural or human-made obstacles, then 

restoring vegetation will have little effect. In an area with acceptable connectivity, such as the 
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Nooksack River, Washington, restoring hydrologic, geologic, and riparian processes increases in 

importance (Roni et al. 2002). 

In general, watershed-level habitat restoration has been limited by the difficulty of 

collecting detailed habitat information at that scale (Roni et al. 2018). Direct habitat assessment 

by field teams provides the best information, but it is prohibitively expensive over large areas 

(Beechie et al. 2013a). An increasingly popular approach is to use remotely sensed data to assess 

habitat conditions. Remotely sensed information must be calibrated with field data before it can 

be used, but it still greatly reduces the cost and effort required to document conditions for an 

entire watershed (Beechie et al. 2013a). Until recently, most projects used some form of satellite 

or airborne imagery (Beechie et al. 2013a), but technological and computing advances are 

providing other options. Light detection and ranging (lidar) is a rapidly expanding technology 

that has the potential to overcome many of the limitations of traditional remote sensing 

techniques. Lidar is particularly appropriate for assessing riparian vegetation because it is readily 

available for many Pacific Northwest streams (DNR 2018), and it can be used to measure 3D 

forest structure with high accuracy and quantifiable error (Moskal et al. 2015; Tompalski et al. 

2017). 

1.2. Influence of Riparian Forest on In-Channel Habitat 

Riparian areas, the transition zone between terrestrial and aquatic habitat, critically 

influence in-stream habitat quality. Restoring riparian conditions is a major focus of salmon 

conservation projects (Naiman and Latterell 2005). Riparian forests contribute to in-stream 

habitat quality by providing shade, supplying wood debris, supplying leaf litter and terrestrial 

insects, stabilizing banks, retaining sediment, and filtering nutrients and chemical pollutants 
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(Gregory et al. 1991; Naiman and Latterell 2005). Mature and old growth riparian forests provide 

the greatest benefits, but the history of logging and land clearing in the Pacific Northwest has 

caused riparian patches of old growth or mature forest to be scattered and rare (Gregory and 

Bisson 1997; Brown and Maudlin 2007; Hyatt 2007). Because of this, restoration projects for 

salmon may involve managing existing riparian forests to encourage the development of mature 

forest characteristics in comparatively young stands that otherwise would not yet perform those 

roles (Roni et al. 2002). 

Thermal regulation is a key function of riparian forests in the Pacific Northwest. Salmon 

live in cold water, generally between 3°C and 15°C depending on life stage and species (EPA 

2003). Dense mature riparian forests that provide shade during the heat of the day are critical, 

especially in lowland areas (Naiman et al. 2000). Younger, shorter forests provide less 

protection. Riparian forests also produce large woody debris (root wads and logs with a diameter 

>10 cm) that contribute to log jam and pool formation. The effects of large woody debris depend

on channel width relative to wood volume, and larger logs supplied by mature forests provide 

benefits to larger channels (Bisson et al. 1987; Fox and Bolton 2007). Under the right conditions, 

log jam pools can provide thermal refuges to salmon (Bisson et al. 1987; Beechie and Sibley 

1997). Conifers are more influential than deciduous trees in terms of both shade and log jam 

formation because they grow taller and, once in the water, decompose more slowly (Bisson et al. 

1987; Bilby and Ward 1989; Hyatt and Naiman 2001).  

In addition to providing possible thermal refuges, log jams provide cover, help to 

maintain forested islands by reducing erosion, and contribute to flow rate variation across the 

landscape. Flow rate variation across the landscape allows for more spatially diverse deposition 

of coarse gravel and more widespread spawning habitat availability (Beechie et al. 2013b). Large 
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woody debris also contribute to side-channel formation, which provide flow-refuge areas for 

juvenile salmon. Low-flow areas where fish can shelter enable reduced metabolic rates for 

swimming and helps them conserve energy (Beechie and Sibley 1997; Beechie et al. 2013b). 

Riparian vegetation stabilizes stream banks, reduces erosion, filters sediment, and 

contributes to channel stability (Naiman et al. 2000; Beechie et al. 2013a). Speaking in general 

terms, confined streams, in which bankfull width is restricted by natural rock formations or 

artificial structures, typically have low habitat potential because flow rates are too high. At the 

other extreme, unrestricted streams that become braided can be poor habitat because of elevated 

temperatures, shallow water depth, and reduced food availability caused by extreme channel 

instability and the corresponding lack of nearby vegetation. Riparian forests help keep stream 

ecosystems in the middle of these two extremes. Their roots slow erosion and create stability 

during moderate flow times without restricting the stream so much that flow increases and 

beneficial spawning gravel is lost (Beechie et al. 2013a). In addition to controlling in-channel 

coarse sediment, riparian vegetation also filters fine sediment present in terrestrial runoff. This 

helps maintain stretches of spawning-suitable coarse gravel by reducing inputs of fine sediment 

that, in excess, clog interstitial spaces in coarse gravel thereby restricting oxygen access to 

developing salmon embryos and can reduce food availability for juvenile salmon (Suttle et al. 

2004; Kemp et al. 2011). 

Riparian forests influence in-channel food web dynamics. Forest vegetation provides leaf 

litter which feeds invertebrates at the base of the food chain (Naiman and Latterell 2005). 

Riparian vegetation is also a source of terrestrial insects, which feed young fish directly (Nakano 

et al. 1999). Mature forests with vegetation overhanging the water tend to provide plentiful food 



5 

for juvenile salmon, whereas barren gravel stretches bordering unstable stream channels provide 

relatively little (Beechie et al. 2013b). 

1.3. Salmon and the Nooksack Watershed 

The Nooksack River in Washington State contains a diverse assembly of salmon, but 

much of the river needs to be restored in order to properly support them (WRIA 1 Salmon 

Recovery Board 2005). The river contains 25 salmon stocks, only three of which are considered 

healthy (WRIA 1 Salmon Recovery Board 2005). Several stocks in the Nooksack River are listed 

under the Endangered Species Act (ECOS 2020). Bull trout (Salvelinus confluentus), Puget 

Sound steelhead (Oncorhynchus mykiss), and two stocks of Puget Sound chinook (Oncorhynchus 

tshawytscha) are listed, and Nooksack coho (Oncorhynchus kisutch) is considered a species of 

concern (WRIA 1 Salmon Recovery Board 2005). The South Fork early chinook sub-population 

is especially vulnerable, and the recovery of both the North Fork and South Fork early chinook is 

considered essential for the recovery of the Puget Sound chinook environmentally significant 

unit (WRIA 1 Salmon Recovery Board 2005). Unfortunately, salmon habitat quality in the 

Nooksack Watershed is impacted both by legacy effects of historic land use and current land use 

practices. The Salmon Recovery Plan for Water Resource Inventory Area 1 (i.e., WRIA 1, the 

administrative area that includes the Nooksack River and independent coastal drainages of 

Whatcom County) identified nine primary habitat factors that limit endangered salmon recovery 

in the Nooksack River. These nine factors are channel stability, sediment load, habitat diversity, 

key habitat quantity, obstructions, withdrawal structures, flow, temperature, and chemicals 

(WRIA 1 Salmon Recovery Board 2005). Most of these problems are closely tied to the removal 

and degradation of riparian forest and the loss of large woody debris. 
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The Nooksack River includes three main forks (North Fork, Middle Fork, and South 

Fork), each of which experience different local conditions and pose different challenges for 

salmon habitat restoration. The North Fork is the main fork. It is joined by the Middle Fork at 

river mile (RM) 40.5 and by the South Fork at RM 36.6 (WRIA 1 Salmon Recovery Board 

2005). The North Fork is glacier-fed, so high water temperatures are usually not a problem 

except in the tributaries or at exceptionally low-flow times (Smith 2002). Much of the North 

Fork is too braided and unstable to make good incubation, spawning, and rearing habitat; 

historically the channels were likely more stable and vegetated islands were larger and supported 

older trees (WRIA 1 Salmon Recovery Board 2005; Hyatt 2007). These changes may have been 

partly due to changes in hydrology related to logging practices in the late 20th century and partly 

the result of decreased availability of large woody debris. In the lower North Fork, only 1.3 

percent of the floodplain has trees large enough to contribute large woody debris comparable to 

historical sizes (Hyatt 2007). As a short-term fix for this problem, restoration groups have been 

building artificial log jams along the North Fork to encourage forested island and floodplain 

stability to increase side channel habitat and increase the river’s salmon incubation success by 

diversifying habitat (NNR 2018).  

The Middle Fork of the Nooksack is also glacier-fed, and the upper reaches are high 

quality habitat for salmon. However, the lower portion of the river is highly braided and suffers 

from high temperatures, high fine sediment load, and lack of key habitats (LNR 2011). This is 

driven by similar factors to those affecting the North Fork (WRIA 1 Salmon Recovery Board 

2005). Until recently, access to the high-quality upper reaches was restricted by a diversion dam 

at RM 7.2 (WRIA 1 Salmon Recovery Board 2005). Removal of the dam has been considered 

the highest restoration priority for the North Fork/Middle Fork early chinook population in the 
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Nooksack Watershed. The dam removal process started in early 2020, and in-water work was 

completed in fall 2020, although the upland portions of the site will be under construction for 

several more months (City of Bellingham 2021). 

The South Fork is listed as an impaired waterbody due to high water temperatures 

(Kennedy et al. 2020). Problems with temperature are related to land use practices as well as the 

natural hydrology of the river. The South Fork is fed by snowpack from Twin Sisters Mountain, 

so flow decreases substantially during the warm summer months (Soicher et al. 2006). The lower 

16 miles of the river flow through an open valley, and water temperatures routinely exceed 

optimum levels for life stages present during the late summer and early fall (WRIA 1 Salmon 

Recovery Board 2005; Kennedy et al. 2020). Riparian vegetation is lacking along the lower 

reaches. Shade from riparian trees is still important in the lower reaches, but stream widths limit 

the magnitude of possible shade effects (Kennedy et al. 2020). The upper reaches, which are 

narrower, suffer from degraded riparian forests and related to legacy logging practices, although 

these areas are largely protected under the current rules (Brown and Maudlin 2007).  

Lack of large woody debris is a key problem in both upper and lower reaches of the 

South Fork, so artificial log jams have been built to temporarily address this deficiency (NNR 

2015). Similar to the other forks, logjams are very rare compared to historical levels, partly due 

to active removal during the 20th century and partly due to low replacement rates (Collins and 

Sheikh 2004a). Large woody debris recruitment is low because there are fewer mature trees 

relative to historical conditions and because of channelization and bank armoring. Bank 

armoring protects roads and structures but results in low habitat diversity and restricts large 

woody debris recruitment from channel movement (Maudlin et al. 2002; WRIA 1 Salmon 

Recovery Board 2005). Under current regulations riparian forests along the upper South Fork 
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should be on a trajectory for recovery, although without active intervention recovery may take 

50-100 years (Brown and Maudlin 2007), but because of the different regulatory environment the 

lower South Fork is in need of active intervention to restore salmon habitat (Maudlin et al. 2002). 

Restoration efforts are ongoing throughout the Nooksack, but the size of the watershed 

makes wholistic restoration challenging. It has been difficult to target sites to maximize the 

benefits of salmon habitat restoration, especially because the three forks have different problems 

and different factors restricting restoration. If restoration could be targeted more precisely to 

areas with high habitat potential, it would be possible to see greater benefits to salmon within a 

shorter timeframe and at lower cost (Roni et al. 2002). A key data gap is lack of information 

regarding the distribution and structure of riparian forest stands along the river (Puget Sound 

Partnership 2018). To address this need, my study aims to use lidar data to assess riparian forest 

structure and model some aspects of riparian function for the Nooksack watershed based on a 

combination of topography, stream channel morphology (including channel width), and riparian 

forest structure. This model and its component layers could then be used to identify opportunities 

for restoration efforts based on current conditions and estimated stand growth trajectories. 

There have been a few studies of riparian vegetation along the Nooksack, but updated 

and more extensive information is needed. Studying a portion of the South Fork, Brown and 

Maudlin (2007) used high resolution airborne laser scanning to map potential for large woody 

debris recruitment. They found that less than 1% of their study area contains mature trees and 

that conifer-dominated stands, which contribute the majority of large woody debris, are spatially 

limited. Although the relative proportions of different tree species are mostly consistent with 

conditions in the 1880s (Collins and Sheikh 2004a), the natural scarcity of conifers means that 

land-use activities that have favored the removal of large conifers have greatly impacted large 
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woody debris recruitment (Brown and Maudlin 2007). Supporting these findings, Capuana 

(2013) mapped size classes and deciduous versus coniferous cover for a portion of the South 

Fork basin and concluded that the site is dominated by small, deciduous trees that are sub-

optimal for logjam formation. In the lower North Fork, Hyatt (2007) used a spatially-limited 

airborne laser scanning dataset to quantify vegetation heights for trees in the floodplain and on 

portions of the valley walls. This paper concluded that vegetated area had been consistently 

declining and that riparian stands are much younger and smaller than they would have been 

historically.  

In a more widespread image-based assessment, Coe (2001) investigated large woody 

debris recruitment potential and concluded that large forest stands and large woody debris 

recruitment potential are limited throughout the watershed. Building on this data, Hyatt et al. 

(2004) investigated shade and wood recruitment relative to channel size and prioritized areas for 

restoration based on the modeled pool-forming ability of large woody debris potentially recruited 

from adjacent stands. This study found that 74% of stands that were too small to provide pool-

forming large woody debris are in agricultural land use areas (Hyatt et al. 2004). These prior 

analyses are extremely useful and have provided the background for many restoration projects in 

recent years. However, most of them do not provide a watershed-level view, and the studies 

reported in Coe (2001) and Hyatt et al. (2004) had some technical limitations due to the age and 

format of the available data.  

1.4. Background of Lidar as a Forest Inventory Tool 

Lidar is an active remote sensing technology that generates highly accurate 3D images of 

surfaces and objects. Active remote sensing systems emit their own illumination rather than 
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relying on energy emitted by the sun. A comparatively recent technique, lidar was first applied to 

forestry in the 1990s in Scandinavian countries (Hyyppä et al. 2008). Data quality has increased 

markedly in the past three decades (Mazza and Gatzolis 2018). With these advances, lidar now 

can measure a wide range of forest attributes that are relevant to conservation decisions and 

difficult to assess by other means (Wulder et al. 2012; Zlinszky et al. 2015).  

One of the most widely used types of lidar is small-footprint discrete-pulse airborne laser 

scanning, commonly abbreviated as ALS (Hyyppä et al. 2008; Wulder et al. 2012). These 

systems can be used to collect detailed measurements of entire forest stands far more quickly and 

at a lower cost than an equivalent undertaking by field crews. High-quality ALS data 

commissioned by state, local and tribal agencies are publicly available for many stream systems 

throughout the Pacific Northwest (DNR 2018). Airborne lidar systems use an instrument 

mounted in an airplane to scan the ground with laser pulses of near-infrared light. They record 

the amount of time it takes the pulse to return, the precise location of the pulse, and the intensity 

with which it returns (McGaughey 2018). Pulse intensity is the energy with which the pulse 

returns and is dependent on the reflectivity of the surface it encountered, as well as other factors. 

When the instrument is flown over a forested landscape, some of the pulses bounce back from 

the top of the canopy, some penetrate the canopy but are returned by understory structures, and 

some penetrate all the way to the ground before returning. The result is a georeferenced point 

cloud that is detailed enough for individual trees to be clearly visible. Their individual heights 

can be measured with comparable accuracy to ground-based methods (Hyyppä et al. 2008; 

Gatziolis et al. 2010; McGaughey 2018), and the vertical distribution of points can be used to 

quantify the vertical distribution of biomass. Vertical distribution of biomass is difficult to 

quantify by any other method, including field surveys, so this is one of the greatest strengths of 
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lidar (Zlinszky et al. 2015). These capabilities combine to make ALS lidar a feasible alternative 

to manual field surveys for riparian habitat assessments (Moskal and Cooke 2015).  

Measuring forest structure and topography with ALS lidar is well established in the forest 

sciences (Hyyppä et al. 2008; McGaughey 2018). However, differences in forest structure and 

topography mean that methods developed in Scandinavia are not directly applicable to the forests 

of the Pacific Northwest, which are typically more structurally complex and situated on more 

rugged terrain (Mazza and Gatziolis 2013). In response to these challenges, Pacific Northwest 

scientists have created a list of general specifications for optimal lidar acquisition intended to 

remove serious biases from standard forest inventory calculations (Gatziolis and Andersen 

2008). These specifications have been adopted by the Oregon Department of Geology and 

Mineral Industries and form the “best practices” standard for lidar work in the region (Mazza and 

Gatziolis 2013). Within this framework, vertical accuracy of vegetation height measurements 

over flat ground is typically ± 15.25 cm, and vertical accuracy in steep forested areas is typically 

±30-60 cm, both of which are comparable to error in metrics collected by ground crews 

(McGaughey 2018). The accuracy of these measures is greatly influenced by the density of the 

vegetation, the density of the laser pulses, and the quality of the filtering algorithms that are used 

on the raw data (Vauhkonen et al. 2012). 

1.5. Characterizing Riparian Structure and Function with Lidar 

Lidar is frequently used to help assess riparian conditions. Detailed topographic 

information derived from lidar can be useful for assessing channel characteristics such as 

gradient, width, and sinuosity, and lidar can predict many vegetative attributes with high 

accuracy including canopy cover, canopy height, canopy structure, and shading (Tompalski et al. 
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2017). Lidar also can be used to predict large woody debris availability (Richardson and Moskal 

2016), although this is often derived from density estimates, for which accuracy depends on 

stand structure. Density estimates tend to be relatively accurate for tall stands with large trees, 

but stand density tends to be underestimated in shorter stands < 20 m tall (Richardson and 

Moskal 2011).  

Shade modeling from lidar is still in its infancy, but it has recently received a fair amount 

of interest, and a number of different approaches have been studied. Loicq et al. (2019) found 

that a lidar-based method outperformed older, less computationally intensive methods for 

modeling stream temperatures along a river in France. For their model, they calculated the 

amount of direct and diffuse solar radiation for each water pixel in their study area using a digital 

surface model derived from lidar. They assumed a consistent transmissivity across their study 

area (transmissivity is the fraction of solar radiation that passes through the canopy) that was 

derived from previous research on deciduous trees in the same general region. Because their 

study area was relatively flat, they didn’t need to account for topographic shading.  

In the Pacific Northwest, Tompalski et al. (2017) used a voxel-based approach from raw 

point cloud data to model shade. Their approach was relatively simple: categorizing pixels as 

shaded or not shaded from direct solar radiation on an hourly basis that was summed up to give 

an estimate of total hours of shade throughout the day. They did not consider diffuse radiation or 

transmissivity, although these could be incorporated into a voxel-based approach as was done in 

a more recent study (Richardson et al. 2019). Richardson et al. (2019) tested the accuracy of two 

lidar-based solar insolation models, one voxel-based and one raster-based, along heavily forested 

streams in Oregon. They accounted for transmissivity by calculating a light penetration index 

based on the ratio of ground first return points relative to the total number of lidar first return 
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points. With this ratio, they used the Beer-Lambert law (Richardson et al. 2009) to estimate light 

extinction rates for the canopy. In order to account for solar angle, transmissivity was calculated 

with a slight offset relative to the ground it was shading. The raster-based approach was easily 

applied across their entire study area using tools in ArcGIS, and the researchers concluded that 

both methods were accurate enough not to need field-based calibration. 

1.6. Using Remote Sensing for Salmon Habitat Assessments 

Laser scanning has great potential as a tool to support salmon habitat assessments 

(Moskal et al. 2017), but it only recently started being widely used. Researchers have used 

remote sensing to map habitat suitability for fish in the Pacific Northwest, but few of them 

focused exclusively on lidar methods. As an exception, Tompalski et al. (2017) used lidar to 

derive a suite of characteristics for riparian forests in northern Vancouver Island, British 

Columbia, and their study demonstrates the utility of lidar for this purpose. However, such wide 

scale lidar-based studies are still relatively rare. It is far more common for researchers to classify 

land cover type using some form of aerial photography, as was the case for Fullerton et al. 

(2006) in their study of salmonid habitat availability in the interior Columbia River Basin. Other 

researchers have used lidar to map select components of an overall salmon habitat suitability 

model. For example, Richardson and Moskal (2016) used airborne lidar data collected during 

leaf-off (winter) conditions to quantify existing large woody debris in stream channels and to 

estimate the large woody debris recruitment potential of riparian forest stands. Their 

measurements of existing large woody debris were excellent, but their measurements of forest 

stands were only moderately accurate, which they attributed to having used a leaf-off rather than 

leaf-on dataset.  
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Mollot and Bilby (2008) used remote sensing techniques to create a salmonid habitat 

suitability model for the Cedar River Watershed, Washington. They combined stream channel 

factors, gradient and confinement, with riparian forest metrics that related to tree size and 

whether the stand was coniferous, deciduous, or mixed. All of their riparian forest metrics were 

derived from MASTER (Modis/Aster) 5m resolution airborne-collected hyperspectral imagery; 

their only use of lidar methods was for determining 3D terrain information. This was practical 

for them because they had access to already-processed imagery data that covered their study site, 

but few watershed managers have such resources on hand. 

Capuana (2013) used ALS to study riparian landcover and riparian forest structure along 

a portion of the Lower South Fork of the Nooksack River. Capuana (2013) compared ALS and 

high-resolution satellite imagery (Worldview-2) methods and found that, at least in that region, 

high-resolution imagery provided no significant advantage over ALS for forest classification. 

The ALS metrics were height, canopy cover, and rumple (which is the ratio of 3D canopy 

surface model area to ground model area, and which can be used as a proxy for structural 

complexity). Although its inclusion in future studies was recommended, Capuana’s study did not 

extend to distinguishing coniferous from deciduous stands using lidar data alone. Also, the 

spatial scope of the study was limited by the coverage of the high-resolution imagery that could 

be purchased.  

Meixer and Bain (2010) used satellite-derived land cover data to assess stream channel 

and riparian restoration priority at the reach scale along a river in Ontario, Canada. Their 

restoration prioritization model considered steam channel condition and riparian condition 

(calculated from percent forest cover, patch density, and convexity), land ownership, slope, 

position in the sub-watershed, and adjacency to high-quality habitat. With these inputs, their final 
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model had 81% agreement with restoration recommendations based on field surveys and 

stakeholder input. In another satellite-based analysis, Burnett et al. (2007) modeled species-

specific intrinsic potential for high-quality salmon habitat in coastal Oregon under current and 

future conditions based on stream flow, valley constraint, stream gradient, ownership, land use, 

and land cover type. An even earlier attempt at a GIS-based salmon habitat assessment 

calculated habitat suitability solely from slope and seral stage (Lunetta et al. 1997). Seral stage 

was defined in terms of percent cover, relative proportions of deciduous vs coniferous trees, and 

diameter. These studies contributed useful information to policymakers, but they were 

necessarily limited in their accuracy because of their reliance on two-dimensional satellite 

images. 

1.7. Individual Tree Detection and Species Identification 

Results of lidar analyses may represent an average over the landscape or specific values 

for individual trees or individual tree clusters. When individual trees are the focus, researchers 

can extract tree counts, crown area, canopy closure, canopy gaps, and estimate volume and 

biomass (Hyyppä et al. 2008). With the inclusion of intensity data, tree species (Holmgren and 

Persson 2004; Vaughn et al. 2012, Vauhkonen et al. 2014; Eitel et al. 2016) and dead wood 

(Meng et al. 2018) can be classified, although methods are by necessity highly specialized to 

local conditions and accuracy varies greatly. Many of these attributes are useful when predicting 

how the forest will affect nearby streams. It is important to note that objects identified as 

individual trees more often represent “tree approximate objects” consisting of a large tree canopy 

and several smaller subordinate ones (North et al. 2017; Jeronimo et al. 2018).  
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There are lots of methods for extracting individual trees, and success depends on forest 

structure, with different algorithms performing differently under different forest types. In general 

terms, segmentation algorithms used to identify individual trees either rely on the morphological 

shape of the canopy surface, or they look for patterns in the spatial configuration of the points in 

the point cloud (Chen et al. 2020). Tree stem locations, which may be used as seed points for 

segmentation algorithms, are generally set either as the highest point in a local area or as the 

region with the highest return density, which is assumed to correspond to the center of the tree 

(Mongus and Žalik 2015). Chen et al. (2020), Dai et al. (2018), Pirotti et al. (2017), and 

Vauhkonen et al. (2012) provide detailed comparisons of multiple segmentation approaches and 

can be referred to for additional background information which, in the interests of brevity, is not 

included here. 

Individual tree species identification from lidar has not been studied as widely in the 

Pacific Northwest as it has in Europe, and the structural complexity of Pacific Northwest forests 

introduces an additional level of difficulty. The capacity of lidar to estimate Pacific Northwest 

tree species was classified as “low” by Tompalski et al. (2017), and Moskal et al. (2017) stated 

that, as of that time, there were “no known large scale, high accuracy methods for identifying 

species from lidar”. Moskal et al. (2017) identified accurate tree location detection, sensor 

illumination angles, target tree species, and stand density as features limiting Pacific Northwest 

species identification accuracy. These authors were considering the application of species 

identification to riparian areas, which are notoriously composed of dense stands and 

heterogonous structures; they also only considered one segmentation algorithm when generating 

their own model. However, under more tightly controlled conditions and superior segmentation 

methods, other researchers in the Pacific Northwest have reported more encouraging results. 
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Promising tree-identification rates have been reported by researchers working in the 

University of Washington Arboretum. Vaughn et al. (2012) compared discrete point data to 

another type of lidar, waveform data, and reported that the discrete point data allowed them to 

distinguish five local tree species (two conifers and three deciduous trees) with 79.2 percent 

accuracy overall, increasing to 97.8 percent when comparing pairs of species (especially 

deciduous to conifer). A second group of researchers, Kim et al. (2011), used stepwise cluster 

analysis and a comparison of leaf-on and leaf-off datasets to classify individual trees to genera. 

They only attempted to classify trees whose crowns did not overlap other trees excessively, and 

they found that the leaf-on dataset considered by itself produced higher classification accuracies 

than either the leaf-off dataset or the leaf-on/leaf-off datasets combined. The best classification 

accuracy from structural variables was 74.9%. The study area used in both these studies was not 

a natural stand and was both small and topographically homogeneous, so their methods are not 

directly applicable to non-homogeneous field sites such as along the Nooksack River, and 

application to such sites would be expected to decrease accuracy. Even so, these studies indicate 

that some potential does exist for individual tree species classification in the Pacific Northwest, 

and that further research could be worth pursuing.  

1.8. Research Objectives 

There were two separate research goals addressed in this thesis. The first was to use area-

based lidar to create a reach-scale restoration prioritization model that would support salmon 

habitat recovery in the Nooksack River watershed. I approached this by generating both a 

riparian stand conditions assessment and a model of current and prospective shade. These were 

then combined with morphological and land-use characteristics to give a multi-faceted view of 

the restoration actions needed for each reach. The second of my research objectives was to 
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explore methods of individual tree species identification from lidar. I approached this by 

comparing multiple segmentation methods and quantifying how each method influenced the 

accuracy of species identification models when applied across the heterogeneous riparian 

landscapes along the Nooksack River. 
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2.0 – Riparian Restoration Priority Analysis 

2.1. METHODS 

2.1.1. Study Area and Lidar Data 

The Nooksack River Watershed is located in northwestern Washington State in Water 

Resources Inventory Area 1. The river is fed by the western slopes of the North Cascades. Upper 

reaches are mostly confined by bedrock, whereas middle and lowland reaches flow through a 

mixture of glacial sediments and alluvium at a lower gradient. The three forks of the river join 

together near Deming, Washington, and then flow into Bellingham Bay in Puget Sound, 

Washington (Capuana 2013). Multi-year lidar coverage is available for some portions of the river 

(DNR 2018). 

The lidar dataset used for this project was collected in summer 2016 under leaf-on 

conditions. The overall dataset was contracted by the United States Geological Survey through 

Quantum Spatial LLC of Corvallis, Oregon, and the subset of data used in this study was 

subcontracted to Eagle Mapping Ltd of Port Coquitlam, British Columbia. The all-returns point 

cloud, a digital surface model, and a digital terrain model were made publicly available through 

the Washington State Department of Natural Resources Lidar Portal (DNR 2018). This dataset 

was intended for topographic and geophysical analysis and was of high-resolution QL1 data type 

(Table 1). The intensity values in the point cloud were normalized using proprietary software by 

the vendor (Lowe et al. 2017). At the time of my study, this was the most up-to-date lidar data 

available for this region. 

My study area consisted of the riparian zones of most of the three forks and a portion of 

the upper main stem (Figure 1). The up- and downriver boundaries of the study area were 
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determined by the maximum extent of where there were both records of salmon presence 

(WDFW 2019) and recent lidar coverage (DNR 2018). The boundary for the study area was 

defined by a 100 m buffer on the river’s recent migration zone, here defined as the area that had 

either been submerged for 50% or more of the time from 1933-2002 (as determined from aerial 

photographs, see Collins and Sheikh 2004b) or that was designated active channel in the 

National Hydrography Dataset published by the USGS (2018). This definition was intended to 

facilitate remote mapping, minimize accidental inclusion of upland forests, and maximize 

inclusion of true riparian stands. A 100 m buffer is wider than state- and federally mandated 

buffers and was intended to account for short-term channel migration. 

Table 1: Lidar specifications for USGS 2016 lidar dataset (Lowe et al. 2017). 

Data Source Specifications 

Vendor Eagle Mapping 

Vertical accuracy (cm) 20.7 cm (vegetated); 8.1 cm (bare earth) 

Maximum horizontal error 5 cm 

Maximum returns Unlimited 

Sensor and laser system Riegl - LMS Q1560 

Nominal pulse spacing 0.35 m 

Laser pulse footprint diameter 33.8 – 40 cm 

Resolution density Average 8 pulses/m2 

Central wavelength 1064 nm 

Field of view 60° 

Swath width 1560 – 1900 m 

Swath overlap 60% 

Survey altitude 1350 – 1600 m 

Pulse mode Multi Pulse in air 

Intensity 8 bit, scaled to 16 bit 
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Figure 1: Map of the study area along the Nooksack River, Washington. 
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2.1.2. Lidar Data Pre-Processing 

The lidar point cloud was processed in Fusion 3.8, a non-commercial lidar processing 

package developed by the US Forest Service (McGaughey 2018). Fusion is a widely used, highly 

adaptable program that operates primarily at the script level and allows for better direct data 

quality assessment and visualization than most equivalent commercial packages (Gatziolis and 

Andersen 2008). The vendor-provided point cloud was normalized and filtered for outliers, then 

converted into a series of rasters at 1-meter and 30-meter resolution using the Gridmetrics tool 

embedded in Fusion’s AreaProcessor (McGaughey 2018). For inputs intended for use in forest 

models, height and intensity metrics were calculated from first returns, and returns below 3 

meters were excluded. Over 30 different metrics were generated as potential model inputs, but 

many were correlated with each other so could not be used together in the same model. These 

metrics represented measures of height, variability in height, intensity, variability in intensity, 

canopy relief, canopy cover, and canopy structure (Table 2). 
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Table 2: Lidar metrics considered during model building. All metrics were generated with 

Fusion’s Gridmetrics tool in AreaProcessor. Except when otherwise specified, they represent 

first returns.  

Gridmetrics output Description 

Elev_mean Mean return height 

Elev_sd Standard deviation return height 

Elev_var Variance of return height 

Elev_P10 – P99 Mean return height of 10th – 90th, 95th, and 99th percentiles 

Relief ratio Canopy relief ratio ((mean - min) / (max – min)) 

Int_mean Mean return intensity 

Int_sd Standard deviation intensity 

Int_var Variance of intensity 

Int_P10 – P99 Mean intensity of 10th – 90th, 95th, and 99th percentiles 

Percent cover (All returns above 3m) / (total first returns) * 100 

1st returns above 3m Percentage of 1st returns above the height cutoff  

All returns above 3m Percentage of all returns above the height cutoff  

1st returns above mean Percentage of first returns above the mean height 

All returns above mean Percentage of all returns above the mean height 

2.1.3. Ground-Truth Data Collection 

Potential plot locations for ground truth data collection were chosen using a proportional 

random sampling design. The objective was to collect data from at least 100 plots in the riparian 

zone at varying distances from the active channel. To select potential locations, I adapted 

methods described in the literature and used principal components analysis (PCA), k-means 

clustering, and GIS to determine how the primary factors influencing variability in the lidar data 

were spatially distributed (Frazer et al. 2011; Wulder et al. 2012; Moskal et al. 2017). With 15-

meter radius circular plots that were equivalent to the planned ground-truth plot dimensions, I 

used ArcGIS to randomly sample 5900 non-water locations across the landscape. Random 

samples were clustered based on significant principal components calculated in R (R Core Team 

2020) for nine lidar metrics: maximum return height, mean return height, standard deviation of 
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return height, 80th percentile of return height, canopy relief ratio, mean intensity, mode intensity, 

standard deviation of intensity, and percent cover. All these metrics were of all-returns over 3 

meters elevation and were therefore slightly different from the first-return metrics that were later 

used in the riparian forest structure models. The characteristics of each cluster were used to 

define a series of unique structural groups within the 2016 lidar data. Each structural group was 

mapped across the landscape, and then proportional random sampling was used to randomly 

place a corresponding number of plots within each structure type (Cochran 1977).  

Potential plots were then evaluated using GIS for logistical constraints such as land 

ownership and accessibility. Most sites were also visited in person prior to sampling because the 

majority of randomly selected sites turned out to be inaccessible or unsafe. When this occurred, a 

nearby location in the same forest structural group was substituted. In the end, 37% of the plots 

were randomly placed, and the remaining 63% of all plot locations were chosen from locations 

near to the original randomized point ahead of time in the lab or (rarely) on the fly in the field.  

All field data were collected between July 1 and September 12, 2019. Plots were circular 

with a 15 m radius (area = 707 m2 or 0.07 ha). This plot size was chosen to balance minimizing 

edge effects with logistical practicality, based on work by Frazer et al. (2011), who found that 

plots ≥ 707 m2 produced substantially more accurate models than smaller size plots. I recorded 

height (measured with a Nikon Forestry Pro II hypsometer), diameter (measured by hand with a 

DBH tape), coordinates relative to plot center (measured using a Leica TC600 Total Station and 

Trimble GeoXH Geoexplorer 6000) and various structural characteristics for all stems ≥ 10 cm 

in diameter and taller than 3 m (Table 3). I also recorded a brief description of the plot 

vegetation, gave a subjective assessment of the relative canopy closure, and noted terrain 

features such as steep slopes, marshy areas, or small streams running through the plot. Using the 
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coordinates obtained using the total station, I sketched a rough tree-stem map for each plot. This 

helped me match height measurements to the correct trees and sped up data collection by making 

it easier to determine which trees were within the plot area. 

Table 3: Ground truth attributes measured in the Nooksack River riparian zone, summer 2019. In 

the context of this study, a stem was defined as a discrete trunk ≥ 10 cm in diameter at breast 

height, 1.37 m. A single tree could have multiple stems if it forked below breast height. 

Attribute Description 

Plot location GPS coordinates of plot center 

Stem ID Unique ID for the stem 

Tree ID Unique ID for the tree 

Height Stem height 

DBH Stem diameter measured at breast height (1.37 m) 

Species Tree species 

Dominance Y/N Whether or not the stem canopy would be visible from above 

Snag Y/N Whether the stem was alive or dead 

Broken Y/N Whether the top of the stem was broken off 

Forked Y/N Whether the stem was forked above breast height 

Leaning Y/N Whether the stem canopy was significantly offset from the base 

Stem location XY location of the stem relative to plot center 

Because not all plot locations were truly random, I used k-means cluster analyses  in R (R 

Core Team 2020) to confirm that randomly selected plots were not different from non-randomly 

selected plots (Appendix A). I also checked for spatial autocorrelation because it can, if present, 

affect which analyses are appropriate to use on a dataset. I used R to create directional 

variograms and calculate Moran’s I to assess potential spatial autocorrelation between plot-level 

variables (Pebesma 2004; Grӓler et al. 2016; R Core Team 2020). 
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2.1.4. Ground Truth Data Pre-Processing – Interpolating Missing Height Data 

Tree height was challenging to measure due to the prevalence of thick underbrush, 

unstable ground, and closed canopies in the study area. As a result, most plots contained several 

trees where either it was impractical to measure the height, or I could not definitively match 

canopy heights to the correct stems. When this occurred, I would note the heights of trees in the 

immediate area (inside or sometimes outside of the plot) that appeared representative for that 

species, dominance, and size class. Later, this supplemental height information was used to 

estimate values to fill in missing data prior to calculating overall plot metrics. 

I created a series of height-diameter curves from the existing data by regressing tree 

diameter against tree height (Appendix B) then using these species-specific relationships to 

predict heights from stem diameter. When supplemental height data were available for a given 

plot, they were used to refine the estimates given by the height-diameter curves. A value would 

be randomly selected from within the range of heights typical for that diameter and type of tree, 

then averaged with the predicted value given by the height/diameter curve. This weighted the 

final prediction towards site-specific conditions. This method was selected for its efficiency 

because each missing value had to be individually corrected. The resulting height data fell under 

the following four categories: 1) height was directly measured in the field, 2) height was 

estimated using height-diameter curves and was refined by field observations of typical tree 

heights within the plot, 3) height was estimated using height-diameter curves and was refined by 

field observations of tree heights from outside of the plot, and 4) height was estimated using 

height-diameter curves only. The processing method used for each height observation was 

documented and used to calculate the mode height method for each plot. To see if the estimated 

heights had introduced a detectable bias, I plotted the mean ground truth height data against 
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various lidar height metrics and looked for plot-level patterns or trends corresponding to the 

frequency and method of estimated height data in the plot. 

2.1.5. Modeling Riparian Forest Structure with Area-Based Methods 

Lidar values from the 30-meter resolution raster were regressed against ground truth plot 

averages to create models of height, diameter, stand density, and stand composition. Although 

ground truth composition data were available as a percentage, these data had a strongly binary 

distribution so were modeled using logistic regression as “mostly coniferous” or “mostly 

deciduous”. Statistical analysis and model development were conducted in R statistical analysis 

and graphics software version 3.6.3 (R Core Team 2020), and model skill was determined with 

leave-one-out cross-validation. Choice of the best model was based on Akaike information 

criterion (AIC) and cross-validated root mean squared error (RMSE). 

To give a rough estimate of the amount of time it would take for restoration efforts to 

take effect, I estimated stand growth rates at each of the 104 field plots by comparing normalized 

canopy surface models from previous lidar acquisitions. Full lidar coverage of the study area was 

not available prior to 2016 (DNR 2018), but there are datasets that cover portions of the river 

from 2013 (WSI 2013), 2009 (WSI 2009), and 2005 (Terrapoint 2005a; Terrapoint 2005b). 

These datasets have varying resolution and accuracy, so they were only analyzed at the 30-meter 

scale. All 104 plots had data from both 2016 and 2013, but only seven plots had data from all 

four years. There were 299 total observations from the 104 plots across the four acquisitions. To 

determine how growth rates varied by height class, the data was sorted into three size classes and 

the average size-class-specific rate of change from each observation to the next was calculated. 
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2.1.6. Riparian Condition Index 

I calculated a riparian condition index from the percent canopy cover, coniferous vs 

deciduous classification, and modeled average diameter at breast height. This raw riparian 

condition index was calculated at the 30-meter scale (Figure 2). For the inputs later used for 

restoration planning, the river was divided into 0.5 km long reaches and overall riparian 

condition was assessed at that scale. I determined overall riparian condition classification for 

each reach using the full width of the study area but excluding pixels classified as water. At the 

reach scale, reaches were sorted into four categories based on the relative proportion of “good” 

vs “bad” pixels (Table 4). 

Figure 2: Decision process for assigning riparian condition at the 30-meter scale. Riparian 

Condition Index categories at the 30-meter scale were: 0 = Very poor, 1 = Poor, 2 = Fair, 3 = Good, 

4 = Excellent. Cutoffs were derived from Oregon Land Cover Standard 2006; Beechie & Sibley 

1997; Lunetta et al. 1997. 
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Table 4: Definition of riparian condition index categories at the reach scale (0.5 km). 

Reach-Scale 

Category 

Definition: Dominated by: 

% of non-water area that was classified as 

“good” or “excellent” at the 30-meter scale 

1 – Bad 0 – 29% Sparse forest, unforested 

areas, early seral forest 2 – Poor 30 – 49% 

3 – Good  50 – 69% 
Mid seral and mature forest 

4 – Excellent 70 – 100% 

2.1.7. Shade Model 

Within the reaches that had a reach-scale classification of “poor” or “bad”, I modeled 

shade under a what-if scenario that projected what would happen if the quantity of riparian forest 

along the river banks was increased. I selected areas that were either sparsely vegetated or very 

short forests (up to 12m tall) and modeled them as if they were 25 meters tall and a moderately 

dense stand of mixed coniferous and deciduous composition. I selected sparsely vegetated areas 

by looking at the lidar data heights, supplemented by standard satellite imagery from Esri (Esri 

2020) which helped me confirm vegetation was present in cases where the lidar data was unclear 

(usually due to large woody debris). I modeled the hypothetical stands by tracing the footprint in 

ArcGIS and then increasing the existing canopy surface model to 25 m tall. The result was 

hypothetical stands that were modeled as simplified blocks of the correct height and footprint. 

Because the amount of light that can penetrate a forest canopy depends on the leaf area index, it 

was necessary to estimate a reasonable leaf area index for the hypothetical new stands. Using 

previously developed regionally-specific leaf area index models, I used the proportion of first 

and ground lidar returns to calculate leaf area index for my entire study area (Richardson et al. 

2009). Based on the range of leaf area index values in different stand types, I selected a leaf area 
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index value for the hypothetical stands that seemed consistent with existing conditions for 

similar stands in the region.   

I used the Area Solar Radiation tool from Esri’s ArcGIS Spatial Analyst toolbox (Fu and 

Rich 2002) to estimate how much the hypothetical stands might reduce solar input on the water’s 

surface. The Area Solar Radiation tool calculates solar insolation from an upward facing 

hemispherical viewshed created from the input surface layer, which is usually a digital terrain 

model. It accounts for time of year, estimated sky conditions, and the difference between direct 

and diffuse radiation, but it assumes the given surface is solid and is therefore most appropriate 

for modeling shade effects from topography or buildings (Fu and Rich 2002). I ran the solar 

insolation tool twice: once on the original (current conditions) canopy surface layer and then 

again on the modified one with the hypothetical 25 m tall stands. I ran the tool for the summer 

and early fall months, June through September, and based the sky parameters on the typical 

summer climate for Bellingham, WA under smoke-free conditions (NOAA 2020) (Table 5). 

Input canopy surface layers had a resolution of 1 meter. I divided the output by the total number 

of days to get an overall daily average for the summer in units of kilowatt-hours per square 

meter.   
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Table 5: Parameters used in shade model calculations. Transmittivity and diffuse proportion 

parameters were based on typical summer weather conditions for Bellingham, WA (NOAA 2020). 

Shade model was run using Esri’s Area Solar Radiation tool (Fu and Rich 2002). 

Parameter name Value 

Latitude 48.8 

Sky size/Resolution 200 

Date range June 1 – September 30 

Day interval 15 

Hour interval 0.5 

Calculation directions 40 

Zenith directions 16 

Azimuth directions 16 

Diffuse model type Uniform overcast sky 

Diffuse proportion 0.2 

Transmittivity  0.7 

I calculated the difference in solar energy between the two shade model outputs. Any 

areas with values significantly above zero in the output layer represented zones where the 

hypothetical stands had reduced solar input. Using methods described in the literature, I 

calculated a light extinction coefficient based on Beer’s Law and the estimated leaf area index 

for the hypothetical stands (Richardson et al. 2009). I used the light extinction coefficient to 

adjust the solar energy estimates to account for the transparency of the hypothetical stands 

(Loicq et al. 2018). I did not account for topographic shading, as all reaches under consideration 

were relatively flat. I determined the percentage of the total inundated area per reach that would 

experience increased shade under hypothetical stand conditions, and I also determined the 

proportion of pixels that would experience a reduction in solar input of > 1 kWh/m2 per day. This 

was an arbitrary threshold that was based on the range and distribution of the data. 

In addition to this analysis, I also calculated the solar energy input on the water’s surface 

for the entire study area under current conditions. This was a deliverable that was requested by 
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the Nooksack Tribe, but it was not used as an input in the prioritization model. Details on how 

this layer was created are in Appendix C. 

Figure 3: Annotated photograph illustrating areas considered suitable and unsuitable for 

hypothetical riparian plantings or silvicultural intervention as modeled in shade model. 

2.1.8. Restoration prioritization matrix 

To prioritize riparian enhancement projects at the reach scale, I developed a ruleset to assign 

priority scores and help indicate the relative usefulness of riparian plantings for each reach in the 

study area (Figure 4). I defined the edges of the reaches by dividing the study area into segments 

of about 0.5 km. The actual channel length varied slightly depending on the sinuosity of the river 

at that point. Reaches were prioritized based on the reach-level riparian condition index, which 

my rule set further modifies based on extent of human impacts (determined from freely available 
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recent satellite imagery (Esri 2020)), impaired waterbody listings (the South Fork is an impaired 

waterbody (Kennedy et al. 2020)), likely magnitude of possible shade increase, position of the 

reach in the watershed, and proximity to existing high-quality habitat (Tables 6-7). Shade 

potential was a major focus of this study, and I weighted it most heavily among the contributing 

factors. Shade effects were loosely classified as small, moderate, or strong based on the relative 

proportion of the water surface area that would experience increased shade if hypothetical stands 

were added. Strong shade effects meant that > 10 % of the stream area was shaded with a 

reduction of 1 kW/m2 per day or more (taking into account the leaf area index of projected 

stands), moderate shade effects meant that 5 – 10% of the stream area was shaded to that degree, 

and small shade effects meant that < 5% of the stream area was shaded to that degree. When 

assigning final priority scores for the shade component, I took into account the summer wetted 

channel width of the channels or side channels that had received increased shade. Position of the 

reach in the watershed and whether or not the reach was identified as temperature limited (in this 

case, whether or not the reach was in the South Fork) were weighted the least heavily of the 

input factors. 
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Figure 4: Conceptual flow used to prioritize reaches for the restoration prioritization matrix. See 

subsequent tables for rules governing each step. 
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Table 6: Rules for assigning priority scores for steps 1-3 from the restoration prioritization matrix 

(figure 4). At each stage the reach was assigned an action/priority score based on what condition 

it falls under. South fork priority was assigned based on findings by Kennedy et al. (2020). 

Decision step Condition of the reach Action 

Step 1: Reach level 

Riparian Condition 

Index (RCI) 

< 50% of the non-water area was classified as “good” or 

“excellent” in the riparian condition index. RCI = 1 or 2 

Active restoration is 

needed. Proceed to 

step 2. 

≥ 50% of the non-water area was classified as “good” or 

“excellent” in the riparian condition index. RCI = 3 or 4 

Protection is more 

important than 

restoration.  

Active restoration 

priority score = 0 

Step 2: Causes of 

low RCI 

The primary cause for the low RCI ranking is a high proportion of 

bare alluvium, and there are multiple channels or braiding. 

+ 2 to priority score

The primary cause for the low RCI is a high proportion of bare 

alluvium, but there is only one channel. 

+ 1.5 to priority score

Poor RCI is due to wide areas of a mixture of alluvium and shrubby 

forest. The river is braided or multi-channel. 

+ 1.5 to priority score

Poor RCI is due to wide areas of alluvium and shrubby forest. The 

river has a single channel. 

+ 1 to priority score

Low RCI is primarily due to agricultural fields, logging activities, 

or other artificially cleared areas. These impacts are present within 

50 meters of the edge of the water. 

+ 2 to priority score

Low RCI is primarily due to agricultural fields, logging activities, 

or other artificially cleared areas, and these impacts are present 

within 100 meters of the edge of the water. 

+ 1.5 to priority score

Semi-permanent human infrastructure (paved roads, railroads, 

buildings) are present within 50 meters of the edge of the water. 

+ 1 to priority score

Semi-permanent human infrastructure (paved roads, railroads, 

buildings) are present within 100 meters of the edge of the water. 

+ 0.5 to priority score

The primary reason for the low RCI ranking is recent landslides + 0.5 to priority score

Step 3: Assign 

priority bonus to 

temperature-

vulnerable areas. 

The reach is part of the South Fork  + 1 to priority score

The reach is not part of the South Fork + 0 to priority score



36 

Table 7: Rules for assigning priority scores for steps 4-9 from the restoration prioritization matrix 

(figure 4). At each stage the reach was assigned an action/priority score based on its condition. 

Step 4 channel width cutoffs were the same used by Loicq et al. (2018) and were based on work 

by Teti (2006) and DeWalle (2008). Step 5 prioritization was based on Moore et al. (2005).  

Decision step Condition of the reach Action 

Step 4: Shade Shade increases from modeled plantings are moderate and 

primarily affect channels > 30 meters wide. 

+ 1 to priority score

Shade increases from modeled plantings are substantial and 

primarily affect channels > 30 meters wide. 

+ 1.5 to priority score

Shade increases from modeled plantings are substantial and 

primarily affect channels 15 – 30 meters wide. 

+ 2.5 to priority score

Shade increases from modeled plantings are moderate and 

primarily affect channels 15 – 30 meters wide. 

+ 2 to priority score

Shade increases from modeled plantings are moderate or 

substantial and affect channels < 15 meters wide. 

+ 3 to priority score

Shade increases from modeled plantings are small and primarily 

concentrated on channels < 30 meters wide. 

+ 0.5 to priority score

Shade increases from modeled plantings are small and primarily 

concentrated on channels > 30 meters wide, or modeled plantings 

do not significantly increase shade. 

+ 0 to priority score

Step 5: Position in 

watershed 

Reach is located in the river headwaters. Catchment size is < 540 

sq. kilometers 

+ 1 to priority score

Catchment size is 540 – 894 sq. kilometers + 0.75 to priority score

Catchment size is 894 – 1248 sq. kilometers + 0.5 to priority score

Reach location is among the lowest in the study area. Catchment 

size is > 1248 sq. kilometers 

+ 0.25 to priority score

Step 6: Proximity to 

good habitat 

The reach is bordered on both sides by reaches with a “good” or 

“excellent” RCI classification 

+ 2 to priority score

The reach is bordered on one side by a reach with a “good” or 

“excellent” RCI classification 

+ 1 to priority score

The reach is not bordered by reaches with a “good” or “excellent” 

RCI classification 

+ 0 to priority score
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2.2. RESULTS 

2.2.1. PCA Results and Ground-Truth Data Pre-Processing 

Based on the PCA analysis results, I determined that there were four forest structural 

groups that needed to be sampled in the ground truth data collection. An elbow plot indicated 

that six bins were optimum to describe all landcover types in the study area, but of those six, 

only four (Table 8) represented forest landcover categories. The other categories accounted for 

grass or low vegetation and exposed soil or gravel. The four forest structural groups were distinct 

enough to be readily recognizable in the field and seemed to accurately represent the range of 

forest types present in the study area. I found no evidence of spatial autocorrelation. 

There were no detectable patterns related to whether tree height had been measured 

directly in the field or estimated in the lab. Plots with a high proportion of interpolated tree 

heights were no more likely to be outliers than plots where the majority of tree heights had been 

directly measured (Figure 5). Because of this, I concluded that all height data could be treated 

equivalently in later analyses. 
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Table 8: Unique structural groups defined by characteristics of clustered principal components and 

used for determining the number of field plots. Values given have ± standard deviation. Intensity 

values represent the relative amplitude of the return signal, scaled to 16-bit.  

Group Lidar characteristics Field-observed characteristics 

A 80th percentile lidar height = 7 ± 7 m 

Mean return intensity = 20,806 ± 5768 

Best thought of as a forest clearing, 

with 50/50 trees vs. low vegetation 

such as grass, trailing blackberry, or 

(in tall stands) knotweed. Natural 

sites included blow-down clearings 

and wetlands. Anthropogenic sites 

generally represented cleared areas 

where a few trees had been left. 

B 80th percentile lidar height = 13 ± 6 m 

Mean return intensity = 9937 ± 3283 

Forest structure in this category was 

extremely variable, but in general 

seemed to represent early 

successional stages. Undergrowth 

was thick and tall, reaching to the 

base of the canopy. 

C 80th percentile lidar height = 29 ± 5 m 

Canopy relief ratio = 0.28 ± 0.12 

An intermediate category. Moderate 

underbrush usually dominated by 

vine maple. Moderately large trees. 

Often, most of the stand was mature 

deciduous. 

D 80th percentile lidar height = 32 ± 8 m 

Canopy relief ratio = 0.47 ± 0.14 

Large, widely spaced trees; 

underbrush generally short or absent; 

mostly coniferous. 
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Figure 5: Mean height of dominant trees relative to 80th percentile lidar return height. Number of 

observations: 104 circular plots with 30-meter diameters. Points are symbolized according to the 

majority method used to generate the ground truth height data and demonstrate that interpolating 

height data did not affect model outcomes. The method used to generate the ground truth height 

data fell under the following four categories: 1) height was directly measured in the field, 2) height 

was estimated using height-diameter curves and was refined by field observations of typical tree 

heights within the plot, 3) height was estimated using height-diameter curves and was refined by 

field observations of tree heights from outside of the plot, and 4) height was estimated using height-

diameter curves only. 

2.2.2. Riparian Forest Structure Results 

Mean tree height was the cleanest metric to model from the lidar data. The model for 

predicting the mean height of dominant trees had the highest R2 value, but the model for 

predicting the mean height of all trees was slightly more accurate on average (Table 9). In 

general, models were most effective at explaining overall variance when predicting attributes of 
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dominant trees. The classification of plots into conifer-dominated or deciduous-dominated had 

an overall accuracy of over 80%, and the user’s accuracy for both classes was consistent with the 

overall accuracy (Table 10).  

Table 9: Comparison of area-based models of forest structure. Number of observations: 104 plots. 

Plot area = 707 m2. RMSE was cross-validated using leave-one-out cross-validation. All slopes 

were significant to at least p < 0.01. Best models were chosen based on RMSE and AIC. Pseudo-

R2 for GLM models was calculated as: 1 – (Residual deviance / Null deviance). 

AREA-BASED ANALYSIS 

RMSE ± sd R2 Model Lidar Parameters 

Mean height 

(dominant) 

2.50 ± 1.98 m 0.83 1st order linear model 80th percentile 

height 

Mean height 

(all trees) 

1.98 ± 1.79 m 0.69 1st order linear model 80th percentile

height,  

Mean intensity 

Maximum 

height 

3.53 ± 2.68 m 0.81 1st order linear model 95th percentile 

height 

Mean DBH 

(dominant) 

7.90 ± 7.65 cm 0.65 1st order linear model 80th percentile 

height 

Mean DBH 

(all trees) 

6.53 ± 6.98 cm 0.46 1st order linear model 80th percentile 

height 

Basal area 

(m2/ha) 

(all trees) 

0.89 ± 0.83 

(transformed units) 

0.74 1st order linear model 

(Square root transformed) 

95th percentile 

height 

Density 

(stems/plot) 

(dominant) 

7.77 ± 7.2 stems 0.30 Generalized linear model

Quasi-Poisson distribution 

Variance in 

height, 

Mean intensity 

Density 

(stems/plot) 

(all trees) 

12.75 ± 10.1 stems 0.12 Generalized linear model

Quasi-Poisson distribution 
Variance in 

height, 

Percent cover 
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Table 10: Confusion matrix for area-based composition model for dominant trees. Classification 

(predominantly conifer or predominantly deciduous) was modeled using logistic regression on 

mean intensity and 95th percentile of lidar return height. 

Field control 

Conifer Deciduous Row total 

Classification 

Conifer 22 5 27 

Deciduous 14 63 77 

Column total 36 68 104 

Producer’s accuracy User’s accuracy 

Conifer = 22/36 = 61% Conifer = 22/27 = 81% 

Deciduous = 63/68 = 93% Deciduous = 63/77 = 82% 

Overall accuracy = (22+63)/104 = 82% 

My analysis of past lidar data indicated that growth rates varied by size class. Stands that 

were < 13 meters tall grew an average of 88 cm/year (± 63 cm standard deviation), stands 13 – 

23 meters tall grew 76 cm/year ± 56 cm, and stands > 23 meters tall grew 42 cm/year ± 60 cm. In 

the ground truth data, the maximum mean tree height at the plot level was only 33.7 meters. 

2.2.3. Riparian Condition Index and Shade Model 

Stream shading was highly dependent on how closely the hypothetical new stand could be 

located to the water’s edge. Most “shade” was on the order of 0.5 – 1 kWh/m2 per day reduction 

in solar energy hitting the water’s surface. More localized areas, generally not extending more 

than 6-12 meters from the base of the hypothetical new stand, had shade effects with an 

estimated magnitude of 1 – 2 kWh/m2 per day reduction in solar energy (Figure 6, Figure 7). No 

areas experienced > 2 kWh/m2 of per day reduction in solar energy. Values < 0.5 kWh/m2 per 

day seemed to include noise, so I considered them unimportant. Predictably, north-facing 
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shadows (shielded from the south sun) were generally darkest. Steep topography contributed 

shade to the headwaters, but among the reaches identified as “poor” or “bad” condition by the 

riparian condition index, topography was generally not a major contributing factor: most existing 

and potential shade was provided by trees. Details of shade results per reach are presented in 

Appendix D. 

 

Figure 6: Histogram of reaches with different percent shade increases under hypothetical stand 

conditions. The number of reaches that had > 5% of the stream area shaded with ≥ 1kW/m2/day 

less sunlight was comparatively small, and therefore more easily targeted through silvicultural 

intervention. 
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Figure 7: Example of shade model results from the lower South Fork 
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The outputs of the riparian condition index confirmed previously reported patterns, but in 

greater detail. For all three forks, the upper reaches were dominated by conifers and had more 

mature trees. The lower reaches and main stem were primarily dominated by deciduous trees, 

and braiding and large stretches of gravel and very young forest were much more common 

(Figure 8). Landslides and logging were the main contributing factors to areas classified as non-

forest in the upper South Fork and upper Middle Fork; non-forest areas in the upper North Fork 

were mostly gravel bars. (Logged areas were present in the study area because the width of the 

study area was wider than legally set buffers.) Agriculture and gravel bars were the main 

contributing factors to areas classified as non-forest in the lower South Fork and mainstem 

reaches. Out of 265 total reaches, 114 were classified as having poor or bad riparian condition at 

the reach scale. Most poor-quality reaches were located in the lower parts of the watershed, but a 

few were located closer to the headwaters (Figure 9)   
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Figure 8: Riparian condition index output for a section of the lower Middle Fork. Pixels are 30 m 
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Figure 9: Riparian condition index at the reach scale 
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2.2.4. Restoration Priority Matrix 

I gave the 154 reaches with good or excellent riparian condition very low priority scores for 

active restoration (priority score = 0) but considered them high priority for protection. The 

priority scores assigned to the 114 poor or bad reaches ranged from 1.25 to 6.5 (out of 11) with a 

median of 3.88 and mode of 4 (full results in Appendix D). There were nine reaches with a score 

of 6 or higher on the priority scale, making them the highest priority for intervention (Table 11). 

One of these was in the North Fork, two were in the lower Middle Fork, four were in the upper 

South Fork, and two were in the lower South Fork (Figure 10).  
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Figure 10: Map showing the locations of prioritized reaches. Grey boxed numbers show the reach 

ID numbers for the nine highest-priority reaches, asterisks indicate a priority score of 6.5. 

The highest-priority reach in the North Fork (reach 155) was located at RM 53, between 

Maple Falls and Warnick. Its poor riparian condition score was primarily driven by a high 

proportion of gravel bars and low vegetation due to an unstable channel, but it also had Hwy 542 

running through the northern half of the study area, and some of the land upslope of the highway 

had been logged (Tables 11-12). This reach contained a relatively high proportion of “good” 
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riparian forest (49%) and was adjacent to existing good riparian condition on both upstream and 

downstream sides. 

The two top priority reaches on the Middle Fork (reach 185 and reach 218) were located 

roughly 2-3 kilometers upstream of the junction with the North Fork. Their low riparian 

condition score was primarily due to gravel bars and low vegetation, but they also had significant 

cleared areas associated with rural residential activity, primarily along the west bank. Although 

these cleared areas were included in the area to be hypothetically re-planted, in general the 

hypothetical new stands that resulted in the greatest increase in shade were either located on the 

other side of the river or on large existing islands and would not interfere with residential 

landscaping.  

The four target reaches on the upper South Fork were all located in the same area, near 

RM 20.  River miles are measured from the confluence with the main fork. The uppermost target 

reaches on the South Fork (reach 117 and reach 133) were adjacent to each other and comprised 

the two farthest-upstream poor-quality reaches on the South Fork. These reaches were 

downstream of Larson’s Bridge and encompassed the junction with Plumbago Creek (RM 20). 

Several engineered logjams have recently been built here. The lower two reaches (reach 83 and 

reach 71) were located roughly a kilometer downstream. The poor riparian condition scores for 

all these reaches were due to gravel bars, both vegetated and unvegetated.  

The two lowermost target reaches on the South Fork were located some distance from 

each other and under very different conditions from the uppermost four. The upstream one (reach 

136) comprised the half-kilometer upstream of the Valley Highway bridge in Acme near RM 9.

The reach immediately adjacent on the upstream side was classified as good quality habitat, but 
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most of the study area along the target reach was unforested and apparently used for agriculture. 

Despite the relatively large width of the channel (roughly 30 m wide), shade potential was found 

to be favorable because the river made a sharp bend to run east-west, allowing for hypothetical 

plantings on the south bank to cast long, deep shadows over half the length of the reach. The 

lowest South Fork target reach (reach 123) was located near Standard, south of the end of 

Hillside Rd (Near RM 4). Most of the study area along the reach was agricultural fields, and 

there was also a gravel bar with some low vegetation. Plantings close to the river on the 

east/south-east bank and gravel bar had the potential to create moderate levels of shade, although 

the river was over 30 meters wide at this point. 
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Table 11: Priority score breakdown for the nine highest-priority reaches in the watershed. 

Reach 

ID 

Overall 

score 

Catchment area Primary cause of 

low RCI 

Modeled shade 

effects 

Sides 

bordering 

good RCI 

Reach 

location 

71 6 
210 km2 

priority score = 1 

Bare alluvium 

priority score = 2 

Moderate effects, 

channel 15-30 m 

priority score = 2 

0 sides 

score = 0 

South Fork 

score = 1 

83 6 
209 km2 

priority score = 1 

Bare alluvium 

priority score = 2 

Moderate effects, 

channel 15-30 m 

priority score = 2 

0 sides 

score = 0 

South Fork 

score = 1 

117 6 
187 km2 

priority score = 1 

Bare alluvium 

priority score = 2 

Moderate effects, 

channel > 30 m 

priority score = 1 

1 side 

score = 1 

South Fork 

score = 1 

123 6 
421 km2 

priority score = 1 

Agriculture 

priority score = 2 

Moderate effects, 

channel > 30 m 

priority score = 1 

1 side 

score = 1 
South Fork 

score = 1 

133 6.5 
205 km2 

priority score = 1 

Bare alluvium 

priority score = 2 

Moderate effects, 

channel > 30 m 

priority score = 1 

0 sides 

score = 0 
South Fork 

score = 1 

136 6 
396 km2 

priority score = 1 

Agriculture 

priority score = 2 

Moderate effects, 

channel > 30 m 

priority score = 1 

1 side 

score = 1 
South Fork 

score = 1 

155 6 
515 km2 

priority score = 1 

Alluvium & shrubs 

priority score = 1.5 

Strong effects, 

channel > 30 m 

priority score = 1.5 

Both sides 

score = 2 
North Fork 

score = 0 

185 6 
229 km2 

priority score = 1 

Bare alluvium 

priority score = 2 

Moderate effects, 

channel 15-30 m 

priority score = 2 

1 side 

score = 1 
Middle Fork 

score = 0 

218 6.5 
229 km2 

priority score = 1 

Alluvium & shrubs 

priority score = 1.5 

Moderate effects, 

channel 15-30 m 

priority score = 2 

Both sides 

score = 2 
Middle Fork 

score = 0 
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Table 12: Detailed conditions of the nine highest-priority reaches in the watershed. 

Reach 

ID 

Channel 

morphology 

Roads or 

railroads? 

Distance 

from water to 

nearest 

impacts 

Primary factor 

driving low 

RCI 

Secondary 

factor driving 

low RCI 

Land use / 

land owner 

(primary) 

71 Multiple 

channels 

None NA Bare alluvium; 

channel 

instability 

None Commercial 

forestry 

83 Multiple 

channels 

None NA Bare alluvium; 

channel 

instability 

None Commercial 

forestry 

117 Single 

channel 

Unpaved 

roads 

< 50 m Bare alluvium; 

channel 

instability 

None Commercial 

forestry 

123 Multiple 

channels 

Unpaved 

roads 

< 50 m Agricultural 

fields 

None Commercial 

agriculture 

133 Braided 

channel 

None NA Bare alluvium; 

channel 

instability 

None Commercial 

forestry 

136 Multiple 

channels 

Paved roads, 

<50m away 

< 50 m Agricultural 

fields 

Buildings; 

paved roads 

Whatcom 

County 

155 Multiple 

channels 

Paved roads, 

>50m away

< 100 m Mixture of 

exposed gravel 

and shrubby 

trees; channel 

instability 

Logged areas 

(upslope of rd.) 

WA Dept. of 

Nat. Resources 

185 Multiple 

channels 

Paved roads, 

>50m away

< 100 m Bare alluvium; 

channel 

instability 

Artificially 

cleared areas 

surrounding 

houses 

Private owners 

(residential) 

218 Braided 

channel 

None < 50 m Mixture of 

exposed gravel 

and shrubby 

trees; channel 

instability 

Artificially 

cleared areas 

surrounding 

houses 

Private owners 

(residential) 
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2.3. DISCUSSION 

Lidar-based analyses of forest structure have great potential to support land managers in 

watershed-scale management decisions (White et al. 2016; Moskal et al. 2017; Tompalski et al. 

2017). Lack of information about riparian forest structure has been a problem when planning 

restoration projects for salmon conservation in the Nooksack watershed (Puget Sound 

Partnership 2018), and my study aimed to address this data gap. The lidar-based riparian forest 

models I created facilitate the mapping of forest structure across wider areas than would be 

possible from field-based sampling alone, and they are appropriate to use for planning at scales 

of 30-meters or smaller (less detailed) scales.  

2.3.1. Context from Previous Research 

My findings support previous studies that found that there were not enough large 

coniferous trees to support important riparian functions, including large woody debris 

recruitment and shade (Coe 2001; Hyatt et al. 2004; Brown and Maudlin 2007; Hyatt 2007; 

Capuana 2013). I found that conifer-dominated stands were overwhelmingly located in the upper 

portions of each fork; lower reaches and the mainstem were dominated by small cottonwoods 

(Populus balsamifera) and alders (Alnus rubra). My results also support previous assertions that 

the upper Middle Fork and upper South Fork are generally in good condition (Brown and 

Maudlinn 2007; LNR 2011). As observed in Collins and Sheikh (2004b), most of the North Fork 

and the lower Middle Fork are probably excessively braided compared to historical conditions. 

In addition, there are portions of the far upper North Fork (upstream of Glacier) that may be 

susceptible to channel instability if conditions deteriorate (Anderson and Konrad 2019). These 

areas should be monitored because their naturally unconfined morphology means that they will 
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be one of the first places to show problems from glacial retreat, sediment loads, and changing 

hydrology that are expected to occur with global warming (Anderson and Konrad 2019; 

Dickerson-Lange and Mitchell 2014).  

My ability to predict individual metrics such as diameter, basal area, and height was 

lower than that reported for studies based in upland areas or on individual trees (Hyyppӓ et al. 

2008; White et al. 2016), but they were consistent with other area-based research in riparian 

areas in the Pacific Northwest (Moskal et al. 2017). My height-related R-squared values were 

roughly 3-20% lower than those reported by Moskal et al. (2017), depending on method, but my 

cross-validated root mean squared error was on average about 0.5 m more accurate. My 

estimates of basal area explained over 70% of the variance in the data, which was comparable to 

models developed by other researchers and used fewer predictor variables (Moskal et al. 2017; 

Strunk et al. 2012). The accuracy of my density estimates from the area-based approach were 

poor (Table 8) because an area-based approach is not best suited to this application. Density 

estimates are better supported by an individual-tree approach (Richardson and Moskal 2011) 

which is covered in chapter 3.  

There are multiple factors that can influence lidar-based model accuracies. Accuracy can 

be influenced by the filtering method used to remove outliers from the lidar point cloud 

(Vauhkonen et al. 2012), but this was not an issue in this case. I individually examined the point 

cloud for all 104 ground truth plots, and outliers were rare or nonexistent after filtering. A more 

likely source of error was the three-year time disjoint between the date of the lidar acquisition 

and ground truth data collection. Based on my growth trajectory estimates, an average tree would 

have grown approximately 1.26 – 2.64 meters during this time, depending on its starting height. 

This accounts somewhat for the discrepancy between the ground truth data and the lidar data, 
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especially if potential species-specific variations in growth rates are taken into account. Growth 

rates are almost certainly influenced strongly by species, but I was unable to account for this 

factor in my estimates. Another possible contributing factor to lower accuracy levels is error in 

ground truth measurements. Ground truth height measurements may have been less accurate than 

would be the case for upland stands, especially even-aged plantation stands where most 

assessments of lidar vs field-measured accuracy have been done (Hyyppӓ et al 2008; Strunk et al. 

2012; White et al. 2016). The dense canopy, steep slopes, and unusually treacherous footing 

present throughout much of the study area made measuring tree height unusually challenging, 

but the magnitude of error arising from these factors is unquantifiable.  

The biggest contributor to my lower model accuracies may have been the size and 

structural heterogeneity of the study area. Models developed for a small area are generally likely 

to have higher accuracies than those that attempt to describe a large structurally and 

compositionally complex forest comparable to the current study area (Strunk et al. 2012). In 

general, previous lidar studies of forest structure have been focused on areas that were more 

structurally homogeneous than my study area because they focused on commercially managed 

stands. A riparian forest study by Moskal et al. (2017) is an exception, with 130 plots spread over 

57,000 acres of watershed and 530 miles of streams. My study was most similar to this study in 

scope, and my model accuracies were correspondingly similar, although I used fewer input 

parameters in my models. 

Previous research has generally emphasized channel morphological factors when 

modeling salmon habitat suitability and making recommendations for restoration priority, but I 

took a different route. Although some morphological characteristics (stream width and braiding) 

were indirectly included in my analysis, for the most part I avoided in-channel metrics in my 
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prioritization model, for two main reasons. First, in-channel metrics such as gradient are 

typically used to help predict salmon presence or absence for a given stream (Burnett et al. 2007; 

Mollet and Bilby 2008; Tompalski et al. 2017). This was irrelevant for my study because the 

limits of my study area were partially defined by the limits of recorded salmon presence: all 

reaches in my study area are known to support, or at least be passable, by salmon. Another 

reason for omitting in-channel metrics including gradient was that optimal habitat conditions 

usually are species-specific. In the Nooksack watershed, although 25 salmonid stocks are 

present, the stock of greatest concern is the South Fork early Chinook (WRIA 1 Salmon 

Recovery Board 2005). However, I wanted to keep my conclusions more general because the 

type and detail of my data was not appropriate for a rigorous species-specific fish study. 

Consequently, I built my prioritization model to make best use of the good-quality riparian 

condition data that I had, and I avoided including factors that were not supported by ground-truth 

data and would therefore have introduced a large extra measure of error and uncertainty.  

My model complements, but does not replace, the recently released 2020 Salmon 

Recovery Funding Board grant restoration and protection strategy matrices put out by the WRIA 

1 Watershed Management Board (SRFB 2020). These matrices are specific to early Chinook and 

provide reach-specific restoration action recommendations for a variety of restoration action 

strategies. In-stream habitat conditions and species-specific use and accessibility for a given 

reach are particularly important factors that should guide the decision-making process. The 

models I created focus on vegetation and shade potential in a more general sense and should be 

used together with this other information for a holistic view of local conditions. My models and 

GIS layer outputs are also intended to be able to be used as a jumping off point for new questions 

as restoration projects progress and the dynamic river system changes over time. 
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Suitability indices and prioritization models in general are coarse filters and need to be 

used at the scale for which they are designed (Burnett et al. 2007; Meixer and Bain 2010). My 

prioritization model was intended to function as a broad-scale strategic planning tool, and it was 

not intended to replace more detailed field studies which are important for determining what type 

of restoration action is needed in any given location. None of the results reported in this analysis 

should be considered at a more detailed scale than 30-meters, and most planning should happen 

at the reach scale.  

There are several limitations and assumptions that should be considered when using my 

prioritization model and the shade model on which it depends. Shade was modeled as a “what if” 

scenario: what would be the outcome if nearby cleared areas and select gravel bars and islands 

were forested? How much of a difference would it make to river surface shade? As expected, the 

results were highly dependent on the site. I found that the amount of potential shade was 

dependent on the orientation and the location of the planting site relative to the river, and this 

was influenced by a variety of factors. In turn, the accuracy of shade predictions depends on how 

realistic the modeled plantings were.  

Modeling potential planting sites required a series of judgement calls about what areas 

were stable enough to support potential plantings or other forest treatments. Note that, although 

my main focus was on planting new trees, there were several places where I outlined “plantings” 

on top of existing shrubby, sparse, or small trees in order to model the effects of thinning, 

interplanting, or other appropriate forest treatments. In real life, the actual edges of planted areas 

might be different than what was portrayed in my model due to movement of the river over time 

or inaccuracies in the lidar-based delineation of the river banks. Lidar is relatively effective at 
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outlining water features in open areas (Tompalski et al. 2017), but inaccuracies increase in areas 

where the vegetation overhands the bank.  

It was also difficult to judge how transient (and therefore how worth shading) various 

side channels and branches were, since I only analyzed a snapshot of the river’s location from 

2016. In many reaches within my study area, channel position can move by many 10s of meters 

from one year to the next. In future analyses, it would be beneficial to look at multiple years of 

imagery or other time series data (such as those analyzed in Collins and Sheikh 2004b) to 

determine whether any given channel would be important and stable enough to be a focus for 

shade enhancement. Lidar in the near-infrared spectrum cannot assess water depth, so a different 

source of data (such as green-spectrum lidar) would be more appropriate for collecting this 

information, which is relevant to stream temperature modeling (Seixas et al. 2018). Assessing the 

relative permanence of individual side channels is particularly important because most of the 

main channel is too wide for shade to have a significant impact on water temperature (Seixas et 

al. 2018). Shading of smaller side channels is very important in these wide lower reaches.  

I did not collect ground truth data on solar intensity, so I have no objective means of 

measuring how accurate the shade model was at predicting actual solar insolation at any given 

point. Such data would have been logistically challenging to collect due to the need to log 

insolation over at least one full day per location in order to compare ground-truth readings to 

outputs from the shade model. However, previous research in the Pacific Northwest has 

suggested that shade models derived from a lidar-based hemispherical viewpoint method (such 

as the one applied here) are relatively robust and do not need ground-truthing to produce usable 

outputs (Richardson et al. 2019). Including the light attenuation filter corrected shade levels to a 

more realistic level than has been reported by other shade modeling studies that modeled shade 



59 

under the simplifying all-or-nothing assumption that the tree canopy did not let through any light 

at all (Johnson and Wilby 2015; Tompalski et al. 2017; Sexais et al. 2018) and a similar 

approach to estimating light attenuation has been shown to be accurate both in the Pacific 

Northwest and in other regions (Bode et al. 2014; Loicq et al. 2019; Richardson et al. 2019). 

Channel stability is the biggest factor influencing the applicability of my shade model 

projections. As the Salmon Recovery Funding Board matrices indicated, working to improve 

channel stability is a top priority for much of the watershed (SRFB 2020). Established vegetation 

can help stabilize a channel (Naiman and Latterell 2005), but before they become established, 

new plantings are at severe risk of being washed away in many locations, especially the lower 

North Fork, lower Middle Fork, and mainstem. In some locations I did not attempt to model 

shade because it appeared that the channel was much too unstable and, based on satellite imagery 

(Esri 2020), there were no potential planting sites that I thought had a chance of supporting new 

trees into maturity. For such locations, it may make more sense to situate any plantings some 

distance away from the channel (for long-term large woody debris recruitment and shade 

potential) and focus other restoration efforts on island-building measures such as artificial 

logjams. Plantings may also be more likely to be successful if they are planted in newly-sheltered 

areas such as behind artificial logjams.  

2.3.2. Growth rates and time frame for restoration 

The growth rates calculated from the multi-year lidar data provide some context for the 

necessary time frame for results from restoration actions, but they are subject to high variability. 

This variability is probably strongly tied to species-specific differences, but site specific 

differences almost certainly play a role. In addition to pronounced differences in stand density, 
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some sites were basically upland sites in their soil attributes, while others were wetlands with 

standing or flowing water even at the height of summer. Setting aside these caveats, overall 

growth rates suggest it would take approximately 33 years to grow an average 25-meter tall tree, 

the height of the trees modeled in the shade model. Growth rates could potentially be sped up by 

thinning and other active silvicultural treatments.  

My study focuses on comparatively short-term effects (decades rather than centuries) 

because of concerns over near-future climate change stressors that will need to be addressed 

(Dickersen-Lange and Mitchell 2014; Kennedy et al. 2020). I also assumed that, in general, any 

planting that provides benefits in the short term will only continue to provide more and better 

benefits in the long term, although paying attention to species composition of restoration 

plantings will be important for determining the quality of long-term effects. To this end, quick-

growing shade trees (spruce (Picea sitchensis) or cottonwood) should be interplanted with 

slower-growing shade-tolerant trees (such as western redcedar (Thuja plicata)) that have better 

rot resistance and provide long term benefits to large woody debris recruitment (Bilby and Ward 

1989; Roni et al. 2002).  

Because of uncertainties about river movements in future years, and because I was mostly 

focusing on relatively short-term rather than long-term effects, I did not emphasize large woody 

debris recruitment potential in this study. Large woody debris recruitment potential is 

challenging to model because it depends not only on size and type of trees, but also on the rate at 

which the channel shifts. If it shifts too fast, trees cannot grow to proper size before being 

eroded. If it shifts too slowly, recruitment is low because mature trees are not falling into the 

river. A truly rigorous large woody debris recruitment model would require a more extensive 
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time-series analysis than was carried out in this study and would be an interesting and useful 

topic for further research. 

2.3.3. Pre-Processing and Ground-Truth Data Collection 

Challenges measuring ground truth tree height are common (Slava et al. 2011), and many 

methods have been proposed to help correct for it (Vauhkonen et al. 2012; Mehtӓtalo et al. 2015) 

The method I used of estimating tree height from species-specific diameter curves is similar to 

methods described in Vauhkonen et al. (2012), but my approach had the additional refinement of 

using local out-of-plot trees to help refine in-plot predictions. This method, while not perfect, 

was comparatively computationally efficient, and does not appear to have significantly impacted 

height model accuracy. 

The proportional random sampling strategy I used to collect ground truth data was not 

quite truly random, although no effects from this were detected. As described in section 2.1.2., 

safety and access concerns forced the repositioning of more than half of all field plots. Steep 

slopes were systemically under-sampled, as were modified forests in residential areas. Although 

almost all property owners that were approached granted me permission to sample on their land, 

I preferentially focused on large landowners rather than trying to get permission from many, 

many small residential properties. Riparian areas that were broken up into small parcels owned 

by private residents were not well-represented in my ground truth data. These stands are likely to 

be heavily modified and are more likely to contain exotic tree species, which might influence 

model accuracies. Even with these caveats, I am confident that my ground truth data was 

representative of the overarching condition of the watershed. The PCA approach to modeling 

forest structure from lidar metrics prior to sampling seemed very effective at identifying 
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predominant forest structures. By the end of my sampling period I was no longer encountering 

“new” forest structures in the field.   

2.4. CONCLUSION 

My study aimed to support salmon conservation efforts by mapping riparian conditions 

that had been identified as a key data gap in the Nooksack watershed (Puget Sound Partnership 

2018). The results of my study confirmed the findings of previous localized smaller studies, but 

in greater detail and across a larger area. Model accuracies were comparable to similar studies on 

riparian forests in the Pacific Northwest, but the model accuracies were slightly lower than what 

is generally considered to be standard for lidar data. Both the size of my study area and the three-

year lag between lidar data collection and field data collection may have contributed to this.  

Using modeled forest stand attributes, potential for increased shade, and assessments of 

local human impacts based on free satellite data, I created a broad-scale planning tool to use for 

prioritizing restoration actions at the reach level. Modeled stand heights used to model potential 

for increased shade were 25 meters tall. Based on average stand growth trajectories in the recent 

past, such stands could be established on a timeframe of just over three decades. However, their 

effectiveness at providing riparian benefits would depend on their proximity to a wetted channel. 

Because the river is a very dynamic and changing place, and as future restoration projects 

gradually start to stabilize the channel, it will be important to iteratively re-visit watershed-level 

restoration prioritization and shade potential when planning new projects in the future.  
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3.0 – Individual Tree Species Analysis 

3.1. OVERVIEW 

The second of my research objectives was to explore methods of modeling tree species at 

the individual tree scale. Modeling accuracy for individual tree species is driven by two main 

factors: the accuracy of the segmentation model used to identify individual tree objects, and the 

accuracy of the species model itself, once lidar-derived canopies are matched with the correct 

ground truth data. Accurate individual-tree-level metrics have the potential to be useful for 

scientists and land managers alike, but such analyses have proved challenging in Pacific 

Northwest forests because of high structural heterogeneity (Jeronimo et al. 2018). Prior studies 

have noted that accurate tree segmentation seems to be the limiting step (White et al. 2016; 

Moskal et al. 2017). In response to this need, I investigated five different segmentation 

algorithms, comparing their accuracy both in terms of density and the spatial alignment with 

ground truth data. Building on the most promising of these segmentation approaches, I 

developed individual species models to classify several of the most common tree species in my 

study area. 

3.2. METHODS 

3.2.1. Study Area and Data Collection 

See Chapter 2: sections 2.1.1. – 2.1.4. for methods related to study area, lidar data, and 

ground truth data collection and pre-processing. 

3.2.2. Segmentation Methods 
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I compared six different approaches using five different algorithms for identifying 

individual tree canopies in the lidar data. Three of these approaches, (two versions of watershed 

segmentation and one version of multiresolution segmentation), were processed in Trimble’s 

eCognition Developer 9.5 (Trimble 2020) on 1-meter resolution rasters which I generated using 

USFS Fusion’s Area Processor (McGaughey 2018). The remaining three approaches were 

processed entirely in the R programming environment (R Core Team 2020) using the lidar 

processing package lidR (Roussel and Auty 2020). In the lidR package, these three methods are 

called the “Dalponte2016”, “Silva2016”, and “Li2012” algorithms, and they implement methods 

developed by Dalponte and Coomes (2016), Silva et al. (2016), and Li et al. (2012). For 

consistency with the lidR package, I will refer to these three methods by their lidR function 

names.  

Multiresolution segmentation in eCognition is an iterative algorithm that segments a 

raster by grouping pixels together until each segment reaches a variance threshold. Separate 

parameters control the algorithm’s sensitivity to spectral differences relative to the smoothness 

and compactness of the output segments. I used eCognition to run multiresolution segmentation 

on a 1-meter canopy surface raster representing the mean height of lidar first returns. After using 

a 3-meter height cutoff to remove non-forested areas from consideration, I processed all forested 

areas in my study area as a single unit under the same set of parameters. The scale, shape, and 

compactness parameters were set to 10, 0.1, and 0.5 respectively.  

Watershed segmentation is a segmentation method that delineates image object 

boundaries from a canopy surface raster based on localized concavities and convexities in the 

data. The size and shape of output segments can be partially controlled by applying various 

smoothing filters to the input raster surface. I applied the eCognition watershed segmentation 
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algorithm to two different rasters: an unsmoothed 1-meter raster of the mean height of first 

returns, and a smoothed 1-meter raster that I created from the 80th percentile of lidar first return 

heights, smoothed over a 3x3 window.  

The Dalponte2016 algorithm in the lidR R package is a region growing method 

developed by Dalponte and Coomes (2016). It requires a canopy surface model and a set of 

individual seed points representing tree tops. I generated the input canopy surface model by 

applying lidR’s simple point to raster approach on the filtered, normalized point cloud (Roussel 

and Auty 2020). I filled null values and smoothed the 0.6-meter resolution surface across a 1-

meter window using the R package “raster” (Hijams 2020). The parameters used in the 

Dalponte2016 segmentation were slightly modified from the defaults in order to make them 

more suitable for local conditions (Table 13).   

I identified tree top locations in the lidar point cloud by using a local maximum filter to 

return the highest lidar return point in a given area (Roussel et al. 2020). The search window was 

defined using a multi-level function that allowed a different canopy radius for shorter trees than 

for large trees. I used a tree top detection function that assigned a circular search window 

diameter of 3 meters to trees < 2 meters tall, and a search window width of 5 meters to trees > 20 

meters tall. Trees with heights between these cutoffs were assigned search window widths along 

a sliding scale. This balanced rates of accidental misclassification of tree branches as tree tops 

with accurate detection of smaller inter-canopy trees. Additionally, lidar returns located less than 

5 meters off the ground were excluded from consideration as tree tops because visual 

examination indicated that too many of these belonged to tall shrubs rather than trees. To 

facilitate a visual check of the model performance, I plotted the tree top results on top of subsets 

of the filtered and normalized point cloud.  
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The Silva2016 algorithm in lidR is a nearest-neighbor segmentation algorithm developed 

by Silva et al. (2016). Like the Dalponte2016 algorithm, it uses a canopy surface model and tree 

top seed points. I used the same canopy surface and tree top points for both algorithms. This 

meant that both methods produced the same number of total segments per plot, though 

differences in segment size and shape could occur. 

In contrast to the other two lidR algorithms, the Li2012 algorithm delineates trees directly 

from the point cloud without use of the pre-determined tree tops. The algorithm starts with the 

topmost lidar return point in the file, classifies all remaining points as either belonging to that 

tree or not based on a variable distance criteria, then removes the classified points and starts over 

again with the next highest unclassified point, continuing until all points in the dataset are 

classified (Li et al. 2012; Roussel and Auty 2020). After trial and error, I used parameters that 

were very close to the default parameters recommended by Li et al. (2012) (Table 13).  
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Table 13: Parameters used for Dalponte2016, Silva2016, and Li2012 algorithms in the lidR 

package. 

lidR Parameter Description 

DALPONTE 2016 

th_tree = 3 m Threshold below which a pixel cannot be a tree 

th_seed = 0.45 Growing threshold 1 – default value. See Dalponte and Coomes 2016 

th_cr = 0.55 Growing threshold 2 – default value. See Dalponte and Coomes 2016 

max_cr = 15 m Maximum allowable crown diameter 

SILVA 2016 

max_cr_factor = 0.6 Maximum crown diameter, given as proportion of tree height 

exclusion = 0.3 Minimum height threshold: Pixels below the tree height times this 

factor are removed 

LI 2012 

dt1 = 1.5 m Threshold number 1 – default value. See Li et al. 2012 

dt2 = 2 m Threshold number 2 – default value. See Li et al. 2012 

R = 2 m Search radius for local maxima. 

Zu = 15 m Height threshold determining whether threshold 1 or 2 is used. 

hmin = 5 m Minimum allowed height of a detected tree. 

speed_up = 15 m Maximum radius of a crown. 

3.2.3. Accuracy Metrics used to compare Segmentation Methods 

For all five methods, I assessed segmentation accuracy in terms of recall, precision, and 

F-score. Recall is the tree detection rate, also called producer’s accuracy, precision is the

correctness of detected trees, also called user’s accuracy, and F-score is an overall accuracy 

measure that considers both false positives and false negatives but doesn’t require quantifiable 

true negatives to calculate (unlike the overall accuracy metric calculated from a confusion 

matrix). I also assessed segmentation accuracy in terms of the correlation with ground-truth stem 

density, and I visually assessed how well the automatically generated segment shapes matched 

the shape and extent of the real tree canopy. Recall, precision, and F-score were calculated from 

the rates of true positives (TP), which represent correctly segmented trees, false positives (FP), 
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which were segments that did not represent a ground truth tree, and false negatives (FN), which 

were ground truth trees that were not assigned their own segment. Recall, precision, and F-score 

were calculated as follows (Li et al. 2012): 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
Eq. 1 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
Eq. 2 

F-score =  2 𝑥 
𝑟𝑒𝑐𝑎𝑙𝑙 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
Eq. 3 

For the purposes of calculating segmentation accuracy metrics, I defined segments as “in” the 

plot if their centroid was located inside the plot. To avoid artificially inflated counts of true 

positives caused by overlapping segment boundaries (segments produced by lidR can overlap 

under certain conditions), the maximum number of true positives was not allowed to exceed the 

total number of dominant trees in a plot.  

3.2.4. Modeling Height, Diameter, Species, and Coniferous/Deciduous Classification 

I calculated individual tree metrics including height, diameter, and coniferous or 

deciduous classification for segments produced by the smoothed watershed method and by the 

Dalponte2016 algorithm. Because of their size, segments produced by the smoothed watershed 

method were analyzed with a localized area-based approach. If there was more than one 

dominant ground truth tree in a segment derived from the smoothed watershed method, then the 

ground truth data for the trees in that segment were averaged and the average ground-truth value 

was regressed against the average lidar-based metric. In contrast, the segments produced by the 

Dalponte2016 algorithm were analyzed using an individual tree approach, in which the segment 
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lidar values were regressed against the individual ground truth values of the largest dominant 

tree.  

Because it was important to ensure that all segments were associated with complete 

ground truth data, I used more stringent criteria for selecting in-plot segments for metrics 

generation than I had used for the segmentation accuracy metrics. Segments that I generated 

using the smoothed watershed method were paired with ground truth data and counted as inside 

the plot if they were completely within a 2-meter buffer around the plot and either the segment 

centroid was within the plot or the segment contained at least one dominant ground truth stem. 

Segments that I generated with the Dalponte2016 algorithm were paired with ground 

truth data based on combined location and height criteria. By default, I paired tree tops with 

stems that were in the same segment, but in some cases (due to the known presence of leaning 

trees in the ground truth data) some tree tops were matched with stems that were located just 

outside of the segmented crown boundary but were otherwise an excellent fit based on height 

criteria. Potential ground truth matches were restricted to dominant trees that were taller than 5 

meters in order to match the height cutoff applied to the lidR tree top detection function. Taller 

ground truth stems were prioritized over shorter ones from the same segment. Of the segments 

that could not be matched to a ground truth stem, if any part extended beyond a 2-meter buffer of 

the plot, they were classified as outside the plot. If the segment was completely contained by the 

2-meter plot buffer but it appeared very likely that the stem associated with that canopy would

have been outside the plot (and therefore not recorded by field crews), that segment was also 

classified as outside the plot. If a segment was completely contained by the plot, then it was 

classified as being in the plot regardless of whether it could be matched with a ground truth stem 

or not.  
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The models were built using either linear mixed models or generalized linear mixed 

models (Bates et al. 2015; Pinheiro et al. 2020) depending on the distribution and the variance 

structure of the data. The mixed models were run with random intercepts, with the plot location 

set as the random effect. Potential input predictor variables were mean first return height, 70th, 

80th, 90th and 95th percentile of first return height, variance of first return height, standard 

deviation of first return height, mean first return intensity, standard deviation of first return 

intensity, and percent cover (the proportion of first returns above three meters height). For the 

Dalponte2016 segments, I also considered the height of the modeled treetop as an input variable. 

Predictor variables that were correlated (using the cutoff of r ≥ 0.3) were not combined in the 

same model. I chose best models based on AIC and cross-validated root mean squared error. 

To estimate the amount of error produced by segments that did not correspond to ground 

truth data (false positives), I assessed the average prediction accuracy when the segment-based 

results were aggregated to a 30-meter scale. This 30-meter scale corresponded to the area-based 

methods discussed in chapter 2. I checked the performance of the model at this scale by using the 

segment-based models to predict outcomes for segments across the entire landscape and then 

using ArcGIS to determine modeled plot-level averages from the segments that were within the 

ground-truth plot boundaries. I compared the modeled plot-level metrics to the actual ground-

truth plot-level metrics and calculated the average root mean squared error using leave-one-out 

cross-validation.  

I also developed species models at the individual tree level to predict the three most 

common tree species. Unlike in the other models discussed above, the largest tree in the segment 

was used as the ground truth species for both the smoothed watershed method and the 

Dalponte2016 method. Segments were classified separately for each species using a logistic 
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generalized linear mixed model (Bates et al. 2015) with random intercepts and the ground truth 

plot as the random effect. In addition to the input variables discussed above, I included metrics of 

canopy slope and canopy roughness as predictor variables. The canopy slope metric was 

generated by applying the Slope tool from Esri’s Spatial Analyst toolbox to the 1-meter 

resolution mean first return height raster and then averaging across each segment. I estimated 

localized canopy roughness by taking the standard deviation of the slope layer. The best model 

for each species was considered to be the one that had the highest classification accuracy while 

remaining as parsimonious as possible.  

3.3. RESULTS 

3.3.1 Segmentation model accuracy 

Each segmentation method had its strengths and weaknesses, but overall the 

Dalponte2016 algorithm was the most effective in the Nooksack watershed. The Dalponte2016 

and Silva2016 algorithms are closely related and were the top performers in all categories, with 

almost identical recall, precision, and F-score (Table 14), but they differed in subtle but 

important ways that the accuracy metrics did not capture. Although all three of the lidR 

segmentation methods can produce overlapping segments, the Silva2016 segments were less 

likely to overlap each other than the Dalponte2016 segments were (Figure 11). Non-overlapping 

segments are desirable because they make geoprocessing tasks, such as matching ground-truth 

stems to segments, much easier. However, on visual examination of the data it was also apparent 

that the Silva2016 algorithm tended to be slightly larger and often over-extended into non-

canopy area (such as surrounding clearings, or inter-canopy gaps) (Figure 12). On the basis of 
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this shape-based inaccuracy, I decided that Dalponte2016 was the more accurate of the two 

overall as applied in my study area. 

Among the remaining algorithms, the smoothed watershed segmentation performed the 

best of the eCognition methods. It had the highest precision and F-score (Table 14) and produced 

segments that were usually realistic, although it under-segmented even-aged stands (Figure 13) 

which resulted in a very poor correlation with stand density (Table 15). Of the eCognition 

methods, the unsmoothed watershed segmentation had the highest correlation with stand density, 

but it had the lowest precision of any method (Table 14; Table 15). In terms of segment shape, 

the unsmoothed watershed algorithm did reasonably well when applied to stands with a low 

overall variability in return height, but it was too sensitive when applied to larger, more 

structurally complex stands, tending to incorrectly segment individual tree branches (Figure 13).  

The multiresolution segmentation performed best on midrange moderate-rumple 

canopies, especially in lower-density stands. It did not do well with either very tall, heterogenous 

stands or short even-aged stands (Figure 13). The multiresolution segmentation algorithm was 

poorly suited to capturing the range of conditions in the study area. In a localized area 

surrounding a single plot, it could generally be tuned to produce acceptable results, but when 

those same parameters were applied to a different area, accuracy plummeted. In contrast, the 

Li2012 algorithm did a reasonably good job of adapting to different canopy sizes across the 

landscape. However, it produced segments that overlapped hugely, sometimes as many as three 

or more segments layered at a time, and this was a serious problem. 36% of all Li segments 

overlapped, in contrast to 10% of Dalponte2016 and only 5% of the Silva2016 segments, and the 

degree of overlap was much higher for Li2012. The degree of overlap made it difficult or 

impossible to assign ground-truth points to some segments, and it contributed to low precision 
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(Table 14) and unrealistic segment shapes (for example, an elongated segment on the left side of 

the plot in Figure 8). However, as a side effect it did mean that the Li2012 algorithm had a better 

correlation with ground-truth tree density than most other methods (Table 15). In general, I 

observed that the Li2012 algorithm performed better with high-rumple conifer stands than with 

amorphous dense deciduous stands.  
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Table 14: Comparison of accuracy metrics for all segmentation methods. Recall, precision, and F-

score were calculated separately for each ground truth plot (n = 97), and then averaged to give 

overall scores for the study area. Means are given ± standard deviation. Metrics shown are for 

dominant stems only. See Roussel and Auty (2020) and Trimble (2020) for parameters. 

Algorithm Recall Precision F-score Parameters 

Multiresolution 0.51 ± 0.17 0.42 ± 0.19 0.41 ± 0.11 scale = 10 

shape = 0.1 

compactness = 0.5 

Input raster: canopy height 

model from mean height of 

first returns 

Watershed 

(smoothed) 

0.43 ± 0.15 0.78 ± 0.17 0.52 ± 0.13 Input surface: raster (1 m 

resolution, smoothed over a 

3x3 window) of 80th 

percentile height returns 

Watershed 

(unsmoothed) 

0.61 ± 0.16 0.40 ± 0.18 0.44 ± 0.13 Input surface: canopy 

height model from mean 

height of first returns 

Dalponte2016 0.50 ± 0.17 0.80 ± 0.20 0.58 ± 0.14 th_tree = 3 m 

th_seed = 0.45 

th_cr = 0.55 

max_cr = 15 m 

Silva2016 0.51 ± 0.21 0.80 ± 0.19 0.59 ± 0.13 max_cr_factor = 0.6 

exclusion = 0.3 

Li2012 0.54 ± 0.18 0.58 ± 0.20 0.52 ± 0.13 dt1 = 1.5 m 

dt2 = 2 m 

R = 2 m 

Zu = 15 m 

hmin = 5 m 

speed_up = 15 m 
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Table 15: Correlations between stem counts (dominant- or all trees) and segment counts per plot. 

Method r 

(dominant) 

r 

(all stems) 

Mode, median, and 

maximum dominant 

stems per segment 

Multiresolution -0.27 -0.00 Mode: 0 stems (64%) 

Median: 0 stems 

Max.: 16 stems (0.04%) 

Watershed 

(smoothed) 

-0.07 -0.15 Mode: 1 stem (29%) 

Median: 2 stems 

Max.: 20 stems (0.12%) 

Watershed  

(unsmoothed) 

0.35 0.14 Mode: 0 stems (65%) 

Median: 0 stems 

Max.: 10 stems (0.03%) 

Dalponte2016 0.61 0.34 Mode: 1 stem (34%) 

Median: 1 stem 

Max.: 10 stems (0.07%) 

Silva2016 0.61 0.34 Mode: 1 stem (37%) 

Median: 1 stem 

Max.: 8 stems (0.07%) 

Li2012 0.50 0.23 Mode: 0 stems (42%) 

Median: 1 stem 

Max.: 24 stems (0.05%) 
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Figure 11: Examples of lidR segmentation outputs for a plot with large coniferous trees in the 

upper North Fork (left panels) and a plot with densely spaced small conifers on the lower main 

fork (right panels). Note that segments produced using the lidR packages can sometimes overlap 

each other. 
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Figure 12: Comparison of the Dalponte2016 and Silva2016 segmentation outputs in plot 68. The 

Silva2016 algorithm tended to over-grow into canopy gap regions (see arrows). 
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Figure 13: Examples of eCognition segmentation outputs for a plot with large coniferous trees in 

the upper North Fork (left panels) and a plot with densely spaced small conifers on the lower main 

fork (right panels). Segments produced using eCognition cannot overlap. 
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3.3.2. Height, Diameter, and Coniferous/Deciduous Classification  

Models based on the two segmentation approaches that I selected for further processing 

varied in their usefulness for predicting ground-truth conditions (Table 16). These two 

approaches were the Dalponte2016 algorithm, which I selected as the best-performing approach, 

and the smoothed watershed approach, which I selected because it was the best-performing of 

the eCognition methods and it gave less-ambiguous results than the Li2012 algorithm. Segment-

level height predictions were slightly more accurate for the watershed segmentation, but 

diameter estimates were more accurate for the Dalponte2016 method. Error from false positives 

accumulated faster at the 30-meter scale for the Dalponte2016 method than it did for the 

smoothed watershed method. In general, error was higher at the 30-meter scale, but the DBH 

estimates for the smoothed watershed segmentation were actually more accurate at the less 

detailed scale. In all cases, the most useful input parameter was a metric equivalent to the tallest 

point of the tree in the lidar point cloud.  

Classification into coniferous or deciduous categories was similar for both segmentation 

methods. Both methods had an overall accuracy of 91% (with Cohen’s kappa = 0.80), but the 

Dalponte2016 method had a more balanced performance. User’s accuracy based on the 

Dalponte2016 method was the same for both conifers and deciduous trees, but the user’s 

accuracy for the model based on the smoothed watershed segments showed that it was better at 

identifying deciduous trees than conifers (Table 16).  
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Table 16: Results of individual-tree-based models of forest structure. Ground truth data was 

averaged within each segment for the watershed method, but the Dalponte2016 method was 

ground-truthed with one dominant tree per segment. nwatershed = 330 from 91 plots; nDalponte = 1030 

from 97 plots. Accuracies of segment-based analysis when restricted to segments with ground-

truth data are in parentheses; other values represent segmentation accuracy when scaled up to the 

same level as the area-based analysis (i.e. field-validated accuracy of model predictions when 

evaluated at the 30-meter scale). Mixed models were calculated using R packages “nlme” 

(Pinheiro et al. 2020) and “lme4” (Bates et al. 2015). 

SEGMENT-BASED ANALYSIS – SMOOTHED WATERSHED METHOD 

RMSE ± std. dev. Model Parameters 

Mean height 

(dominant) 

2.26 ± 1.75 m 

(2.87 ± 2.70 m) 

Linear mixed-effect model 

(lme4 package) 

95th percentile 

lidar return height 

Mean height 

(all trees) 

2.38 ± 1.80 m 

(3.14 ± 3.02 m) 

Linear mixed-effect model 

(lme4 package) 

95th percentile 

lidar return height 

Maximum height 7.16 ± 5.30 m 

(3.30 ± 2.92 m) 

Linear mixed-effect model 

(lme4 package) 

95th percentile 

lidar return height 

Mean DBH 

(dominant) 

19.60 ± 13.58 cm 

(6.73 ± 6.71 cm) 

Linear mixed-effect model 

(nlme package) 

Fixed variances 

95th percentile 

lidar return height 

Mean DBH 

(all trees) 

13.08 ± 10.25 cm 

(6.32 ± 6.32 cm) 

Linear mixed-effect model 

(nlme package)  

Fixed variances 

95th percentile 

lidar return height 

SEGMENT-BASED ANALYSIS – DALPONTE 2016 METHOD 

RMSE ± std. dev. Model Parameters 

Tree height 2.50 ± 2.46 m 

(6.63 ± 5.22 m) 

Linear mixed-effect model 

(lme4 package) 

Height of lidar-

derived tree top 

Tree DBH 9.10  ± 10.56 cm 

(13.13 ± 9.21 cm) 

Linear mixed-effect model 

(nlme package)  

Fixed variances 

Height of lidar-

derived tree top 
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Table 17: Confusion matrix for individual tree-based composition models for dominant trees. For 

both segmentation methods, composition was modeled with a generalized linear mixed model 

(Bates et al. 2015) on mean intensity (scaled by 1/1000) with random intercepts and plot as a 

random effect. 

SEGMENT-BASED ANALYSIS – SMOOTHED WATERSHED METHOD 

Field control 

Conifer Deciduous Row total 

Classification 

Conifer 97 13 110 

Deciduous 16 204 220 

Column total 113 217 330 

Producer’s accuracy User’s accuracy 

Conifer = 97/113 = 86% Conifer = 97/110 = 88% 

Deciduous = 204/217 = 94% Deciduous = 204/220 = 93% 

Overall accuracy = (97+204)/330 = 91% 

Kappa = 0.80 

SEGMENT-BASED ANALYSIS – DALPONTE 2016 METHOD 

Field control 

Conifer Deciduous Row total 

Classification 

Conifer 295 30 325 

Deciduous 65 682 747 

Column total 360 712 1072 

Producer’s accuracy User’s accuracy 

Conifer = 295/360 = 82% Conifer = 295/325 = 91% 

Deciduous = 682/712 = 96% Deciduous = 682/747 = 91% 

Overall accuracy = (295+682)/1072 = 91%  

Kappa = 0.80 
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3.3.3. Species Classification 

For models based on the smoothed watershed segmentation, classification accuracies 

were highest for predicting cottonwood, with a user’s accuracy of 86% (Table 18). Douglas fir, 

(which was classified after cottonwood trees had already been removed), followed with a user’s 

accuracy of 79% (Table 19). Red alder also had a user’s accuracy of 79%, but its overall 

accuracy was lower (Table 20). However, unlike the Douglas fir model, it wasn’t dependent on 

another model being run first.  

Species classification accuracies were higher for models based on the Dalponte2016 

segmentation than for the watershed segmentation, but kappa values were in the same range. 

Cottonwood could be predicted with a user’s accuracy of 89% (Table 21), Douglas fir had a 

user’s accuracy of 83% (Table 22), and red alder had a user’s accuracy of 83% (Table 23). Each 

of the models built on the Dalponte2016 segmentation could be run separately: none of them 

needed another species to be classified and removed first.  
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Table 18: Confusion matrix for cottonwood trees from the smoothed watershed segmentation. 

Species was modeled from canopy steepness and variation in canopy steepness. Segments were 

classified using a logistic generalized linear mixed model with plot held as a random effect. 

Field control 

Cottonwood Other species Row total 

Classification 

Cottonwood 67 11 78 

Other species 25 211 236 

Column total 92 222 314 

Producer’s accuracy User’s accuracy 

Cottonwood = 67/92 = 73% Cottonwood = 67/78 = 86% 

Other species = 211/222 = 95% Other species = 211/236 = 89% 

Overall accuracy = (67+211)/314 = 89% 

Kappa = 0.71 

Table 19: Confusion matrix for Douglas fir trees from the smoothed watershed segmentation. 

Species was modeled using canopy steepness and percent cover. Segments were classified using a 

logistic generalized linear mixed model with plot held as a random effect. Cottonwood trees were 

classified and removed from the dataset before this model was run; therefore, cottonwoods are 

excluded from the “other species” category. 

Field control 

Douglas fir Other species Row total 

Classification 

Douglas fir 26 7 33 

Other species 14 189 203 

Column total 40 196 236 

Producer’s accuracy User’s accuracy 

Douglas fir = 26/40 = 65% Douglas fir = 26/33 = 79% 

Other species = 189/196 = 96% Other species = 189/203 = 93% 

Overall accuracy = (26+189)/236 = 91% 

Kappa = 0.66 
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Table 20: Confusion matrix for red alder trees using the smoothed watershed segmentation. 

Species was modeled with variability in canopy steepness and mean return intensity. Segments 

were classified using a logistic generalized linear mixed model with plot held as a random effect.  

Field control 

Red alder Other species Row total 

Classification 

Red alder 46 12 58 

Other species 42 214 256 

Column total 88 226 314 

Producer’s accuracy User’s accuracy 

Red alder = 46/88 = 52% Red alder = 46/58 = 79% 

Other species = 214/226 = 95% Other species = 214/256 = 84% 

Overall accuracy = (46+214)/314 = 83% 

Kappa = 0.52 

Table 21: Confusion matrix for cottonwood trees based on the Dalponte2016 segmentation model. 

Species was modeled using canopy steepness and variation in canopy steepness. Segments were 

classified using a logistic generalized linear mixed model with plot held as a random effect. 

Field control 

Cottonwood Other species Row total 

Classification 

Cottonwood 189 23 212 

Other species 61 757 818 

Column total 250 780 1030 

Producer’s accuracy User’s accuracy 

Cottonwood = 189/250 = 76% Cottonwood = 189/212 = 89% 

Other species = 757/780 = 97% Other species = 757/818 = 93% 

Overall accuracy = (189+757)/1030 = 92% 

Kappa = 0.66 
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Table 22: Confusion matrix for Douglas fir trees based on the Dalponte2016 segmentation 

method. Species was modeled based on mean return intensity. Segments were classified using a 

logistic generalized linear mixed model with plot held as a random effect. 

Field control 

Douglas fir Other species Row total 

Classification 

Douglas fir 119 25 144 

Other species 64 822 886 

Column total 183 847 1030 

Producer’s accuracy User’s accuracy 

Douglas fir = 119/183 = 65% Douglas fir = 119/144 = 83% 

Other species = 822/847 = 97% Other species = 822/886 = 93% 

Overall accuracy = (119+822)/1030 = 91% 

Kappa = 0.68 

Table 23: Confusion matrix for red alder trees based on the Dalponte2016 segmentation method. 

Species was modeled based on mean return intensity. Segments were classified using a logistic 

generalized linear mixed model with plot held as a random effect. 

Field control 

Red alder Other species Row total 

Classification 

Red alder 214 43 257 

Other species 121 652 773 

Column total 335 695 1030 

Producer’s accuracy User’s accuracy 

Red alder = 214/335 = 64% Red alder = 214/257 = 83% 

Other species = 652/695 = 94% Other species = 652/773 = 84% 

Overall accuracy = (214+652)/1030 = 84% 

Kappa = 0.61 
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3.4. DISCUSSION 

In general, my segmentation model results were consistent with the results of previous 

studies in the Pacific Northwest despite the comparatively high structural heterogeneity in my 

study area. My tree detection rate for most algorithms was approximately 50%, which was 

comparable to previous studies (Heurich et al. 2004; Korpela et al. 2007). This seems to have 

been mostly due to high stand densities in my study area (Jeronimo et al. 2018). On average 

there were 34 stems in each 0.07 ha ground-truth plot (486 stems/ha), but the maximum was 87 

stems per plot (1243 stems/ha) (Appendix F). Recall may also have been influenced by stand 

composition. Deciduous forests tend to lead to low detection rates (usually in the 50-60s range) 

compared to conifer stands which routinely support recall rates of 70% or more (Vauhkonen et al 

2012).  

Precision (the correctness of detected trees) was much more variable between 

approaches, but the maximum precision was around 80% for the Dalponte2016 and Silva2016 

algorithms.  For comparison, Pirotti et al. (2017) reported recall = 0.68 and precision = 0.72 

when they compared the Li2012, Dalponte2016, and a watershed method in a mixed-forest in 

Slovenia, and Li et al. (2012) reported a precision of 0.94 for a Sierra Nevada study area 

primarily dominated by conifers. For all approaches, my overall segmentation accuracy tended to 

be low because of the low recall, which was consistent with a study by Jeronimo et al. (2018). 

Jeronimo et al. (2018) reported F-scores of 0.5 for Pacific Northwest stands, and they noted that 

recall was worse in high-density areas and precision was worse in low-density, tall, complex 

stands.  Both of these patterns were apparent in my data as well. 
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To the best of my knowledge, my species classification study was unique in the Pacific 

Northwest for the complexity of forest types and terrain it encompassed. Most lidar-based 

species classification studies in the Pacific Northwest and worldwide have focused on relatively 

small, homogeneous study areas with gentle terrain, comparatively low variability in age classes, 

and good accessibility (Fassnacht et al. 2016; White et al. 2016). My species classification 

accuracies were comparable to results obtained under much simpler conditions with more 

complex lidar data. In a recent Pacific Northwest study that is the most directly comparable to 

mine, Vaughn et al. (2012) used a combination of extremely dense (104 points/m2) discrete point 

and waveform lidar data to classify five species (black cottonwood, bigleaf maple (Acer 

macrophylum), Douglas fir, red alder, and western redcedar) from 130 canopy segments in the 

Seattle Arboretum. They discarded segments that were found to contain multiple trees. When 

discrete point and waveform data were combined, the researchers reported user’s accuracies of 

about 85% for four of the species and 95% accuracy for bigleaf maple. My user’s accuracies for 

red alder, cottonwood, and Douglas fir were in a similar range, although western redcedar and 

bigleaf maple were too rare in my ground-truth data to support building a model.  

Sample size relative to landscape variability may have been key. My classification 

accuracies for separating deciduous trees from conifers were higher than those reported for a 

study in the Seattle Arboretum by Kim et al. (2011), despite their study being predominantly 

based on semi-isolated individual trees in open, flat areas. It seems likely that the difference in 

accuracy was due to respective sample sizes, as well as the fact that their study area had a much 

higher biodiversity than mine: they sampled 233 individual trees from over 40 species in 15 

genera, whereas my individual tree models were based on over 1110 trees from only 13 species. 

Although these results are encouraging for the application of individual tree analyses to dense 
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forests, they also underline the importance of understanding the potential effects that sample size 

and varying species composition can have.  

I chose the smoothed watershed segmentation and the Dalponte2016 segmentation 

methods for further processing because the Dalponte2016 method was the most accurate overall, 

and the smoothed watershed method was the best of the eCognition methods. (I also calculated 

some individual metrics for the Silva2016 algorithm. As expected, accuracies were close to but 

slightly lower than for the Dalponte2016 algorithm. These results are included in Appendix E). 

Although the Dalponte2016 method better represented individual trees, the smoothed watershed 

method was surprisingly more effective at predicting tree height. This may have been because 

the ground truth data was averaged across the segment, thus downplaying potential errors caused 

by various factors including inaccurate ground-truth to segment pairing, the three-year temporal 

disjoint between the lidar data and the ground-truth data collection, or other inaccuracies. Any 

inaccuracy in either the lidar tree top height detection (tree tops can be difficult to sense with 

lidar (Gatziolis et al. 2010)) or ground-truth height measurements would have been smoothed out 

by the averaging approach taken with the watershed method. Errors in ground-truth height 

measurement are unquantifiable and may have been worse in areas with steep slopes. 

Interestingly, almost all ground truth trees that were paired with the Dalponte2016 segments had 

heights that had been directly measured in the field, suggesting that trees that were easier to pick 

out and measure in the field were also more likely to be picked out and segmented by the 

algorithm. 

One of the best features of the Dalponte2016 algorithm was its ability to avoid region-

growing into non-canopy area. This probably contributed to its success at predicting conifer vs 

deciduous and the species of trees, since it avoided interference from gaps and non-canopy area 
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included in the “canopy” segments. All the other top contenders, the Silva2016, Li2012, and 

smoothed watershed algorithm, had problems with including too much of the ground next to a 

tree canopy. This almost certainly influenced many of the input metrics, especially measures of 

intensity and of canopy height roughness. The Li2012 algorithm produced segments that 

overlapped far too much and often had unrealistic boundaries, especially in low-rumple 

deciduous stands. This algorithm seemed to do better in areas where the trees were spaced farther 

apart, which is not surprising because it was developed for coniferous stands (Li et al. 2012). The 

unsmoothed watershed and the multiresolution segmentation methods were the least successful 

because they were not adaptable enough to handle the wide variety of conditions present in the 

study area.  

The biggest problem with the Dalponte2016 segmentation was the amount of overlap 

between segments. With 10% of the segments overlapping another segment to some degree, 

dominant ground-truth stems occasionally were located in places where they had ambiguous 

membership in either segment. Overlapping tree canopies are realistic, but they are challenging 

from a geoprocessing standpoint, and were part of the reason I decided it was necessary to 

manually supervise the assigning of ground-truth stems to segments for the Dalponte2016 

method. Manual oversight of segment/ground-truth stem pairing removed one source of potential 

error from the species classification models, but it significantly increased the processing time.  

I chose to manually pair stems to segments because I knew there were widespread 

problems with leaning trees. When setting out to do fieldwork, I originally intended to keep track 

of all leaning trees in the ground-truth data, but I quickly realized that the majority of trees were 

displaced from their stem bases by several meters. In the end, trees tagged as “leaning” in the 

ground-truth data were only those that were so dramatically offset that I didn’t think it would be 
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possible to match them to a canopy – for example, stems that were leaning at a 45-degree angle 

or more. Almost 5% of stems were tagged as “leaning” in the ground truth data, even though I 

didn’t start recording the leaning characteristic until the second week of sampling. I observed 

that riparian trees tended to lean more than their upland counterparts, which I attributed to: a) a 

higher proportion of deciduous trees in riparian zones (deciduous trees often have a less upright 

growth structure than conifers), b) unstable slopes gradually shifting over time (this was mostly 

seen affecting older, larger trees that would normally grow fairly straight), and c) wet riparian 

conditions making trees less strongly rooted and less stable (this was especially noted in red 

alder trees that were growing in wetland areas). Leaning trees greatly complicated the process of 

matching ground truth stems to lidar canopies. Attempting to match stems to canopies in a 

mountainous riparian area was probably a worst-case scenario. Forked trees were another major 

problem, and they were similarly hard to quantify. Cottonwood and bigleaf maple trees were 

particularly likely to have multiple distinct canopies, but when one was working in dense, closed 

stands, it wasn’t always easy to see how distinct the multi-part canopies were.  

Many researchers have assumed that species model accuracy would be very dependent on 

accurate segmentation of individual trees (Fassnecht et al. 2016). Consequently, previous studies 

on classifying tree species (Kim et al. 2009; Kim et al. 2011; Vaughn et al. 2012) have generally 

favored basing their models on trees that were relatively isolated from other canopies. However, 

at least for detecting tree species that have distinctive morphology and reflectivity, my results 

suggest that the presence of additional smaller trees in a canopy segment may not be crippling to 

species classification even if the additional trees are dominant (present in the upper canopy) and 

theoretically visible from above.  If this is true, it removes a major barrier to the classification of 

dense, complex stands, and it would be worthwhile to quantify the extent to which multiple trees 
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in a segment affect species classification accuracies. Many studies have documented the inherent 

difficulties in achieving true individual tree segmentation in complex forest stands (Richardson 

and Moskal 2011; North et al. 2017; Jeronimo et al. 2018) and some researchers have suggested 

the use of the term “tree-approximate object” to reflect these difficulties (North et al. 2017). 

However, my study intentionally did not focus on a specific subset of trees because I wanted to 

determine the practicality of species classification across a realistic landscape. I was not able to 

identify as many different species as other researchers (Kim et al. 2009; Kim et al. 2011; Vaughn 

et al. 2012), but investigating the ways the models broke down in a complex forest provided a 

useful insight into the system and suggested possible avenues for future improvement. 

I identified several factors that caused difficulties in my models but that, if properly 

addressed, could potentially improve species identification in future work. One problem, related 

to the intrinsic limitations of monochromatic aerial lidar systems, was that most lidar-derived 

input variables were correlated with each other. This restricted the options for model building, 

and it made it difficult to consider more than one or two unique identifying characteristics 

(shape, texture, color/reflectivity, etc.) of a species at a time. A possible way around this might 

be to put more emphasis on measures of canopy morphology, such as canopy slope, canopy 

roughness, branching habits, and return densities at different strata, that are less likely to 

correlate with each other. The lidR package has a number of functions that I was unable to 

explore in this study, but which might be very useful for deriving such metrics. I also think it is 

important to think carefully about what makes each species unique to human eyes, and then 

consider how best to measure those attributes from the lidar’s standpoint. In particular, it would 

be helpful to pay close attention to the scale of the attributes that need to be detected and include 

input variables calculated at multiple resolutions. Canopy roughness, for example, might benefit 
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from a multiple-scale approach, with a fine-textured scale to try and capture branch patterns, and 

a smoothed-over scale to capture the overall shape of the entire crown. However, it is important 

to note that relying more heavily on shape-based attributes might lead to unexpected 

consequences, especially in areas with extreme topography. 

Differences in topography may have affected my model accuracies, even without 

widespread use of shape-based variables. Steep slopes almost certainly affected the accuracy of 

the ground truth data, both stem location and tree height measurements, and they may have 

reduced the accuracy of the lidar height data as well (Gatziolis et al. 2010). Steep slopes also 

resulted in a certain degree of distortion to the lidar point cloud and the lidar crown shapes, but I 

do not know if this had any significant effect on the model outcomes. This distortion occurred 

because when the point cloud was normalized, the angles of the tree trunks relative to the ground 

were altered as the “ground” was re-projected onto a flat plane. The shape distortion in the 

canopy was minimal, but it was visible.  

Steep slopes were underrepresented in the ground truth data used for individual tree 

analyses. Out of the 104 plots collected during summer 2019, seven had no stem location data 

because the sites were too steep to access with the total station and were too steep for other 

methods of measuring location to be practical. Furthermore, the watershed contained many sites 

that were too steep for any sampling to be carried out at all. If the models developed in this study 

were applied across the entire study area, these very steep sites would probably have worse 

accuracy outcomes than the surrounding riparian forest, but there would be no way to quantify 

the difference. 
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My analysis was probably both helped and hindered by the size of my study area. The 

forests along the Nooksack are extremely varied, including everything from dense early-seral 

cottonwood stands to a few scattered patches of old growth trees. Parameters that worked well 

for young deciduous stands usually produced unwanted results in stands with high-relief 

canopies, and vice versa. I expect that better classification accuracies would be possible if the 

study area were split into subsections based on structural characteristics and separate 

segmentation model parameters were used for each. Subdividing the study area would need to be 

done with care in order to avoid increasing the extent of edge effects. The end result would be 

more complicated than the simple models I ran, but I think this is a worthwhile direction for 

future research. A definite advantage of the size of my study area and the number of ground-truth 

plots I sampled (97 plots with stem location data) was that I had large enough sample sizes to 

support building species models, despite the large amount of intra-species variability in riparian 

tree morphology. Sample size seemed to be very important: The only three species that were 

frequent enough in the data to support building a species classification model were cottonwood 

(29% of the watershed segments; 24% of the Dalponte2016 segments), red alder (28% of the 

watershed segments; 32% of the Dalponte2016 segments), and Douglas fir (18% of the 

watershed segments; 17% of the Dalponte2016 segments). The remaining ten species present in 

the watershed did not have distinctive enough characteristics to be detected with the available 

sample size. 

When applied at the landscape scale, the primary purpose of individual tree segmentation 

is to derive metrics such as tree species that are not practical to detect from aggregated data. 

Individual tree segmentation is not always the best choice for all metrics because it is extremely 

computationally expensive and does not always produce results that are superior to area-based 
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approaches, especially when used to predict metrics such as average tree height (compare Table 

16 to Table 9 in chapter 2). Persistent problems with complex canopies and with separating 

understory trees from their overstory counterparts during segmentation mean that errors at the 

individual tree level have the potential to propagate when results are aggregated to make stand-

level decisions. Because individual tree data is rarely considered on an individual tree basis for 

planning purposes, I thought it was important to get a feel for how much error might creep in if 

the results were aggregated to a larger scale. Hopefully the disjoints exposed by the increased 

(and sometimes decreased!) errors in my 30-meter analysis relative to the segment-level errors 

(Table 16) can be useful to land managers when deciding how best to interpret the GIS layers 

that I produced from this lidar data. 

3.5. CONCLUSION 

Out of the algorithms I tested, the Dalponte2016 segmentation method performed the best 

in terms of accurate tree crown segmentation, stem density, and individual tree species 

identification for the three species successfully modeled in this study: Douglas fir, cottonwood, 

and red alder. The smoothed watershed segmentation method was more accurate when predicting 

localized averages of tree height. I primarily attributed this to individual variability in growth 

rates between the time of lidar data acquisition and ground-truth data collection. Both methods 

performed approximately equally well at classifying segments as either deciduous or coniferous, 

with overall accuracies at 91% and user’s accuracies in the same range. Segmentation and 

coniferous/deciduous classification accuracies that I produced with the Dalponte2016 algorithm 

were similar to those reported by previous research (Kim et al. 2011). Species classification 

accuracies were lower than those reported by the limited prior research in the Pacific Northwest 

(Kim et al. 2009; Kim et al. 2011; Vaughn et al. 2012) which was probably due to the size of my 
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study area, the density of the stands, and the amount of variation in forest structure across the 

watershed. Future research should investigate using a greater variety of canopy morphology 

metrics as input variables and should explicitly consider multiple scales and resolutions when 

deriving input lidar metrics used to classify tree species. 
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5.0 - Appendices 

5.1. Appendix A: k-means clustering on random vs. non-random ground truth plots 

True random selection of all plot locations was impractical due to land access constraints 

and safety concerns. I used a cluster analysis to check whether this had introduced any detectable 

bias to the plot-level data. I used k-means clustering with 50 iterations to cluster ten plot-level 

variables into two groups. Input variables included measures such as average diameter, stem 

density, percent conifer, and basal area. Then, I compared the k-means-generated groups to the 

real-world group membership (random vs non-random location selection). If the method used to 

locate plots had an effect, then one would expect the k-means-generated groups to correspond to 

whether each plot location had been randomly selected or not.  

K-means clustering did not show any difference between randomly selected plots and

manually-selected locations. Of the ten variables that were assessed, percent dominant and 

percent conifer were the most different between k-means-generated groups. However, even 

along these variables there was no clear separation into two groups, and k-means group 

membership did not correspond to random vs non-random group membership (Figure 1-A). 



113

Figure A-1: Results of k-means clustering on plot-level variables (n=104). Plots were sorted into 

two stable clusters over 50 iterations. The k-means-generated clusters did not correspond to 

whether the plot location was random or not. If there had been an effect, most triangles in the plot 

above would have been blue and most circles would have been orange (or vice versa). The 

misclassification rate was extremely high, with the majority of the random plots misclassified.  
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5.2. Appendix B: Height/Diameter curves 

Figure B1: Height prediction curve for red alder (Alnus Rubra). n = 635 observations from 104 

plots. 
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Figure B2: Height prediction curve for bigleaf maple (Acer macrophyllum). n = 209 observations 

from 104 plots. 
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Figure B3: Height prediction line for paper birch (Betula papyrifera). n = 22 observations from 

104 plots. 



117

Figure B4: Height prediction line for cascara (Rhamnus purshiana). n = 31 observations from 104 

plots. 
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Figure B5: Height prediction curve for western redcedar (Thuja plicata). n = 283 observations 

from 104 plots. 
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Figure B6: Height prediction curve for bitter cherry (Prunus emarginata). n = 8 observations from 

104 plots. 
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Figure B7: Height prediction curve for black cottonwood (Populus balsamifera ssp. trichocarpa). 

n = 297 observations from 104 plots. 
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Figure B8: Height prediction curve for Douglas fir (Pseudotsuga menziesii). n = 201 observations 

from 104 plots. 
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Figure B9: Height prediction curve for western hemlock (Tsuga heterophylla). n = 241 

observations from 104 plots. 
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Figure B10: Height prediction curve for Sitka spruce (Picea sitchensis). n = 79 observations 

from 104 plots. 
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Figure B11: Mean height for vine maple (Acer circinatum). n = 23 observations from 104 plots. 

There was no significant relationship between height and diameter, and the mean height was 

used for all predictions. 
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Figure B12: Height mean for willow (Salix spp.). n = 39 observations from 104 plots. There was 

no significant relationship between height and diameter, so the mean height was used for all 

predictions. 
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5.3. Appendix C: Watershed-scale shade model script for current conditions 

I created a workflow (two scripts and some manual geoprocessing) that uses lidar-derived 

leaf area index to correct outputs from the Area Solar Radiation (Spatial Analyst) tool in ArcGIS 

Pro (Figure C1) for a limited area (it processes the river, but not the surrounding gravel bars). 

The output is a raster showing the estimated amount of solar radiation on the water surface 

taking into account both topographic shading and semi-transparent canopy shading. This 2-part 

script was written in Python 3.6 using ArcPy tools and is available for download from my github 

repository (https://github.com/Julia7/NooksackShade2). 

Figure C1: Conceptual process for correcting shade outputs using leaf area index. Raster A is the 

output from Esri’s Area Solar Radiation tool run on the digital terrain model (bare ground), raster 

B is the output from the solar radiation tool run on a digital surface model (canopy surface), and 

raster C is the corrected output shade model. 
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Workflow Description: 

For the inundated area of the river, part 1 of the script determines which direction the 

shade is coming from, calculates the mean leaf area index for the bank casting the shadows, and 

then estimates the proportion of sunlight that would reach the water surface based on the 

modeled transmissivity of the vegetation. The output is a series of partially overlapping tiff 

rasters in the GoodOutputs folder (Figure C2) and shapefiles in the ErrorOutputs folder. The files 

in the GoodOutputs folder need to be mosaiced together into a single raster, with the "mean" 

option used for the overlapping areas. The ErrorOutputs file contains any sub-reaches that the 

script was unable to process (this is usually related to complex geometry, which is a problem in 

braided channel areas). Once part 1 is finished, I would recommend merging the GoodOutputs in 

the GUI, then filling in any significant holes by hand (i.e. look at the leaf area index of the bank 

casting the deepest shadows, use equation 1 (from Richardson et al. 2009) to calculate the 

transmissivity of the canopy, and then assign the transmissivity value to the missing data area). 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =  
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑒𝑙𝑜𝑤 𝑐𝑎𝑛𝑜𝑝𝑦

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑏𝑜𝑣𝑒 𝑐𝑎𝑛𝑜𝑝𝑦
= 𝑒−𝑘𝐿 Eq.1 

where the extinction coefficient k = 0.47687, and L = leaf area index. 

If you just want to add nodata values to all the Error areas, you can do this easily by 

adding a new field to the inundated area polygon ("RiverArea") filled with the nodata value, 

converting the inundated area polygon to raster, and then using the Mosaic to New Raster tool to 

combine it with the other rasters. Use the Mosaic Operator parameter to specify that the error 
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values should only be copied if the is nothing in the canopy transmissivity layer (with the good 

values).  

Once you are satisfied with the coverage of the canopy transmissivity layer, save it as 

"canopy_transmissivity" in the GDB (Figure C2) (snap the cells to the "DTM_minus_DSM" 

layer) and then run Part 2 (which corrects the shade values). 

Figure C2: File hierarchy underlying scripts under starting conditions. 

Limitations and appropriate use: 

This script is intended to be used on watershed-scale analyses where a more detailed 

manual approach would be cost-prohibitive. If you are only working with one or two reaches, it 

is probably better to assign transmissivity modifiers by hand. This script is most likely to mis-
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calculate transmissivity or give error values for sub-reaches with a north/south orientation and on 

sub-reaches that are very curved (U-shaped) relative to their width (usually these are short side 

channels). 
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Appendix D: Priority matrices and associated data 

Table D1: Reach priority rankings, overall priority score, and location 

Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

0 561976 5409492 0.75 2 0.5 0 0 3.25 

71 565437 5386101 1 2 2 0 1 6 * 

83 565698 5385809 1 2 2 0 1 6 * 

84 565030 5388100 1 1 0 1 1 4 

90 565644 5386526 1 1 0 1 1 4 

97 564838 5387637 1 1 0 1 1 4 

103 577166 5416464 1 1.5 0 2 0 4.5 

107 566217 5385076 1 1.5 0.5 0 1 4 

110 558379 5396774 1 2 0 0 1 4 

112 566096 5385547 1 1.5 0 0 1 3.5 

115 558817 5404423 1 2 0 0 1 4 

117 566914 5384549 1 2 1 1 1 6 * 

119 583511 5417311 1 2 0 2 0 5 

123 557567 5400488 1 2 1 1 1 6 * 

125 562535 5412997 0.75 2 0 1 0 3.75 
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Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

129 558317 5403122 1 2 0 0 1 4 

130 557742 5401870 1 2 0 0 1 4 

132 558387 5397240 1 2 0 0 1 4 

133 566492 5384746 1 2 2.5 0 1 6.5 ** 

136 558811 5396564 1 2 1 1 1 6 * 

141 558806 5403917 1 2 0 0 1 4 

143 558312 5407142 0.25 1 0 1 0 2.25 

145 557654 5401403 1 2 0 0 1 4 

146 567017 5417678 0.75 1 0 1 0 2.75 

147 557586 5400939 1 2 0 0 1 4 

148 561279 5392209 1 1 0 1 1 4 

149 572803 5418500 1 2 0.5 2 0 5.5 

150 551849 5410016 0.25 2 0 0 0 2.25 

152 558434 5397660 1 2 1 0 1 5 

153 558534 5403534 1 2 0 0 1 4 

154 559503 5395931 1 1 0.5 1 1 4.5 

155 572140 5419134 1 1.5 1.5 2 0 6 * 

159 562203 5415084 0.75 2 0 1 0 3.75 
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Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

162 563037 5408798 1 1.5 1 0 0 3.5 

166 562184 5414181 0.75 2 0.5 1 0 4.25 

167 561242 5394020 1 1.5 0 1 1 4.5 

169 562678 5415940 0.75 2 1 1 0 4.75 

172 563229 5416607 0.75 2 0 0 0 2.75 

174 557972 5397824 1 2 1 0 1 5 

175 553239 5409195 0.25 2 0 0 0 2.25 

176 569907 5419562 0.75 1.5 0 2 0 4.25 

177 566556 5417601 0.75 1 0 0 0 1.75 

178 558809 5405179 1 1.5 0 1 1 4.5 

179 551641 5410505 2.5 1.5 0 0 0 4 

182 559058 5404921 1 2 0 0 1 4 

184 557775 5402370 1 1 0.5 0 1 3.5 

185 563472 5408597 1 2 2 1 0 6 * 

186 553153 5409704 0.25 2 0 0 0 2.25 

187 573324 5417648 1 2 0.5 2 0 5.5 

190 548648 5415485 0.25 1.5 0.5 0 0 2.25 

191 567610 5418312 0.75 1.5 0 2 0 4.25 
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Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

192 557925 5398316 1 2 0 1 1 5 

193 552222 5409848 0.25 2 0 0 0 2.25 

194 564057 5405340 1 2 0.5 1 0 4.5 

195 562400 5412511 0.75 2 0 0 0 2.75 

196 557856 5399161 1 1.5 0 2 1 5.5 

197 560042 5395291 1 1.5 1 1 1 5.5 

198 563847 5406295 1 1.5 2 1 0 5.5 

199 552709 5409855 0.25 1.5 0 0 0 1.75 

200 558067 5402678 1 2 0 0 1 4 

201 562145 5414645 0.75 2 2 0 0 4.75 

202 563496 5416992 0.75 2 2 0 0 4.75 

203 559648 5395501 1 2 0 0 1 4 

205 561457 5393583 1 2 0.5 0 1 4.5 

208 563951 5417093 0.75 2 0 0 0 2.75 

209 564298 5404946 1 2 0.5 0 0 3.5 

211 563046 5416175 0.75 2 0.5 0 0 3.25 

212 554456 5408810 0.25 2 0 0 0 2.25 

213 564450 5417016 0.75 2 0 0 0 2.75 



134

Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

214 564898 5417121 0.75 2 2 0 0 4.75 

215 553569 5408815 0.25 2 0.5 0 0 2.75 

216 561431 5393103 1 2 0 0 1 4 

217 555286 5408356 0.25 1.5 0 0 0 1.75 

218 563568 5407679 1 1.5 2 2 0 6.5 ** 

219 564913 5404276 1 1.5 0.5 1 0 4 

220 562466 5411545 0.75 2 0 0 0 2.75 

221 562034 5410171 0.75 2 0.5 0 0 3.25 

222 562348 5411064 0.75 2 0 0 0 2.75 

223 565788 5417143 0.75 2 1 0 0 3.75 

224 558895 5406666 0.5 2 0 0 0 2.5 

225 562189 5410606 0.75 2 0 0 0 2.75 

226 561239 5392658 1 2 0.5 0 1 4.5 

227 556647 5407922 0.25 2 0 0 0 2.25 

228 559630 5407167 0.5 2 0 0 0 2.5 

229 566204 5417374 0.75 1 0 0 0 1.75 

230 555789 5408306 0.25 1.5 0 0 0 1.75 

231 563746 5406760 1 1.5 0.5 1 0 4 
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Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

232 554835 5408455 0.25 1.5 0 0 0 1.75 

233 557558 5407680 0.25 1 0 1 0 2.25 

234 550348 5412445 0.25 2 0 0 0 2.25 

235 562716 5409180 1 2 0 0 0 3 

237 550661 5412078 0.25 2 0 1 0 3.25 

238 565334 5417365 0.75 2 2 0 0 4.75 

239 561636 5409024 0.5 2 0 0 0 2.5 

240 562447 5412043 0.75 2 0 0 0 2.75 

242 557102 5407694 0.25 2 0 0 0 2.25 

243 551377 5410844 0.25 1.5 0 1 0 2.75 

244 564622 5404586 1 1.5 0.5 0 0 3 

246 559328 5406801 0.5 2 0.5 0 0 3 

247 554015 5408941 0.25 2 1 0 0 3.25 

248 550065 5412869 0.25 2 0 1 0 3.25 

249 556245 5408137 0.25 1 0 0 0 1.25 

250 558411 5406677 0.25 1.5 0 0 0 1.75 

251 560329 5407765 0.5 2 0 0 0 2.5 

252 559860 5407609 0.5 2 2 0 0 4.5 
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Reach 

ID 

Reach center coordinates 

(NAD 1983 UTM 10N) 

Priority rankings: Overall 

score 

Top 

scores 

Easting Northing Catchment 

size ranking 

Impairment 

score 

Shade Proximity to 

good habitat 

South fork? 

253 561151 5408207 0.5 2 1 0 0 3.5 

254 560771 5407952 0.5 2 0 0 0 2.5 

256 561414 5408604 0.5 2 0 0 0 2.5 

257 548950 5413711 0.25 2 0 1 0 3.25 

260 548701 5414593 0.25 2 0 0 0 2.25 

261 549093 5414251 0.25 2 0 0 0 2.25 

262 548665 5415108 0.25 2 0 0 0 2.25 

264 558648 5406220 1 1 0 1 1 4 

265 562362 5409382 1 2 2 0 0 5 
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Table D2: Reference key for shade model code and priority scores 

REFERENCE KEY 

CODE DESCRIPTION Priority rank (0-3) 

0 Moderate increase in shade; affects sub-reaches > 30 m wide 1 

1 Substantial increase in shade; affects sub-reaches > 30 m wide 1.5 

2 Substantial increase in shade; affects sub-reaches 15 - 30 m wide 2.5 

3 Moderate increase in shade; affects sub-reaches 15 - 30 m wide 2 

4 Moderate or substantial increase in shade; affects sub-reaches < 15 m wide 3 

5 Small increase in shade; affects sub-reaches < 30 m wide 0.5 

6 Small increase in shade affecting sub-reaches > 30m wide, or no effect 0 

“Small effect” < 5% area of the river has input energy reductions of ≥1 kWh 

“Moderate effect” 5-10% area of the river has input energy reductions of ≥1 kWh

“Large effect” > 10 % area of the river has input energy reductions of ≥1 kWh

Note: Widths refer to the section that is shaded, not necessarily the overall reach width 
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Table D3: Reach-level riparian condition, surface area, length, width, catchment area, percent shade increase, shade code (see table 

D2) and shade priority score for each reach. 

Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

0 45 63935 40523 3121 1011 40.1 20.5 746.0534 6.66 1.32 5 0.5 

71 27 23570 11332 1565 465 24.4 15.1 209.6356 20.02 6.22 3 2 

83 34 17527 14709 814 451 32.6 21.5 209.28 12.32 5.68 3 2 

84 45 22700 22700 606 537 42.3 37.5 226.0497 1.13 0.00 6 0 

90 40 17802 16478 748 527 31.2 23.8 216.2284 0.11 0.01 6 0 

97 47 25315 24197 727 560 43.2 34.8 225.0989 0.00 0.00 6 0 

103 41 27058 24321 944 656 37.1 28.7 390.3303 4.11 2.14 6 0 

107 45 17270 17270 551 551 31.4 31.4 205.9964 25.60 0.35 5 0.5 

110 39 26389 24484 826 508 48.2 31.9 396.8188 26.26 1.87 6 0 

112 41 21979 21774 685 548 39.7 32.1 208.0495 24.94 1.34 6 0 

115 9 27572 26328 630 521 50.6 43.8 464.5726 33.90 0.18 6 0 

117 35 16397 12617 930 580 21.8 17.6 186.7729 22.49 6.34 0 1 

119 42 18497 7243 1485 441 16.4 12.5 275.6403 0.00 0.00 6 0 

123 23 22948 22948 919 499 46.0 25.0 421.2272 55.84 5.08 0 1 

125 46 33020 30551 909 517 59.0 36.3 719.6134 0.14 0.05 6 0 

129 24 24957 24957 511 511 48.8 48.8 438.4377 53.13 1.42 6 0 

130 43 31904 28323 981 533 53.1 32.5 424.2987 3.97 0.01 6 0 

132 25 27274 22509 1269 630 35.7 21.5 403.4258 32.32 3.84 6 0 
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Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

133 46 24763 15238 1500 525 29.0 16.5 205.087 14.03 14.37 2 2.5 

136 23 22481 20200 842 606 33.3 26.7 396.2993 20.34 7.99 0 1 

141 38 25262 25262 646 544 46.4 39.1 440.4764 15.74 0.04 6 0 

143 32 33643 29719 932 527 56.4 36.1 1499.6069 6.03 0.00 6 0 

145 18 30839 30009 734 549 54.6 42.0 424.2581 27.45 0.17 6 0 

146 47 16641 16363 667 540 30.3 25.0 589.715 3.32 0.66 6 0 

147 25 22795 22795 732 577 39.5 31.2 421.9435 44.25 0.84 6 0 

148 46 26630 25000 663 520 48.1 40.2 332.1962 4.56 2.92 6 0 

149 43 29236 21515 1590 772 27.9 18.4 506.9295 34.99 1.61 5 0.5 

150 46 38143 38143 532 532 71.7 71.7 1528.9346 2.94 0.62 6 0 

152 23 28192 20454 1230 704 29.1 22.9 406.0294 21.99 6.75 0 1 

153 41 25035 25035 613 567 44.1 40.8 438.5922 25.91 2.28 6 0 

154 43 23452 23452 572 572 41.0 41.0 388.9097 30.24 4.23 5 0.5 

155 49 20686 17212 840 504 34.1 24.6 515.7075 22.85 15.65 1 1.5 

159 47 41423 20768 2106 533 39.0 19.7 711.3443 4.63 0.84 6 0 

162 43 21851 15931 1024 541 29.4 21.3 235.7069 10.82 5.95 0 1 

166 45 31406 17387 1689 564 30.8 18.6 714.2974 11.20 0.05 5 0.5 

167 46 24331 20474 799 470 43.6 30.4 341.027 6.81 1.02 6 0 

169 25 28728 15864 1541 376 42.1 18.6 606.4231 17.69 7.20 0 1 

172 31 44286 15812 3286 557 28.4 13.5 599.9717 1.40 0.05 6 0 
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Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

174 40 30613 28521 881 625 45.6 34.8 408.4944 17.67 7.27 0 1 

175 45 37804 36767 708 557 66.1 53.4 1523.1607 5.41 0.26 6 0 

176 48 16962 14257 829 512 27.9 20.5 540.3606 0.29 0.00 6 0 

177 46 21618 19471 834 465 41.9 25.9 591.6282 3.41 1.42 6 0 

178 25 36660 33635 1146 804 41.9 32.0 469.5598 22.84 3.81 6 0 

179 40 50341 46565 1065 487 95.6 47.3 1529.334 0.93 0.06 6 0 

182 18 44735 37051 1297 615 60.3 34.5 465.7474 23.44 0.08 6 0 

184 45 26810 26810 699 679 39.5 38.4 424.4423 48.08 0.03 5 0.5 

185 17 30183 14056 1298 519 27.1 23.3 231.7136 34.65 7.92 3 2 

186 34 47450 47450 586 586 81.0 81.0 1524.3364 0.00 0.00 6 0 

187 45 33248 18673 2007 679 27.5 16.6 501.2258 9.47 2.32 5 0.5 

190 22 40758 18064 1937 393 46.0 21.0 1603.3935 19.14 3.37 5 0.5 

191 42 20063 19858 608 531 37.4 33.0 556.9893 0.86 0.00 6 0 

192 40 33411 29583 1118 666 44.4 29.9 413.1627 6.52 0.44 6 0 

193 38 41464 41464 618 521 79.6 67.0 1525.2613 3.07 3.90 6 0 

194 41 17745 11857 1437 535 22.2 12.3 221.3938 20.25 4.07 5 0.5 

195 40 35965 25725 1436 588 43.7 25.0 719.749 3.47 0.01 6 0 

196 42 31376 27640 1053 608 45.5 29.8 415.7357 12.00 0.11 6 0 

197 47 20664 18920 583 472 40.1 35.4 387.2954 13.54 7.23 0 1 

198 35 26862 10331 1804 529 19.5 14.9 225.1051 26.11 6.13 3 2 



141

Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

199 24 36043 36043 505 505 71.4 71.4 1524.4605 2.39 1.94 6 0 

200 33 24871 22552 922 790 28.5 27.0 432.0986 16.99 0.12 6 0 

201 36 37081 20654 2035 519 39.8 18.2 714.2831 18.07 5.26 3 2 

202 32 31963 16972 2055 470 36.1 15.6 599.6583 10.80 8.96 3 2 

203 28 34719 28579 1474 795 36.0 23.5 387.7842 13.89 1.66 6 0 

205 41 23823 20384 986 618 33.0 24.2 335.2612 17.03 2.21 5 0.5 

208 41 50995 18026 3803 617 29.2 13.4 599.1463 0.79 0.81 6 0 

209 39 20408 14153 1401 602 23.5 14.6 209.0683 14.89 3.05 5 0.5 

211 20 46982 16780 3347 625 26.9 14.0 606.2734 7.44 3.04 5 0.5 

212 41 41466 35768 893 537 66.6 46.5 1518.7245 7.96 1.94 6 0 

213 31 25712 19227 1297 551 34.9 19.8 598.6564 6.27 3.50 6 0 

214 31 34465 18111 2040 580 31.2 16.9 598.1773 11.34 5.82 3 2 

215 16 39727 30483 1288 602 50.6 30.9 1522.4753 16.61 3.49 5 0.5 

216 35 25004 20491 1129 590 34.7 22.2 333.0381 0.71 0.00 6 0 

217 39 41545 41545 508 508 81.7 81.7 1517.0102 5.53 4.00 6 0 

218 33 27012 16221 1718 663 24.5 15.7 228.5976 40.08 9.88 3 2 

219 46 21214 14620 1099 560 26.1 19.3 196.0929 10.81 0.73 5 0.5 

220 36 40723 20256 2329 491 41.3 17.5 720.684 6.60 1.02 6 0 

221 36 33002 12853 1878 466 27.6 17.6 731.8751 14.47 2.05 5 0.5 

222 23 41381 21482 1494 593 36.2 27.7 729.7949 0.38 0.00 6 0 
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Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

223 22 38957 27618 1911 698 39.6 20.4 592.6235 15.29 6.76 0 1 

224 38 39593 26133 1437 585 44.6 27.5 1020.7987 4.12 1.21 6 0 

225 43 26684 19245 1059 537 35.9 25.2 731.6644 2.10 0.00 6 0 

226 33 26835 18814 1283 598 31.4 20.9 332.5021 14.87 3.12 5 0.5 

227 30 53470 41237 2036 701 58.8 26.3 1503.7797 0.14 0.03 6 0 

228 31 22365 18282 760 454 40.3 29.4 1018.9463 0.00 0.00 6 0 

229 36 19933 19346 606 476 40.7 32.9 591.716 3.95 2.12 6 0 

230 32 37106 36118 667 587 61.5 55.6 1516.4647 4.45 0.01 6 0 

231 48 29153 11423 2237 549 20.8 13.0 225.4178 38.74 3.48 5 0.5 

232 30 38922 36315 962 542 67.0 40.5 1518.2769 0.00 0.00 6 0 

233 31 34795 34795 458 458 75.9 75.9 1501.0367 4.06 4.93 6 0 

234 41 61627 21810 2205 522 41.8 28.0 1562.2189 1.70 0.01 6 0 

235 48 16042 13887 822 522 26.6 19.5 259.3208 0.12 0.00 6 0 

237 17 72108 44577 2071 523 85.2 34.8 1558.6865 5.02 1.48 6 0 

238 32 26556 9473 1506 366 25.9 17.6 597.6264 6.38 5.40 3 2 

239 44 52963 25331 2031 574 44.1 26.1 1006.7838 2.64 1.83 6 0 

240 34 41059 27684 2304 582 47.5 17.8 720.679 3.49 0.43 6 0 

242 29 76861 39397 2380 615 64.0 32.3 1503.3946 2.02 1.00 6 0 

243 47 28502 26914 875 462 58.2 32.6 1529.4236 5.68 1.47 6 0 

244 44 14691 13340 756 521 25.6 19.4 208.0249 20.33 1.83 5 0.5 
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Reach 

ID 

Riparian 

condition 

All 

river 

area 

Main 

channel 

area 

All 

river 

length 

Main 

channel 

length 

Main 

channel 

width 

All 

channel 

width 

Catchment 

area 

Percent area shaded up to 

each cutoff 

Shade 

Code 

Shade 

priority 

score 

% "good" 

or above 

sq. 

meters 

sq. 

meters 

meters meters meters meters sq. km Percent 

<1kWh 

Percent ≥ 

1kWh 

246 30 48507 30429 2479 616 49.4 19.6 1020.3365 12.86 1.73 5 0.5 

247 18 36777 25328 1540 623 40.6 23.9 1519.4735 7.30 5.78 0 1 

248 47 66214 53966 1494 716 75.4 44.3 1562.3539 1.43 0.00 6 0 

249 45 41208 41012 887 674 60.9 46.4 1515.8241 0.00 0.00 6 0 

250 45 37874 37511 772 727 51.6 49.1 1498.9515 2.60 0.00 6 0 

251 27 49441 26702 2037 574 46.5 24.3 1017.0592 0.67 0.13 6 0 

252 26 39316 25218 2025 510 49.5 19.4 1017.4361 7.81 5.42 3 2 

253 38 38290 23301 1279 520 44.8 29.9 1008.1756 4.60 0.37 5 1 

254 41 46741 19270 2069 495 38.9 22.6 1012.5538 0.48 0.24 6 0 

256 33 37341 28204 1143 529 53.3 32.7 1006.9979 7.25 0.02 6 0 

257 47 48352 32710 1748 488 67.0 27.7 1563.8003 4.05 0.24 6 0 

260 28 77963 39978 2964 809 49.4 26.3 1602.0589 1.78 0.56 6 0 

261 38 79395 34569 2583 742 46.6 30.7 1564.2383 2.09 0.81 6 0 

262 17 82567 39516 2826 680 58.1 29.2 1603.2248 4.83 0.83 6 0 

264 46 27027 25095 770 623 40.3 35.1 475.0034 1.83 2.28 6 0 

265 42 23266 8074 1820 416 19.4 12.8 260.2887 9.75 8.78 3 2 
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Table D4: Anthropogenic influence over channel, determined based on basic satellite imagery (Esri...2020). The “main factor” and 

“secondary factor” columns are the main and secondary apparent causes of the low RCI score for these reaches. 
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107 x x x x x 1.5 

110 x x x x x 2 

112 x x x x x 1.5 

115 x x x x x 2 
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125 x x x x x 2 
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5.5. Appendix E: Results from Silva2016 individual tree models 

Table E1: Results of individual-tree-based models of forest structure based on the Silva2016 

algorithm in the lidR package. Segments were ground-truthed with one dominant tree per segment. 

n = 1037 segments from 97 plots. Mixed models were calculated using R packages “nlme” 

(Pinheiro et al. 2020) and “lme4” (Bates et al. 2015). 

SEGMENT-BASED ANALYSIS – SILVA 2016 METHOD 

RMSE ± std. dev. Model Parameters 

Tree height 2.50 ± 2.46 m 

(6.63 ± 5.22 m) 

Linear mixed-effect model 

(lme4 package) 

Height of lidar-

derived tree top 

Tree DBH 9.10 ± 10.56 cm 

(13.13 ± 9.21 cm) 

Linear mixed-effect model 

(nlme package)  

Fixed variances 

Height of lidar-

derived tree top 

Table E2: Confusion matrix for deciduous versus coniferous classification using the Silva2016 

segments. Composition was modeled with a generalized linear mixed model (Bates et al. 2015) on 

mean intensity (scaled by 1/1000) with random intercepts and plot as a random effect. 

SEGMENT-BASED ANALYSIS – SILVA 2016 METHOD 

Field control 

Conifer Deciduous Row total 

Classification 

Conifer 291 33 324 

Deciduous 66 684 750 

Column total 357 717 1074 

Producer’s accuracy User’s accuracy 

Conifer = 291/357 = 82% Conifer = 291/324 = 90% 

Deciduous = 684/717 = 95% Deciduous = 684/750 = 95% 

Overall accuracy = (291+684)/1074 = 91% 

Kappa = 0.79 
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Appendix F: Plot-level ground-truth data 

Table F: Plot-level ground-truth data for 104 plots along the Nooksack River, Washington.  Plots were circular with a 15-meter radius. 

Data was collected during summer 2019.  “Random” indicates whether the plot location was randomly chosen or not.  “Stems” are 

defined as discrete trunks at breast height (1.37 meters); a tree could have multiple stems if it forked below breast height.  Dominant 

trees were overstory trees that made up part of the upper canopy.  Height units are given in meters, DBH units are in centimeters, basal 

area is in square meters per hectare, and stem density represents stems per hectare.   

Plot ID Random? Mean 

height 

SD 

height 

Mean 

DBH 

SD 

DBH 

Stem 

count 

Tree 

count 

Snag 

count 

Broken 

count 

Forked 

count 

Pct. 

Dominant 

Pct. 

Conifer 

Basal 

area 

Stem 

density 

28 Y 21.2 3.6 35.1 10.6 28 28 1 1 2 86 4 167.2 429 

1 Y 19.4 6.7 33.0 16.3 30 28 2 0 1 73 0 179.1 300 

7 Y 18.0 2.5 26.0 6.5 21 21 0 0 1 91 5 66.8 243 

11 N 19.8 7.4 41.5 21.9 17 17 5 0 1 65 77 164.3 429 

12 Y 21.2 10.8 30.4 16.4 30 30 18 5 0 60 3 157.5 314 

15 Y 21.3 8.2 44.6 19.5 22 19 1 0 1 77 27 230.6 129 

17 N 20.9 8.2 59.1 19.3 9 9 1 0 0 89 56 152.9 314 

23 Y 21.8 7.6 34.5 14.6 22 20 1 1 0 82 9 136.3 400 

33 N 19.0 7.3 26.1 13.5 72 71 21 0 0 40 96 275.1 1029 

39 Y 28.2 9.6 85.9 45.4 11 10 NA NA 0 91 64 452.1 157 

46 Y 14.6 4.2 19.1 7.7 54 51 4 1 0 83 15 101.7 771 

54 Y 17.6 2.7 26.7 8.2 33 33 1 1 0 94 0 114.0 471 

57 Y 18.3 7.8 35.6 23.5 50 50 9 3 0 52 82 401.2 714 

58 N 25.0 11.8 35.3 17.4 49 49 4 3 0 53 86 335.8 700 

66 Y 14.7 9.0 46.6 27.4 11 10 0 0 0 82 18 139.4 157 

68 Y 16.6 5.4 20.9 8.5 40 40 4 1 0 63 0 90.3 571 

70 Y 25.7 11.2 50.4 33.6 9 5 NA NA 0 67 0 141.9 129 

72 Y 20.7 7.1 34.3 15.4 24 24 2 0 0 88 79 149.6 343 

73 Y 15.4 6.8 21.2 9.3 51 49 10 5 1 59 2 121.0 729 

75 Y 13.8 7.9 25.9 14.0 21 16 0 0 0 76 24 79.9 300 

85 Y 16.8 4.6 26.7 11.7 40 40 6 0 0 83 3 150.5 571 

86 Y 14.1 7.5 29.7 15.6 21 21 0 0 0 91 0 104.2 300 

90 Y 20.2 11.7 30.6 16.9 44 43 7 2 0 48 25 237.8 629 

91 Y 14.2 5.5 18.2 7.2 51 50 NA NA 0 65 33 86.4 729 

101 Y 22.8 12.4 40.5 29.3 18 18 3 1 0 50 28 195.6 257 

102 Y 18.7 6.0 37.9 21.7 24 18 NA NA 1 54 21 201.7 343 

108 Y 10.7 8.2 26.8 21.2 25 24 2 2 0 84 4 127.8 357 

110 Y 17.8 5.9 32.2 15.2 40 36 4 0 1 63 13 224.9 571 
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Plot ID Random? Mean 

height 

SD 

height 

Mean 

DBH 

SD 

DBH 

Stem 

count 

Tree 

count 

Snag 

count 

Broken 

count 

Forked 

count 

Pct. 

Dominant 

Pct. 

Conifer 

Basal 

area 

Stem 

density 

116 Y 21.6 12.7 40.5 22.9 14 14 2 1 1 50 7 132.6 200 

118 Y 16.3 7.0 20.6 8.7 75 69 7 7 0 60 17 165.9 1071 

120 N 18.9 9.0 36.1 20.0 36 36 10 4 0 47 83 270.3 514 

121 Y 9.1 1.1 13.4 3.2 37 37 0 0 0 89 0 31.3 529 

122 Y 16.4 2.6 16.6 4.3 82 82 2 0 0 92 0 107.4 1171 

125 Y 23.5 9.0 39.4 15.4 49 49 7 6 0 71 82 389.3 700 

128 Y 18.7 11.1 37.2 21.6 46 46 12 5 0 44 89 376.6 657 

133 Y 21.7 14.3 34.8 23.1 51 51 9 0 0 35 94 393.3 729 

135 Y 19.9 8.9 35.4 19.9 33 32 6 1 0 55 61 240.2 471 

136 Y 25.4 14.4 50.5 21.7 27 27 4 3 0 52 59 359.8 386 

139 Y 23.0 17.3 71.9 57.4 16 16 2 1 3 56 75 587.9 229 

140 Y 20.8 11.7 36.5 21.5 67 64 5 2 0 37 99 532.9 957 

144 Y 33.7 12.9 58.3 23.7 18 18 0 0 0 72 94 314.2 257 

153 N 17.4 5.5 27.1 8.0 35 34 3 0 0 66 37 123.8 500 

161 N 16.8 7.9 30.6 14.2 37 37 4 4 0 49 49 186.2 529 

162 N 18.8 8.4 31.8 18.2 19 15 6 1 3 74 0 112.1 271 

163 N 20.0 9.9 37.1 22.3 26 24 2 1 1 58 4 214.7 371 

164 N 12.0 4.5 16.9 5.8 57 57 2 5 0 63 0 81.1 814 

167 Y 15.4 4.7 20.6 8.8 21 19 1 0 0 91 0 46.5 300 

200 N 21.5 12.8 44.0 29.1 35 35 4 3 0 69 86 429.0 500 

201 N 13.7 3.0 16.7 4.1 43 43 19 4 0 72 0 56.5 614 

202 N 16.4 9.4 37.3 25.9 25 24 4 2 1 72 68 225.9 357 

203 N 14.2 5.7 21.0 10.0 51 51 4 2 0 59 22 122.2 729 

204 N 16.2 3.9 19.9 6.9 60 60 5 1 0 82 0 118.3 857 

205 N 17.7 6.9 23.9 12.0 56 46 7 3 0 45 0 176.9 800 

206 N 13.1 3.0 17.8 7.8 47 47 4 1 1 87 2 78.5 671 

207 N 12.5 2.3 15.6 4.1 44 43 7 0 0 93 0 51.0 629 

208 N 20.3 10.7 31.4 19.1 46 45 11 2 0 33 26 274.3 657 

209 N 18.8 8.7 34.8 18.4 46 46 14 9 0 54 65 315.5 657 

210 N 20.4 7.7 27.9 14.5 52 50 9 0 1 48 69 227.3 743 

211 N 10.6 5.4 26.3 8.8 15 14 0 0 0 47 60 51.0 214 

212 N 14.0 4.4 21.0 7.1 39 31 8 4 0 85 18 84.7 557 

213 N 17.7 6.2 27.1 10.2 32 32 3 2 2 66 16 119.0 457 

214 N 5.9 0.7 27.0 7.0 5 4 0 0 0 100 100 17.1 71 

215 N 16.7 6.7 31.2 19.8 25 24 4 1 0 80 40 149.8 357 

216 N 18.6 8.1 30.2 12.5 27 27 3 2 0 52 59 127.2 386 

217 N 24.5 11.9 46.1 27.5 26 26 2 0 0 65 89 330.1 371 

218 N 17.8 7.9 42.9 21.0 14 14 6 4 0 64 21 140.2 200 

219 N 19.9 10.3 33.8 18.4 49 45 7 4 0 35 51 322.0 700 

220 N 17.8 11.4 30.9 25.4 32 32 3 2 0 63 84 224.7 457 
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Plot ID Random? Mean 

height 

SD 

height 

Mean 

DBH 

SD 

DBH 

Stem 

count 

Tree 

count 

Snag 

count 

Broken 

count 

Forked 

count 

Pct. 

Dominant 

Pct. 

Conifer 

Basal 

area 

Stem 

density 

221 N 25.1 12.3 37.2 17.8 33 33 3 0 0 49 100 248.2 471 

222 N 15.9 9.7 27.0 19.6 45 45 5 0 0 51 78 220.7 643 

223 N 23.8 9.9 50.3 23.5 29 29 5 3 1 69 62 394.5 414 

224 N 18.2 6.7 28.2 26.2 23 17 0 0 0 61 4 148.4 329 

225 N 16.8 10.1 26.6 15.1 67 66 16 1 0 39 94 277.0 957 

226 N 17.2 6.4 28.8 23.7 37 36 6 2 0 62 35 226.1 529 

227 N 23.7 14.1 48.0 29.9 26 26 3 3 0 50 92 366.0 371 

228 N 16.4 6.3 21.8 10.5 40 39 6 5 0 53 0 103.9 571 

229 N 21.2 13.3 47.4 30.9 30 30 6 4 0 43 87 422.8 429 

230 N 11.6 2.2 20.3 5.8 54 52 2 0 0 82 93 106.4 771 

231 N 21.0 13.4 42.9 38.2 34 34 4 0 1 35 85 491.6 486 

232 N 15.7 7.4 22.4 10.5 48 48 5 0 0 52 60 130.2 686 

233 N 11.4 3.8 18.9 11.8 10 9 3 0 0 100 10 21.4 143 

234 N 8.6 2.0 19.0 3.9 35 35 0 0 0 97 100 58.2 500 

235 N 19.5 10.8 39.2 31.2 29 27 4 7 1 41 10 318.7 414 

236 N 9.8 2.9 17.4 6.7 29 28 0 0 0 97 90 44.4 414 

237 N 10.7 2.4 12.6 1.8 11 11 0 0 0 100 0 7.9 157 

238 N 28.6 9.9 55.9 22.2 14 14 2 0 0 71 0 223.3 200 

239 N 12.7 5.9 19.6 8.4 12 12 2 1 0 67 0 24.1 171 

240 N 16.4 3.9 15.3 4.6 41 41 1 0 0 93 0 46.3 586 

241 N 15.3 8.3 29.9 33.5 34 33 7 4 0 79 41 299.8 486 

242 N 14.0 3.8 15.4 5.8 46 45 1 0 0 89 0 55.1 657 

243 N 18.6 10.2 29.7 14.7 38 38 5 2 0 55 95 184.9 543 

244 N 16.6 4.0 22.5 5.7 28 28 2 4 0 89 0 67.0 400 

245 N 5.5 2.5 11.1 0.9 3 3 0 0 0 100 0 1.7 43 

246 Y 16.2 3.9 16.7 5.3 58 58 1 0 0 79 12 78.8 829 

247 N 13.1 6.5 17.9 8.4 19 19 0 2 0 95 0 32.6 271 

248 N 12.9 3.3 17.1 5.3 46 46 1 0 0 83 0 65.8 657 

249 N 22.2 13.3 42.2 21.1 26 25 9 6 0 50 77 255.3 371 

250 N 15.6 3.0 15.1 4.3 87 87 3 1 0 74 0 95.6 1243 

251 N 22.7 10.7 46.2 16.5 25 25 7 7 1 60 72 265.7 357 

252 N 21.2 5.0 26.7 9.4 45 45 5 1 1 64 0 159.7 643 

253 N 20.8 5.8 31.6 12.5 33 33 2 0 0 67 6 168.4 471 

254 N 10.8 8.8 32.3 9.6 11 11 7 6 0 91 18 55.2 157 

255 N 18.9 9.1 46.4 23.7 19 19 4 1 1 68 58 226.9 271 

256 N 12.8 2.7 16.4 4.7 28 28 3 0 0 89 0 36.2 400 
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