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Abstract: 

As organisms respond to changes in their environment genetic variation between individuals 

can directly affect organismal trait phenotypes by altering gene expression. Historically, studies 

have focused on the effect of genetic variation on mRNA synthesis (transcription) and decay 

rates. Relatively few studies have probed the relationship between DNA variants and protein-

specific regulation of individual genes, despite the plethora of evidence that RNA levels are 

often poor proxies for protein levels. No study to date has mapped genetic variation associated 

with dynamic protein levels. In this study we investigated the location and identity of genetic 

variants acting on protein expression dynamics for the genes Fig1, Fus3, and Tos6 during mating 

pheromone response in isolates of the budding yeast Saccharomyces cerevisiae. We classified 

protein level variation as either local (driven by variation within the locus of the gene of 

interest) or as trans-acting (driven by variation elsewhere in the genome) by swapping gene of 

interest alleles between lab and clinical strain isolates. We previously found that Fig1p protein 

levels are controlled by trans-acting genetic variants and in this study we found evidence of 

local effects acting on TOS6 protein abundance but could not disentangle local from trans 

effects for the Fus3 gene. To map quantitative trait loci associated with Fig1 protein level 

variation (pQTL) during mating pheromone response we used a novel time-based Bulk 

Segregant Analysis (BSA) approach combined with Fluorescence Activated single-Cell Sorting 

(FACS) and Next-Gen Sequencing (NGS). These findings demonstrate the value of mapping 

protein expression dynamics and shed light on the complex nature of genotype-phenotype 

relationships in natural populations. 
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Introduction: 

Genetic diversity acts as the raw material for natural selection and evolution as populations 

respond to changing environments. Some individuals in a population possess genetic variants 

that are better suited for the selective pressures imparted by their environment (Morjan et al. 

2004). Thus, genetic variability within a population allows populations to adapt and survive. 

DNA is used as an instruction manual for producing each of the thousands of proteins that are 

required for cells to operate properly. This flow of genetic information from DNA to final 

protein product is commonly referred to as gene expression, and differences in gene expression 

result in the observable differences between living organisms (Stern and Orgogozo, 2008). DNA 

instructions differ ever so slightly between individuals in a population, and differ more 

significantly between divergent species. The disparities observed in DNA sequences can result 

in unique versions of functional proteins, or in varying amounts of protein being produced by 

the cell. These differences at the protein level manifest into the observable variation seen in 

the traits of individuals in a population, or in an individual's susceptibility to a given disease 

(Schadt et al. 2005). Moreover, natural variation in when, where, and how much genes are 

expressed has been associated with ecological adaptation and has direct implications in 

evolutionary biology (Shapiro et al. 2004), (Wittkopp et al. 2004), (Lackner et al. 2012). 

  

Deciphering the genetic code has improved our understanding of how variation at the DNA 

level results in different versions of proteins, however relatively less is known about how 

genetic differences affect when or how much a given protein is expressed. Furthermore, studies 

have suggested that sequence divergence is far more common in DNA regions that control 
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expression patterns than in orthologous protein coding regions between closely related species 

(Wittkopp et al. 2008), (Dermitzakis and Clark, 2002), (Borneman et al. 2007), suggesting that 

phenotypic differences between divergent species are more a result of differential expression 

patterns than expression of unique proteins (Ronald et al. 2005), (Schmidt et al. 2010). Four 

central processes control the concentration of proteins in a cell: transcription (mRNA synthesis), 

mRNA decay, translation (protein synthesis), and protein decay (Figure 1). While in theory, 

differences at the DNA level should be able to affect the rate of all four of these processes, 

most research has exclusively focused on the genetics involved in differential mRNA synthesis 

and differential mRNA decay rates (Albert and Kruglyak, 2015). Affordability and relative ease of 

mRNA sequencing has made quantitative transcript analysis a more attractive avenue for 

studying gene expression than quantitative proteomic analysis (Albert et al. 2014), (Foss et al. 

2007), (Marguerat et al. 2012). However, evidence suggests that mRNA expression profiles 

don’t always agree with protein expression profiles (Straub et al. 2011), (Ghazalpour et al. 

2011), (Foss et al. 2011), (McManus et al. 2012), (Pollard et al. 2016), and recent studies on 

global mRNA and Protein abundances show only modest correlations (r ~ 0.4) in both humans 

(Gry et al. 2009) and yeast (Brion et al. 2020) suggesting that a major gap exists in our 

understanding of gene expression regulation. Further, since proteins, not mRNA transcripts are 

the functional molecular form of a given gene, understanding the mechanisms that govern 

differential protein expression provides greater insight into the heritable variation involved in 

cellular physiology. 



 3 

  

Figure 1: The central dogma of molecular biology, where each red arrow represents a cellular 
process in which DNA variation can act on gene expression dynamics. 
  

Heritable phenotypic traits can be influenced by a variety of genetic processes which together 

make up the genetic architecture of a trait. Understanding these underlying mechanisms that 

contribute to the genetic architecture of phenotypic traits is a major focus in modern day 

genetics (Timpson et al. 2017) (Pomp et al. 2004). The architecture for most heritable traits is 

genetically complex meaning these traits are influenced in part by a number of genetic variants 

acting simultaneously. Making matters more complex, genetic variants that affect expression of 

individual genes can either be local (near the gene in question) or located in distant regions of 

the genome. Allele-specific expression assays allow for the genetic mechanisms underlying 

expression differences to be teased apart by directly comparing the expression of alleles within 

the same cellular context. Allele-specific expression differences are an indication of cis-acting 

variation (differences driven by variation within the gene of interest allele) while lack of allele-

specific effects is usually interpreted as evidence of trans-acting variation (driven by variation 

elsewhere in the genome) (Wittkopp et al. 2004), (Knight, 2004) (Salinas et al. 2016) (Khan et al. 

2012) (Figure 2). Fluorescent gene tags enable the quantification of single-cell protein 

abundance of individual genes (Huh et al. 2003) (Rines et al. 2002) and research employing 

chimeric gene of interest (GoI) allele swaps have been able to tease apart allele specific 

differences from genomic background differences on the expression of many phenotypic traits 
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(Sadhu et al. 2016) (Deutschbauer and Davis, 2005). A similar allele-swap methodology 

combined with quantitative fluorescent microscopy and a reporter-tagged GoI can be employed 

in order shed light on the genetic architecture of protein expression phenotypes (Figure 3). 

Although these experiments cannot distinguish between cis-acting variation and local variation 

acting by a trans mechanism, this assay can tell us whether GoI expression is influenced 

primarily by local polymorphisms or distant trans-acting factors. For alleles where local 

variation drives expression differences individual causal polymorphisms can be fine-mapped 

directly via subsequent rounds of systematic chimeric allele swaps, but for variants acting on 

expression in trans genome-wide mapping is necessary prior to fine mapping causal variants. 
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Figure 2: Illustration depicting mechanistic differences between local and distant genetic 
interactions contributing to variable protein level expression. 1) Local level effects where 
variation within the GoI allele primarily contributes to variable GoI protein expression. 2) 
Distant or trans level effects where variation in distant regions of the genome contribute to 
variable GoI protein expression. 
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Figure 3: Example illustration of the systematic allele swap experimental framework where the 
expression of GoI alleles are compared across genomic backgrounds. 1) Native strain without 
fluorescence reporter attached to the gene of interest. 2) Native strain background with gene 
of interest locus replaced with native strain chimeric gene of interest fluorescent reporter 
allele. 3) Allele swap strains with reciprocal strain’s chimeric gene of interest fluorescent 
reporter inserted into the otherwise native strain genomic background. 
  

While individual cis-acting variants often have much larger phenotypic effects than individual 

trans-acting variants, trans variants explain the majority of the variance for the expression of 

most genes (Metzger et al. 2016) (Albert et al. 2018) (Signor and Nuzhdin, 2018). Quantitative 

Trait Loci (QTL) are genomic locations that harbor polymorphisms associated with a given 

quantitative (complex) trait. Bulk Segregant Analysis (BSA) is a highly efficient method for 

mapping QTL in which large numbers of individuals are sorted according to phenotype and 

subsequently bulk DNA-sequenced (Duveau et al. 2014) (Edwards and Gifford, 2012) (Salunkhe 

et al. 2011) (de Vries et al. 1998) (Ehrenreich et al. 2010) (Figure 4). Recent BSA studies in yeast 

have identified pQTL acting on steady-state protein levels of thousands of genes (Albert et al, 

2014) (Picotti et al, 2013) (Parts, 2014), and research on mRNA level QTL (eQTL) have found 

that nearly all steady state trans-acting variants cluster into just 102 eQTL hotspots (Albert et al, 
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2018). Counterintuitively, eQTL often lack corresponding protein level pQTL suggesting that 

mechanisms controlling cellular protein levels can act independently of transcriptional 

regulation. Together these findings point towards a class of polymorphisms that influence gene 

expression specifically at the protein level, motivating further research into the genetic 

architecture underlying protein abundance of specific genes. 

 

   

Figure 4: Schematic depicting the Bulk 
Segregant Analysis experimental 
framework. First haploid parents are 
mated in order to generate diploid 
hybrids. Diploid hybrids are 
subsequently sporulated to generate a 
pool of haploid recombinants which are 
then sorted by phenotype into separate 
bulks and independently bulk-
sequenced 
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To this point quantitative gene expression research has focused predominately on gene 

expression under steady state conditions. Despite the abundance of critical biological processes 

that rely on dynamic gene expression responses such as development (Verd et al. 2017) (Assoul 

et al. 2010), aging (Pascual-Ahuir et al. 2019) (Seroude et al. 2002), and responding to 

environmental perturbation (Hook et al. 2007) (de Nadal et al. 2011) (Strassburg et al. 2010) the 

extent to which genetic differences affect differences in dynamic gene expression processes is 

still poorly understood. And while some dynamic states have been relatively well studied, most 

research has focused exclusively on the transcriptional side of gene expression (Delile et al. 

2019) (Gloss et al. 2017) (Hook et al. 2010) (Miller et al. 2011). Moreover, whether the QTL that 

are known to regulate steady-state mRNA and protein levels extend to non-steady-state 

conditions has yet to be thoroughly investigated. In this study we employed Allele Specific 

Expression assays as well as Bulk Segregant Analysis pQTL-mapping in order to probe the 

genetic architecture underlying observed dynamic gene expression differences between 

populations of Brewer’s yeast, Saccharomyces cerevisiae. 
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Background 

Brewer’s yeast is an ideal model organism for studying general Eukaryotic cellular processes 

due to its rapid reproduction rate, unique haploid-diploid reproductive cycle, its relatively small 

and fully sequenced genome, and the plethora of established experimental protocols available 

for yeast research, most notably reliable genome editing via homologous recombination. (Liti et 

al. 2009) (Liu et al. 2017) (Roberts et al. 2004). While yeast are similar to familiar model 

organisms such as Escherichia coli in that they are unicellular, robust, and easy to maintain in a 

lab setting, they are Eukaryotic and despite ~1.5 billion years of evolutionary divergence, 1/3 of 

their ~6500 genes have direct homologs to human genes. Furthermore, as a result of 

geographic and ecological isolation S. cerevisiae has a complex population structure with 

thousands of genetically divergent strains (Schuller et al. 2012) (Peter et al. 2018), making yeast 

a uniquely appropriate system for studying the heritable nature of complex traits. 

Brewer’s yeast have a life cycle in which individuals can alternate between haploid and diploid 

cell stages (Figure 5). Both diploid and haploid cells are stable and capable of reproducing via 

mitosis. Haploid cells belong to one of two mating types, mat-a and mat- 𝝰 (alpha), where cells 

respond to and mate with haploid cells of the opposite mating type (Haber, 2012). When 

haploid cells detect the opposite mating type’s mating pheromone, they respond by growing a 

shmoo in the direction corresponding to the highest concentration of detected pheromone. 

The mat-a and mat- 𝝰 haploid cells join at the site of the shmoo and form a diploid cell. While 

diploid cells are stable, under stressful environmental conditions diploid cells can undergo 

meiosis and produce 4 recombinant haploid spores contained within a single ascus structure. 
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Mating pheromone regulated genes are dynamically expressed (Erdman et al. 1998) (Paliwal et 

al. 2007), and genetic variation between closely related yeast populations contribute to 

observed transcriptional differences between pheromone treated cells (Zheng et al. 2010). The 

deeply conserved MAPK pathway is critical in regulating yeast cellular physiology and plays a 

critical role in the switch between vegetative growth and mating physiological states 

(Herskowitz, 1995). Research has found that the MAPK pathway shows differential regulation 

between closely related yeast strains (Treusch et al. 2015) (Chen and Thorner, 2007), and has 

uncovered causal polymorphisms in common lab strains with respect to ancestral yeast 

populations that effect downstream MAPK signaling and mating physiology (Lang et al. 2009). 

 
Figure 5: Simplified illustration of yeast mating process. 1) Haploid yeast belong to one of two 
mating types, mat-a and mat-alpha. Haploid cells produce and release mating pheromone into 
the environment. 2) Cells respond to the opposite mating types’ mating pheromone by growing 
a schmoo in the direction of the highest concentration of detected environmental pheromone. 
3) Cells join at the site of the schmoo and fuse to become diploid hybrid cells. 
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The mating pheromone response pathway in yeast is an ideal model system for studying 

differential gene expression dynamics because cells are responding to their environment by 

coordinating the expression of a cascade of genes. Under a dynamic gene expression model, 

the expression of specific genes is both quantitatively and temporally regulated in response to 

their environment (Hecker et al. 2009). Prior studies focusing on environmental stress response 

in yeast have found evidence of differential transcription of distinct groups of genes at different 

timepoints following various forms of environmental perturbation (Dong et al. 2017) (Sethiya et 

al. 2019). As described above, a growing body of research focused on natural variation in steady 

state gene expression has suggested that mRNA abundance is often an insufficient proxy for 

protein abundance for many genes (Parts et al. 2014) (Vogel and Marcotte, 2012). Meanwhile, 

whether mRNA abundance is the key player in explaining protein abundance under non-steady 

state conditions - such as mating pheromone response pathways – has only recently begun to 

be explored (Pollard et al. 2016). Moreover, the degree to which the genetic architecture of 

steady-state and dynamically expressed genes overlap is so far yet to be determined. 

 

Two strains of S. cerevisiae, S288c a common lab strain, and YJM145 a clinical strain originally 

isolated from the lungs of an immuno-suppressed AIDS patient, are known to vary in their 

response to mating pheromone. These strains differ by ~60,000 genomic polymorphisms, show 

differences in dynamic expression of pheromone responsive genes, and therefore present an 

ideal system for probing the genetics underlying differential dynamic gene expression 

phenotypes.  
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Prior research in the Pollard Lab has identified a group of genes with protein expression 

dynamics that differ between lab and clinical strains during pheromone response (Pollard et al. 

2016) (Figure 6). This research focuses on elucidating the genetic architecture and molecular 

mechanisms underlying these observed differences in dynamically expressed pheromone 

response genes between strains. Fig1 is a membrane bound protein involved in calcium influx 

that is locally expressed at the site of the shmoo (Muller et al. 2003) (Cavinder and Trail, 2012), 

and is essential for yeast mating (Erdman et al. 1998). Fus3 is a protein kinase that is a 

component of the mitogen active kinase pathway that transduces the pheromone signal (Elion 

et al. 1993). Tos6 a glycosylphosphatidylinositol (GPI)-dependent cell wall protein (Hamada et 

al. 1998). Fig1, Fus3, and Tos6 each express more protein molecules per RNA molecule in the 

S288c strain compared to the YJM145 strain (Pollard et al. 2016) (Figure 6). These protein-level 

differences suggest either higher protein synthesis rates, lower protein decay rates, or both in 

S288c compared to YJM145. Cycloheximide decay rate assays confirm that decay rates are 

indeed significantly lower in S288c compared to YJM145 and differential equation modeling 

supports the hypothesis that protein synthesis rates are significantly higher in S288c compared 

to YJM145. Allele-specific expression assays on the Fig1 gene did not find evidence of allele 

specific expression, which implies that Fig1 protein expression differences between strains is 

due to genetic variants that are located outside of the Fig1 locus and act in trans. This thesis 

project is an effort toward further elucidating the genetic architecture and molecular 

mechanisms underlying the differences in protein expression dynamics for these three genes. 
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Figure 6: Example RNA and Protein expression time courses illustrating protein per RNA 
differences for the Fig1, Fus3, and Tos6 genes following addition of 𝝰 -factor mating 
pheromone at timepoint zero in both S288c and YJM145 native strain backgrounds. Red lines 
represent S288c while blue lines represent YJM145. Triangles represent mean expression while 
shadows represent 95% confidence intervals. Plots are rescaled to arbitrary units with a 
maximum value of one for visualization purposes. 
  

For the first step towards illuminating the genetic architecture underlying divergent protein 

synthesis and/or decay rates for these genes, we characterized protein expression variation as 

either being subject to locally-acting or distantly-acting genetic variants. As stated above, Fig1 

had already been identified as having distant trans-acting genetic variation (Pollard et al. 2016). 

Here, we performed allele swaps combined with fluorescence microscopy for Fus3 and Tos6 to 

tease apart whether protein level differences are driven by local or trans-acting genetic 
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variation. For the Fus3 gene we failed to uncover consistent expression patterns, preventing 

categorization of the location of regulatory genetic variants. However, for Tos6 we found 

evidence of local variation affecting protein abundance. 

For the second step towards understanding the genetic architecture and ultimately the 

molecular mechanisms underlying divergence in protein expression dynamics, we used a bulk 

segregant approach to map the genomic locations of genetic variants acting in trans on Fig1 

protein expression. We generated a recombinant segregant population through multiple 

generations of random mating between S288c and YJM145 isolates, selected high and low 

expressing bulks of cells at multiple time points during pheromone response using fluorescence 

active single-cell sorting, and identified alleles associated with Fig1 expression levels from next 

generation sequencing of the selected bulks. We identified a collection of novel trans-acting 

QTL affecting FIG1 protein abundance and intriguingly found evidence of QTL that differentially 

contribute to FIG1 protein levels across different pheromone response stages. 
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Methods: 
  
Characterizing Expression Variation as Local or Trans-acting 

        Strain Engineering 

Allele swap strains were constructed using a targeted mutagenesis approach (Gietz and 

Schiestl, 2007) with selection for specific genetic markers. Alleles were swapped in two steps by 

first deleting the GoI locus in each genomic background before inserting the reciprocal strain 

allele. First, the native allele was knocked out using a KanMX knockout cassette by targeting the 

5’ and 3’ sequences immediately flanking the GoI locus (Table 1). After knocking out the native 

allele, a second transformation using targeted mutagenesis inserted a strain specific GoI allele 

cassette with a 3’ tethered yECitrine fluorescent protein domain along with an independently 

transcribed Ura3 selectable marker. This effectively replaced the native GoI locus with the 

reciprocal strain’s GoI locus attached in an open reading frame to a yECitrine fluorescent 

protein domain. Transformants were first selected by plating on either KanMx or -Ura minimal 

media, passaged on rich YPD media, and then selected a second round on the appropriate 

selective media. Following the second round of selection transformant colonies were confirmed 

by PCR before being frozen as -80 degree C glycerol stocks. 
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Table 1: Homology tags and selectable markers that were used in each allele swap genomic 
transformation. GoI loci were first knocked out using a KanMX selectable marker, and the 
reciprocal strain specific GoI allele was knocked in using a Ura3 selectable marker. Plasmid IDs 
of each selectable marker are given when applicable. 
  

        Microscopy Prep 

Strains were streak plated from their respective -80 degree C glycerol stocks and grown for 2-4 

days. Single colonies were then transferred into low fluorescence media, and grown for 6-8 

hours in a 30 degree C shaking incubator. Cultures were then diluted back and grown overnight 

into early log-phase at 30 degrees C. The following day, cultures were diluted to an OD of ~0.2, 

and subsequently treated with alpha-factor mating pheromone to a final concentration of 50 

nM. Treated cell cultures were placed back into the 30 degree C shaking incubator for ~3.75 

hours, until they were loaded into a glass bottom 96-well plate. Plates were treated with 

Fus3
GTAAGGCCCAAAGAGAA
TAGACAAAATGAAGTAA
TATCAT

TACATTGTTCTTCGGGTT
GATATTTTAATGATAAT
GATGG

loxp.KanMX.loxp 
(pUG6)

pTEF-CaUra3 
(pDAP4)

Tos6
CGGATCTTTTGTGTTGCT
TGGAAGTGTGATCAATA
CCCAT

GAAGCGGAATATCCTTC
CTAGTTTAAGTTGTCCAT
GCAAC

loxp.KanMX.loxp 
(pUG6)

Tos6 CGCACGCAACGATACTA
AGA

TAACAAAGCAAAGGCAG
CAG

pTEF-CaUra3 
(pDAP4)

Target Loci Upstream Homology 
Tag

Downstream Homology 
Tag

Selectable Marker 
(plasmid ID) 

Fus3 GGGTGAATTCTTCGGCA
TTA

ACTAAATATTTCGTTCCA
AA



 17 

Concanavalin A to adhere cells to glass bottom wells. Following addition of cells, plates were 

transferred to the Leica Fluorescence Microscope for imaging. 

 

        Image Acquisition  

Four hours after initial pheromone treatment, Concanavalin A adhered cell cultures were 

placed into a custom temperature-controlled microscope housing so that the Leica 

Fluorescence Microscope environment maintained a constant temperature of 30 degrees C. 

Cells were imaged at 63x magnification using a brightfield 21-image z-stack paired with a single 

YFP fluorescent filter image acquired at 150 milliseconds and gain set at 6. 

 

        Microscopy Analysis Script 

Each image was analyzed using a custom microscopy image analysis pipeline. First, a 

segmentation script used a 21-image z-stack series to define the boundaries of each cell in an 

image. Next, the YFP filter image matching a given z-stack was used to quantify the per cell 

fluorescence for each cell in the image. Finally, fluorescence was normalized against the 

autofluorescence of each respective native strain. The normalized per-cell fluorescence was 

averaged across each strain to determine strain-specific mean fluorescence strength for each 

experimental replicate. 
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Allele Swap Statistics 

Normalized per-cell fluorescence microscopy results were used to compare expression levels 

between native allele and allele swap strains. To assess the effects that strain background and 

GoI allele have on fluorescent reporter expression levels two-way ANOVA models including 

interaction effects were constructed using the aov function in R version 3.5.3 (R Core Team, 

2019). Native strain and allele swap strain RNA and protein level ratios were compared via 

Welch’s t-test using the t.test function in R version 3.5.3. 

 

 

Mapping Trans Acting Variation 

        Strain Construction 

Fig1 QTL mapping strains were constructed using a combination of targeted mutagenesis and 

plasmid-programmed genomic recombination. To select for Mat-a cells capable of responding 

to 𝝰-factor	each	strain	was	first	modified	to	procure	a	histidine	auxotrophy.	Both lab and 

clinical backgrounds had their His3 loci knocked-out using a G418-resistance (KanMX) cassette 

targeting the 5’ and 3’ sequences immediately flanking the His3 locus (Table 2). The KanMX 

knockout cassette was then excised from the His3 locus of the lab background (S288c) using 

Cre-Lox recombination. Next a modified synthetic genetic array methodology (Yan Tong and 

Boone, 2006) (Costanzo and Boone, 2009) was employed in order to select for Mat-a individuals 

by inserting a chimeric ste2-His5_Sp cassette into the Can1 locus of the lab background. The 

ste2 promoter is only transcriptionally active in Mat-a cells and the His5 allele from 

Schizosaccharomyces pombe has analogous functionality to the S. cerevisiae His3 gene, 
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permitting selection of Mat-a individuals on -histidine growth media. The intact KanMx allele in 

the clinical background, if combined with a selectable marker in the lab background, enables 

selection of mated diploids on double selection media. To take advantage of this feature, a 

Hygromycin-resistance (Hph) cassette was inserted into the yercΔ8 locus of the lab background 

via a targeted mutagenesis approach using homology tags directed at the sequences 

immediately 5’ and 3’ of the yercΔ8 locus.  

 

 

Table 2: Homology tags and selectable markers that were used in each BSA strain genomic 
transformation. Plasmid IDs of each selectable marker are given when applicable. 
  

 

The clinical background (YJM145) had its mating type switched from Mat-a to Mat-𝝰 via 

transfecting a plasmid containing a galactose driven HO endonuclease. Mat-𝝰 colonies were 

identified by Halo-assay, a pheromone production assay where pheromone-sensitive mutant 

test strains DBY7442 and DBY7730 experience mitotic growth arrest upon exposure to the 

yercΔ8
CCCAGTTGTTTGTAGCTG
GTTCATATTTAGCGGCA
AT

TTGTTGGCATTCCATTGT
TGGGAGAGGCTATTATA
TC

pTEF-Hph (pDAP6)

loxp.KanMX.loxp 
(pUG6)

pTEF-CaUra3 
(pDAP4)

Ste2-His5_Sp

Selectable Marker 
(plasmid ID) 

His3

Fig1

Can1

TATACTAAAAAATGAGC
AGGCAAGATAAACGAA
GGCA

CAGTAATGGCTTGGTTT
AGCTTTG

AGAGAATGATACGAGAT
AAAGCACA

TTCATAGGTATACATATA
TACACATGTATATATATC
GTAT

CAGACGGTAATGATTAG
AGTTTAGGT

TTGTCAATTCAAACTCCG
TTCTAAG

Target Loci Upstream Homology 
Tag

Downstream Homology 
Tag
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opposite mating type’s mating pheromone, permitting inference of individual cell’s mating 

types via presence or absence of test-strain zones of inhibition on YPD growth media. Finally, 

both lab and clinical backgrounds had their native Fig1 locus replaced with strain specific Fig1 

reporter cassettes. These reporter cassettes preserved the native Fig1 coding sequence of each 

strain, while also adding a tethered yECitrine fluorescent protein domain and an independently 

transcribed Ura3 sequence in order to select for transformants on -Ura media. After each 

genomic modification, transformant cells were confirmed via colony-PCR genotyping and were 

then frozen as -80 degree C glycerol stocks. 

 
 

Mating and Sporulation 

S288c and YJM145 strains were subjected to two and five rounds of mating and sporulation in 

order to increase the frequency of genomic recombination events and thus increase mapping 

resolution (Parts et al. 2011) (Magwene et al. 2011). The lab and clinical (mat-a and mat-𝝰 

respectively) strain backgrounds were mated in a droplet of water on YPD media plates. After 

mating, cells were streaked onto G418 + Hygromycin B double selection media in order to 

select for mated diploid colonies. Diploid colonies were then transferred and grown at ~23 

degrees C for 5-7 days in nutrient poor sporulation media to induce sporulation of diploid 

individuals. A modified sporulation procedure was adapted from Goddard et al. 2005. After 5-7 

days in nutrient poor sporulation media cells were rinsed, resuspended and incubated at 37 

degrees C for 10 minutes in 1 unit/25uL Zymolyase, followed by a two-hour 37 degree C 

incubation in 1% SDS in order to digest spore ascii. Following digestion, Eppendorf tubes 

containing sporulated cells were submerged in water and sonicated using a Torbéo 36810 
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Series ultrasonicator on low setting for 3 minutes in order to dissociate spores from ascii. 

Dissociated spores were then resuspended in rich YPD growth media and grown at 30 degrees C 

overnight without shaking to allow cells to settle and proceed through an additional round of 

mating. For one iteration of the mapping experiment the mating and sporulation protocol was 

repeated 4 times for a total of 5 rounds of mating and sporulation, while for the second 

iteration of the mapping experiment the mating and sporulation procedure was repeated once 

for a total of 2 rounds of mating and sporulation. 

 

        FACS Preparation 

Following the final round of mating and sporulation, dissociated spores were suspended in -His 

+ Canavanine double selection media and grown overnight in order to select for Mat-a 

segregants. After selecting for mat-a individuals, cells were grown to early log-phase in low-

fluorescence media, before being treated with 𝝰-factor mating pheromone to a final 

concentration of 50nM. Pheromone treated cultures were grown for either 2 hours or 5 hours 

prior to sorting. 

 

FACS sorting 

Cells were sorted on a Nanocellect WOLF Fluorescence Activated Single-Cell Sorter. Gates were 

carefully drawn to exclude doublets, extremely large and small cells, and non-fluorescing cells 

(Figure 7). Doublets were excluded by gating out cells with a large FSC-width to FSC-height 

ratio. Cells near the tails of the FSC-height distribution were excluded in order to only retain the 

~68% of intermediately sized cells. Finally, non-fluorescing cells were gated out by normalizing 
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against S288c cells lacking a yECitrine fluorescent reporter domain. Selection-gates were drawn 

to reflect the known relationship between cell size and cell fluorescence (Duveau et al. 2014). 

3-4% cell fractions were collected from each high and low fluorescent tails, while omitting the 

highest 2% and lowest 2% of individuals to ensure that artifacts such as doublets and unhealthy 

cells were excluded. Cells were sorted and collected in 30-minute time intervals, corresponding 

to the 15 minutes before and after the target 2 hour and 5 hour timepoints. Between 5,000 and 

6,000 cells were collected into each bulk from the 5 rounds of random mating and sporulation 

population and between 10,000 and 11,000 cells were collected into each bulk from the 2 

rounds of mating and sporulation populations. 

  

 

Figure 7. Collection gates were carefully designed to reflect the known relationship between 
cell-size and protein expression (represented here by FSC-H and FL1 respectively). Special 
attention was placed to exclude the most extreme cells to avoid collecting experimental 
artifacts. 
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Bulk DNA Prep 

Following sorting, pooled cells were spun down and rinsed to remove residual mating 

pheromone, before being resuspended in YPD and grown for 18-30 hours until cultures reached 

mid to late-log phase. Cells were then pelleted and subjected to phenol:choloroform:isoamyl 

DNA extraction (CSHL, 2015). 

 

        Sequencing 

Bulk-pooled DNA library preparation and sequencing was performed by Psomagen, INC. 

sequencing services. Libraries were prepared using an Illumina Truseq PCR-Free Library Prep kit 

and bulk sequencing was performed using a NovaSeq6000 S4 150-bp Paired End sequencing 

platform with ~3Gb production target. Per-bulk DNA Integrity Number values (a measure of 

DNA quality) ranged from 6.5 to 9.8 with a mean value of 7.7 providing relatively intact, high 

quality genomic DNA fragments for sequencing. 

 

        Read Processing 

Bulk-pooled raw sequence reads with genome wide sequencing depths ranging from 339x to 

1800x coverage per-pool were processed prior to QTL-mapping analysis. Raw sequence read 

adapters were trimmed using Scythe (Buffalo, 2013) and reads were quality trimmed using 

Sickle (Joshi, 2011). Trimmed reads were processed as described in GATK variant calling best 

practices (DePristo et al., 2011). First, reads were aligned to the S288c R64 reference genome 

using BWA (Li, 2013) to create aligned bam files for each pool. Unaligned trimmed reads were 

converted to unmapped bam format and then merged with the aligned bam reads using Picard 
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(Broad Institute, 2019) to conserve the per-read metadata required for downstream variant 

calling. The merged reads were indexed using Samtools (Li, 2009) and then compared to the 

S288c reference genome using GATK HaplotypeCaller (Van der Auwera et al., 2013) to generate 

pool specific VCF files. Per-sample VCFs were then indexed using GATK IndexFeatureFile and 

High and Low FACS-sorted bulk VCF files were merged using GATK CombineGVCFs to generate 

whole-experiment VCF files. The whole-experiment VCF files were then joint-called using GATK 

GenotypeGVCFs in order to genotype high and low pools together and create joint VCF files. 

The joint-genotyped VCF files were then exported into tab delimited tables using GATK 

VariantsToTable. 

 

         QTL Identification 

 The joint-genotyped VCF table was then further processed in the R-package QTLseqr 

(Mansfeld, 2018) to filter SNPs and develop whole-genome QTL maps. First, low confidence 

SNPs, SNPs with low depth in both bulks, and SNPs where the reference (lab strain-S288c) allele 

was overrepresented were filtered so that SNPs better fit a null-G’ distribution using the 

QTLseqr filterSNPs function to produce VCF files with 150x to 2500x coverage across each SNP 

in the genome. Outliers were identified using the deltaSNP method at a cutoff of 0.05. Using 

the QTLseqr runGprimeAnalysis function a tricubed-smoothed G’ statistic was calculated for 

each SNP using a sliding window sizes of 30 kb and 50 kb for segregant populations derived 

from five-rounds and two-rounds of random mating respectively. QTL summary statistics were 

called for QTL with an FDR cutoff rate of 5% using QTLseqr getQTLTable. Sliding window sizes 

were derived by first estimating the recombinant and the non-recombinant fractions of the 
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genome at each additional round of random mating, and then estimating the average physical 

distance between recombination events throughout the genome. QTL were considered 

overlapping if any portion of the significant QTL regions overlapped and the entire union of 

significant intervals was considered for comparison of replicated QTL between experiments. 

 

        Comparison to Existing QTL 

Prior gene expression-based BSA studies in yeast have uncovered pQTL hotspots (loci 

implicated in effecting protein abundance of many genes) (Albert, 2014),  eQTL hotspots (loci 

implicated in effecting transcript abundance of many genes) (Albert, 2018), as well as pQTL 

lacking cognate eQTL. In order to compare these existing QTL sets to the Fig1p QTL a bash script 

was used to find each existing steady-state QTL peak’s nearest SNP across each Fig1 

experimental data set and the G’ statistic for each QTL’s nearest SNP was recorded for each 

Fig1 BSA replicate. In order to test whether the Fig1 pQTL were enriched for existing QTL, I 

counted the number of existing QTL peak’s nearest SNPs that were significant in each Fig1 

experiment as well as the total number of SNPs significant in each Fig1 experiment. A 

hypergeometric test was then performed for each Fig1 SNPset independently using the R 

phyper function (R Core Team, 2019) to test for enrichment of significant SNPs. In order to 

determine whether the G’ values for the existing steady-state QTL peak’s nearest SNPs were 

higher than the G’ values of randomly selected SNPs, an R script was used to randomly sample 

SNPs from each Fig1p SNPset and sum their G’ values over 10,000 iterations to construct an 

empirical G’ sum distribution. An Empirical Cumulative Distribution Function was then applied 

using the R function ecdf to estimate the fraction of simulated observations that were less than 
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or equal to the steady-state QTL’s nearest SNP sum and determine the probability of the 

existing QTL peak’s nearest SNPs G’ sum occurring given the randomly empirical G’ sum 

distribution. Three pQTL without cognate eQTL were clustered within 8000 basepairs of one 

another, well within the G’ sliding window size, so these steady-state QTL’s nearest SNPs were 

collapsed into a single SNP for statistical testing. 
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Results: 
  
Characterizing Expression Variation as Local or Distant 

Tos6 Allele Swap Results 

We performed allele swap protein expression assays to determine if the previously observed 

differences in TOS6 protein expression between brewer’s yeast strains S288c and YJM145 are 

due to local (within the locus of Tos6) genetic variants, distant (outside the locus of Tos6) 

genetic variants, or some combination of local and distant genetic variants. We measured 

protein expression with fluorescence microscopy for two “native” strains with the native allele 

of Tos6 tagged with YFP and two “allele swap” strains where the native Tos6 allele was replaced 

with a YFP-tagged Tos6 allele from the opposing strain. We first analyzed the protein levels of 

native and allele-swap strains via a two-way ANOVA model including allele and genomic 

background terms as well as interaction effects. We found significant allele-driven effects 

(F=21.3, df=1, p=0.000217), rejecting the null hypothesis that Tos6 allele has no effect on TOS6 

protein levels. The S288c Tos6 allele showed 17% greater mean expression across genomic 

backgrounds and showed the highest expression in the YJM145 background (Figure 8), 

suggesting that local genetic variation is acting on TOS6 protein expression. However, this does 

not rule out the possibility that small-effect trans-acting factors also play a role in regulating 

TOS6 protein levels.  
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Figure 8: Comparison of both S288c (lab strain) and YJM145 (clinical strain) Tos6 allele relative 
protein expression in its native vs reciprocal genomic backgrounds. Cells were grown to log 
phase, treated with mating pheromone for 4 hours, imaged via fluorescent microscopy, and 
had their fluorescence normalized against non-fluorescent tagged native strains. An ANOVA 
model assessing genomic background and GoI allele-specific effects found significant 
differences in TOS6 protein abundance between S288c and YJM145 Tos6 alleles (F=21.3, df=1, 
p=0.000217). 
 
  
We next examined if these local effects observed in the Tos6 allele swap strains were driven by 

expression differences acting at the RNA level, protein level, or both. Previous work on Tos6 

expression differences between these strains identified that YJM145 expresses 3.5-7x more 

Tos6 RNA than S288c, while expressing roughly similar amounts of Tos6 protein between the 

two strains (Pollard et al. 2016). Additionally, previous work attributed the higher protein per 

RNA in S288c to higher protein synthesis rate and lower protein decay rate. We reasoned that if 

the local effects are acting at the RNA level alone, then the previously measured ratio of Tos6 
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RNA between the strains should be comparable to the ratio of Tos6 protein between native and 

allele swap strains. We used prior RT-qPCR results to compare the ratio of S288c to YJM145 

native strain RNA levels to the allele swap strain Tos6 protein level ratios via Welch’s t-test and 

found that native strain RNA level ratios were significantly different than allele swap strain 

protein level ratios (t=-10.75, df=6.11, p-value=3.41e-05) (Figure 9). These results suggest that 

Tos6 RNA level variation cannot explain the observed Tos6 protein abundance expression 

patterns and provide evidence of local, protein level specific effects on Tos6 protein 

abundance.  

 

Figure 9: Comparison of Tos6 expression ratio between strains (S288c expression over YJM145 
expression) at both the RNA and Protein levels show mean differences in RNA vs Protein level 
differences between strains at 4 hours post-pheromone treatment. Welch’s t-test found significant 
differences between RNA level and Protein level ratios between strains (t=-10.75, df=6.11, p-
value=3.41e-05). 
 



 30 

Fus3 Allele Swap Results 

Similar to the above analysis of Tos6, we performed an allele swap experiment to determine if 

the previously observed differences in Fus3 expression between yeast strains S288c and 

YJM145 are due to local genetic variants, distant genetic variants, or some combination of the 

two. Unlike Tos6, we did not observe consistent effects of Fus3 alleles (Figure 9) but we did 

observe a trend toward higher Fus3 expression for the YJM145 strain background (Figure 9). A 

two-way ANOVA model with GoI allele and genomic background terms failed to uncover 

significant differences in Fus3 expression between alleles (F=0.057, df=1, p=0.81) but found a 

nearly significant difference between genomic backgrounds (F=4.22 , df=1, p=0.055). Previous 

work done in the Pollard lab found significantly higher Fus3 expression in the native S288c 

strain background (Pollard et al. 2016), not YJM145 as observed here. Other studies have found 

that Fus3 expression is highly sensitive to environmental conditions such as cell-cycle stage and 

pheromone concentration even within clonal populations (Conlon et al. 2016) (Li et al. 2017) 

which may explain why these results are inconsistent with previously observed FUS3 protein 

expression patterns. Regardless, we did not find evidence for local or distant variants acting on 

FUS3 protein expression dynamics.  
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Figure 9: Comparison of both S288c (lab strain) and YJM145 (clinical strain) Fus3 allele relative 
protein expression in its native vs reciprocal genomic backgrounds. Cells were grown to log 
phase, treated with mating pheromone for 4 hours, imaged via fluorescent microscopy, and 
had their fluorescence normalized against non-fluorescent tagged native strains. An ANOVA 
model comparing effects of genomic background and Fus3 allele found no significant 
differences in Fus3 expression across background (F=4.22 , df=1, p=0.055) or GoI allele 
(F=0.057, df=1, p=0.81). 
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 Mapping Trans Acting Variation 

FIG1 Whole Genome pQTL Maps 

We crossed together yeast strains S288c and YJM145, remated offspring for two or five 

generations, and performed BSA experiments on the segregants from the cross in order to find 

genomic locations associated with differences in Fig1 protein expression between strains. In 

order to evaluate the dynamics of the genetic network acting on Fig1 protein expression we 

performed BSA experiments at two hours and five hours after the addition of mating 

pheromone. We repeated the experiments using segregants generated from either two or five 

rounds of random mating in order to better understand the methodological trade-offs between 

more or less mating. Across the four BSA experiments, 17 unique significant FIG1 pQTL were 

detected at an FDR of 5% (Figure 10). Of these 17 unique QTL, two QTL (Chromosomes 13 and 

14) were significant in both replicates of both timepoints. Meanwhile four QTL were specific to 

the two-hour timepoint experiments, one QTL was only replicated at the five-hour timepoint 

and 12 of the significant QTL were detected in a single experimental replicate but were not 

found in other replicates (Figure 11). Interestingly, twice as many distinct QTL were detected 

between the two-hour timepoint replicates as the five-hour timepoint replicates. Further, 

comparison of maximum log10 p-values across shared QTL intervals suggest that the early 

pheromone response FIG1 level phenotype might have more genetic complexity than that of 

the late pheromone response phenotype (Figure 12). Two verified expression level causal 

polymorphisms were located within significant FIG1 pQTL peaks. One such variant located 

within the Mkt1 locus was significant across all four experimental replicates, and has been 

implicated in regulating both transcript levels and protein levels for a wide variety of other 
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genes (Albert et al. 2014) (Albert et al. 2018) (Brion et al. 2020). Another polymorphism within 

the Gpa1 locus known to affect both mating and growth-related phenotypes (Lang et al. 2009) 

was significant in both two-hour timepoint experiments but not significant in either five-hour 

timepoint experiments. 

 

 

Figure 10. Whole-genome FIG1 QTL-maps. Peaks represent genomic loci associated with FIG1 
protein expression 2 hours (top) after exposure to mating pheromone, and 5 hours (bottom) 
after exposure to mating pheromone. Horizontal lines represent an FDR cutoff of 0.05. Purple 
and gold maps correspond to BSA experiments with segregant populations derived from five 
rounds and two rounds of random mating respectively. 
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Figure 11. Four-way Venn Diagram of shared (overlapping) significant QTL intervals between 
experiments. Intervals were classified as shared if any portion of significant regions overlapped 
between experiments. Yellow oval represents two rounds of mating, two hours post mating 
pheromone treatment QTL. Orange oval represents two rounds of mating, five hours post 
mating pheromone treatment QTL. Purple oval represents five rounds of mating, two ours post 
mating pheromone treatment QTL. Pink oval represents five rounds of mating, five hours post 
pheromone treatment QTL. 
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Figure 12. Relationship between two-hour and five-hour timepoint overlapping QTL peak -log10 
p-values. Overlapping QTL regions were defined as the union of significant QTL regions and -
log10 p-values were calculated from the local maxima within each overlapping region. Black 
boxes represent mean -log10 p-value, and whiskers represent the range of -log10 p-values for 
each timepoint. Dotted green lines represent significance cut-offs at an FDR=0.05.  
  

18 total QTL were detected in the two-rounds of random mating experiments while 15 total 

QTL were detected in the five-rounds of random mating experiments. The slightly lower 

number of total QTL in the five-rounds of random mating experiments may be partly 

attributable to increased selection for mating-related alleles. YJM145 and S288c have known 

differences in mating efficiency, and in theory alleles that improve mating efficiency should 

increase in frequency in a population undergoing subsequent rounds of random mating and 

selection. As a result, increased rounds of random mating may unintentionally select for said 
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mating related alleles, decreasing the allelic diversity near these implicated loci through linkage 

and decreasing power to detect certain QTL. 

 

Comparing FIG1 pQTL to Established pQTL Hotspots 

Where prior experiments have mapped pQTL at steady state there have yet to be pQTL mapped 

for pheromone responsive genes. In order to better understand whether steady state pQTL 

extend across environments and play a role in pheromone responsive FIG1 protein levels, FIG1 

pQTL were compared to a set of established steady-state pQTL hotspots (Albert et al. 2014) by 

finding the single-nucleotide polymorphisms (SNPs) in our FIG1 BSA datasets nearest each pQTL 

hotspot peak (Supplementary Figure 1). These comparisons should in theory provide insight as 

to whether the pQTL acting on steady state protein levels are the same or different as the pQTL 

acting on dynamic protein levels during mating pheromone response. A pQTL hotspot at 

position 465007 on chromosome 14 was significant in all four experimental replicates. 

Additionally, a hotspot on chromosome 13 was significant in both of the 5-hour timepoint 

experiments while the hotspot on chromosome 8 was significant in both of the 2-hour 

timepoint experiments. A hypergeometric test found the mild levels of enrichment for 

significant SNPs near existing pQTL hotspots were not significant for any of the four 

experiments (Table 5). An ecdf test found that the pQTL hotspots’ nearest SNPs had 

significantly higher G’ values than what would be expected from selecting genomic SNPs at 

random for the five-hour five-rounds of mating experiment (p=0.0281, alpha=0.05) while the 

other experiments showed similar but slightly weaker non-significant trends. Across both 

hypergeometric and ecdf pQTL hotspot tests the five-rounds of random mating experiments 
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(which correspond to decreased G’ tri-cubed sliding window size) tended to have lower p-

values than their two-rounds of random mating counterparts. Further, the five-hour timepoints 

tended to have lower p-values than their two-hour counterparts for both hypergeometric and 

ecdf pQTL hotspot tests. These results suggest that while some of the steady-state pQTL 

hotspots seem to also be contributing to FIG1 protein levels, for example the hotspot on 

chromosome 14, many of these detected FIG1 pQTL are distinct with regards to existing steady-

state pQTL. 

 
 

 
 
Table 3: Enrichment values and p-values for established steady-state QTL’ nearest SNP 
hypergeometric and ecdf tests. *indicates tests that were significant at alpha = 0.05 
 
  
 

1.58x 2.11x 4.37x 5.25x

1.43x 1.9x 1.97x 2.36x

1.19x 1.49x 1.16x 1.39x

0.1205 0.07756 *0.008766 *0.005236

0.4846 *0.0404 *0.018 *0.0114

0.1786 0.0879 0.2626 0.2629

0.1207 0.1173 0.3423 0.2056

hypergeometric test p-
value

ecdf test p-value

0.138 0.08465 0.07861 0.05032

0.1539 0.0527 0.0543 *0.0281

pQTL Hotspots

eQTL Hotspots

pQTLs w/o eQTLs

hypergeometric test p-
value

ecdf test p-value

enrichment value

enrichment value

hypergeometric test p-
value

ecdf test p-value

enrichment value

Time Point Two Hours Five Hours

Rounds of Mating Two Five Two Five
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Comparing FIG1 pQTL to Established eQTL Hotspots 

Although prior experiments suggested that FIG1 protein level differences could not be 

explained by RNA level differences, this does not necessarily imply that mRNA level QTL (eQTL) 

do not contribute to FIG1 protein level differences. In order to take advantage of a more 

comprehensive gene expression QTL dataset and to determine whether steady-state eQTL were 

impacting FIG1 protein levels, FIG1 pQTL were also compared to established eQTL hotspots 

(Albert, 2018) by finding the SNPs in our FIG1 BSA datasets closest to each eQTL hotspot peak 

(Supplementary Figure 2). The eQTL hotspot at position 466588 on chromosome 14’s nearest 

SNP was significant in all four experiments. Additionally, each experimental replicate had at 

least one significant eQTL hotspot SNP within the first 90,000 bp of chromosome 13. The eQTL 

hotspots at position 745016 of chromosome 4 and the hotspot at position 46353 of 

chromosome 16s’ nearest SNPs were significant in both two-hour timepoint replicates but 

significant in neither of the five-hour replicates. While mild enrichment for established eQTL 

hotspots within the FIG1 QTL was observed across each experiment, a hypergeometric test 

found the enrichment to be non-significant. An ecdf test found that the pQTL hotspots’ nearest 

SNPs had slightly higher G’ values than what would be expected from selecting genomic SNPs at 

random, yet none of the experiments’ results reached significance. 

 

For both hypergeometric and ecdf eQTL hotspot tests the two-hour timepoint replicates tended 

to have both lower p-values as well as greater overall enrichment than their five-hour timepoint 

counterparts, while the five-rounds of random mating experiments (which also correspond to 

decreased G’ tri-cubed sliding window size) tended to have lower p-values than their two-
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rounds of random mating counterparts. Together these results suggest that while some of the 

established steady-state eQTL hotspots appear to play a role in Fig1 protein abundance, most of 

the FIG1 pQTL do not coincide with established eQTL hotspots. This general trend showing only 

modest overlap between FIG1 pQTL and existing steady-state eQTL hotspots suggest that FIG1 

protein levels are affected by different eQTL than observed in steady-state studies, or possibly 

that FIG1 protein levels are regulated by transcriptionally independent mechanisms (Figure 6). 

Further, the observation that established steady-state eQTL hotspots show slightly greater 

association with the two-hour FIG1 pQTL than the five-hour pQTL suggest that trans-variants 

that affect transcript abundance may influence early pheromone response FIG1 protein levels 

more than they affect late pheromone response FIG1 levels.  

 

Comparing FIG1 pQTL to Established pQTL without eQTL 

Upon observing that steady-state eQTL hotspots seemed to be more predictive of early 

pheromone response FIG1 pQTL than late pheromone response FIG1 pQTL (Table 5), and 

because FIG1 protein levels appear to be regulated by different genetic elements than those 

that effect steady-state RNA levels, FIG1 pQTL were also compared to an established set of 

steady-state pQTL that lack cognate eQTL (Albert, 2018) (Supplementary Figure 3). Three pQTL 

without eQTL clustered around position 460000 of chromosome 14 were significant in each 

FIG1 pQTL experimental replicate. Another pQTL lacking a cognate eQTL at position 112600 of 

chromosome 13 was significant in both five-hour timepoint replicates but neither of the two-

hour timepoint experiments. The five-hour timepoint Fig1 pQTL showed 4.37 and 5.25 times 

enrichment for steady-state pQTL without cognate eQTL respectively for the two and five-
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rounds of mating replicates which hypergeometric tests found to be significant, while neither 

two-hour timepoint replicates showed significant enrichment. An ecdf test found that the pQTL 

without eQTL’s nearest SNPs had significantly higher G’ values than what would be expected 

from selecting genomic SNPs at random for all experimental replicates besides the two-rounds 

of mating two-hour timepoint experiment. Across both hypergeometric and ecdf pQTL without 

eQTL tests the five-rounds of random mating experiments tended to have lower p-values than 

their two-rounds of random mating counterparts. Moreover, the five-hour timepoints tended 

to have lower p-values than their two-hour counterparts for both hypergeometric and ecdf 

pQTL without eQTL tests. The observation that the five-hour timepoint FIG1 pQTL were better 

associated with the steady-state pQTL without eQTL than the two-hour timepoint pQTL 

suggests that the late pheromone response FIG1 protein level phenotype might be more 

influenced by known genetic variants that act on protein levels in a transcriptionally 

independent mechanism. 
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Discussion: 
 
This project set out to elucidate how genetic variation contributes to dynamic protein level 

differences between two closely related strains of yeast. For the Tos6 and Fus3 genes we 

performed GoI allele swaps combined with fluorescence microscopy to determine whether 

pheromone responsive protein level differences were driven by genetic variation local genetic 

variation or by genetic variation in distant regions of the genome. We found evidence that local 

variation within the Tos6 allele drives the observed differences in TOS6 protein levels. Results 

for the Fus3 gene were inconclusive. Prior experiments had determined that FIG1 protein 

abundance was regulated by distant genetic variation, so here we employ Bulk Segregant 

Analysis to map FIG1 pQTL during early and late pheromone response. Further, since S288c and 

YJM145 share nearly identical Fig1 RNA expression profiles (Figure 6) pQTL detected via BSA are 

likely acting directly at the protein level. Across BSA experiments we successfully mapped 21 

distinct FIG1 pQTL, many of which appear to be novel with respect to prior known steady-state 

pQTL. Interestingly many of the FIG1 pQTL appear to be dynamic, in that they differentially 

affect FIG1 protein levels between time points during mating pheromone response. 

 
 
  Allele Swap Expression Experiments 

These experiments provide strong evidence that local genetic variation within the Tos6 allele 

contributes to the observed differences in TOS6 protein expression between strains. Further we 

are able to infer from previous RNA level measurements that TOS6 protein level differences are 

driven by protein level specific mechanisms. A prior cycloheximide protein decay rate assay 

where translation is suspended and cellular protein levels are measured over time found a 
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significant difference in YJM145 and S288c TOS6 protein decay rates providing evidence that at 

least one protein-level specific mechanism is at play, however these results do not exclude the 

possibility of a complex network of variants contributing to TOS6 levels by a variety of 

mechanisms acting simultaneously. Experimental designs utilizing RNA level and protein level 

quantification in tandem will be able to disentangle the RNA vs protein level effects, verify our 

inferences about protein level specific effects, and provide further insight on the cellular 

mechanisms acting on dynamic TOS6 protein levels. As a next step, the precise location of 

causal level polymorphisms can be fine-mapped using a systematic allele-swap divide-and-

conquer approach, in which various combinations of a chimeric allele are compared until the 

relative contributions of individual polymorphisms can be distinguished (Sadhu et al. 2016) 

(Lutz et al. 2019). The FUS3 allele swap results are difficult to discern, and as a result we will 

likely suspend our interrogation of Fus3 genetic architecture until we can incorporate more 

sensitive and/or complex assays, such as assays that can simultaneously consider individual cell-

cycle stage along with single-cell GoI protein abundance. 

 
 
 
 
 Dynamic FIG1 pQTL 

Interestingly, we find evidence that some trans-acting factors make major contributions to early 

pheromone response FIG1 protein abundance but not to late pheromone response FIG1 

abundance (Figure 12).  
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One mechanism that could explain these apparent differences is that FIG1 may have higher 

sensitivity to QTL that act on the transcription rates of other genes early during pheromone 

response. In this scenario cells that are able to coordinate a stronger initial transcriptional 

response upon pheromone exposure may receive a jump-start in their mating-related gene 

expression cascades as mating-specific transcription factors and other regulatory proteins get 

produced more rapidly. Under this framework broad-acting eQTL would influence early mating 

response FIG1 levels more so than late mating FIG1 levels. Although the trend is subtle, we did 

observe that our late pheromone response FIG1 QTL had greater overlap with previously 

identified steady-state pQTL that regulate protein levels in a transcriptionally independent 

manner (Table 5). 

  

We are also interested in the possibility is that the apparent differences in genetic complexity 

between mating response stages are due to differences in broad-sense heritability. Current 

work has set out to estimate the broad-sense heritability of FIG1 protein expression during 

pheromone response. Not only will these experiments allow for direct comparison of 

heritability measurements between mating stages, these endeavors will also help to 

contextualize the overall effect pQTL have on FiG1 abundance. 
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 Potential Molecular Mechanisms for Trans-acting pQTL 

To begin addressing questions about the underlying molecular mechanisms contributing to FIG1 

protein abundance we first compared the FIG1 pQTL peak locations to genetic variants that had 

contributed to steady-state protein levels for genes in previous studies. Two such documented 

expression level polymorphisms were present within our significant QTL peaks, harbored within 

the genes GPA1 on chromosome 8 and MKT1 on chromosome 14. GPA1, inhibitory alpha 

subunit of the G-protein coupled receptor that binds mating pheromone peptides and initiates 

the mating MAPK pathway (Miyajima et al. 1987) (Bardwell, 2005). Prior studies have found 

that GPA1 harbors a Quantitative Trait Nucleotide (a single nucleotide polymorphism 

associated with a trait of interest) affecting pheromone response physiology (Yvert et al. 2003). 

Further, the S288c Gpa1 open reading frame is known to harbor a non-conservative missense 

mutation with respect to the ancestral yeast Gpa1 coding sequence which leads to loss-of-

function and thus decreased capacity to downregulate the pheromone response signaling 

cascade. The native S288c genomic background shows greater FIG1 expression than the 

YJM145 genomic background which is consistent with prior characterization of the Gpa1 allele, 

however counterintuitively, QTL mapping reveals that the S288c GPA1 allele appears to be 

associated with the low FIG1 protein abundance phenotype (Supplementary Figure 4). Making 

matters more complex, variation in the Ste20 (a gene coding for a kinase protein involved in 

mating response pathway signal transduction) gene locus, ~20 kb away from the Gpa1 gene 

locus and well within the sliding window range for both experiments (30 kb and 50 kb for five-

rounds and two-rounds of random mating respectively), has also been implicated in regulating 

protein abundance of many steady-state genes (Grossbach et al. 2019). Therefore, either or 
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both of these genes may harbor genetic variants that act on FIG1 protein abundance. Current 

experiments swapping the alleles of both Gpa1 and Ste20 seek to resolve how each gene is 

contributing to the QTL on chromosome 8. It is also worth noting that the chromosome 8 QTL 

appears to have stronger effects early in pheromone response compared to late pheromone 

response, consistent with the role of Gpa1 and Ste20 in transducing pheromone signal.  

 

The pQTL on chromosome 14 harbors known quantitative trait polymorphisms within the Mkt1 

locus, a gene that codes for a nuclease like-protein involved in post-transcriptional regulation 

(Tadauchi et al. 2004) (Wickner, 1987). Recently, steady-state pQTL and eQTL mapping 

experiments implicated Mkt1 as a trans-acting regulator for 10 different genes (Brion et al. 

2020). The S288c Mkt1 allele contains mutations with respect to ancestral yeast populations 

which have been shown to influence a wide variety of phenotypic traits ranging from growth 

rate to drug susceptibility (Deutschbauer and Davis, 2005) (Fay, 2013). The observation that 

variation within the Mkt1 allele impacts cellular growth rates suggest that FIG1 protein 

abundance may be influenced by a growth rate – protein dilution mediated mechanism. 

Cellular growth rates are able to act on cellular protein abundance because every time a cell 

divides its cellular protein constituents are divided into the two daughter cells, and most 

protein molecules are relatively stable compared to RNA molecules which have rapid turnover 

rates. Thus, cells with otherwise equal protein production and degradation rates will have 

protein abundances inversely proportional to the rate of cellular division. This explanation is 

also consistent with the observation that the YJM145 strain background has a faster mitotic 

growth rate than S288c and therefore the decrease in FIG1 protein abundance in the YJM145 
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background may be a result of a mitotic growth rate - protein dilution effect. A growth rate 

based - protein dilution mechanism acting directly at the protein level might also explain the 

enrichment for protein level specific steady-state pQTL that was observed for the late 

pheromone response FIG1 phenotype. 

  

In an attempt to further elucidate the genetic architecture and molecular mechanisms 

underlying dynamic FIG1 protein expression we can begin to look for candidate genes within 

significant pQTL regions. By leveraging existing gene ontology and functional annotation data 

combined with our genome-wide G’ scores for individual SNPs we can find polymorphic genes 

with large mean G’ scores that have protein functions which might influence protein abundance 

of other genes in trans. These candidate genes will provide context and inform our search for 

causal variants that act on FIG1 protein levels as we begin allele swap experiments to verify and 

fine-map trans-acting polymorphisms. And since trans-variants may have small individual 

effects on FIG1 protein abundance phenotypes, higher powered assays such as flow cytometry 

may be necessary to evaluate such trans-allele specific expression differences. 

  

An ongoing goal of this research is to further our understanding of how cellular protein 

abundance is dynamically regulated in response to environmental perturbation such as 

exposure to mating pheromone, and further, the ways in which natural genetic variation 

influences these processes. To this end, we are currently working to map QTL for 10 more 

pheromone-responsive genes that show dynamic protein expression differences between lab 

and clinical strains. This research will disentangle broad-acting QTL that affect protein 
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abundances of many pheromone-responsive genes from QTL that act specifically on the 

expression of a single gene. These future studies will illuminate the genetic mechanisms that 

underly dynamic protein abundance regulation, as well as determine the degree of overlap 

between dynamic protein level QTL and steady-state protein level QTL. Furthermore, expanding 

this research to a broader set of pheromone responsive genes will help us to determine which 

protein abundance regulatory mechanisms are shared across genes, and determine which 

molecular level these mechanisms tend to act on.   

 

 Outstanding Questions and Future Considerations 

Several QTL were detected in sub-telomeric regions near the ends of chromosomes. Yeast 

chromosome ends contain complex structural variation where in many cases S288c differs from 

ancestral strains by entire blocks of subtelomeric genes (Cubillos et al. 2011) (Albert et al. 

2018), which in turn influences a wide-swath of phenotypic traits. Further, the precise location 

of causal genes or polymorphisms within these regions cannot be determined from our current 

segregant panel because each segregant either contains all or none of the genes in the region. 

Therefore, fine mapping causal polymorphisms in these regions may require systematic allele 

swaps of large chromosomal regions in order to directly compare the effects of copy number 

variation and moreover allow us to progressively narrow in on the location of causal variants. If 

any genes within these regions are essential, systematic allele swaps may necessitate a CRISPR-

based approach in order to knock out and replace a given genomic loci in a single step (Albert 

et al. 2018) (Sadhu et al. 2016) (Sadhu et al. 2018). 
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While further rounds of mating and sporulation are beneficial in that they allow for an increase 

in meiotic recombination events, further shuffling the genome and justifying the use of a 

smaller sliding window which in turn provides increased mapping resolution, it appears to come 

at the cost of decreased power to detect certain QTL. As segregants are subjected to further 

rounds of mating and sporulation several unintended selective pressures can begin to creep in. 

For example, S288c and JYM145 are known to have differences in mating efficiency, which 

means that certain mating-related alleles may increase in frequency in the segregant 

population through subsequent rounds of mating effectively decreasing the segregant 

population allelic diversity for certain loci. The sporulation process in which cells are grown at 

suboptimal temperatures in nutrient deplete media for a week in order to provide enough 

environmental stress to initiate sporulation during an otherwise stable diploid state may also 

provide a selective pressure for sporulation efficiency or survivability related alleles. Together, 

these selective pressures may be contributing to loss in population-wide allelic diversity, 

making real QTL nearby these implicated alleles more difficult to detect. This observed trade-off 

between mapping resolution, and power to detect certain QTL will influence future BSA 

experimental designs. 

  

One challenge presented by BSA, is that allele frequency estimations can be skewed by 

mapping bias, the tendency for sequencing reads corresponding to the reference strain to map 

with higher accuracy than reads belonging to the non-reference allele. Mapping bias is 

especially prevalent in highly polymorphic regions of the genome as reads containing too many 

polymorphisms can either map to the wrong part of the genome or fail to map altogether. 
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Mapping bias is of concern in these experiments because the S. cerevisiae reference genome 

was constructed using our Lab strain S288c’s genome sequence. While in theory, since the G-

statistic null-hypothesis assumes equal allele frequencies between bulks rather than assuming 

an allele frequency of 0.5 in both bulks, the G prime analysis should be fairly robust to biases 

presented by reference genome choice. However, as experiment-wide mean allele frequency 

departs from 0.5, the possible allele frequency differences that can exist between bulks 

decreases, making QTL throughout the genome more difficult to detect. Furthermore, several 

highly polymorphic regions exist between the S288c and YJM145 backgrounds (Supplementary 

Figure 5). And while these variant-rich regions are prime candidates for contributing to 

phenotypic differences between strains, reads in these regions, especially reads harboring one 

of the many YJM145-specific ORFs, will inevitably show mapping discrepancies between 

reference and non-reference alleles making QTL in such regions particularly difficult to detect. 

We indeed find evidence of mapping bias in our experiments with global mean reference allele 

frequencies of ~0.55 (favoring the S288c allele) for each of our experiments (supplemental 

figure 6). An important next step for this research is to develop a read processing method that 

accounts for mapping discrepancies between reference and non-reference reads. One 

proposed solution to account for such mapping bias involves mapping all reads to both 

reference and non-reference (S288c and YJM145) genomes and only proceeding with reads that 

map unambiguously to both strain backgrounds for downstream statistical analysis (Albert et al. 

2014). 
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One overarching problem that continues to evade statistical geneticists in the field of BSA-

mediated QTL-mapping is the relative lack of consistency observed between BSA statistical 

methods. For example, a variety of BSA statistical frameworks ranging from chi-squared 

oriented tests like G, G’, and CMH, to linear, binomial general linear, and quasibinomial general 

linear based models exist, each including their own inherent trade-offs (Wiberg et al. 2017). 

Frustratingly, direct comparison between approaches reveal that different statistical techniques 

can often produce drastically different QTL-mapping results. Most notably each of these 

established tests suffer from low true positive and high false positive rates, except in designs 

where BSA experiments are sufficiently replicated, which can quickly become cost-prohibitive. 

Many tests also include rather ambiguous significance thresholding strategies making QTL 

classification somewhat arbitrary (Huang et al. 2020). Making matters worse, many user-

friendly software packages make these statistical tests and their underlying assumptions less 

transparent. To this point, there remains the need for a cost-effective, robust, and sensitive BSA 

statistical framework within the QTL-mapping community, and future studies aiming to address 

these concerns could provide immense value to the field. 

 
 Conclusion 

This study provides proof of concept for time-based phenotypic trait mapping and is the first 

study to date to map pQTL in a dynamic system such as yeast mating pheromone response. In 

addition to laying the groundwork for future time-based pheromone-response pQTL mapping 

experiments this work also establishes techniques for generating segregant yeast populations, 

analyzing BSA Next-Gen sequencing data, and making comparisons between dynamic pQTL and 

publicly available steady-state gene expression QTL. Notably, we find evidence for trans-acting 
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genetic factors that regulate FIG1 protein abundance, including some loci that affect FIG1 

protein abundance in a time-dependent manner, a phenomenon which had been theoretically 

proposed but had yet to be observed in a natural system. These findings demonstrate the 

necessity for dynamic trait mapping in gene expression-related phenotypic trait mapping 

studies. Together this research moves us towards an improved understanding of the genetic 

architecture underlying dynamic protein abundance phenotypes and sheds light on the 

complex nature of genotype-phenotype relationships in natural populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 52 

Works Cited: 
  

Albert, Frank W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. 
Nature Reviews. Genetics, 16(4), 197–212. https://doi.org/10.1038/nrg3891 

  
Albert, Frank W., Treusch, S., Shockley, A. H., Bloom, J. S., & Kruglyak, L. (2014). Genetics of single-

cell protein abundance variation in large yeast populations. Nature, 506(7489), 494–497. 
https://doi.org/10.1038/nature12904 

  
Albert, Frank Wolfgang, Bloom, J. S., Siegel, J., Day, L., & Kruglyak, L. (2018). Genetics of trans-

regulatory variation in gene expression. ELife, 7, e35471. https://doi.org/10.7554/eLife.35471 
  
Bardwell, L. (2005). A walk-through of the yeast mating pheromone response pathway. Peptides, 

26(2), 339–350. https://doi.org/10.1016/j.peptides.2004.10.002 
  
Borneman, A. R., Gianoulis, T. A., Zhang, Z. D., Yu, H., Rozowsky, J., Seringhaus, M. R., Wang, L. Y., 

Gerstein, M., & Snyder, M. (2007). Divergence of Transcription Factor Binding Sites Across 
Related Yeast Species. Science, 317(5839), 815–819. https://doi.org/10.1126/science.1140748 

  
Brem, R. B., Yvert, G., Clinton, R., & Kruglyak, L. (2002). Genetic Dissection of Transcriptional 

Regulation in Budding Yeast. Science, 296(5568), 752–755. 
https://doi.org/10.1126/science.1069516 

  
Brion, C., Lutz, S., & Albert, F. W. (2020). Simultaneous quantification of mRNA and protein in single 

cells reveals post-transcriptional effects of genetic variation [Preprint]. Genetics. 
https://doi.org/10.1101/2020.07.02.185413 

  
Broad Institute. (2016). Picard tools. 
  
Buffalo, V. (2011). Scythe-a Bayesian adapter trimmer. Website: http://github. 

com/vsbuffalo/scythe. 
  
Cavinder, B., & Trail, F. (2012). Role of Fig1, a Component of the Low-Affinity Calcium Uptake 

System, in Growth and Sexual Development of Filamentous Fungi. Eukaryotic Cell, 11(8), 978–
988. https://doi.org/10.1128/EC.00007-12 

  
Chen, R. E., & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: Lessons 

learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - 
Molecular Cell Research, 1773(8), 1311–1340. https://doi.org/10.1016/j.bbamcr.2007.05.003 

  
Conlon, P., Gelin-Licht, R., Ganesan, A., Zhang, J., & Levchenko, A. (2016). Single-cell dynamics and 

variability of MAPK activity in a yeast differentiation pathway. Proceedings of the National 
Academy of Sciences, 113(40), E5896–E5905. https://doi.org/10.1073/pnas.1610081113  



 53 

Costanzo, M., & Boone, C. (2009). SGAM: An Array-Based Approach for High-Resolution Genetic 
Mapping in Saccharomyces cerevisiae. In I. Stagljar (Ed.), Yeast Functional Genomics and 
Proteomics: Methods and Protocols (pp. 37–53). Humana Press. https://doi.org/10.1007/978-1-
59745-540-4_3 

  
Cubillos, F. A., Billi, E., Zörgö, E., Parts, L., Fargier, P., Omholt, S., Blomberg, A., Warringer, J., Louis, E. 

J., & Liti, G. (2011). Assessing the complex architecture of polygenic traits in diverged yeast 
populations. Molecular Ecology, 20(7), 1401–1413. https://doi.org/10.1111/j.1365-
294X.2011.05005.x 

  
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del 

Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. 
Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation 
discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 
491–498. https://doi.org/10.1038/ng.806 
 

de Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. 
Nature Reviews Genetics, 12(12), 833–845. https://doi.org/10.1038/nrg3055 

  
de Vries, A. G., Sosnicki, A., Garnier, J. P., & Plastow, G. S. (1998). The role of major genes and DNA 

technology in selection for meat quality in pigs. Meat Science, 49, S245–S255. 
https://doi.org/10.1016/S0309-1740(98)90052-3 

  
Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., & Sagner, A. (2019). Single cell 

transcriptomics reveals spatial and temporal dynamics of gene expression in the developing 
mouse spinal cord. Development, 146(12). https://doi.org/10.1242/dev.173807 

  
Dermitzakis, E. T., & Clark, A. G. (2002). Evolution of Transcription Factor Binding Sites in Mammalian 

Gene Regulatory Regions: Conservation and Turnover. Molecular Biology and Evolution, 19(7), 
1114–1121. https://doi.org/10.1093/oxfordjournals.molbev.a004169 

  
Deutschbauer, A. M., & Davis, R. W. (2005). Quantitative trait loci mapped to single-nucleotide 

resolution in yeast. Nature Genetics, 37(12), 1333–1340. https://doi.org/10.1038/ng1674 
  
Dong, Y., Hu, J., Fan, L., & Chen, Q. (2017). RNA-Seq-based transcriptomic and metabolomic analysis 

reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces 
cerevisiae. Scientific Reports, 7(1), 42659. https://doi.org/10.1038/srep42659 

  
Duveau, F., Metzger, B. P. H., Gruber, J. D., Mack, K., Sood, N., Brooks, T. E., & Wittkopp, P. J. (2014). 

Mapping Small Effect Mutations in Saccharomyces cerevisiae: Impacts of Experimental Design 
and Mutational Properties. G3: Genes, Genomes, Genetics, g3.114.011783. 
https://doi.org/10.1534/g3.114.011783 

  



 54 

Ehrenreich, I. M., Torabi, N., Jia, Y., Kent, J., Martis, S., Shapiro, J. A., Gresham, D., Caudy, A. A., & 
Kruglyak, L. (2010). Dissection of genetically complex traits with extremely large pools of yeast 
segregants. Nature, 464(7291), 1039–1042. https://doi.org/10.1038/nature08923 

  
Elion, E. A., Satterberg, B., & Kranz, J. E. (1993). FUS3 phosphorylates multiple components of the 

mating signal transduction cascade: Evidence for STE12 and FAR1. Molecular Biology of the Cell, 
4(5), 495–510. https://doi.org/10.1091/mbc.4.5.495 

  
Erdman, S., Lin, L., Malczynski, M., & Snyder, M. (1998). Pheromone-regulated Genes Required for 

Yeast Mating Differentiation. Journal of Cell Biology, 140(3), 461–483. 
https://doi.org/10.1083/jcb.140.3.461 

  
Fay, J. C. (2013). The molecular basis of phenotypic variation in yeast. Current Opinion in Genetics & 

Development, 23(6), 672–677. https://doi.org/10.1016/j.gde.2013.10.005 
  
Foss, E. J., Radulovic, D., Shaffer, S. A., Goodlett, D. R., Kruglyak, L., & Bedalov, A. (2011). Genetic 

Variation Shapes Protein Networks Mainly through Non-transcriptional Mechanisms. PLOS 
Biology, 9(9), e1001144. https://doi.org/10.1371/journal.pbio.1001144 

  
Foss, E. J., Radulovic, D., Shaffer, S. A., Ruderfer, D. M., Bedalov, A., Goodlett, D. R., & Kruglyak, L. 

(2007). Genetic basis of proteome variation in yeast. Nature Genetics, 39(11), 1369–1375. 
https://doi.org/10.1038/ng.2007.22 

  
Ghazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., 

Sinsheimer, J., Kang, H. M., Furlotte, N., Park, C. C., Wen, P.-Z., Brewer, H., Weitz, K., Ii, D. G. C., 
Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., … Lusis, A. J. (2011). Comparative Analysis of 
Proteome and Transcriptome Variation in Mouse. PLOS Genetics, 7(6), e1001393. 
https://doi.org/10.1371/journal.pgen.1001393 

  
Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier 

DNA/PEG method. Nature Protocols, 2(1), 31–34. https://doi.org/10.1038/nprot.2007.13 
  
Gloss, B. S., Signal, B., Cheetham, S. W., Gruhl, F., Kaczorowski, D. C., Perkins, A. C., & Dinger, M. E. 

(2017). High resolution temporal transcriptomics of mouse embryoid body development reveals 
complex expression dynamics of coding and noncoding loci. Scientific Reports, 7(1), 6731. 
https://doi.org/10.1038/s41598-017-06110-5 

  
Goddard, M. R., Godfray, H. C. J., & Burt, A. (2005). Sex increases the efficacy of natural selection in 

experimental yeast populations. Nature, 434(7033), 636–640. 
https://doi.org/10.1038/nature03405 

  
 
 



 55 

Großbach, J., Gillet, L., Clément-Ziza, M., Schmalohr, C. L., Schubert, O. T., Barnes, C. A., Bludau, I., 
Aebersold, R., & Beyer, A. (2019). Integration of transcriptome, proteome and 
phosphoproteome data elucidates the genetic control of molecular networks. BioRxiv, 703140. 
https://doi.org/10.1101/703140 

  
Gry, M., Rimini, R., Strömberg, S., Asplund, A., Pontén, F., Uhlén, M., & Nilsson, P. (2009). 

Correlations between RNA and protein expression profiles in 23 human cell lines. BMC 
Genomics, 10(1), 365. https://doi.org/10.1186/1471-2164-10-365 

  
Haber, J. E. (2012). Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae. Genetics, 

191(1), 33–64. https://doi.org/10.1534/genetics.111.134577 
  
Hamada, K., Fukuchi, S., Arisawa, M., Baba, M., & Kitada, K. (1998). Screening for 

glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. 
Molecular and General Genetics MGG, 258(1), 53–59. https://doi.org/10.1007/s004380050706 

  
Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., & Guthke, R. (2009). Gene regulatory network 

inference: Data integration in dynamic models—A review. Biosystems, 96(1), 86–103. 
https://doi.org/10.1016/j.biosystems.2008.12.004 

  
Herskowitz, I. (1995). MAP kinase pathways in yeast: For mating and more. Cell, 80(2), 187–197. 

https://doi.org/10.1016/0092-8674(95)90402-6 
  
Hook, S. E., Lampi, M. A., Febbo, E. J., Ward, J. A., & Parkerton, T. F. (2010). Temporal patterns in the 

transcriptomic response of rainbow trout, Oncorhynchus mykiss, to crude oil. Aquatic 
Toxicology, 99(3), 320–329. https://doi.org/10.1016/j.aquatox.2010.05.011 

  
Hook, S. E., Skillman, A. D., Small, J. A., & Schultz, I. R. (2007). Temporal changes in gene expression 

in rainbow trout exposed to ethynyl estradiol. Comparative Biochemistry and Physiology Part C: 
Toxicology & Pharmacology, 145(1), 73–85. https://doi.org/10.1016/j.cbpc.2006.10.011  
 

Huang, L., Tang, W., Bu, S., & Wu, W. (2020). BRM: A statistical method for QTL mapping based on 
bulked segregant analysis by deep sequencing. Bioinformatics, 36(7), 2150-2156. 
https://doi.org/10.1093/bioinformatics/btz861 
 

Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O'Shea, E. K. 
(2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. 
https://www.nature.com/articles/nature02026 

 
Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, 

quality-based trimming tool for FastQ files (Version 1.21) [Software]. 
Available at https://github.com/najoshi/sickle. 
 



 56 

Khan, Z., Bloom, J. S., Amini, S., Singh, M., Perlman, D. H., Caudy, A. A., & Kruglyak, L. (2012). 
Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-
MS. Molecular Systems Biology, 8(1), 602. https://doi.org/10.1038/msb.2012.34 

  
Knight, J. C. (2004). Allele-specific gene expression uncovered. Trends in Genetics, 20(3), 113–116. 

https://doi.org/10.1016/j.tig.2004.01.001 
  
Lackner, D. H., Schmidt, M. W., Wu, S., Wolf, D. A., & Bähler, J. (2012). Regulation of transcriptome, 

translation, and proteome in response to environmental stress in fission yeast. Genome 
Biology, 13(4), R25. https://doi.org/10.1186/gb-2012-13-4-r25 

  
Lang, G. I., Murray, A. W., & Botstein, D. (2009). The cost of gene expression underlies a fitness 

trade-off in yeast. Proceedings of the National Academy of Sciences, 106(14), 5755–5760. 
https://doi.org/10.1073/pnas.0901620106 

  
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 

& 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map 
format and SAMtools. Bioinformatics, 25(16), 2078–2079. 
https://doi.org/10.1093/bioinformatics/btp352 

  
Li, Heng. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

ArXiv:1303.3997 [q-Bio]. http://arxiv.org/abs/1303.3997 
  
Li, Y., Roberts, J., AkhavanAghdam, Z., & Hao, N. (2017). Mitogen-activated protein kinase (MAPK) 

dynamics determine cell fate in the yeast mating response. Journal of Biological Chemistry, 
292(50), 20354–20361. https://doi.org/10.1074/jbc.AC117.000548 

  
Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., 

Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson, D., O’Kelly, M. J. T., van 
Oudenaarden, A., Barton, D. B. H., Bailes, E., Nguyen, A. N., Jones, M., … Louis, E. J. (2009). 
Population genomics of domestic and wild yeasts. Nature, 458(7236), 337–341. 
https://doi.org/10.1038/nature07743 

  
Liu, G., Lanham, C., Buchan, J. R., & Kaplan, M. E. (2017). High-throughput transformation of 

Saccharomyces cerevisiae using liquid handling robots. PLoS ONE, 12(3). 
https://doi.org/10.1371/journal.pone.0174128 

  
Lutz, S., Brion, C., Kliebhan, M., & Albert, F. W. (2019). DNA variants affecting the expression of 

numerous genes in trans have diverse mechanisms of action and evolutionary histories. PLOS 
Genetics, 15(11), e1008375. https://doi.org/10.1371/journal.pgen.1008375 

 
Magwene, P. M., Willis, J. H., & Kelly, J. K. (2011). The Statistics of Bulk Segregant Analysis Using Next 

Generation Sequencing. PLOS Computational Biology, 7(11), e1002255. 
https://doi.org/10.1371/journal.pcbi.1002255 



 57 

Mansfeld, B. N., & Grumet, R. (2018). QTLseqr: An R Package for Bulk Segregant Analysis with Next-
Generation Sequencing. The Plant Genome, 11(2). 
https://doi.org/10.3835/plantgenome2018.01.0006 

  
Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R., & Bähler, J. (2012). Quantitative 

Analysis of Fission Yeast Transcriptomes and Proteomes in Proliferating and Quiescent Cells. 
Cell, 151(3), 671–683. https://doi.org/10.1016/j.cell.2012.09.019 

  
McManus, C. J., May, G. E., Spealman, P., & Shteyman, A. (2014). Ribosome profiling reveals post-

transcriptional buffering of divergent gene expression in yeast. Genome Research, 24(3), 422–
430. https://doi.org/10.1101/gr.164996.113 

  
Metzger, B. P. H., Duveau, F., Yuan, D. C., Tryban, S., Yang, B., & Wittkopp, P. J. (2016). Contrasting 

Frequencies and Effects of cis- and trans-Regulatory Mutations Affecting Gene Expression. 
Molecular Biology and Evolution, 33(5), 1131–1146. https://doi.org/10.1093/molbev/msw011 

  
Miller, C., Schwalb, B., Maier, K., Schulz, D., Dümcke, S., Zacher, B., Mayer, A., Sydow, J., 

Marcinowski, L., Dölken, L., Martin, D. E., Tresch, A., & Cramer, P. (2011). Dynamic 
transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Molecular 
Systems Biology, 7(1), 458. https://doi.org/10.1038/msb.2010.112 

  
Miyajima, I., Nakafuku, M., Nakayama, N., Brenner, C., Miyajima, A., Kaibuchi, K., Arai, K., Kaziro, Y., 

& Matsumoto, K. (1987). GPA1, a haploid-specific essential gene, encodes a yeast homolog of 
mammalian G protein which may be involved in mating factor signal transduction. Cell, 50(7), 
1011–1019. https://doi.org/10.1016/0092-8674(87)90167-X 

  
Morjan, C. L., & Rieseberg, L. H. (2004). How species evolve collectively: Implications of gene flow 

and selection for the spread of advantageous alleles. Molecular Ecology, 13(6), 1341–1356. 
https://doi.org/10.1111/j.1365-294X.2004.02164.x 

  
Muller, E. M., Mackin, N. A., Erdman, S. E., & Cunningham, K. W. (2003). Fig1p Facilitates Ca 2+ Influx 

and Cell Fusion during Mating of Saccharomyces cerevisiae. Journal of Biological Chemistry, 
278(40), 38461–38469. https://doi.org/10.1074/jbc.M304089200 

  
Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., & Levchenko, A. (2007). MAPK-

mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 446(7131), 
46–51. https://doi.org/10.1038/nature05561 

  
Parts, L., Cubillos, F. A., Warringer, J., Jain, K., Salinas, F., Bumpstead, S. J., Molin, M., Zia, A., 

Simpson, J. T., Quail, M. A., Moses, A., Louis, E. J., Durbin, R., & Liti, G. (2011). Revealing the 
genetic structure of a trait by sequencing a population under selection. Genome Research, 
21(7), 1131–1138. https://doi.org/10.1101/gr.116731.110 

  



 58 

Parts, L., Liu, Y.-C., Tekkedil, M., Steinmetz, L. M., Caudy, A. A., Fraser, A. G., Boone, C., Andrews, B. 
J., & Rosebrock, A. P. (2014). Heritability and genetic basis of protein level variation in an 
outbred population. Genome Research, gr.170506.113. https://doi.org/10.1101/gr.170506.113 

  
Pascual-Ahuir, A., González-Cantó, E., Juyoux, P., Pable, J., Poveda-Huertes, D., Saiz-Balbastre, S., 

Squeo, S., Ureña-Marco, A., Vanacloig-Pedros, E., Zaragoza-Infante, L., & Proft, M. (2019). Dose 
dependent gene expression is dynamically modulated by the history, physiology and age of 
yeast cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(4), 457–
471. https://doi.org/10.1016/j.bbagrm.2019.02.009 

  
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., 

Freel, K., Llored, A., Cruaud, C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P., 
Engelen, S., Lemainque, A., Wincker, P., … Schacherer, J. (2018). Genome evolution across 1,011 
Saccharomyces cerevisiae isolates. Nature, 556(7701), 339–344. 
https://doi.org/10.1038/s41586-018-0030-5 

  
Picotti, P., Clément-Ziza, M., Lam, H., Campbell, D. S., Schmidt, A., Deutsch, E. W., Röst, H., Sun, Z., 

Rinner, O., Reiter, L., Shen, Q., Michaelson, J. J., Frei, A., Alberti, S., Kusebauch, U., Wollscheid, 
B., Moritz, R. L., Beyer, A., & Aebersold, R. (2013). A complete mass-spectrometric map of the 
yeast proteome applied to quantitative trait analysis. Nature, 494(7436), 266–270. 
https://doi.org/10.1038/nature11835 

  
Pollard, D. A., Asamoto, C. K., Rahnamoun, H., Abendroth, A. S., Lee, S. R., & Rifkin, S. A. (2016). 

Natural Genetic Variation Modifies Gene Expression Dynamics at the Protein Level During 
Pheromone Response in Saccharomyces cerevisiae. BioRxiv, 090480. 
https://doi.org/10.1101/090480 

  
Pomp, D., Allan, M. F., & Wesolowski, S. R. (2004). Quantitative genomics: Exploring the genetic 

architecture of complex trait predisposition,. Journal of Animal Science, 82(suppl_13), E300–
E312. https://doi.org/10.2527/2004.8213_supplE300x 

  
R Core Team. (2019). Core R: A Language and Environment for Statistical Computing, Version 3.5. 

3. Vienna: R Foundation for Statistical Computing. URL https://www.R-project.org/ 
 
Rines, D. R., He, X., & Sorger, P. K. (2002). Quantitative microscopy of green fluorescent protein-

labeled yeast. In Methods in Enzymology (Vol. 351, pp. 16–34). Academic Press. 
https://doi.org/10.1016/S0076-6879(02)51839-5 

  
Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y. D., Dai, H., 

Walker, W. L., Hughes, T. R., Tyers, M., Boone, C., & Friend, † Stephen H. (2000). Signaling and 
Circuitry of Multiple MAPK Pathways Revealed by a Matrix of Global Gene Expression Profiles. 
Science, 287(5454), 873–880. https://doi.org/10.1126/science.287.5454.873 

  



 59 

Ronald, J., Brem, R. B., Whittle, J., & Kruglyak, L. (2005). Local Regulatory Variation in Saccharomyces 
cerevisiae. PLOS Genetics, 1(2), e25. https://doi.org/10.1371/journal.pgen.0010025 

  
Sadhu, M. J., Bloom, J. S., Day, L., & Kruglyak, L. (2016). CRISPR-directed mitotic recombination 

enables genetic mapping without crosses. Science, 352(6289), 1113–1116. 
https://doi.org/10.1126/science.aaf5124 

  
Sadhu, M. J., Bloom, J. S., Day, L., Siegel, J. J., Kosuri, S., & Kruglyak, L. (2018). Highly parallel genome 

variant engineering with CRISPR–Cas9. Nature Genetics, 50(4), 510–514. 
https://doi.org/10.1038/s41588-018-0087-y 

  
Salinas, F., de Boer, C. G., Abarca, V., García, V., Cuevas, M., Araos, S., Larrondo, L. F., Martínez, C., & 

Cubillos, F. A. (2016). Natural variation in non-coding regions underlying phenotypic diversity in 
budding yeast. Scientific Reports, 6(1), 21849. https://doi.org/10.1038/srep21849 

  
Salunkhe, A. S., Poornima, R., Prince, K. S. J., Kanagaraj, P., Sheeba, J. A., Amudha, K., Suji, K. K., 

Senthil, A., & Babu, R. C. (2011). Fine Mapping QTL for Drought Resistance Traits in Rice (Oryza 
sativa L.) Using Bulk Segregant Analysis. Molecular Biotechnology, 49(1), 90–95. 
https://doi.org/10.1007/s12033-011-9382-x 

  
Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., Sieberts, S. K., Monks, S., 

Reitman, M., Zhang, C., Lum, P. Y., Leonardson, A., Thieringer, R., Metzger, J. M., Yang, L., 
Castle, J., Zhu, H., Kash, S. F., Drake, T. A., … Lusis, A. J. (2005). An integrative genomics 
approach to infer causal associations between gene expression and disease. Nature Genetics, 
37(7), 710–717. https://doi.org/10.1038/ng1589 

  
Schmidt, D., Wilson, M. D., Ballester, B., Schwalie, P. C., Brown, G. D., Marshall, A., Kutter, C., Watt, 

S., Martinez-Jimenez, C. P., Mackay, S., Talianidis, I., Flicek, P., & Odom, D. T. (2010). Five-
Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding. 
Science, 328(5981), 1036–1040. https://doi.org/10.1126/science.1186176 

  
Schuller, D., Cardoso, F., Sousa, S., Gomes, P., Gomes, A. C., Santos, M. A. S., & Casal, M. (2012). 

Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from 
Different Grape Varieties and Winemaking Regions. PLOS ONE, 7(2), e32507. 
https://doi.org/10.1371/journal.pone.0032507 

  
Seroude, L., Brummel, T., Kapahi, P., & Benzer, S. (2002). Spatio-temporal analysis of gene 

expression during aging in Drosophila melanogaster. Aging Cell, 1(1), 47–56. 
https://doi.org/10.1046/j.1474-9728.2002.00007.x 

  
Sethiya, P., Rai, M. N., Rai, R., Parsania, C., Tan, K., & Wong, K. H. (2020). Transcriptomic analysis 

reveals global and temporal transcription changes during Candida glabrata adaptation to an 
oxidative environment. Fungal Biology, 124(5), 427–439. 
https://doi.org/10.1016/j.funbio.2019.12.005 



 60 

Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jónsson, B., Schluter, D., & 
Kingsley, D. M. (2004). Genetic and developmental basis of evolutionary pelvic reduction in 
threespine sticklebacks. Nature, 428(6984), 717–723. https://doi.org/10.1038/nature02415 

  
Signor, S. A., & Nuzhdin, S. V. (2018). The Evolution of Gene Expression in cis and trans. Trends in 

Genetics, 34(7), 532–544. https://doi.org/10.1016/j.tig.2018.03.007 
Stern, D. L., & Orgogozo, V. (2008). The Loci of Evolution: How Predictable Is Genetic Evolution? 

Evolution, 62(9), 2155–2177. https://doi.org/10.1111/j.1558-5646.2008.00450.x 
  
Strassburg, K., Walther, D., Takahashi, H., Kanaya, S., & Kopka, J. (2010). Dynamic Transcriptional and 

Metabolic Responses in Yeast Adapting to Temperature Stress. OMICS: A Journal of Integrative 
Biology, 14(3), 249–259. https://doi.org/10.1089/omi.2009.0107 

  
Straub, L. (2011). Beyond the Transcripts: What Controls Protein Variation? PLOS Biology, 9(9), 

e1001146. https://doi.org/10.1371/journal.pbio.1001146 
  
Tadauchi, T., Inada, T., Matsumoto, K., & Irie, K. (2004). Posttranscriptional Regulation of HO 

Expression by the Mkt1-Pbp1 Complex. Molecular and Cellular Biology, 24(9), 3670–3681. 
https://doi.org/10.1128/MCB.24.9.3670-3681.2004 

  
Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J., & Richards, J. B. (2018). Genetic 

architecture: The shape of the genetic contribution to human traits and disease. Nature 
Reviews Genetics, 19(2), 110–124. https://doi.org/10.1038/nrg.2017.101 

  
Treusch, S., Albert, F. W., Bloom, J. S., Kotenko, I. E., & Kruglyak, L. (2015). Genetic Mapping of 

MAPK-Mediated Complex Traits Across S. cerevisiae. PLoS Genetics, 11(1), e1004913. 
https://doi.org/10.1371/journal.pgen.1004913 

  
Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., 

Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., 
& DePristo, M. A. (2013). From FastQ data to high confidence variant calls: The Genome 
Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics / Editoral Board, 
Andreas D. Baxevanis ... [et Al.], 11(1110), 11.10.1-11.10.33. 
https://doi.org/10.1002/0471250953.bi1110s43 

  
Verd, B., Crombach, A., & Jaeger, J. (2017). Dynamic Maternal Gradients Control Timing and Shift-

Rates for Drosophila Gap Gene Expression. PLOS Computational Biology, 13(2), e1005285. 
https://doi.org/10.1371/journal.pcbi.1005285 

  
Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from 

proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227–232. 
https://doi.org/10.1038/nrg3185 

  



 61 

Wiberg, R. A. W., Gaggiotti, O. E., Morrissey, M. B., & Ritchie, M. G. (2017). Identifying consistent 
allele frequency differences in studies of stratified populations. Methods in ecology and 
evolution, 8(12), 1899-1909. https://doi.org/10.1111/2041-210X.12810 
 

Wickner, R. B. (1987). MKT1, a nonessential Saccharomyces cerevisiae gene with a temperature-
dependent effect on replication of M2 double-stranded RNA. Journal of Bacteriology, 169(11), 
4941–4945. https://doi.org/10.1128/jb.169.11.4941-4945.1987 

  
Wittkopp, P. J., Haerum, B. K., & Clark, A. G. (2004). Evolutionary changes in cis and trans gene 

regulation. Nature, 430(6995), 85–88. https://doi.org/10.1038/nature02698 
  
Wittkopp, P. J., Haerum, B. K., & Clark, A. G. (2008). Independent Effects of cis- and trans-regulatory 

Variation on Gene Expression in Drosophila melanogaster. Genetics, 178(3), 1831–1835. 
https://doi.org/10.1534/genetics.107.082032 

  
Yan Tong, A. H., & Boone, C. (2006). Synthetic Genetic Array Analysis in Saccharomyces cerevisiae. In 

W. Xiao (Ed.), Yeast Protocol (pp. 171–191). Humana Press. https://doi.org/10.1385/1-59259-
958-3:171 

  
Zheng, W., Zhao, H., Mancera, E., Steinmetz, L. M., & Snyder, M. (2010). Genetic analysis of variation 

in transcription factor binding in yeast. Nature, 464(7292), 1187–1191. 
https://doi.org/10.1038/nature08934 
  
 
  
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 62 

Supplemental Figures: 
 

 

 
Supplementary Figure 1: Whole-genome FIG1 QTL-maps highlighting the location of steady-
state pQTL hotspots (pink bars) (Albert et al. 2014). Peaks represent genomic loci associated 
with FIG1 protein expression 2 hours (top) after exposure to mating pheromone, and 5 hours 
(bottom) after exposure to mating pheromone. Horizontal lines represent an FDR cutoff of 0.05. 
Purple and gold maps correspond to BSA experiments with segregant populations derived from 
five rounds and two rounds of random mating respectively. 
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Supplementary Figure 2: Whole-genome FIG1 QTL-maps highlighting the location of steady-
state eQTL hotspots (blue bars) (Albert et al. 2018). Peaks represent genomic loci associated 
with FIG1 protein expression 2 hours (top) after exposure to mating pheromone, and 5 hours 
(bottom) after exposure to mating pheromone. Horizontal lines represent an FDR cutoff of 0.05. 
Purple and gold maps correspond to BSA experiments with segregant populations derived from 
five rounds and two rounds of random mating respectively. 
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Supplementary Figure 3: Whole-genome FIG1 QTL-maps highlighting the location of steady-
state pQTL lacking cognate eQTL (green bars) (Albert et al. 2014). Peaks represent genomic loci 
associated with FIG1 protein expression 2 hours (top) after exposure to mating pheromone, 
and 5 hours (bottom) after exposure to mating pheromone. Horizontal lines represent an FDR 
cutoff of 0.05. Purple and gold maps correspond to BSA experiments with segregant 
populations derived from five rounds and two rounds of random mating respectively. 
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Supplementary Figure 4: : Whole-genome FIG1 QTL-maps. Peaks represent genomic loci with 
allele frequency differences between high and low Fig1 protein expression bulks 2 hours (top) 
and 5 hours (bottom) after exposure to mating pheromone. Purple and gold correspond to BSA 
experiments with segregant populations derived from five rounds and two rounds of random 
mating respectively. Horizontal lines reflect a 95% Confidence Interval for either segregant 
population. Positive values represent loci where the s288c allele was favored in the high bulk 
and negative values represent loci where the YJM145 allele was favored in the high bulk.  
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Supplementary Figure 5: Number of SNPs considered in a sliding window for segregant 
populations derived from two rounds (top) and five rounds (bottom) of mating and sporulation 
for each chromosome in the yeast genome. SNP density is not evenly distributed across the 
genome, and some regions, such the sub-telomeric region on right arm of chromosome 5 or the 
center of chromosome 12, are especially divergent between strain backgrounds. 
 

 
 
Supplementary Figure 6: Distribution of reads whose SNPs mapped to the reference genome 
for the five rounds of mating, two-hour time-point experiment. This trend shows to be 
consistent across experiments. Genome wide median SNP reference frequencies deviating from 
0.5 suggest either 1) that segregant populations were subjected to selection pressures that 
favored certain reference strain (S288c) alleles such as selection for mating efficiency related 
alleles, or 2) that mapping biases exist in our SNPsets which may also bias our QTL mapping 
statistical approach. 
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