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Abstract 

 

Long term monitoring in the Northern Gulf of Alaska (NGA) has shown that the high 
productivity of the region is closely coupled to lower trophic level food web dynamics. From 
previous observations of the NGA, we know that many nano- and dinoflagellates that compose 
this food web are mixotrophic, and therefore capable of both phagotrophy and phototrophy in a 
single cell. This behavior is believed to stabilize food webs by providing multiple pathways to 
energy and nutrients and may play an important role in the NGA, where environmental 
conditions are harsh and highly variable. To better understand the role of mixotrophic 
phytoflagellates in this region and how environmental factors drive mixotrophic behavior, field 
experiments and environmental sampling were conducted in summer and fall of 2019.  

For the dinoflagellate, nanoflagellate, and cryptophyte communities there was a relationship 
between ingestion and environmental factors, with responses being specific to each taxonomic 
group. For the nanoflagellate community, a positive correlation between Synechococcus 
concentration and ingestion and a negative correlation between phosphate concentration and 
ingestion were observed. Alternatively, the dinoflagellate and cryptophyte communities 
responded to ambient light, where a negative correlation between ingestion and irradiance was 
observed. These differing responses indicate that phytoflagellates in the NGA are utilizing 
mixotrophy for both energy and nutrient acquisition and that differences are taxonomically 
specific. This initial study of small-celled mixotrophy highlights the prevalence and importance 
of this strategy in the NGA and indicates it may be a key contributor to overall ecosystem 
resilience and productivity.   
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Introduction 

For decades, scientists have observed that many organisms classified as either 

phytoplankton or microzooplankton are both photosynthetic and phagotrophic (Stoecker et al. 

2017). This mixotrophic capacity has originated independently in many protist lineages and is 

ubiquitous throughout the global oceans (Faure et al. 2019; Leles et al. 2017).  In comparison 

with pure photo- or heterotrophy, mixotrophy has been shown to increase protist growth rates, 

photosynthetic ability, and winter survival (Flynn and Mitra 2009; Hansen et al. 2011; Millette et 

al. 2017; Schoener and Mcmanus 2017). Understanding how environmental conditions influence 

microplankton food webs is important for predicting ecosystem responses, particularly as global 

climate change alters precipitation, temperature and water column structure. Despite the 

observed prevalence of mixotrophy across lineages, until recently little was known about how 

communities utilizing this strategy respond to changes in environmental factors. The majority of 

field-based research on the subject focuses on individual species, rather than attempting to 

quantify mixotrophy at an ecosystem level. 

Given the independent evolution of mixotrophy across clades, this strategy has likely 

evolved as a response to a variety of environmental drivers, and therefore may have distinct 

functional responses between taxonomic groups. In laboratory studies, for example, some species 

of dinoflagellates show increased feeding with increased photosynthetically active radiation 

(PAR) while others show the opposite response (Jeong et al., 2010; Li et al., 2000, Skovgaard et 

al., 2000). In nanoflagellates, ingestion has been shown to negatively correlate with phosphate in 

multiple studies, indicating ingestion may act as a nutrient acquisition mechanism rather than an 

energy acquisition mechanism for this group (Arenovski et al. 1995; Tsai et al. 2011).  
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Global models accounting for mixotrophy show higher trophic transfer efficiency and 

carbon flux, better aligning model output with in-situ results (Ward and Follows, 2016). Due to 

the potential diverse responses of mixotrophs to environmental drivers, there is a push for trait-

based modeling approaches to be used when incorporating mixotrophy into biogeochemical and 

food web models (Flynn et al. 2013; Mitra et al. 2016). Broad estimates of mixotrophy do not 

allow us to fully understand how distinct taxonomic groups utilize this strategy; by pairing 

modeling efforts with studies that examine the functional responses of specific communities we 

are able to better depict lower trophic level dynamics. This approach not only better aligns 

models with food webs by accounting for mixotrophic behavior but also provides predictive 

power for the implications of this strategy in response to short-term and long-term environmental 

change.  

In recent years, a shift towards small cell dominance along continental margins (Schmidt 

et al. 2019) may indicate that long term changes in environmental conditions would favor 

mixotrophic organisms, particularly small mixotrophs that are able to capitalize on increased 

bacterial prey concentrations and decreased microzooplankton predators. Nutrient uptake 

through phagotrophy allows primarily photosynthetic organisms to compete with primarily 

heterotrophic organisms during periods of low irradiance (Millette et al. 2017) or, alternatively, 

to enhance their nutrient acquisition – and hence growth rate – at high irradiances (Hansen and 

Nielsen 1997; Kim et al. 2008; Stoecker et al. 1997), depending on the mixotrophic strategy. The 

competitive success of these strategies is apparent in the number of bloom-forming mixotrophic 

species, including harmful algal bloom (HAB) species such as those responsible for paralytic 

shellfish poisoning occurrence in Alaska waters (Jeong et al. 2005). 
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Long-term monitoring efforts in the Northern Gulf of Alaska (NGA) have characterized 

the region’s high variability in hydrological, chemical, and meteorological properties on 

seasonal, annual and interannual scales (Stabeno et al. 2004). These environmental conditions, 

and their variability, dictate the microplankton community structure and abundance (Strom et al., 

2006; Strom et al., 2007), the effects of which propagate throughout the food web. In years when 

the spring bloom is absent or delayed the impacts can be observed in metazoan abundance and 

juvenile fish stocks in correlated years (Cavole et al. 2016; Hollowed et al; 2001; Pinchuk et al. 

2008). Many of the organisms composing the base of this food web are known mixotrophs, with 

more suspected to be mixotrophic based on laboratory and field studies of nano- and 

dinoflagellates (Hansen et al. 2011; Jeong et al., 2010).  

Mixotrophy has been observed as an important strategy for microzooplankton (ciliates, 

large dinoflagellates) in the NGA (Strom et al. 2020, in review). We believe the intense short-

term environmental variability and strong seasonality of the region may select for mixotrophic 

nutritional strategies for both large (>20 µm) and small (<20 µm) cells. Freshwater input, highly 

variable weather patterns, complex bathymetry, and the presence of the alongshore Alaska 

Coastal Current (ACC) create a mosaic of distinct physical and chemical environments over 

short spatial and temporal scales. Light varies strongly in the water column on sub-daily to 

seasonal scales, leading to strong seasonality in photophysiology (Strom et al. 2016). Dissolved 

inorganic nutrients (DIN, e.g. nitrate, phosphate) can be limiting to at least some portions of the 

primary producer community on the NGA shelf, especially during the strongly stratified summer 

and (in some years) fall seasons (Strom et al. 2006). Mixotrophy may enable communities to 

better withstand these challenges stabilizing the base of the food web and, in part, contributing to 

the highly productive nature of the NGA. 
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In this study, links between phytoflagellate ingestion of the picocyanobacteria 

Synechococcus and the physical and chemical environment were explored through experimental 

approaches and by quantifying naturally occurring mixotrophs in the <20 µm photosynthetic 

community. This study aimed to not only quantify mixotrophy by phytoflagellates in the NGA 

but also begin to provide the insight needed to model this behavior for biogeochemical models of 

the region. Rather than focusing on a single species, a community approach was used to 1) 

determine if feeding by phytoflagellates on naturally occurring Synechococcus is linked to 

gradients in physical and chemical parameters, and whether these links vary by taxonomic group; 

2) examine the feeding responses of constitutive mixotrophs of varying taxonomic groups to 

gradients in light availability, nitrate and phosphate concentrations, and prey availability;  3) 

quantify the proportion of the <20 µm summer and fall community that is capable of mixotrophy 

and obtain estimates of feeding rates within this size fraction. 

 

Methods 

This study had three main components: 1) an examination of ambient feeding by nano- 

and dinoflagellates in the NGA on naturally occurring Synechococcus sp.; 2) deckboard 

incubation experiments that examined the impacts of gradients in light, inorganic nutrients and 

prey concentration on ingestion; 3) an analysis of the composition of the <20 µm photosynthetic 

community in the summer and fall of 2019. These approaches were used in order to explore how 

environmental factors impact mixotrophic behavior on both broad scales and in regard to specific 

variables that are thought to be the primary drivers of mixotrophic behavior for phytoflagellates. 

Additionally, by determining the overall contribution of mixotrophic organisms to the <20 µm 
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community, we were able to gain an initial understanding of the importance of this strategy to 

the ecosystem as a whole. 

Study Site and Environmental Characterization 

This research was conducted as part of the NGA Long Term Ecological Research 

(LTER) program. All samples for this project were collected in 2019 during the summer cruise 

aboard the R/V Sikuliaq (June 26th to July 15th) and fall cruise aboard the M/V Tiglax (Sept. 10st 

-Sept. 26th). Five transects/regions were sampled during each cruise: the Seward Line (GAK), the 

Kodiak Line (KOD), Prince William Sound (PWS), the Middleton Line (MID) and the Copper 

River Plume region (PL, sampled in summer only) (Fig. 1). Inorganic nutrient samples were 

collected at every station, pre-filtered (0.8 µm), stored at -80°C and analyzed by the Aguilar-Islas 

laboratory at the University of Alaska, Fairbanks. Photosynthetically active radiation (PAR) data 

were collected using a deck-board PAR sensor (LiCor 2π). Temperature and salinity values were 

collected from CTD sensors at the same depth as sample collection. All statistics were completed 

using R Statistical Software (R Core Team, 2020). 

Ambient Feeding Measurements 

To examine ambient feeding by phytoflagellates on naturally occurring Synechococcus 

samples were taken at 25 stations during summer and 10 stations during fall (Table 1). Samples 

collected from the 50% light level (~4 m) using a standard CTD rosette, fixed with 0.5% 

glutaraldehyde, DAPI-stained to facilitate identification of dinoflagellates by their distinctive 

nuclei, filtered using 2 µm (summer) and 0.8 µm (with 1.2 µm backing) (summer, fall) 

polycarbonate filters, slide-mounted with low fluorescence immersion oil, and frozen (-80°C) for 

transport on dry ice to Shannon Point Marine Center (Kemp et al., 1993). At stations where both 
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pore sizes of filters were used enumeration of ingestion was completed on each and compared; 

there was no significant difference between ingestion estimates across the two pore sizes (t-test, 

p=0.72, 12 df). Thus, data from both pore sizes were combined for analysis.  

Samples were analyzed to quantify mixotrophic activity using epifluorescence 

microscopy; preservation and microscopy methods for <20 µm protists are from Strom et al. 

(2016). All samples were analyzed within 6 months of sample collection. Species-level 

identification was not possible using this technique; rather, general taxonomic categories of dino- 

and nanoflagellates were used. Groups sufficiently abundant for mixotrophic enumeration 

included miscellaneous nanoflagellates at every station and Gymnodinium-type dinoflagellates at 

some stations. Additionally, cryptophytes were enumerated for mixotrophic ingestion in fall 

samples.  

Overall cell shape and presence of chloroplasts was used to identify phototrophic 

dinoflagellates (Fig. 2A) in conjunction with their distinctive large nuclei and condensed 

chromosomes observable under ultraviolet illumination. Nanoflagellates were identified by size 

and presence of red autofluorescent chloroplasts under blue light illumination (Fig. 2B). 

Cryptophytes are distinctive from other nanoflagellate groups due to orange autofluorescent 

pigments (Fig. 2C). In Figure 2 (A, B) you can see ingested Synechococcus fluorescing yellow, 

allowing for the enumeration of ingested cells within phytoflagellates. For each abundant 

dinoflagellate and nanoflagellate taxon, 50 individuals per slide were counted and the number of 

ingested Synechococcus prey per cell was recorded. The number of cells with ingested prey was 

divided by the total counted (n=50), resulting in an estimate of the fraction of cells feeding per 

taxon.  
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Correlations between environmental variables and feeding were completed using 

Kendall’s tau ranked correlation tests. This correlation test was used due to the small sample 

sizes and tied ranks present in the data. Prior to analysis correlations between environmental 

variables were tested and highly correlated variables were reduced in order to remove 

redundancy (Supplemental Table 2). The final variables examined in relation to ingestion were 

salinity, temperature, PAR, nitrate, phosphate, ammonium and Synechococcus concentration. All 

were centered (means subtracted) and scaled (values divided by their standard deviation) prior to 

analysis. PAR data was scaled to collection depth using the attenuation coefficient at each 

station. Light history intervals of 4h, 8h, 12h, 16h, and 24h were tested by totaling the scaled 

deck-board PAR over the time interval prior to sampling. Environmental factors were examined 

with principal component analysis (PCA) to determine whether there was any clustering or 

ordination associated with high/low ingestion or season and generalized linear modeling 

approaches were employed to explore the impacts of specific parameters on the ingestion 

patterns observed.  

Deckboard Incubation Experiments 

In summer 2019, we conducted parallel 4-h experiments testing the effect of PAR, DIN, 

and prey concentration on ingestion of Synechococcus by nano- and dinoflagellates. Water was 

collected from the 50% light level, screened through 150 µm mesh and distributed into 250-mL 

polycarbonate bottles using silicone tubing, gentle handling techniques, and regular mixing. 

Experiment bottles were kept in a temperature-controlled environment with limited light 

exposure while the three treatments were applied. After treatment addition, bottles were 

incubated in flowing seawater-cooled deck incubators to provide natural light and temperature 

conditions (experimental setup further outlined in Supplemental Fig. 1). 
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PAR and DIN gradient experiments were conducted at 7 sites throughout the cruise 

(Table 1). To obtain gradients in PAR, neutral density screen and black tape was used to cover 

the experimental bottles creating 5 light levels: 100, 50, 30, 10, and 0% of full sun irradiance. 

For DIN experiments, bottles were left unenriched (ambient DIN) or were inoculated with 

NaNO3 to achieve approximate enrichments of 0.5, 1.0, 2.0, 4.0, and 8.0 µM NO3. For each 

treatment phosphate was added in addition to NaNO3 to achieve Redfield ratios (N:P=16:1). 

These additions were chosen based on the observed range of nitrate concentrations in the NGA, 

with expected near-surface NO3 concentrations in summer ≤0.2 µM (Strom et al., 2006; Aguilar-

Islas, unpublished data). For both PAR and DIN experiments two bottles were incubated per 

treatment level. All bottles in the DIN experiments were screened to the 50% light level using 

neutral density screen bags to maintain collection depth light conditions. Cultured high latitude 

Synechococcus sp. cells were added in both experiments to create prey-saturated conditions 

(5x104-6x105; see below for culture methods).   

Cultured Synechococcus sp. (strain MICROVIR 16CR_2_clonal) was grown at 1.8x1015 

(quanta cm-2s-1) and 15°C at SPMC with a 12h light-dark cycle and maintained in similar 

conditions aboard the R/V Sikuliaq. This high-latitude North Atlantic strain was obtained from 

the Roscoff Culture Collection (RCC # 3010). The culture was grown using SN media 

(Waterbury et al. 1986, with Red Sea salts replacing filtered seawater) in glass 1L bottles and 

transferred every 2-3 weeks depending on culture thickness. To reduce nutrient carry-over 

associated with the culturing medium, cultured Synechococcus was centrifuged, (2,500 rpm, 10 

min) and resuspended in local seawater that had been filtered using a 0.45 µm glass fiber filter. 

To determine prey concentrations prior to inoculation, epifluorescence microscopy and a 

counting grid were used; spiking volumes were calculated based on cell concentrations.  
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Prey concentration experiments were conducted at 5 of the 7 experimental sites. Prey 

concentration gradients were created by adding various amounts of cultured Synechococcus 

ranging from 0 - 1x106 cells ml-1 to experiment bottles. This range was based on naturally 

occurring Synechococcus observed in the NGA during summer and fall months (Strom, 

unpublished), with the highest treatment level exceeding natural conditions. Bottles were 

screened to the collection light level (~50% ambient PAR) using neutral density screening and 

no nutrients were added. Five treatment levels were used with two bottles incubated at each 

treatment level.  

After the 4 h incubation period, 100 ml subsamples from each bottle were fixed, stained, 

and filtered onto 2 µm pore size, slide-mounted, and frozen in the same manner as the ambient 

feeding measurement samples. Additionally, the microscopy methods were the same for both the 

ambient feeding measurements and grazing experiments. Nanoflagellates were present at 

abundances sufficient to be enumerated at every experimental site while dinoflagellates were 

only sufficiently abundant at 2 of the 7 stations.  

Initial samples with and without added Synechococcus were compared to determine if 

there was any adherence of added Synechococcus to cell exteriors; this could mimic ingestion 

and skew results. No difference was observed (p= 0.52, 12 df), indicating that Synechococcus 

adhering to the outside of grazer cells was not artificially elevating our ingestion estimates. 

Additionally, samples with and without added prey at the end of the 4 h incubation period were 

compared to assess if the natural nano- and dinoflagellate community was ingesting the added 

cultured Synechococcus sp. Ingestion estimates showed increased spread and higher mean in the 

samples treated with cultured Synechococcus (Fig. 3) indicating that at least part of the 

community showed increased ingestion in response to the added prey.  
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Ambient light, DIN and Synechococcus cell concentrations for each experimental site are 

outlined in Table 1. Nutrient samples were taken from five bottles per set of experiments: the 

initial water sample with no addition; a pre-incubation sample with nutrient stock added to 

achieve 2.0 µM nitrate; a pre-incubation sample with cultured Synechococcus added to achieve 

5x105 Synechococcus cells ml-1 concentration; a post-incubation sample with no prey or nutrient 

addition; and a post-incubation sample that received both the 2.0 µM nitrate treatment and the 

above Synechococcus addition. The nutrient concentrations from these samples along with the 

known volumes of nutrient and prey additions were used to estimate the nutrient profile for each 

bottle in all experiments.  

For each set of treatments (DIN, PAR or prey concentration), responses were examined 

and when there appeared to be a response an appropriate functional response curve or linear 

model was tested.  The final values used for visualization and analysis for each treatment 

included the ambient PAR, DIN or Synechococcus concentration plus the Synechococcus 

additions, DIN additions and light screening added to create the final treatment gradients (post 

addition treatment values for each set of experiments are outlined in Supplemental Table 1).  

Community Composition Analysis 

To determine the overall contribution of mixotrophic organisms to the <20 µm 

community the community composition was determined at each station sampled. Samples were 

filtered unto a 0.8 µm polycarbonate filters using a backing filter to ensure even cell distribution. 

Filters were then slide-mounted and stored at -80°C until community composition analysis was 

completed. Only organisms containing observable chloroplasts were recorded. Organisms <10 

µm were examined at 1000x under oil immersion using a 0.01mm2 grid to determine 
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approximate cell size and shape and determine number of cells per grid counted. Grids counted 

were chosen randomly across the slide. Transects at 400x were used to count cells in the 10-20 

µm range and were conducted until ~50% of the slide had been counted or n=20 of one taxon.  

For each sample, the volume filtered, total slide area, and total area counted were used to 

calculate approximate abundances of cells L-1 for each size and taxonomic category. Cell 

biomass for Synechococcus cells was assumed to be 200 fgC/cell (Heldal et al. 2003, Liu et al. 

1999, Stramski et al. 1995). For larger cells the cell shape (oblong or round) and size was used to 

estimate cell volume (BV µm3); volume was converted to biomass (pgG) according to logC = -

0.363 + 0.863(logBV) (Verity et al., 1992). 

The organisms observed to be mixotrophic in this study, including nanoflagellates, 

Gymnodinium-type dinoflagellates, and cryptophytes, were recorded separately in the 

community composition analysis. This allowed for estimation of the percent contribution of 

mixotrophs to the <20 µm photosynthetic community by taxonomic group and by size class. The 

final taxonomic groupings included Synechococcus, picoeukaryotes, nanoflagellates, 

cryptophytes, miscellaneous autotrophic flagellates, miscellaneous autotrophic dinoflagellates, 

Gymnodinium-type dinoflagellates, and diatoms. The size classes examined were 0-2.5 µm, 2.5-

5 µm, 5-10 µm, 10-15 µm, and 15-20 µm. To test for relationships between community 

composition structure and environmental variables a PCA approach was utilized. Size class and 

taxa groupings were analyzed separately, and any clustering or ordination observed was 

examined to determine if it corresponded to variability in salinity, temperature, or nutrient 

environment.  
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Results 

Environmental Conditions and Seasonality 

Large variations in physico-chemical factors were observed across the NGA sampling 

area and between the summer and fall seasons (Table 1). As expected, cross shelf gradients in 

salinity (lower near shore) and macronutrients (higher offshore) were present along the GAK 

line, especially in fall. In the Copper River plume (PL) study area we saw changes in salinity and 

macronutrients over short spatial scales due to large amounts of freshwater discharge from the 

Copper River and complex patterns of mixing with shelf waters. We measured anomalously high 

sea surface temperatures in the summer that persisted into the fall, with summer temperatures 

ranging between 11.6° C and 17.7° C and fall temperatures ranging between 11.2°C and 14.7° C. 

The fall cruise was also marked by a distinct decrease in daily PAR and an increased mixed layer 

depth. Despite these seasonal differences in environmental conditions, the degree to which the 

mixotrophic flagellate community was observed with ingested Synechococcus prey cells 

remained consistent, with an average of 12% of the total community (nanoflagellates and 

dinoflagellates combined) feeding in the summer and 15% feeding in the fall. 

When principal component analysis was used to assess patterns in environmental 

variability and how they relate to season, location, and ingestion, the drivers of the first two 

principal components were easily defined and accounted for a combined 54% of the total 

variance (Fig. 4, Table 2). The first principal component appears to correspond to degree of 

stratification given that there was separation with respect to salinity, macronutrients, and 

temperature, while separation on PC 2 represents seasonality driven by differences in PAR 

levels, ammonium, and (to a lesser extent) Synechococcus concentrations. The biplot created by 
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overlaying fraction nanoflagellate feeding on the environmental PCA showed weak ordination 

across both PC1 and PC2, with increased feeding occurring where there was higher stratification 

and summer-like conditions (Fig. 4B). There were no clear groupings based on region sampled 

(i.e. PWS, Copper River) or location on shelf (i.e. nearshore/offshore).  

Ambient Feeding Measurements 

Responses to light history and PAR varied by the community examined, but longer light 

history intervals yielded stronger correlations. The fraction feeding for dinoflagellate and 

cryptophyte communities was negatively correlated with PAR (Fig. 5A, B); in contrast, there 

were no significant correlations for the nanoflagellate community. We examined light history 

intervals of 4, 8, 12, 16 and 24 h by totaling hourly PAR over that period prior to sample 

collection and found that there was no significant relationship with feeding for any community 

when a period of less than 24 h was utilized. The relationship between ingestion and PAR was 

stronger for the cryptophyte community (τ= -0.9, p=0.003) than the dinoflagellate community (τ= 

-0.41, p=0.027), though it should be noted that there was a smaller sample size for cryptophytes 

(n=7) given that they were only assessed in fall samples. 

Both nanoflagellate and dinoflagellate ingestion were related to environmental factors in 

addition to PAR. For the dinoflagellate community, there was a negative correlation between 

ingestion and temperature (τ= -0.42, p=0.02) (Fig. 5C) and for the nanoflagellate community, 

there was increased feeding at stations with more Synechococcus (τ=0.2, p=0.06) (Fig. 5D) and 

decreased feeding at stations with higher phosphate concentrations (τ= -0.2, p=0.06) (Fig. 5E). 

Ambient ingestion by nanoflagellates was related to both prey and phosphate concentrations, 

with high levels of ingestion only occurring where Synechococcus concentrations were high and 
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ambient phosphate was low (Fig. 6). Additionally, we tested salinity, nitrate, and ammonium and 

saw no significant correlations with ingestion for any of the mixotroph groups examined 

(Supplemental Table 3). All correlation analysis included both summer and fall samples and used 

an alpha of 0.1 to reduce chances of a Type II error given the small sample sizes.  

Responses were additionally tested using generalized linear models (GLMs) with model 

inputs chosen based on the results of the correlation analyses, but no significant relationships 

were observed for any of the taxonomic groups examined. The lack of significance when using a 

GLM approach compared to a correlation approach was likely due to high variability between 

replicates and the small sample sizes obtained (n=33 for nanoflagellates, n=19 for 

dinoflagellates, n=9 for cryptophytes). A model including all taxonomic groups, with group as a 

factor, was also tested without significant results. 

Deckboard Incubation Experiments 

In addition to variability in ambient levels of PAR and macronutrients across the study 

area in the summer (Table 1) there were also notable differences in station-to-station community 

composition that impacted enumeration for the deckboard experiments. Nanoflagellates were 

observed at every station in relatively high abundance (6.0 x 102 - 1.6 x 103 cells/ml) while 

autotrophic dinoflagellates were only abundant (3.1- 18.3 cells/ml) at PWS 2 and GAK 15. The 

autotrophic dinoflagellates we did observe were 7-8 µm round and oblong Gymnodinium-type 

cells. The nanoflagellates present were primarily prymnesiophytes and unidentified round 

nanoflagellates, and they were consistently abundant enough to enumerate in both summer and 

fall. Within each category, nano- or dinoflagellate, two subgroups (nanoflagellates: 

prymnesiophytes, unidentified round cells; dinoflagellates: round and oblong Gymnodinium-type 
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cells) were initially counted separately but then were combined for analysis due to similar 

feeding responses. Given the small sample sizes and morphologically distinct sub-group types, 

differences in feeding responses among stations may be a function of taxon or ambient 

environmental conditions rather than treatment. 

Dinoflagellates had higher overall average feeding levels, ranging from 0.16 to 0.24 

compared to 0.04 to 0.18 for the nanoflagellates. For both communities, nano- and 

dinoflagellates, the highest ingestion was observed at PWS 2 (Fig. 7). Differences in average 

ingestion across experimental sites may be linked differences in ambient phosphate across 

stations, given that there was increased feeding observed when phosphate was low. When 

examined separately, stations with lower phosphate concentrations (<0.4 µM) showed generally 

higher levels of ingestion within the nanoflagellate community for both the DIN and PAR 

experiments (Fig. 8). Additionally, stations with lower ambient phosphate showed increased 

nanoflagellate responses to light treatments (Fig. 8). Dinoflagellates also showed no relationship 

with DIN (Fig. 9A) and no clear increase in fraction feeding with PAR dose (Fig. 9B) although 

the highest feeding was observed in the experiment with the largest amount of PAR received. 

Dinoflagellates were only enumerated at stations that were later determined to be low ambient 

phosphate stations.  

Mixotroph feeding during deckboard experiments increased in response to 

Synechococcus concentration, though the response curves for nanoflagellates and dinoflagellates 

look quite different. The nanoflagellate feeding response to increased Synechococcus 

concentration when ship-board experiments were combined (Fig. 10A) was described well by the 

Michaelis-Menten predator-prey response relationship FF = (FFmax*Syn)/(k+Syn) where FF = 

fraction feeding, FFm = maximum fraction feeding, Syn = Synechococcus concentration 
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(cells/ml), and k = half-saturation constant (cells/ml) (Holling 1959, Holling 1965). FFmax was 

0.15 and the half-saturation constant was 1.01x105 cells/ml (Fig. 10A, Residual Standard Error = 

0.023, df = 48). The only station where prey addition experiments were conducted that there was 

a large enough dinoflagellate community to enumerate was GAK 15. At that station we saw a 

significant linear increase in the fraction feeding for the dinoflagellate community as 

Synechococcus concentration increased (p=0.017, df=8, R2=0.53) (Fig. 10B).  

Community Composition Analysis 

The summer biomass was dominated by small cells, particularly Synechococcus and 

picoeukaryotes, with the highest Synechococcus biomass observed at GAK 9 (96.0 µgC/L, 

4.8x105 cells/ml), PL 7 (73.0 µgC/L, 3.7x105 cells/ml) and PL 10 (58.8 µgC/L, 2.9x105 cells/ml) 

(Fig. 11A). There was an increase in Synechococcus with increasing distance offshore until GAK 

9 (166.68 km offshore) then a decrease at GAK 15, seaward of the shelf break. In the fall there 

was still a high proportion of small cells but a decrease in overall Synechococcus biomass, with 

the highest biomass (41.5 µgC/L) and abundance (2.1x105cells/ml) observed at PWS 1 (Fig. 

11B). There was a wide range of nanoflagellate biomass and abundance in the summer samples 

(3.1 to 30.0 µgC/L, 7.5x102 to 4.7x103 cells/ml), with the lowest levels observed in PWS and the 

Copper River Plume. Fall nanoflagellate biomass and abundance was relatively constant at every 

station sampled (13.3 to 26.9 µgC/L, 2.4x103 to 5.5x103 cells/ml). Autotrophic dinoflagellate 

biomass increased seasonally from an average of 0.2 µgC/L in the summer to an average of 0.6 

µgC/L in the fall (including both mixotrophic Gymnodinium-types and miscellaneous 

autotrophic dinoflagellates). 



 

 
 

17 

Across both seasons the 10-20 µm size class was a minor contributor to biomass (average 

2.3 µgC/L in summer, 2.6 µgC/L in fall) with most cells occupying the <5 µm size fraction (Fig. 

12). The increase in fall is due to a doubling of the autotrophic dinoflagellate biomass (0.29 to 

0.63 µgC/L), which enabled the enumeration of mixotrophy dinoflagellates in the fall samples. 

The fall samples also contained a much larger proportion of 2.5 – 5 µm cells, largely due to an 

increase in miscellaneous autotrophic flagellates, particularly at PWS 2. There were no strong 

cross-shelf patterns observed with regard to size class in either season. 

  When using PCA to examine the community composition we saw that clustering of 

picoeukaryotes and miscellaneous autotrophic flagellates, and also of cryptophytes and 

nanoflagellates (Fig. 13A). The close grouping of picoeukaryotes and miscellaneous autotrophic 

flagellates may indicate overlap between these two groups that was missed with the level of 

identification possible using epifluorescence microscopy, but lack of separation during 

microscopy would not explain the grouping of cryptophyte and nanoflagellates, which have 

distinctive autofluorescent properties. Flagellates (all types) and diatoms both separated from 

Synechococcus on PC1.There was no clear clustering or ordination of taxonomic groups with 

regard to season (Fig. 13A) or in conjunction with other environmental variables that were 

examined using biplots (not pictured). 

When a similar PCA was conducted using size class rather than taxonomic group we 

again saw clear separation of Synechococcus. There was clustering of 0-2.5 and 2.5-5 µm cells, 

and of 10-15 and 15-20 µm size classes (Fig. 13B). The <5 µm organisms include the 

picoeukaryotes and misc. autotrophic flagellates, which also grouped in the taxonomic PCA, but 

also include nanoflagellates and cryptophytes which were grouped with each other but clearly 

separated from the picoeukaryotes and misc. autotrophic flagellates in the taxonomic analysis. 
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The 10-15 size class contained a mix of dinoflagellates and diatoms while the 15-20 µm size 

classes contained mostly diatoms, likely contributing to their clustering. When PCA scores are 

coded according to temperature (Fig. 13C) we observed lower temperatures in association with 

stronger influence of the 10-15 and 15-20 µm size classes, highlighting the role of temperature as 

an important driver for size structure in the <20 µm community. There were no clear patterns 

between salinity and DIN and PCA scores.  

The average proportion of the photosynthetic community observed to be mixotrophic was 

roughly constant across season, 0.27 in summer and 0.29 in fall, but varied dramatically by 

station (Fig. 14A, B). The highest proportions of mixotrophy were observed at KOD 3, GAK 15, 

and PL 4 in the summer and GAK 5 in the fall (Fig. 14A, B). Mixotrophic flagellates as a 

proportion of total flagellates (rather than the total <20 µm photosynthetic community) was 

much higher in the summer (average 0.64) than the fall (average 0.43) (Fig. 14C, D). Organisms 

were grouped as mixotrophic flagellate, autotrophic flagellate or non-flagellate (i.e. 

Synechococcus and Diatom) based on direct observation of ingested Synechococcus in this study.   

 

Discussion 

Overview 

Mixotrophy by phytoflagellates in the NGA was tied to abiotic and biotic conditions and 

is likely a critical strategy for the <20 µm plankton community. Responses to environmental 

variables by mixotrophic flagellates were taxon-specific, with dinoflagellates, cryptophytes, and 

smaller nanoflagellates exhibiting varying and sometimes contrasting responses to phosphate, 

light availability, prey concentration, and temperature. Overall, the nanoflagellate community 



 

 
 

19 

appeared to be relying on mixotrophy as a means of nutrient acquisition while the dinoflagellate 

and cryptophyte community relied on ingestion as an energy acquisition mechanism in times of 

low irradiance.  

At a given station up to 90% of the small phototrophic flagellates in the NGA were 

utilizing mixotrophy, with the average across summer and fall being 63% and 43% respectively. 

This first study of phytoflagellate mixotrophy provides initial insights into community-level 

ingestion by dinoflagellates, cryptophytes, and smaller nanoflagellates. Given the methods used, 

these are approximations – and likely underestimates - of mixotrophic flagellate feeding. As we 

continue to learn about the community composition of this area and the physiology and behavior 

of the organisms that inhabit it, models that better capture the complex dynamics at the base of 

this food web can be built. These models, in turn, can be used to determine the ecosystem-wide 

role of mixotrophy in supporting resilience and stability in the NGA 

Community-Level Ingestion Responses 

1.  Dissolved Inorganic Nutrients 

Previous studies have shown similar negative correlations between phosphate 

concentration and ingestion within nanoflagellate mixotrophs (Livanou et al. 2019; Sato et al. 

2017; Tsai et al. 2011; Unrien et al. 2007). Our results revealed ambient feeding was negatively 

correlated with phosphate concentration, and experiments conducted at stations with lower 

ambient phosphate (i.e. <0.4 µM) revealed higher levels of nanoflagellate feeding, despite 

treatment. The common hypothesis for this relationship is that ingestion provides a nutrient 

acquisition mechanism in times of low ambient phosphate (Arenovski et al. 1995; Duhamel et al. 

2019; Tsai et al. 2011). Macronutrient limitation has been observed in the NGA in summer 
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months (Strom et al. 2006) but nitrate is believed to be the limiting factor to phytoplankton 

growth rather than phosphate.  

In examinations of the relationship between phosphate and nanoflagellate feeding 

Duhamel et al. (2019) found that PO4 uptake rates in mixotrophic nanoflagellates saturated at 

phosphate concentrations of 0.011 to 0.038 µM depending on taxonomic group. Phosphate 

concentrations in the NGA exceeded these even during summer months when the water column 

was highly stratified (Table 1). These uptake rates may be ecosystem- or species-specific but in 

conjunction with previous studies examining macronutrient limitation on the NGA shelf, it 

seems phosphate concentrations are likely not limiting phytoplankton growth in the NGA. 

Therefore, there may be another driver behind the relationship between phosphate and mixotroph 

feeding. For example, phosphate could co-vary with another key nutrient, or act as a signaling 

mechanism triggering feeding within the cell. 

It is well established that phytoplankton growth in the offshore NGA region is iron 

limited (Boyd et al. 2004; Martin and Fitzwater 1988) and that iron input as a result of glacial 

runoff or dust deposition are quickly bound by organic ligands (Aguilar-Islas et al. 2010; 

Aguilar-Islas et al. 2016). Dissolved iron concentrations on the shelf have been shown to be 

potentially limiting as well, with concentrations as low as 0.2 nM in July and 0.07 nM in August 

(Koch et al. 2011, Wu et al. 2009). Vitamin B12 has also been shown to be low (0.1-3.8 pM) 

across the NGA shelf and positively correlated with phosphate concentration (Koch et al. 2011). 

This relationship highlights the possibility that phosphate could be co-varying with a key 

micronutrient or vitamin that was not tested in this study, potentially one that it commonly 

covaries with given that the phosphate-ingestion relationship has been observed in other 

ecosystems. In this study, correlations between phosphate and nitrate, nitrite, temperature, and 
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salinity (Supplementary Table 2) were observed, though none of those additional environmental 

factors correlated significantly with fraction of the community feeding.  

Phosphate is crucial for cell functioning, as a key component in RNA, DNA, and ATP 

(Lin et al. 2016). The essential role of phosphate in the cell may allow for intracellular phosphate 

concentration to act as a signaling mechanism triggering grazing behavior. Internal phosphate 

concentrations have been shown to impact dinoflagellate Ceratium furca ingestion (Smalley et 

al. 2003) but have not been studied in nanoflagellates specifically. The link between phosphate 

concentration and ingestion by mixotrophic nanoflagellates needs to be examined more 

thoroughly in the laboratory setting, especially since that link has been documented across 

multiple ecosystems with distinct physico-chemical environments and communities of 

nanoflagellates (Duhamel et al. 2019; Livanou et al. 2019; Sato et al. 2017; Tsai et al. 2011; 

Unrien et al. 2007). 

2.  Synechococcus Concentration 

Few experimental studies examining mixotrophic nanoflagellate ingestion and prey 

concentration have been conducted but correlations between ingestion and Synechococcus 

concentration have been observed previously from in situ observations, similar to our ambient 

feeding results (Chan et al. 2019). The half-saturation constant for Synechococcus ingestion by 

nanoflagellates was 1.01x105 cells/ml when fit with a Michaelis-Menten functional response 

curve (Fig. 10). Using this value, 8/15 stations in the summer and 2/10 stations in fall can be 

classified as prey saturated for the nanoflagellate community. 

At prey saturated stations (ambient Synechococcus >2.0x105) there was still a 3x range in 

feeding level, highlighting that Synechococcus ingestion by nanoflagellates was only partially 
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controlled by encounter rate. At stations with a high concentration of Synechococcus and 

relatively high ingestion (>0.12 fraction of cells feeding), there was low (<0.4 µM) ambient 

phosphate present. These results indicate that the nutrient environment was likely the primary 

driver dictating nanoflagellate ingestion (Fig. 6), though more complicated trophic interactions 

between mixotrophic nanoflagellates and Synechococcus may be occurring. Synechococcus sp. 

are able to outcompete nanoflagellates for dissolved macronutrients (Duhamel et al. 2019); 

increased Synechococcus therefore may lead to decreased ambient phosphate concentrations 

driving an increase in grazing by nanoflagellates. In this scenario, grazing would both provide 

phosphate to nanoflagellate cells and decrease nutrient competition. A negative correlation 

between Synechococcus concentration and phosphate concentration was not observed in this 

study, though that could have been due to the small sample size (n=25) obtained.  

For the mixotrophic dinoflagellate community, there was also a positive relationship 

between Synechococcus concentration and fraction feeding in the deckboard experiment 

completed. Contrary to the nanoflagellate community, we saw a linear relationship rather than a 

Type-II predator-prey functional response (Fig. 10). Multiple ingested prey cells were seen more 

frequently within individual dinoflagellate cells than within nanoflagellates. In conjunction with 

their larger size, this may indicate that a larger prey population would be necessary to saturate 

dinoflagellate feeding, explaining why we only saw a response in our experimental results and 

not in the ambient feeding analysis. Photosynthetic dinoflagellate ingestion rates have been 

shown to increase with Synechococcus concentration in previous work (Jeong et al. 2005), with 

ingestion rates varying depending on dinoflagellate species. When prey saturation levels were 

examined, dinoflagellate ingestion was saturated at Synechococcus concentrations of 1.1-1.4 x 

106 cells/ml (Jeong et al. 2005). These concentrations exceed the ambient levels of 
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Synechococcus observed across the shelf in this study and are only reached by the highest 

treatment level in the prey concentration experiment (Table 1, Fig. 10 B). 

Mixotrophic dinoflagellates are known to ingest many types of prey in addition to 

Synechococcus (Jeong et al. 2010). An examination of the >20 µm mixotrophic dinoflagellate 

community in the NGA by Strom et al. 2020 (in review) and their ingested prey revealed a 

complex food web of mixotrophic organisms grazing upon other mixotrophic organisms, with 

grazing on cyanobacteria still common among large dinoflagellates. Dinoflagellates in the < 20 

µm size class also likely consume many types of prey (Jeong et al. 2010) and it may be that 

ingestion in the NGA was closely coupled to prey types not examined in this study, which could 

have influenced dinoflagellate feeding rates on Synechococcus. The complex trophic dynamics at 

the base of marine food webs are challenging to untangle. Future studies examining 

dinoflagellate feeding in this region should include grazing on cryptophytes, haptophytes, and 

chlorophytes in addition to cyanobacteria to see if preferential grazing is occurring and how 

those rates may be impacted by environmental factors. 

3.  Light and Temperature 

Ingestion by mixotrophs is thought to function as either a means of carbon (i.e. energy) 

acquisition or nutrient acquisition (Stoecker et al. 2017). In the first scenario, feeding is expected 

to increase in response to decreased light availability, allowing the organism to gain energy 

through phagotrophy rather than phototrophy in times of low irradiance. In the second scenario, 

feeding is expected to increase when there is more light and conditions are conducive to 

population growth, with ingestion providing the key nutrients required. Therefore, the 

relationship between feeding and light availability can be hard to classify as increases and 
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decreases in feeding by both nanoflagellates and dinoflagellates have been observed (Andersen 

et al. 2017; Chan et al. 2019; Jeong et al., 2010; Li et al., 2000, Skovgaard et al., 2000).  

Our results show that ingestion by mixotrophic nanoflagellates was not strongly related to 

PAR in either the deck-board incubation experiments or the ambient samples. In contrast, 

ingestion by both cryptophytes and dinoflagellates was negatively correlated with ambient PAR 

when a 24h light history interval was used (Fig. 5), for the cryptophyte community this trend was 

particularly noticeable with a correlation coefficient of -0.91 and a p value of <0.005. These 

differences across trophic groups strongly suggest that there are multiple, contrasting 

mixotrophic strategies being utilized by organisms in the NGA. Feeding by photosynthetic 

nanoflagellates seems to be primarily driven by the need for nutrient acquisition while 

dinoflagellates and cryptophytes may be using ingestion to gain energy in times of low 

irradiance. 

When shorter light history intervals were tested (4h, 8h, 12h, 16h) there was no 

relationship between ingestion and PAR for either the dinoflagellate or cryptophyte 

communities, signifying an acclimation period is necessary before changes in light availability 

translate to feeding. This acclimation period may play an important role in determining how 

organisms respond to environmental variability, given that on a diel cycle PAR can change 

rapidly due to changes in weather and mixed layer depth. The apparent 24-h acclimation time 

frame could explain the lack of substantial feeding responses in our deckboard PAR experiments, 

which were conducted using a 4 h incubation period. 

In addition to PAR, ambient sampling revealed a negative correlation between 

temperature and dinoflagellate ingestion. The presence of distinct dinoflagellate species at 
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different stations and across the two seasons sampled could also have contributed to this 

correlation. In contrast to our findings, laboratory studies of mixotrophic dinoflagellates have 

shown increases in ingestion associated with increased temperatures to a point, and then 

decreases once temperatures become extreme (Jeong et al. 2018, Kang et al. 2020). Jeong et al. 

saw a positive relationship between ingestion and temperature in the dinoflagellate 

Paragymnodinium shiwhaense up to temperatures of 20 C° and Kang et al. saw a similar pattern 

in dinoflagellate Yihiella yeosuensis up to 30 C°, highlighting the species-specific nature of these 

relationships. 

The temperatures observed across the NGA in summer and fall 2019 ranged between 11-

18 C°; this is below the level in which reduced feeding was observed in laboratory studies but 

anomalously high for this ecosystem, even in summer months (Litzow et al. 2020). Due to the 

high temperatures observed, the dinoflagellate community may have been at the top of its 

optimal temperature threshold for ingestion and reduced ingestion at higher temperature stations 

may have been due to heat stress. Temperature also correlated with salinity, nitrite, nitrate, and 

phosphate, and therefore this relationship could have emerged as a consequence of one of these 

factors, though none of them individually correlated with dinoflagellate ingestion. 

Mixotrophy in the NGA 

1. Significance of Mixotrophy in <20 µm Cells 

Though mixotrophy by nanoflagellates, cryptophytes, and dinoflagellates is well 

established (Stoecker et al. 2017, Unrein et al. 2014), quantification of mixotrophy by small cells 

is largely undocumented across much of the global ocean, including the NGA prior to this study. 

Of the <20 µm phytoflagellate community present in summer and fall 2019, the proportion 
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mixotrophic ranged from an average of 0.64 (summer) to 0.43 (fall) and of the total <20 µm 

community, including non-flagellates, the proportion mixotrophic was 0.27 (summer) and 0.29 

(fall) (Fig. 14). These high proportions within both the total <20 µm size class, and especially 

within the phytoflagellate community, highlight the critical role of this strategy in the NGA. 

This account of mixotrophy is likely an under-representation given that mixotrophy was 

only quantified when we directly observed ingestion of Synechococcus by a chloroplast-

containing cell. Therefore, the ingestion of heterotrophic bacteria or eukaryotes was not 

accounted for (Beisner et al. 2019). The use of epifluorescent microscopy for taxonomic 

groupings also means that only rough classifications could be made, and that some organisms 

classified as miscellaneous autotrophic flagellates may have belonged in the mixotrophic 

nanoflagellate category and vice versa.  

2. Seasonality and Small-cell Dominance  

Despite distinct weather changes between summer and fall, the environmental conditions 

and community composition were similar across the two seasons sampled. Based on 

temperatures and macronutrient concentrations, it appears that the beginning of the fall cruise 

(September 12th- September 17th) was capturing late summer conditions. The transition to fall 

conditions began on September 19th (during sampling at GAK 9) as a low-pressure system 

entered the study area and wind mixing increased. 

Mixotrophic phytoflagellate ingestion has been shown to vary by season, peaking in 

warmer months (Chan et al. 2009). Given that we weren’t able to fully capture differences 

between summer and fall conditions, the ingestion observed in this study likely corresponds to 

peak annual ingestion of these communities. Increased mixotrophic dinoflagellate biomass in the 
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> 20 µm size class has also been observed in summer months (Strom et al. 2020, in review). 

Previous studies have shown that during spring conditions, diatoms with higher surface area to 

volume ratios can outcompete flagellates when nutrients are abundant. Then, as the water 

column becomes stratified and nutrient levels drop, mixotrophs are able to dominate (Cadier et 

al. 2020). 

Previous work has shown that mixotrophy is common in microzooplankton communities 

across the NGA (Strom et al. 2020, in review). Both ciliates that use stolen chloroplasts to 

photosynthesize and dinoflagellates capable of stretching to consume large chain diatoms are 

frequently observed. The diverse range of mixotrophic strategies utilized in this region speaks to 

its overall importance. Mixotrophy provides multiple pathways to obtaining essential nutrients 

and energy in a single cell, better-enabling organisms to withstand the NGA’s environmental 

variability. As observed in this study, there can be large changes in nutrient concentrations, 

temperature, salinity, and PAR over short spatial and temporal scales, even in summer months. 

These conditions impact organisms of different sizes and ecological niches differently. The 

presence of mixotrophy across these groups helps communities respond to environmental drivers 

based on their particular needs, in turn increasing ecosystem stability and resilience. 

Cell size is an important dictator of community structure in the NGA as was observed in 

our principal component analysis (Fig. 13). Cell size clustered organisms better than taxonomic 

group, with four distinct clusters being formed: Synechococcus, cells <5 µm, cells 5-10 µm, and 

cells 10-20 µm. Organisms in the 10-20 µm range were dominated by diatoms and clustered with 

lower temperatures, indicating relationships among cell size, temperature, and community 

composition. In future climate regimes, warmer ocean temperatures and increased stratification 

may lead to a decrease in grazing pressure from micro and mesozooplankton, decreased diatom 
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abundance, and increased Synechococcus prey concentrations (Finkel et al. 2007; Schmidt et al. 

2020). These conditions will likely favor small-celled mixotrophs (Stoecker et al. 2017), a 

hypothesis that is supported by mixotrophic cells dominating in summer conditions (Chan et al. 

2009). 

Since the discovery of grazing by protists and the importance of mixotrophy by small-

celled phytoflagellates understanding their role as grazers has been a priority of researchers and 

modelers (Andersen et al. 2015; Sherr and Sherr 2002). Previous studies have shown that 

phytoflagellates consume most of the cyanobacteria production, with cyanobacteria 

accumulation only persisting in summer months (Figueiras et al. 2020; Li et al. 2020; Sanders et 

al. 2000). Grazing by nanoflagellate organisms is a key link in lower trophic food webs and will 

continue to be important as increased temperatures support small-cells dominance (Agirbas et al. 

2015; Capuzzo et al. 2017).  

3. Modeling Mixotrophy in the NGA 

Modeling efforts in the NGA are working to incorporate mixotrophy into the NGA-

adapted NEMURO model used for the LTER site (Fiechter et al. 2011; Kishi et al. 2007). This 

effort is currently aimed at incorporating large-celled mixotrophy occurring in the ciliate and 

dinoflagellate communities. The increased understanding of mixotrophy we have gained through 

this study highlights the importance of small cell (<20 µm) mixotrophs in this region and the 

need to account for them in modeling efforts as well. The incorporation of mixotrophy into basic 

food web models highlights how mixotrophy can increase both ecosystem stability, by increasing 

pathways to nutrients and energy, and productivity, by increasing grazing on small cells and 

energy capture through photosynthesis (Fig. 15). By combining community composition data, 
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grazing rates, and relationships between ingestion and environmental conditions, future models 

of the region can be parameterized based in part on NGA-specific mixotrophy data. This 

combined modeling and experimental approach will better inform our understanding of the 

widescale implications of mixotrophy in this system. 

Notes on Scale and Future Methodology 

Freshwater inputs, eddy formation, the Alaska Coastal Current, and the NGA’s 

bathymetry create a region with a wide array of physical and chemical environments changing on 

short spatial scales. This complex station-to-station variability make it challenging to group 

stations and highlights the need for larger sample sizes when examining ingestion in this manner. 

A study similar to our ambient feeding measurements using flow cytometry or stable isotope 

probing techniques to examine mixotrophy by nanoflagellates would allow for increased sample 

sizes, replicates, and potentially broader sampling plans (Anderson et al. 2017, Frias-Lopez et al. 

2009). 

With our methods for the deckboard incubation experiments it was not possible to 

differentiate Synechococcus that had been ingested before incubation and the cultured 

Synechococcus that was added to experiment bottles, making it hard to separate station-station 

variability in ambient feeding from experimental responses. We also did not see a change in 

ingestion for our DIN or PAR experiments for either taxonomic group. If the mixotrophic 

strategy being employed was either a nutrient acquisition strategy - as we suspect for the 

nanoflagellates - or an energy acquisition strategy - as we suspect of the dinoflagellates and 

cryptophytes - we would have expected to see a decrease in ingestion in at least one of these sets 

of experiments. It could be that the relatively short (4h) incubation period was not long enough 
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for the organisms to acclimate to the new environmental conditions, particularly within the light 

experiments. Methods that are less microscopy depended could allow for increased replicates at 

each treatment level or destructive sampling over a longer incubation period, helping to untangle 

the background variability from the functional responses.  

Increased sample sizes would also allow for the utilization of the kinds of statistical 

modeling attempted in this study. Given that there seem to be multiple factors influencing 

feeding by phytoflagellates, statistical modeling approaches would allow examination of 

independent influences on the patterns observed and provide a deeper understanding of the 

relationships between the physicochemical environment and feeding responses (Li et al. 2020). 

Instead, in this case, we relied on the inferences that can be gained from looking at responses 

across individual factors. Our goal was to gain an initial understanding of small-celled 

mixotrophy in this region, and to consider the implications for ecosystem structure and 

resilience. Given that we now know mixotrophy in the NGA is a common strategy utilized by a 

large fraction of the community, future studies should focus on using methodology that would 

support larger sample sizes with higher spatial resolution and increased replicates to continue to 

explore the connection between mixotrophic behavior and the physico-chemical environment.   
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Tables  

 

Table 1. Station names, sampling date, ambient levels of salinity (psu), temperature (° C), 
Synechococcus (cells/ml), nitrate (µM), and phosphate (µM) concentrations for all stations 
sampled. Groups enumerated correspond to the taxonomic groups enumerated for ingestion at 
that station, N = nanoflagellate, D = dinoflagellate, C = cryptophyte. The photosynthetically 
active radiation (PAR, mol photons m-2) is the PAR dose received over the 16h period prior to 
sample collection. Asterisks (*) indicate stations where DIN and PAR gradient experiments were 
conducted; double asterisks (**) indicate stations where prey addition experiments were also 
conducted. 
 
Station Date Groups 

Enumerated Salinity  Temp  Syn. Nitrate  Phosphate  PAR  

PWS 2* 6/30/19 N, D 28.76 14.65 3.42e4 0.07 0.12 9.65 
MID 5* 7/2/19 N 30.57 13.88 1.13e5 0.22 0.26 2.98 

PL 1 7/4/19 N 25.61 17.65 2.26e5 1.29 0.36 2.66 
PL 2 7/4/19 N 23.24 15.07 1.07e5 0.88 0.14 1.33 
PL 4 7/5/19 N 17.42 15.56 1.41e4 0.11 0.14 2.76 
PL 5 7/5/19 N, D 28.51 15.73 2.20e5 0.02 0.23 11.05 
PL 7 7/6/19 N 30.72 12.37 3.65e5 2.49 0.14 0.52 
PL 8 7/6/19 N 30.86 11.91 2.94e5 0.30 0.35 0.65 
PL 9 7/7/19 N, D 30.22 14.21 1.09e5 0.24 0.28 2.24 
PL 10 7/7/19 N, D 30.48 12.36 2.94e5 0.10 0.10 2.67 

GAK 15** 7/9/19 N, D 32.26 14.39 2.22e4 0.96 0.39 3.67 
GAK 9** 7/10/19 N 32.12 12.68 4.80e5 1.43 0.41 2.25 
GAK 5** 7/12/19 N 31.23 14.60 2.20e5 0.32 0.40 1.73 
KOD 3** 7/15/19 N 31.98 11.63 2.95e4 0.48 0.43 4.68 
KOD 8** 7/16/19 N 32.14 13.07 5.43e5 0.46 0.41 3.35 

PWS 1 9/12/19 N, D, C 22.53 13.60 2.08e5 0.09 0.00 1.12 
PWS 2 9/12/19 N, D, C 26.41 13.98 1.70e5 0.06 0.05 1.58 
PWS 3 9/13/19 N, D, C 25.96 13.91 2.07e5 0.09 0.02 0.42 
MID 2 9/14/19 N, D, C 30.05 14.03 9.14e4 0.01 0.15 1.06 
MID 5 9/15/19 N, D 27.32 14.71 3.21e4 0.02 0.03 1.30 
GAK 1 9/16/19 N, D, C 26.34 13.53 4.28e4 0.10 0.09 1.14 
GAK 5 9/17/19 N, C 30.83 11.98 6.35e3 0.43 0.28 0.55 
GAK 9 9/19/19 N, D, C 31.96 11.81 1.22e5 2.72 0.53 0.75 
KOD 3 9/22/19 N, C 30.72 11.24 6.44e4 4.99 0.64 2.08 
KOD 5 9/22/19 N, D, C 31.15 11.26 1.03e5 5.54 0.67 2.80 
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Table 2. Variable loadings and proportion of variance explained for the first three components of 
PCA examining environmental factors at stations sampled during summer and fall 2019.  
 
 PC1 PC2 PC3 
Proportion of Variance 0.372 0.168 0.155 
Cumulative Proportion 0.372 0.540 0.696 
 
Variable:    
Salinity -0.470 0.126 0.339 
Temperature 0.488 0.205 0.012 
Synechococcus -0.128 -0.133 0.848 
Nitrate -0.486 -0.012 -0.365 
Phosphate -0.527 0.272 -0.136 
Ammonium -0.008 0.455 0.008 
PAR 0.103 0.802 0.121 

 
 
 
Table 3. Variable loadings and proportion of variance explained for the first three components of 
PCA examining community composition of samples taken in summer and fall 2019 analyzed by 
taxon.  
 
 PC1 PC2 PC3 
Proportion of Variance 0.325 0.212 0.173 
Cumulative Proportion 0.325 0.536 0.701 
 
Variable:    
Synechococcus 0.226 -0.430 0.046 
Misc. Autotrophic Flagellate -0.375 -0.446 -0.424 
Picoeukaryote -0.271 -0.444 0.559 
Cryptophyte -0.282 0.184 0.661 
Nanoflagellate -0.460 0.204 0.010 
Dinoflagellate -0.529 -0.301 -0.177 
Diatom -0.405 0.503 -0.195 
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Table 4. Variable loadings and proportion of variance explained for the first three components of 
PCA examining community composition of samples taken in summer and fall 2019 analyzed by 
size class. 
 
 PC1 PC2 PC3 
Proportion of Variance 0.341 0.201 0.183 
Cumulative Proportion 0.341 0.542 0.723 
 
Variable:    
Synechococcus -0.300 0.538 -0.009 
0-2.5  0.256 0.676 -0.043 
2.5-5 0.155 0.301 -0.719 
5-10 0.112 -0.402 -0.655 
10-15 0.639 0.017 0.113 
15-20 0.633 -0.040 0.196 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Stations sampled during the summer and fall 2019 LTER cruises. Labels denote stations 
where experiments were conducted, or where samples were taken for ambient feeding analysis and 
community composition determination. Large circles represent stations sampled in summer only, 
squares represent stations sampled in fall only, and triangles represent stations sampled in both 
summer and fall. Stations were sampled along the Kodiak Line (KOD), Seward Line (GAK), 
Middleton Island Line (MID), in Prince William Sound (PWS), and in the Copper River Plume Study 
Area (PL). Inset shows sampling area in the larger context of the southern Alaska coastline. 
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10 µm  10 µm  

C 

10 µm  

Figure 2. Images of a mixotrophic dinoflagellate (A), nanoflagellate (B), and 
cryptophyte (C) under 1000x epifluorescence illumination. Within the dinoflagellate 
cell (A) and nanoflagellate cell (B) am ingested Synechococcus can be observed. Red 
autofluorescence of chloroplasts allowed for determination of inherent photosynthetic 
ability and yellow autofluorescence of Synechococcus was used to observe ingestion.  
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Figure 3. Box plot displaying fraction feeding for nanoflagellates (red) and dinoflagellates 
(blue) with and without added cultured Synechococcus cells. Samples were screened to 50% 
ambient PAR and incubated on deck for 4h with no nutrient addition. Two bottles were 
incubated with added prey (1x106-5x106 cells/ml) and two without for each set of 
experiment (n=14). Bottom, middle and top of boxes denote the first quartile, median, and 
third quartile respectively, with the whiskers representing the 10th and 90th percentile.  
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Figure 4. Principal component analysis on environmental factors in the NGA by season (A) with 
fraction feeding of the nanoflagellate community overlain (B).  Arrows show the loadings for each 
variable; axes show % of total variance explained by PC1 and PC2. Darker circles in (B) 
correspond to a higher fraction of nanoflagellate feeding.  
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Figure 5. Significant (α =0.1) correlations between ingestion (fraction feeding) and environmental 
variables for A) dinoflagellates and B) cryptophytes versus 24-h light history; C) dinoflagellates 
versus temperature; D) nanoflagellates versus Synechococcus concentration; E) nanoflagellates 
versus phosphate concentration. Correlation coefficients (Kendall’s tau) and p-values are shown on 
each plot. Both summer (triangle) and fall (circle) data are included in this analysis. Color indicates 
the mixotroph taxonomic group: cryptophyte (yellow), dinoflagellate (blue) or nanoflagellate (red).  
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Figure 6. Ambient fraction feeding by the nanoflagellate community as a function of Synechococcus 
and phosphate concentrations. Greyscale corresponds to the fraction of the community feeding with 
darker points corresponding to stations with higher ingestion rates. Nutrient and Synechococcus 
concentration estimates came from the same Niskin bottles as the samples used to determine fraction 
feeding. Both summer and fall data are included.  
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Figure 7. Boxplot of fraction feeding for experiments conducted in summer 2019. All experiments 
from a given station were averaged regardless of treatment (n=22-64). All samples were incubated for 
4h. Dinoflagellates (blue) were only enumerated at GAK 15 and PWS 2; nanoflagellates (red) were 
enumerated at every station. The boxes represent the first quartile, median, and third quartile, with 
whiskers extending to the 10th and 90th percentiles; any outliers are shown as points above or below 
the whiskers. 
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Figure 8. Fraction feeding for the nanoflagellate community in response to gradients of PAR dose 
and DIN during summer experiments. Low ambient phosphate stations were determined to have <0.4 
µM  phosphate and low ambient prey stations were classified as having <2x105 cells/ml 
Synechococcus prior to prey addition. Darker points represent stations were replicate samples had the 
same fraction feeding, lines correspond to standard error between replicates (n=2). The PAR values 
represent the total PAR received during 4 h deck incubations. All samples received additions of 
cultured Synechococcus.  
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Figure 9.  Fraction feeding for the dinoflagellate community in response to gradients of DIN and 
PAR during summer experiments. A) fraction feeding in response to increased Nitrate concentration; 
B) fraction feeding in response to PAR Dose. Darker points represent stations were replicate samples 
had the same fraction feeding. All stations sampled were determined to be low phosphate (<0.4 µM) 
and low Synechococcus (<2x105 cells/ml). The PAR values represent the total PAR received during 4 
h deck incubations. All samples received additions of cultured Synechococcus.  
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Figure 10. Feeding responses to increased Synechococcus cell concentrations during summer 
experiments. A) the nanoflagellate feeding response fit with a Michaelis-Menten response curve 
(residual standard error=0.029; B) the dinoflagellate feeding response fit using a glm (fraction 
feeding ~ Synechococcus concentration, p=0.017, 8 df, R2=0.53). These data represent all stations 
where prey concentration experiments were conducted and there was a mixotroph community of 
sufficient abundance to enumerate (only GAK 15 for the dinoflagellate community). All samples 
were screened to 50% ambient PAR, deck incubated for 4 h and received gradients in cultured 
Synechococcus. Darker points represent stations where replicate samples had the same fraction 
feeding, color corresponds to station.  
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Figure 11. Biomass of <20 µm photosynthetic community separated by taxonomic group for each 
station sampled in A) summer and B) fall. Gymnodinium-types and Cryptophytes are shown 
separately from Misc. Dinoflagellates and Nanoflagellates since the former were enumerated 
independently for fraction feeding analysis. 
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Figure 12. Biomass of <20 µm photosynthetic eukaryote community separated by size class (with 
Synechococcus shown separately) for each station sampled in A) summer and B) fall. 
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Figure 13. Principal component analysis for <20 µm community by A) taxon and B, C) size class. 
Vectors show taxon or size class loadings, with axes showing % of total variance explained by PC1 
and PC2. Shapes indicate season (A, B), color in C) corresponds to temperature. 
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Figure 14. Mixotrophic flagellates as a proportion of <20 µm photosynthetic community biomass 
(µgC/L) observed to be mixotrophic during summer (A) and fall (B). Mixotrophic organisms were 
classified by direct observation of ingested Synechococcus prey in this study and include the groups 
enumerated for fraction feeding analysis. Mixotrophic flagellates as a proportion of total <20 µm 
phytoflagellates shown for summer (C) and fall (D).   
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Figure 15. Schematic diagrams of basic microplankton food webs without mixotrophy 
incorporated (left) and with mixotrophy incorporated (right). The incorporation of mixotrophy as a 
pathway for nutrients and energy shows how mixotrophic organisms contribute to ecosystem 
stability and productivity.  
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Supplementary Materials 

 

Supplementary Table 1. Experiment treatments and final values encompassing ambient 
conditions and any nutrient carryover from prey addition. Light level corresponds to the level of 
neutral density screening, where the 1.0 level corresponds to no screening (i.e. full proportion of 
ambient deckboard PAR) and the 0 level corresponds to full coverage with black tape (i.e. 0 
proportion of ambient PAR). Synechococcus prey concentrations (cells/ml) and nitrate and 
phosphate concentrations (µM) were calculated by knowing the amount in a spike volume and 
using that value to calculate the concentration in bottles that received different volumes of the 
same source culture/nutrient stock. 

Station 
Exp 
Type 

Synechococcus 
Added 

Nitrate 
Added 

Phosphate 
Added 

Light 
Level 

Final 
Synechococcus 

Final 
Nitrate 

Final 
Phosphate 

Final 
PAR 
Dose 

GAK 15 DIN 5.86E+05 4.28 0.33 0.50 6.30E+05 5.25 0.72 4.07 
GAK 15 DIN 5.86E+05 2.31 0.17 0.50 6.30E+05 3.27 0.56 4.07 
GAK 15 DIN 5.86E+05 1.32 0.08 0.50 6.30E+05 2.28 0.47 4.07 
GAK 15 DIN 5.86E+05 0.82 0.04 0.50 6.30E+05 1.79 0.43 4.07 
GAK 15 DIN 5.86E+05 0.58 0.02 0.50 6.30E+05 1.54 0.41 4.07 
GAK 15 DIN 5.86E+05 0.33 0.00 0.50 6.30E+05 1.29 0.39 4.07 
GAK 5 DIN 2.34E+05 6.61 0.28 0.50 4.55E+05 6.93 0.68 4.58 
GAK 5 DIN 2.34E+05 3.48 0.14 0.50 4.55E+05 3.80 0.54 4.58 
GAK 5 DIN 2.34E+05 1.91 0.06 0.50 4.55E+05 2.23 0.46 4.58 
GAK 5 DIN 2.34E+05 1.13 0.03 0.50 4.55E+05 1.45 0.43 4.58 
GAK 5 DIN 2.34E+05 0.73 0.01 0.50 4.55E+05 1.05 0.41 4.58 
GAK 5 DIN 2.34E+05 0.34 0.00 0.50 4.55E+05 0.66 0.40 4.58 
GAK 9 DIN 5.81E+05 7.12 0.43 0.50 1.06E+06 8.55 0.84 4.67 
GAK 9 DIN 5.81E+05 3.98 0.22 0.50 1.06E+06 5.42 0.62 4.67 
GAK 9 DIN 5.81E+05 2.42 0.11 0.50 1.06E+06 3.85 0.52 4.67 
GAK 9 DIN 5.81E+05 1.63 0.06 0.50 1.06E+06 3.06 0.47 4.67 
GAK 9 DIN 5.81E+05 1.24 0.03 0.50 1.06E+06 2.67 0.44 4.67 
GAK 9 DIN 5.81E+05 0.85 0.01 0.50 1.06E+06 2.28 0.41 4.67 
KOD 3 DIN 4.78E+04 6.88 0.46 0.50 7.73E+04 7.36 0.88 1.93 
KOD 3 DIN 4.78E+04 3.44 0.23 0.50 7.73E+04 3.92 0.65 1.93 
KOD 3 DIN 4.78E+04 1.72 0.11 0.50 7.73E+04 2.20 0.54 1.93 
KOD 3 DIN 4.78E+04 0.86 0.06 0.50 7.73E+04 1.34 0.48 1.93 
KOD 3 DIN 4.78E+04 0.43 0.03 0.50 7.73E+04 0.91 0.45 1.93 
KOD 3 DIN 4.78E+04 0.00 0.00 0.50 7.73E+04 0.48 0.43 1.93 
KOD 8 DIN 5.68E+04 7.00 0.35 0.50 2.20E+05 7.45 0.76 6.98 
KOD 8 DIN 5.68E+04 3.55 0.17 0.50 2.20E+05 4.01 0.58 6.98 
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KOD 8 DIN 5.68E+04 1.83 0.09 0.50 2.20E+05 2.28 0.50 6.98 
KOD 8 DIN 5.68E+04 0.96 0.04 0.50 2.20E+05 1.42 0.45 6.98 
KOD 8 DIN 5.68E+04 0.53 0.02 0.50 2.20E+05 0.99 0.43 6.98 
KOD 8 DIN 5.68E+04 0.10 0.00 0.50 2.20E+05 0.56 0.41 6.98 
MID 5 DIN 6.43E+05 7.34 0.39 0.50 7.56E+05 7.56 0.64 3.83 
MID 5 DIN 6.43E+05 4.67 0.21 0.50 7.56E+05 4.90 0.46 3.83 
MID 5 DIN 6.43E+05 3.34 0.12 0.50 7.56E+05 3.56 0.37 3.83 
MID 5 DIN 6.43E+05 2.67 0.07 0.50 7.56E+05 2.90 0.33 3.83 
MID 5 DIN 6.43E+05 2.34 0.05 0.50 7.56E+05 2.56 0.31 3.83 
MID 5 DIN 6.43E+05 2.01 0.03 0.50 7.56E+05 2.23 0.28 3.83 
PWS 2 DIN 4.30E+05 7.26 0.49 0.50 4.62E+05 7.33 0.61 5.50 
PWS 2 DIN 4.30E+05 3.98 0.25 0.50 4.62E+05 4.05 0.37 5.50 
PWS 2 DIN 4.30E+05 2.34 0.13 0.50 4.62E+05 2.41 0.25 5.50 
PWS 2 DIN 4.30E+05 1.52 0.07 0.50 4.62E+05 1.59 0.19 5.50 
PWS 2 DIN 4.30E+05 1.11 0.04 0.50 4.62E+05 1.19 0.16 5.50 
PWS 2 DIN 4.30E+05 0.71 0.01 0.50 4.62E+05 0.78 0.13 5.50 

GAK 15 Light 5.86E+05 0.33 0.00 1.00 6.30E+05 1.29 0.38 8.13 
GAK 15 Light 5.86E+05 0.33 0.00 0.50 6.30E+05 1.29 0.38 4.07 
GAK 15 Light 5.86E+05 0.33 0.00 0.30 6.30E+05 1.29 0.38 2.44 
GAK 15 Light 5.86E+05 0.33 0.00 0.10 6.30E+05 1.29 0.38 0.81 
GAK 15 Light 5.86E+05 0.33 0.00 0.00 6.30E+05 1.29 0.38 0.00 
GAK 5 Light 2.34E+05 0.34 0.00 1.00 4.55E+05 0.66 0.40 9.17 
GAK 5 Light 2.34E+05 0.34 0.00 0.50 4.55E+05 0.66 0.40 4.58 
GAK 5 Light 2.34E+05 0.34 0.00 0.30 4.55E+05 0.66 0.40 2.75 
GAK 5 Light 2.34E+05 0.34 0.00 0.10 4.55E+05 0.66 0.40 0.92 
GAK 5 Light 2.34E+05 0.34 0.00 0.00 4.55E+05 0.66 0.40 0.00 
GAK 9 Light 5.81E+05 0.85 0.01 1.00 1.06E+06 2.28 0.41 9.35 
GAK 9 Light 5.81E+05 0.85 0.01 0.50 1.06E+06 2.28 0.41 4.67 
GAK 9 Light 5.81E+05 0.85 0.01 0.30 1.06E+06 2.28 0.41 2.80 
GAK 9 Light 5.81E+05 0.85 0.01 0.10 1.06E+06 2.28 0.41 0.93 
GAK 9 Light 5.81E+05 0.85 0.01 0.00 1.06E+06 2.28 0.41 0.00 
KOD 3 Light 4.78E+04 0.00 0.00 1.00 7.73E+04 0.48 0.43 3.85 
KOD 3 Light 4.78E+04 0.00 0.00 0.50 7.73E+04 0.48 0.43 1.93 
KOD 3 Light 4.78E+04 0.00 0.00 0.30 7.73E+04 0.48 0.43 1.16 
KOD 3 Light 4.78E+04 0.00 0.00 0.10 7.73E+04 0.48 0.43 0.39 
KOD 3 Light 4.78E+04 0.00 0.00 0.00 7.73E+04 0.48 0.43 0.00 
KOD 8 Light 5.68E+04 0.10 0.00 1.00 2.20E+05 0.56 0.41 13.95 
KOD 8 Light 5.68E+04 0.10 0.00 0.50 2.20E+05 0.56 0.41 6.98 
KOD 8 Light 5.68E+04 0.10 0.00 0.30 2.20E+05 0.56 0.41 4.19 
KOD 8 Light 5.68E+04 0.10 0.00 0.10 2.20E+05 0.56 0.41 1.40 
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KOD 8 Light 5.68E+04 0.10 0.00 0.00 2.20E+05 0.56 0.41 0.00 
MID 5 Light 6.27E+05 2.01 0.03 1.00 7.40E+05 2.23 0.28 7.67 
MID 5 Light 6.27E+05 2.01 0.03 0.50 7.40E+05 2.23 0.28 3.83 
MID 5 Light 6.27E+05 2.01 0.03 0.30 7.40E+05 2.23 0.28 2.30 
MID 5 Light 6.27E+05 2.01 0.03 0.10 7.40E+05 2.23 0.28 0.77 
MID 5 Light 6.27E+05 2.01 0.03 0.00 7.40E+05 2.23 0.28 0.00 
PWS 2 Light 4.30E+05 0.71 0.01 1.00 4.62E+05 0.78 0.13 11.00 
PWS 2 Light 4.30E+05 0.71 0.01 0.50 4.62E+05 0.78 0.13 5.50 
PWS 2 Light 4.30E+05 0.71 0.01 0.30 4.62E+05 0.78 0.13 3.30 
PWS 2 Light 4.30E+05 0.71 0.01 0.10 4.62E+05 0.78 0.13 1.10 
PWS 2 Light 4.30E+05 0.71 0.01 0.00 4.62E+05 0.78 0.13 0.00 

GAK 15 Prey 1.17E+06 0.66 0.00 0.50 1.21E+06 1.62 0.39 4.07 
GAK 15 Prey 5.86E+05 0.33 0.00 0.50 6.30E+05 1.29 0.39 4.07 
GAK 15 Prey 3.53E+05 0.20 0.00 0.50 3.97E+05 1.16 0.39 4.07 
GAK 15 Prey 1.20E+05 0.07 0.00 0.50 1.64E+05 1.03 0.39 4.07 
GAK 15 Prey 0.00E+00 0.00 0.00 0.50 4.43E+04 0.96 0.39 4.07 
GAK 5 Prey 4.74E+05 0.68 0.00 0.50 6.95E+05 1.00 0.40 4.58 
GAK 5 Prey 2.34E+05 0.34 0.00 0.50 4.55E+05 0.66 0.40 4.58 
GAK 5 Prey 1.42E+05 0.21 0.00 0.50 3.62E+05 0.52 0.40 4.58 
GAK 5 Prey 4.91E+04 0.07 0.00 0.50 2.69E+05 0.39 0.40 4.58 
GAK 5 Prey 0.00E+00 0.00 0.00 0.50 2.20E+05 0.00 0.40 4.58 
GAK 9 Prey 1.16E+06 1.70 0.01 0.50 1.64E+06 3.13 0.42 4.67 
GAK 9 Prey 5.81E+05 0.85 0.01 0.50 1.06E+06 2.28 0.41 4.67 
GAK 9 Prey 3.47E+05 0.51 0.00 0.50 8.28E+05 1.94 0.41 4.67 
GAK 9 Prey 1.14E+05 0.17 0.00 0.50 5.94E+05 1.60 0.41 4.67 
GAK 9 Prey 0.00E+00 0.00 0.00 0.50 4.80E+05 0.00 0.00 4.67 
KOD 3 Prey 9.56E+04 0.00 0.00 0.50 1.25E+05 0.48 0.43 1.93 
KOD 3 Prey 4.78E+04 0.00 0.00 0.50 7.73E+04 0.48 0.43 1.93 
KOD 3 Prey 2.84E+04 0.00 0.00 0.50 5.79E+04 0.48 0.43 1.93 
KOD 3 Prey 9.56E+03 0.00 0.00 0.50 3.90E+04 0.48 0.43 1.93 
KOD 3 Prey 0.00E+00 0.00 0.00 0.50 2.95E+04 0.48 0.43 1.93 
KOD 8 Prey 1.14E+05 0.20 0.00 0.50 2.77E+05 0.66 0.41 6.98 
KOD 8 Prey 5.68E+04 0.10 0.00 0.50 2.20E+05 0.56 0.41 6.98 
KOD 8 Prey 3.43E+04 0.06 0.00 0.50 1.97E+05 0.52 0.41 6.98 
KOD 8 Prey 1.14E+04 0.02 0.00 0.50 1.74E+05 0.48 0.41 6.98 
KOD 8 Prey 0.00E+00 0.00 0.00 0.50 1.63E+05 0.46 0.41 6.98 
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Supplementary Table 2. Kendall’s tau correlation coefficients for relationships between 
ambient environmental factors. Fall and summer samples are included. Asterisks indicate 
significance (alpha = 0.05). Highly correlated values are shown here but were removed from 
analysis (Nitrate-Nitrite). 

 

 

 

Supplementary Table 3. Kendall’s tau correlation coefficients and p-values for correlations 
between environmental variables ambient fraction feeding by nanoflagellates, dinoflagellates and 
cryptophytes. Fall and summer data were combined for analysis. The sample size for each group 
is listed. *: correlation significant at alpha = 0.1; **: correlation significant at alpha=0.05. 

 
Nanoflagellates 
(n=33) Dinoflagellates (n=19) Cryptophytes (n=9) 

 p-value tau p-value tau p-value tau 
Salinity 0.218 -0.155 0.830 -0.038 0.600 -0.141 
Temperature 0.651 0.057 0.018** -0.418 0.463 0.197 
Nitrate 0.151 0.181 0.857 0.032 0.673 -0.114 
Phosphate 0.059* -0.240 0.774 0.051 0.463 -0.197 
Ammonium 0.261 -0.142 0.6408 0.083 0.833 -0.057 
Synechococcus 0.055* 0.243 0.173 0.241 0.116 0.423 
       

 

 

 

 

 

 Nitrate Nitrite Phosphate Ammonium Temperature Salinity Par Synechococcus  

Nitrate - 0.924* 0.729* 0.128 -0.498* 0.299 -0.135 -0.012  

Nitrite  - 0.740* 0.210 -0.498* 0.259* -0.126 -0.152  
Phosphate   - 0.142 -0.437* 0.585* 0.048 0.065  

Ammonium    - -0.077 0.138 0.286* 0.037  

Temperature     - -0.564* 0.306 -0.101  
Salinity      - 0.066 0.257  

PAR       - -0.070  

Synechococcus        -  
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Supplementary Figure 1. Schematic diagram of water collection and experimental design for 
deckboard incubation experiments.  

1.	Water	was	collected	from	the	
50%	light	level.

2.	Held	in	a	carboy,	mixed,	and	temperature	
controlled	until	careful	transfer	to	250	ml	
bottles.

3.	Initial	samples	were	taken	to	
observe	background	ingestion,	prey	
concentration	and	inorganic	
nutrients	concentrations.

5.	Bottles	were	
incubated	on	deck	for	4	
h	before	subsamples	
were	fixed,	stained,	
filtered	(2	µm)	and	
frozen	for	microscopy.

4.	Experimental	gradients	were	created	by	adding	
N+P,	cultured	Synechococcus,	and	layers	of	neutral	
density	screen.
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