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Abstract 

Ocean acidification (OA) threatens many marine species and is projected to become more 

severe over the next 50 years. Areas of the Salish Sea and Puget Sound that experience seasonal 

upwelling of low pH water are particularly susceptible to even lower pH conditions. While ocean 

acidification literature often describes negative impacts to calcifying organisms, including 

economically important shellfish, and zooplankton, not all marine species appear to be 

threatened by OA. Photosynthesizing organisms, in particular, may benefit from increased levels 

of CO2.  

The aggregating anemone (Anthopleura elegantissima), a common intertidal organism 

throughout the northeast Pacific, hosts two photosynthetic symbionts: Symbiodinium muscatinei 

(a dinoflagellate) and Elliptochloris marina (a chlorophyte). The holobiont, therefore, consists of 

both a cnidarian host and a photosymbiont that could be affected differently by the changing 

levels of environmental CO2. To determine the effects of OA on this important marine organism, 

A. elegantissima in each of four symbiotic conditions (hosting S. muscatinei, hosting E. marina, 

hosting mixed symbiont assemblages, or symbiont free) were subjected to one of three pCO2 

levels (800 ppm, 1200 ppm, or 1800 ppm) of OA for 10 weeks. At regular intervals, gross 

photosynthesis and density of the symbionts, respiration rate of the hosts, levels of reactive 

oxygen species (ROS) in the host, and percent of organic carbon received by the host from the 

symbiont (CZAR) were measured. Over the 10-week period of the experiment, the densities of 

symbionts responded differently to an increase in pCO2, increasing in anemones hosting S. 

muscatinei but decreasing for those hosting E. marina. Similarly, anemones of mixed symbiont 

complement that started with approximately 50% of each symbiont type shifted toward a higher 

percentage of S. muscatinei with higher pCO2. Both gross photosynthesis and dark respiration 

were significantly affected by pCO2 and symbiont state, though we cannot say that the symbionts 
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responded differently to increased OA. Symbiont state was a significant predictor for ROS 

concentration, with greatest levels seen in anemones hosting E. marina and for CZAR score, 

with greatest levels in anemones hosting S. muscatinei, our linear models did not reveal pCO2 as 

a significant factor in these responses. Together, these results suggest that S. muscatinei may 

benefit from elevated pCO2 levels and that A. elegantissima hosting that symbiont may have a 

competitive advantage under some future scenarios of ocean acidification.   
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Introduction 

Since the industrial revolution, anthropogenic forces have increasingly altered Earth’s 

ecosystems. One such force is the ever-increasing release of CO2 into the atmosphere. Oceans 

cover over 70% of Earth’s surface, providing a large surface area that absorbs much of that 

atmospheric CO2 (Doney et al. 2009), which decreases the pH and increases the partial pressure 

of carbon dioxide (pCO2) in seawater (Keeling et al. 1976). The diffusion of CO2 into the ocean 

shifts the chemical equilibria of the carbonate system (pH, pCO2, CO3-2, HCO3-), decreasing the 

pH, the saturation state of CaCO3, and the available CO3-2 ions in a process known as ocean 

acidification (Orr et al. 2005, Feely et al. 2010). Ocean acidification is a widespread problem 

affecting global marine and coastal habitats with differing degrees of severity. 

Calcifying marine organisms build their shells and other structural elements from calcium 

carbonate (CaCO3) and rely on high saturation states of carbonate ions (CO3-2) to do so (Orr et al. 

2005). Ocean acidification not only dissolves the hard structures of calcifying organisms, but 

also, due to the lower availability of CO3-2, makes it more difficult for the organisms to build 

calcium carbonate structures without a major energy expense. Thus, OA poses a significant 

threat to calcifying organisms like corals (Langdon and Atkinson 2005), mollusks (Doney et al. 

2009), and some algae and plankton (Orr et al. 2005; Wooten et al. 2008; Byrne and Przeslawski 

2013; Kroeker et al. 2013). However, ocean acidification may not threaten all marine species. 

Photosynthetic organisms may benefit from the increased levels of pCO2 that lead to 

ocean acidification. Several studies have shown that marine micro- and macroalgae and 

seagrasses have greater photosynthetic activity when exposed to levels of pCO2 higher than the 

average ambient levels in their environments (Zimmerman 1997, Palacios and Zimmerman 2007, 

Alexandre et al. 2012, Tan et al. 2019). And, seagrasses and other marine plants can utilize the 

increased levels of HCO3- provided by OA as an inorganic carbon source for photosynthesis 
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(Alexandre et al. 2012). The current levels of dissolved inorganic carbon (DIC) in the oceans are 

generally not high enough to saturate photosynthesis for most species, resulting in higher 

photosynthetic rates in areas of low pH and high DIC (Invers et al. 2001, Koch et. al. 2013). 

Marine plants, however, are not the only organisms that may be able to utilize the higher HCO3- 

concentration in low pH water for a photosynthetic benefit. 

 Cnidarians, including many corals and anemones, can form symbiotic relationships with 

photosynthetic algae. The symbionts provide the host with oxygen and fixed organic carbon and 

benefit from host-derived nutrients (Engebretson and Muller-Parker 1999, LaJeunesse and 

Trench 2000, Verde and McCloskey 1996) and are likely to benefit from higher pCO2. For 

example, Brading et al. (2011) showed that two species of Symbiodinium, when cultured outside 

their coral host, had increased photosynthetic rates and growth rates under higher pCO2 (1100 

ppm) conditions. Another study of Symbiodinium in corals (Crawley et al. 2010) found that 

photosynthetic capacity increased under increased pCO2 conditions (700 ppm) but decreased 

under more pessimistic pCO2 projections (1500 ppm).  

While it is clear that some photosymbionts may benefit from some OA conditions, it is 

less clear whether those benefits will translate to the animal host. Langdon and Atkinson (2005) 

found that an increase in pCO2 increased the translocation of carbon from zooxanthellae 

symbionts to their host coral, but the lower pH led to breakdown of the coral’s CaCO3 skeleton. 

Suggett et al. (2012), studying symbiotic sea anemones within a natural pCO2 gradient near an 

undersea volcano in Italy, found that the anemone Anemonia viridis increased in abundance and 

size in higher pCO2 waters due to increased photosynthesis and translocation from their 

symbiotic Symbiodinium. A recent laboratory study on the temperate sea anemone Anthopleura 

elegantissima found that their photosymbiont Symbiodinium muscatinei had a higher growth rate 
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and higher rate of photosynthesis in waters with a lower pH and higher pCO2 (2200 ppm), 

suggesting these intertidal anemones might benefit from increased pCO2 (Towanda and Thuesen 

2012).  

 A. elegantissima is the most abundant intertidal anemone along the west coast of North 

America and can inhabit mid-intertidal to subtidal waters from Baja, California to British 

Columbia (Kozloff 1983). Populations exist in aggregations of genetically identical clones that 

can reproduce asexually by fission or sexually by spawning sperm or eggs (Sebens 1982). This 

anemone is unusual in that it can host two very different photosymbionts: Symbiodinium 

muscatinei (LaJeunesse and Trench 2000), which are dinoflagellates also called zooxanthellae 

and Elliptochloris marina (Letsch et al. 2009), which are chlorophyte algae also called 

zoochlorellae.  

 The abundance of these two symbionts within A. elegantissima varies with abiotic factors 

including latitude, intertidal height, temperature, and light (LaJeunesse and Trench 2000, Secord 

and Augustine 2000). Anemones hosting S. muscatinei dominate in high light, higher intertidal, 

and warmer environments. Anemones hosting E. marina tend to occur in low light, low 

intertidal, high latitude, and colder habitats (Secord and Augustine 2000). A. elegantissima can 

host either symbiont, both symbionts at once (creating “mixed” individuals) or can exist 

symbiont-free. Such aposymbiotic individuals (“apos”) are generally found in very shaded 

environments (Fitt and Pardy 1981, Baker 2003, Dimond et al. 2011, Hiebert and Bingham 

2012). Symbiotic A. elegantissima comprise a significant percent of the biomass in some 

intertidal communities, contributing to high rate of primary production there (Fitt et al. 1982).  

 Environmental conditions influence the complement of symbionts A. elegantissima host 

and the symbiont complement influences how the anemones reproduce. Bingham et al. (2014) 
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showed that A. elegantissima hosting S. muscatinei are more likely to reproduce asexually 

through fission while those hosting E. marina primarily reproduce sexually. A shift to a 

symbiont complement dominated by S. muscatinei could, therefore, lower genetic diversity, with 

asexually reproducing populations creating monocultures. Populations with less genetic diversity 

are likely to be less resilient to environmental catastrophes or pathogens, indicating that the 

symbiont complement could influence survivorship of A. elegantissima populations (Hughes and 

Stachowicz 2004). 

 Given that symbiont identity can impact reproductive strategy of these anemones, it is 

interesting to note that the relative abundances of these two symbionts individual anemones can 

shift in individual A. elegantissima in response to environmental changes (Baker 2003, Dimond 

et al. 2013). Increased temperature and irradiance benefit S. muscatinei over the less 

thermotolerant E. marina, but the relative effect of pH and pCO2 on the two symbionts is not 

well understood (Dimond et al. 2013). While A. elegantissima can host both symbiont species at 

the same time, laboratory studies suggest that a mixed symbiont complement is an unstable 

equilibrium with symbiotic condition over time tending toward dominance by one or the other 

symbiont (Saunders and Muller-Parker 1997).  

 One metric that measures the competitive advantage of A. elegantissima hosting one 

symbiont type or another is the CZAR score (contribution of zooxanthellae or zoochlorellae to 

animal respiration). CZAR is the amount of the total carbon fixed by the symbiont that is used by 

the host for respiration. A higher CZAR score signifies that the anemones rely less on 

heterotrophic feeding due to input of carbon from the symbiont (Shick and Dykens 1984). 

Temperate corals show CZAR scores of up to 95%, with the score increasing with irradiance 

until photoinhibition occurs at extremely high light levels (Muscatine et al. 1984, Ferrier-Pages 
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et al. 2014, Hawkins et al. 2016). CZAR score can also be influenced by temperature (Gibbons 

2008) and can differ among Symbiodinium species (Starzark et al. 2014).  

Anthopleura species that host Symbiodinium show CZAR scores of 98% and above under 

some conditions (Muscatine et al. 1981, 1983; Gibbons 2008), and Verde and McCloskey (2007) 

found that A. elegantissima hosting S. muscatinei had a consistently higher CZAR score than 

those hosting E. marina, suggesting that, energetically, E. marina may be a poorer symbiotic 

partner. Studying potential effects of changing ocean pCO2, Towanda and Theusen (2012) found 

that photosynthetic rate, CZAR, and respiration all increased when A. elegantissima hosting S. 

muscatinei were exposed to increased pCO2 (up to 2340 ppm). To date, no such tests have been 

done with A. elegantissima hosting E. marina or living with mixed symbiont complements.  

  While it appears that anemones hosting S. muscatinei reap certain benefits from higher 

pCO2, there are potential negative implications of living in these conditions. For example, high 

photosynthetic rates of the symbionts can create a hyperoxic environment within the host, 

producing singlet oxygen and hydrogen peroxide (reactive oxygen species or ROS) as 

byproducts of photosynthesis (Harland and Davies 1995, Lesser 2006). The hyperoxic 

environment and ROS can reduce photosynthetic efficiency and increase respiration rates of the 

host, effects that can be exacerbated by other forms of stress (Asada and Takahashi 1987, 

Harland and Davies 1995, Laloi and Havaux 2015). Accessory pigments in chloroplasts, 

including carotenoids, normally dissipate excess light energy as heat by converting triplet 

chlorophyll through a series of conformational changes in the xanthophyll cycle, a form of 

nonphotochemical quenching (NPQ) (Miki et al. 1994). When these and other enzyme-based 

degradation systems become overwhelmed, ROS levels rise (Harland and Davies 1995; Dimond 

et al. 2017). Intracellular pH, which is affected by pCO2 levels, affects the state of the ROS 
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species (i.e., protonated or unprotonated), changing their concentrations and biological impacts 

(Dykens et al. 1992). Combined stresses on the symbiont and their host can compromise this 

mutualistic relationship, leading the host to expel the symbionts in a phenomenon known as 

bleaching (Dykens and Shick 1982; Dykens et al. 1992; McCloskey et al. 1996; Hainey 2008; 

Suggett et al. 2008; Fransolet 2013, Wooldridge 2014).  

Dimond et al. (2017) demonstrated that, under high light conditions, the more productive 

S. muscatinei create a significantly greater burden of reactive oxygen species (ROS) for the A. 

elegantissima host than do the less productive E. marina. If individuals hosting S. muscatinei 

face ROS burdens that outweigh any benefit received from higher photosynthetic rates, their 

symbiont complements could shift toward E. marina, with potential impacts on the reproductive 

strategy of the A. elegantissima. This differential sensitivity of the symbionts and the flexibility 

of this temperate symbiotic relationship thus provides an outstanding opportunity to study the 

potential ecological impact of OA. 

My research objective was to expose A. elegantissima in each of four symbiotic 

conditions (hosting S. muscatinei, hosting E. marina, hosting mixed symbiont assemblages, or 

symbiont free) to elevated pCO2 treatments to determine:  

1. How OA affects photosynthetic processes of the symbionts and respiration of the host.  

2. Whether symbiont complement affects CZAR or levels of ROS.  

3. Whether competitive exclusion or symbiont shifting occurs between S. muscatinei and E.  

marina under OA conditions. 

 

While several studies have focused on the effects of increased temperature and light on 

A. elegantissima symbiosis, this study is the first to compare effects of pCO2 on multiple 
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symbiotic states with the goal of understanding how this important symbiotic system might 

respond to changing ocean conditions.  

 

 

Materials and Methods 

 

Anemone Collection and Experimental Setup 

Eighteen individual A. elegantissima of each symbiont state, hereafter referred to as “brown” 

(hosting S. muscatinei), “green” (hosting E. marina), “mixed” (hosting a near 50:50 mix of S. 

muscatinei and E. marina), and “apo” (with extremely low or no symbionts), were collected 

from various microhabitats around Point Lawrence in the San Juan Islands (48°37’58.5”N, 

122°47’13.3”W) and transported to the Shannon Point Science Center in Anacortes, WA. In the 

laboratory, a single tentacle was clipped from each anemone and examined via light microscopy 

to confirm the symbiotic state. Only anemones with approximately 50% of each symbiont type 

(+/- 5%) were used for the mixed group and the apo group included only anemones with <100 

cells/mg of host protein. All anemones thus identified to symbiotic state were transferred into 

individual labeled glass watch glasses and acclimated for two weeks in an indoor, flow-through 

sea-table exposed to natural sunlight through large windows. Seawater temperature during the 

acclimation period was 13-14°C and ambient pCO2 levels were 690-800 ppm.  

An experimental system was set up in a modification of the design described by Jokiel et 

al. (2014). To create the experimental pCO2 conditions, 18 50-L flow-through glass tanks were 

set up on an outdoor platform exposed to full sunlight. These tanks, which received running 

seawater input directly from the marine center seawater system, served as insulating jackets to 

maintain seawater temperature at ambient levels for the duration of the experiment. A 40 L 
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acrylic aquarium, in which a pCO2 treatment was created, was placed inside each of the 

insulating jackets. Independent seawater lines fed ambient seawater directly through each of 

these aquaria. 

Three pCO2 treatments, with 6 replicate aquaria per treatment, were created by using 

peristaltic pumps to control the amount of CO2 reaching the aquaria from a food-grade CO2 tank. 

A length of silicone tubing from a CO2 gas tank was split and directed to two peristaltic pumps 

set at different speeds. CO2 at a pressure of 10 psi was bled from the source tank, moving 

through the peristaltic pumps at one of the two speeds, and bubbling into the aquaria. A 

submerged Aquanet powerhead pump in each tank ensured that the water and CO2 were well 

mixed. The different rates of CO2 delivery from the peristaltic pumps created six aquaria with a 

pCO2 level of 1800 ppm and six with a level of 1200 ppm. The remaining six tanks received no 

bubbling, creating an ambient control with a pCO2 of approximately 800 ppm (Fig. 1). The 

arrangement of the pCO2 treatment aquaria on the platform was randomized. 

To start the experiment, one arbitrarily chosen anemone in each of the four symbiotic 

conditions was placed in each of the aquaria (i.e., each aquarium held four A. elegantissima, one 

of each symbiotic states). The entire platform was then covered with a black nylon shade cloth to 

reduce PAR by approximately 30%. To control growth of fouling organisms in the experiment, 

the aquaria were carefully cleaned 1-2 times per week throughout the experiment. At each of 

four time points (initial, 3 weeks later, 6 weeks later, and after 10 weeks), two tentacles were 

taken from each anemone and homogenized with 1.0 mL filtered seawater using a tissue tearer to 

break animal cells but leave photosymbiont cells intact. This sample was then split in half, with 

one half immediately going to ROS processing and the other held for later protein and symbiont 

density analysis. 
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Monitoring of pCO2 levels in the experiment 

To ensure the experimental pCO2 levels remained near their desired levels, measurements of DIC 

were taken at 3 to 13-day intervals from each of the 18 aquaria throughout the 10-week 

experiment. Sterile syringes with attached 45µm filters were used to collect 20 mL samples from 

the center of the aquaria. The sample was used to fill 20-ml scintillation vials from the bottom up 

with no head space, overflowing until the volume of the vile was replaced one full time, being 

careful to minimize exposure of the sample to air. The samples were either run immediately on 

an Agilent DIC analyzer or were poisoned with 20 µL HgCl2 to stop all respiration and 

photosynthesis. The poisoned samples were refrigerated at 5°C and analyzed for DIC content 

within a week of collection. pCO2 was then calculated from DIC using CO2SYS (Pierrot et al. 

2006) with K1 and K2 equilibrium constants from Mehrbach et al. (1973) and refit from Dickson 

and Millero (1987). Using the m-cresol method modified by Dickson et al. (2007), we measured 

the pH of our samples on the same day DIC was measured by filling a 5 cm triple-rinsed cuvette 

with a seawater sample using a syringe. After a baseline spectrum was taken, 30 µL of m-cresol 

dye was added, and a second spectrum collected, both using an Ocean Optics FlameS-UV-VIS 

spectrophotometer.  

To document day-to-night fluctuation in pH of the system, we continuously monitored 

pH for 11 hours during the fifth week of the experiment using an Orion Star A121 portable 

electronic glass electrode tip pH meter with a sensor placed in two randomly chosen aquaria in 

each of the three pCO2 treatments. This same portable pH probe was used to spot check pH in all 

the aquaria twice a day, three times a week to ensure system conditions were not changing. To 

ensure accuracy of the measurements, the pH probe was recalibrated between the pCO2 
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treatments with NHS buffer solutions of pH 4, 7, and 10. Photosynthetically active radiation 

(PAR) was measured four times a week throughout the day with a Biospherical Instruments 

QSL-100 4π quantum sensor. This was done to ensure irradiance was similar in all treatment 

aquaria throughout the day. Average ambient PAR levels over the course of the experiment were 

estimated from data collected by the Padilla Bay National Estuarine Research Reserve at a sensor 

located 29 kilometers away from the experimental site (http://nerr.noaa.gov). 

 

Reactive oxygen species measurements 

To measure ROS production of the anemones and their symbionts under each of the treatment 

conditions, the homogenized tentacle samples were dosed with Amplex Red fluorescent probe 

(Molecular Probes, Eugene, Oregon) to obtain a final concentration of 100µM. The samples 

were then incubated in a temperature-controlled photosynthetron (OHPT Inc., Lewes, Delaware) 

at 100 µmol quanta m-2 s-1 for thirty minutes using a rose-colored light filter to exclude 

wavelengths that cause Amplex Red photobleaching. The supernatant from each sample was then 

placed in a 96-well microplate with 0 to 10µ H2O2 standards and absorbance was read on a 

microplate reader according to methods from Dimond et al. (2017). The hydrogen peroxide (an 

ROS) concentration in each sample was calculated using a standard curve for each run calculated 

from the H2O2 standards. All tentacle samples were collected at a similar time of day (12 PM-2 

PM) to control for differences in ROS that can occur throughout a 24-hour cycle due to changes 

in photosynthetic activity and irradiance.  
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Measurements of respiration and gross photosynthesis  

To obtain a measure of the gross photosynthesis of the symbionts and respiration of the A. 

elegantissima hosts in different symbiotic states and under different experimental pCO2 

treatments, Presens Oxygen spot P3 sensors were fixed to the inside of 500 mL quartz jars using 

aquarium-grade silicone. A magnetic stir bar was placed in the bottom of each jar beneath a 

round, perforated Plexiglas stand upon which an anemone in its watch glass was placed (Fig. 

2A). The jars were filled with UV-sterilized, filtered seawater then placed in a shallow flow-

through tank, which maintained ambient seawater temperature during incubations. The flow-

through tank sat on a large outdoor stir table that accommodated eight anemones in their jars and 

a UV-sterilized seawater “blank” jar for correction of background microbial respiration. (Fig. 

2B). The runs were conducted during the same time period on each sampling day (10am - 2pm). 

To start the analysis, we measured the oxygen concentration in each jar via the sensor 

spots then covered the entire setup with a blackout tarp that eliminated all light. After one hour, 

the oxygen concentration was measured in each darkened jar to permit later calculation of dark 

respiration. We then removed the tarp, exposing the anemones in their sealed jars to one hour of 

natural sunlight then took a final oxygen measurement. This allowed us to calculate respiration 

and photosynthesis in the light. To measure respiration of all 64 anemones, multiple runs had to 

be spread over three days at each sampling interval with the anemones from the experiment 

randomly assigned to each run. To permit comparison of those samples, it was critical that light 

exposure remained as consistent as possible not only within a set of trials, but also across 

multiple trials during the 10-week experiment. We achieved this by adding or removing layers of 

window screen as necessary to ensure the PAR stayed near 1500 µmol/m-2/S-1 during the light 

incubation, enough to saturate photosynthesis but minimize or eliminate photorespiration in the 
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symbiotic individuals. All PAR measurements were made with a Biospherical Instruments QSL-

100 4π quantum wand sensor. 

 Data from the oxygen sensors in each sealed jar were collected from outside the jars with 

a Presens fiberoptic sensor reader. This was done before the dark incubation, after the dark 

incubation, and after the light incubation, allowing us to calculate total oxygen flux from which 

we could determine respiration and photosynthesis rates. To correct for differences in biomass of 

the anemones, we measured the oral disk diameter of each anemone when they were submerged 

and fully open the day before each of the respiration trials and converted the value to biomass 

using the equation of Dimond et al. (2011). These data were then used to calculate biomass-

specific respiration rates as in Verde and McCloskey (2007). Dark-exposed and light-exposed 

oxygen fluxes were used to calculate gross photosynthetic rate as measured by oxygen 

production per algae biomass over time for each anemone. To do this we used the following 

equation, where 0.095 is the estimated mean algal biomass ratio calculated for A. elegantissima 

(McKinney 1978). Because there was no measurable respiration in the blank jars, no correction 

was necessary. 

PG=((OAL-OBL)+RAD)/(AB*0.095) 

 PG =gross photosynthesis as oxygen production per algal biomass per hour 
 OAL =oxygen production in the anemone jar in the light incubation 
 OBL = oxygen production in the blank jar in the light incubation 
 RAD =oxygen consumption of the anemone jar in the dark incubation 
 AB=Anemone biomass estimated from oral disk diameter 

 

Symbiont Density, Growth, and Anemone Protein Biomass 

The half of the homogenate sample from the tentacle clips not used for ROS was frozen at -40°C 

within 30 minutes of collection and later processed for symbiont cell density, protein, and mitotic 

index. Symbiont identity and number were determined by placing a sample of the thawed and 
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vortex-mixed homogenate on a hemocytometer and counting the number of symbionts in four 

replicate grids. The symbiont mitotic index (later used for CZAR calculation) was determined by 

examining 1000 cells under light microscopy and determining the percentage in the process of 

dividing as described by Verde and McCloskey (1996). For anemones with mixed symbiont 

complements, the number of both S. muscatinei and E. marina cells, which can be readily 

distinguished by size and color, were calculated and the proportion of each was determined. 

To normalize measurements and permit comparison of data collected from tentacles of 

different sizes, we determined the total protein concentration of each clipped tentacle sample 

using a Pierce BCA protein micro-assay (Pierce Biotechnology, Rockford, Illinois) with a 

standard of bovine serum albumin (BSA). The absorbance of the processed homogenates at 562 

nm was read on a microplate reader using a spectrophotometer, and protein content of the 

samples was then determined from standard curves according to protocols from Noble and 

Bailey (2009). This allowed us to compare cell densities and ROS content on a per µg anemone 

protein basis. 

 

CZAR Score 

The calculation of carbon from symbiont photosynthesis that went toward animal respiration 

(CZAR) was estimated with the formula provided by Muscatine et al. (1981) and modified by 

Verde and McCloskey (1996, 2007), assuming the mean algal biomass ratio of 0.095 (McKinney 

1978). Due to our inability to distinguish algal and anemone respiration in the light, the daytime 

algal respiratory rate was estimated from the total dark respiration rate of the holobiont as a ratio 

of biomass. This calculation included a daily gross photosynthetic rate equal to the sum of the 

oxygen production rate in the light and the oxygen consumption rate in the dark and a conversion 
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ratio of carbon to oxygen equivalents of 12:32 (Verde and McCloskey 2007) The photosynthetic 

quotient, animal respiratory quotient, and algal respiratory quotient were assumed to be 1.1, 0.9 

and 1.0, respectively (Verde and McCloskey 1996, 2007). The algal-specific growth rate was 

calculated assuming a fixed value for the duration of cytokinesis and incorporating our 

measurement of symbiont mitotic indices (Verde and McCloskey, 1996). The algal carbon-

specific growth rates were also determined using standing stock estimated from algal cell density 

and the same algal-specific growth rate. Because of the difficulty in calculating separate algal 

growth rates for S. muscatinei and E. marina in mixed anemones, we were unable to calculate 

CZAR scores for those individuals. Aposymbiotic anemones also did not receive CZAR scores 

as the symbiont cell densities in those individuals were too low to provide any meaningful 

carbon to the host. 

 

Statistical Analyses 

All statistical analysis was done in R version 3.3.4 using linear mixed effects models, which 

tested the fixed effects of symbiotic state, pCO2 treatment, time, all possible two-way 

interactions, and the interaction of all three fixed variables while accounting for repeated 

measures of the same individuals over time and repeated sampling of the same aquaria (i.e., 

multiple anemones were in the same aquaria). The LME function implemented from the “nlme” 

package built under R 3.3.1 (R Core Team 2016, Pinheiro et al. 2017) was used for all analyses.  

Separate analyses were run to test for treatment effects on symbiont cell density, ROS 

concentration per symbiont cell, ROS concentration per anemone protein, CZAR, respiration 

rate, gross photosynthesis, and proportion of S. muscatinei in the A. elegantissima with mixed 

symbionts complements. We built each model by first including all fixed and random effects, 
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then using log likelihood ratio tests with REML estimation to determine which random effects 

improved the model. Random intercepts and slopes were tested for each anemone across time 

and for anemones nested in random tanks. We then sequentially removed fixed variables and 

compared AIC values to arrive at the most parsimonious model (i.e., the one with the lowest 

AIC). We used residual plots to test assumptions of the models and adjusted covariance matrices, 

where necessary, to improve the fit. Marginal R2, which describes the proportion of variance 

explained by the fixed factors alone, and conditional R2, which describes the proportion of 

variance explained by both the fixed and random factors, were calculated for all final models. 

 

 

Results 

Despite our best efforts to keep the experimental aquaria clean over the 10 weeks of the 

experiment, it was not possible to prevent some fouling by diatoms. The photosynthetic activity 

of those diatoms, photosynthetic activity of organisms in the incoming seawater, or 

photosynthesis and respiration of the A. elegantissima themselves may have produced the diurnal 

pattern of pH shown in Figure 3. Despite the apparent diurnal rise and fall in pH within the tanks, 

the separation of the treatments remained very consistent, suggesting that the anemones in 

different treatments were always experiencing different treatment levels of acidification. 

Furthermore, pCO2 levels (calculated regularly from DIC values measured in the experimental 

aquaria) revealed that the mean levels in the treatments fell within ± 5% of the target values over 

the entire 10-week experiment (Fig. 4). Spectrophotometric pH measurements from the same 

discrete samples used for the DIC and pCO2 calculations above always fell within 0.07 pH units 

of the intended level for all treatments (Fig. 5).  
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H2O2 production  

Our approach to measuring ROS focused on measuring the concentration of H2O2 in tentacle 

homogenate containing burst anemone animal cells with intact, suspended symbiont cells rather 

than in isolated symbiont cells alone. When calculated on a per-symbiont-cell basis (and thus 

adjusting for different symbiont densities), A. elegantissima hosting E. marina consistently 

showed greater quantities of H2O2 than did individuals hosting S. muscatinei. Under ambient 

conditions, the production of H2O2 by E. marina was nearly twice that of S. muscatinei (Fig. 6). 

With pCO2 levels raised to 1800 ppm, E. marina appeared to respond over time by increasing 

H2O2 production. In contrast, the S. muscatinei appeared to acclimate to the conditions, showing 

slight decreases in H2O2 levels in the 1200 ppm treatment and to a lesser degree in the 1800 ppm 

treatment (Fig. 6). 

Statistical analysis (LMM) with random intercepts for aquaria and random slopes and 

intercepts for individuals nested in aquaria showed an optimal model consisting only of symbiont 

and pCO2 as factors (Table 1). The absence of any interaction effects in the final model indicates 

that any differences in the apparent slopes of brown and green anemones in Figure 6 were not 

meaningful against the background of anemone-to-anemone variability. Marginal and 

conditional R2 values for this model were 0.76 and 0.94 respectively (Table 8).  

In an effort to clarify the role of symbiont versus host tissue in producing the H2O2, 

production was also expressed per µg of A. elegantissima protein. Doing this permitted the 

inclusion of aposymbiotic and mixed symbiont complement anemones in the analysis. The 

results (Fig. 7) show that, under ambient conditions, all symbiont-hosting anemones produced 

similar levels of H2O2 that were higher than those of the aposymbiotic anemones. At higher 

pCO2 levels, the concentration of H2O2 increased and accumulated over time in the aposymbiotic 
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individuals, but still stayed well below the levels measured in the anemones hosting 

photosymbionts.  

The slope of the regression line over time for green anemones mirrored that seen for 

aposymbiotic anemones, suggesting that the E. marina were doing little to increase production of 

H2O2 over what was happening in the homogenate itself. The slope for brown anemones in the 

1200 and 1800 ppm treatments appeared slightly steeper than that of the other symbiotic states 

suggesting that, while something in the homogenate itself was producing H2O2, the S. muscatinei 

may have been exacerbating the problem (Fig. 7). The pattern for mixed anemones was nearly 

identical to the green anemones in all treatments.  

Statistical analysis produced a model for H2O2 production per anemone protein biomass 

that included day, symbiotic state, pCO2 treatment, the interaction of symbiont state*day, and the 

interaction of day*pCO2 (Table 2). The interactions that appear in this model indicate that, over 

time, ROS production of green and brown symbionts was different and that ROS production 

differed according to pCO2 treatment, but the absence of a symbiont state*pCO2 interaction 

indicates that the apparent difference in the responses of the anemones in different symbiotic 

states described above were not sufficient to be meaningful in building the explanatory model. 

The optimal model, with random intercepts for each anemone, produced marginal and 

conditional R2 values of 0.84 and 0.94 respectively (Table 8).  

 

Symbiont productivity 

Symbiont productivity, as measured by gross photosynthesis, was only determined for anemones 

that were either brown or green, excluding mixed and aposymbiotic individuals. Figure 8 

suggests that the photosynthetic activity of S. muscatinei and E. marina responded differently to 
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pCO2. Under ambient pCO2 (800 ppm), E. marina were less productive than S. muscatinei and 

performance changed little in either group over the 10-week experiment. Exposing the anemones 

to a pCO2 to 1200 ppm, however, more than doubled the gross photosynthesis of S. muscatinei 

over time while that of E. marina showed only a minor upward trend. The effect of an even 

higher pCO2 (1800 ppm) on E. marina appeared to be negative as the productivity showed a 

gradual decline over time (Fig. 8). In contrast, the performance of S. muscatinei at both 1200 

ppm and 1800 ppm was apparently enhanced over time, albeit with a smaller increase in the 

1800 ppm treatment. 

The LMM analysis, with random slopes and intercepts for anemones nested within 

aquaria, produced a best fit model with fixed effects of day, symbiont, pCO2, and symbiont*day 

interactions (Table 3). The primary trend in the data, indicated by the inclusion of the 

symbiont*day interaction, was for a change in the relative gross productivity of both brown and 

green anemones over time, independent of pCO2 treatment. So, the apparent differences in 

responses of the different symbiotic states was again not statistically meaningful. The marginal 

and conditional R2 values for this model were 0.72 and 0.91 respectively (Table 8). 

 

Respiration 

To examine potential stress responses of A. elegantissima exposed to increasing pCO2, we 

periodically measured respiration rates of the anemones over the duration of the experiment. The 

dark respiration rate was nearly unchanged over time for all symbiont states in the ambient 

treatment and only increased slightly in the 1200 ppm treatment. However, respiration rate 

appeared to increase more among anemones in all symbiotic states held under 1800 ppm pCO2 

(Fig. 9). Aposymbiotic individuals showed the greatest apparent change, followed by anemones 
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hosting E. marina. Mixed anemones and those hosting S. muscatinei showed a more moderate 

increase.  

Statistical analysis with random intercepts for individuals and for aquaria produced an 

optimal model with day, symbiont state, pCO2, and the interaction of day*pCO2 (Table 4). The 

inclusion of symbiont state in the final model indicates that anemones in different symbiont 

states respired at different rates with aposymbiotic individuals showing the highest rates, 

followed by green, brown, then mixed individuals in that order. The results also show that an 

increase in pCO2 levels increased respiration rates and that the effects increases over time. 

However, there was again no symbiont state*pCO2 interaction indicating that the respiration 

rates of the different symbiont states were affected similarly by the pCO2 treatments. The final 

model produced a marginal R2 of 0.41 and a conditional R2 of 0.78 (Tables 4, 8).  

 

Symbiont density 

Under ambient pCO2 conditions of 800 ppm, density of S. muscatinei in brown anemones was 

approximately twice that of E. marina in green anemones and those densities changed little 

during the 10-week experiment (Fig. 10). Increasing pCO2 affected the two symbionts very 

differently. While S. muscatinei cell density increased with higher pCO2 levels, E. marina 

densities stayed nearly constant or slightly decreased over time. The difference in the response 

was particularly evident in the 1200 ppm pCO2 treatment.  

The best fit LMM model, based on AIC values, included day, symbiont, pCO2 level, and 

the interactions of symbiont*day and symbiont*pCO2 (Table 5). The inclusion of the 

symbiont*pCO2 interaction indicates that the symbionts were responding differently to the pCO2 

treatments with green anemones showing a significantly lower slope than brown anemones, 
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highlighting their opposite responses. Random effects in the final model include individual 

slopes and intercepts for anemones nested within aquaria and the marginal and conditional R2 

values were 0.62 and 0.97 respectively (Table 8). During the analysis, the covariance structure 

was adjusted to allow unique variances for each level of pCO2 treatment. 

 

CZAR score 

To examine how changes in pCO2 might affect the relationship between A. elegantissima and its 

symbionts, we also examined how CZAR (the percent of carbon for animal respiration coming 

from symbiont carbon fixation) differed with OA conditions for S. muscatinei and E. marina. 

Under all conditions, S. muscatinei provided more carbon to the anemone host (Fig. 11). Under 

ambient pCO2, the CZAR for S. muscatinei increased slightly over time while that of E. marina 

decreased slightly. Under 1200 pCO2, S. muscatinei reaching its highest CZAR score (65%) and 

nearly doubled the CZAR score of the E. marina by the end of the experiment. Interestingly this 

increase in performance of S. muscatinei did not occur in the 1800 ppm treatment where the 

CZAR score was nearly unchanged over time while that of E. marina dropped at a rate very 

similar to that seen in the 1200 ppm treatment (Fig 11).  

 LMM analysis including random slopes and intercepts for individual anemones nested 

within aquaria produced an optimal model that included day, symbiont state, pCO2, the 

interaction between symbiont state*day, and the interaction of pCO2*day (Table 6).The 

symbiont state*day interaction shows that the slope of the CZAR for green anemones was 

significantly lower than that of brown individuals, but the pattern of the response was similar 

across pCO2 levels. The marginal and conditional R2 values for this model were 0.46 and 0.75 

respectively (Table 8). 
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Symbiont shifts 

To better understand the potential relative effects of ocean acidification on the two 

photosymbionts, we measured the densities of both E. marina and S. muscatinei in the mixed 

anemones over the course of the 10-week experiment. The proportion of S. muscatinei cells in 

the mixed anemones increased with increasing pCO2 over time (Fig. 12). The mixed anemones 

started with a near 50:50 proportion of the symbionts (± 5%) and stayed near that ratio in the 

ambient 800 ppm treatment. However, in the enriched treatments (1200ppm and 1800 ppm) a 

shift to a higher proportion of S. muscatinei started to take place, particularly after day 42, 

approaching a proportion of 70% S. muscatinei cells in the 1800 ppm treatment (Fig. 12). The 

statistical analysis for these data included significant treatment effects of day and pCO2 as fixed 

effects with the pCO2 term indicating that the treatment affected symbiont complement in the 

anemones (Table 7). The final model, which also included random intercepts for individual 

anemones nested within aquaria, produced a marginal R2 of 0.45 and a conditional R2 of 0.55 

(Table 8).  

To determine whether the shifting of the symbiont complement towards S. muscatinei 

was due to an increase in S. muscatinei density, a decrease in E. marina density or some 

combination of both, we also looked at the absolute cell densities of both over the period of the 

experiment. Figure 13 shows stable populations of both symbionts in the ambient pCO2 

treatment. However, as pCO2 level increased, there appeared to be an increase in S. muscatinei 

and a corresponding decrease in E. marina density. However, the LMM analysis, produced an 

optimal model that included no fixed effects, suggesting the absence of any pattern or, we 

believe, the presence of non-linear behavior in the system, a possibility that is supported by 
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evidence of a shift in the patterns of the 1200 ppm and 1800 ppm treatments after day 42 (Fig. 

13). 

 

Discussion 

We studied the impact of OA on the sea anemone A. elegantissima with its two algal 

photosymbionts and found that OA conditions affect ROS concentration, respiration rate, gross 

photosynthesis, symbiont cell density, CZAR score, and the proportion of S. muscatinei in mixed 

anemones. While our linear model approach did not reveal a significant pCO2*symbiont state 

interaction in any of our  measured response variables except symbiont cell density, there were a 

number of patterns that suggest impacts may be more evident with longer experiments, greater 

replication, or statistical analyses that include non-linear responses. 

Our results suggest that S. muscatinei may benefit from increasing pCO2 at levels of 1200 

ppm and 1800 ppm. The symbiont cell density, gross photosynthesis, and CZAR of S. muscatinei 

all appeared to increase with increasing pCO2 (Figs. 8, 10, 11), which is consistent with previous 

studies showing increased individual and population performance in marine diatoms, 

dinoflagellates, and coccolithophores in response to increased pCO2 (Feng et al. 2008; Towanda 

and Theusen 2012). Weis (1993) suggested that S. muscatinei is carbon limited under ambient 

DIC/pCO2 conditions and showed increasing photosynthetic rates and carbonic anhydrase 

activity with increasing DIC. Koch et al. (2020) subsequently demonstrated higher carbonic 

anhydrase activity in anemones hosting S. muscatinei over those hosting E. marina. The higher 

HCO3- in the water as a result of OA may be converted by the rubisco enzyme system in the 

symbionts, providing more CO2 for carbon fixation. This process was likely responsible for the 

significant effect we saw of pCO2 on gross photosynthesis (Fig. 8).  
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Like other dinoflagellates, S. muscatinei has the less efficient form II rubisco while E. 

marina has the more efficient form I rubisco that has a higher affinity for CO2 over O2; S. 

muscatinei may overcome this through carbon concentrating mechanisms such as carbonic 

anhydrase (Morse et al., 1995; Tabita et al., 2008; Koch et al. 2020). The pattern we observed 

that S. muscatinei gross photosynthesis and density both increased with elevated pCO2 while that 

of E. marina appeared to remain constant or even decreased is consistent with the hypothesis that 

S.muscatinei is carbon-limited (Figs. 8, 10). 

Wu et al. (2010) found that marine diatoms reared in waters with a pH of 7.73 show 

higher gross and net photosynthesis than those raised at ambient levels. However, carbon 

concentrating mechanisms (CCMs), including carbon anhydrase, were downregulated in higher 

pCO2 and NPQ dropped due to the decreased CCMs. This contrast shows how diverse carbon 

fixation responses can be in photosynthetic organisms of different groups, particularly when 

there is an animal host involved. The Wu et al. (2010) study also showed an increase in dark 

respiration of the diatoms, showing that higher environmental pCO2 can lead to an increase in 

photosynthesis while having a dual negative affect of increased respiration (see also Gao et al. 

2012). This matches the trend we observed in anemones hosting S. muscatinei and provides 

support for the dual positive (photosynthesis/cell density/CZAR) and negative (respiration/ROS) 

effects for anemones hosting symbionts in our study.  

Previous studies on A. elegantissima have shown that symbiotic E. marina populations 

are more sensitive to increasing temperature, irradiance, and ROS levels than are those hosting S. 

muscatinei. (Engebretson and Muller-Parker 1999; Lesser 1996, 2006; Verde and McCloskey 

2007; Dimond et al. 2017). Our study, which measured concentration of ROS in the host tissues, 
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adds pCO2 as another stressor that affects S. muscatinei and E. marina, with the latter potentially 

being the more sensitive symbiont. 

While a pattern of tolerance of S. muscatinei for elevated pCO2 appears in several 

variables of our study, that is not true for all cnidarian/algal symbioses. In experiments with 

scleractinian corals, researchers found decreasing densities of Symbiodinium in response to 

increasing levels of OA. This underscores the potential differences between temperate and 

tropical symbioses. The synergistic effects of multiple environmental factors (e.g., pCO2 and 

temperature), and the differing environmental tolerances of differing Symbiondiaceae species 

can differentially impact their hosts, leading to the competitive advantage of certain symbionts 

(Grottoli et al. 2006, 2014; Mason 2018) 

Tropical corals can “shift” or “shuffle” their symbiont partners depending on, for 

example, the temperature and light levels they experience. Some species (or clades) of 

photosymbionts are more stress tolerant than others (LaJeunesse et al. 2009, Ladner et al. 2012) 

and there is evidence that the host can discharge “sensitive” algae in exchange for more tolerant 

partners (Brading et al. 2011; Yamashita et al. 2011; Grottoli et al. 2014). Similar results have 

been found in A. elegantissima. Individuals with mixed complements of S. muscatinei and E. 

marina shift toward S. muscatinei (the anemones “brown”) when they are exposed to increased 

irradiance and temperature. This process occurs relatively slowly, requiring a 3-month lag 

between temperature maxima and symbiont shifts (Dimond et al. 2013).  

In our study, an increase in pCO2 led to a significant increase in S. muscatinei density and 

likely contributed to an increase in the proportion of S. muscatinei in mixed anemones, but the 

process occurred in just 10 weeks. The majority of change in symbiont complements of the 

mixed anemones appeared to happen after just 42 days (Fig. 12). This shift in the symbiont 
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complement suggests a competitive advantage of S. muscatinei over E. marina under conditions 

of increased pCO2. 

The increased respiration rate of both S. muscatinei and E. marina in response to 

increased pCO2 levels may be connected to the production of reactive oxygen species. Increased 

photosynthetic activity can create a hyperoxic environment near PSII in the chloroplast of the 

symbionts, leading to increased production of ROS in surrounding cells (Suggett et al. 2008). 

This increased photosynthetic activity appeared to be present in S. muscatinei in the enriched 

treatments and might account for this symbiont state having the highest ROS production on a 

per-protein basis (Fig. 7). We expected A. elegantissima hosting photosymbionts to have higher 

baseline levels of H2O2 (an ROS species) than aposymbiotic anemones, and this pattern is 

suggested in our results (Fig. 7) though it was not significant in our statistical analysis (Table 2).  

Wu et al. (2010) found that nonphotochemical quenching capacity (a protective energy 

sink for excess excited electrons) was reduced in diatoms raised in waters with elevated pCO2. 

This reduced capacity to handle excess electron energy could lead to the increased ROS 

production and reduced gross photosynthesis patterns we observed in all CO2-enriched 

treatments for E. marina. Based on a per-protein-biomass measurement, A. elegantissima hosting 

S. muscatinei appeared to have higher H2O2 production than those hosting E. marina (Fig. 7). 

However, while S. muscatinei cell density significantly increased with pCO2, E. marina density 

decreased. As a result, on a per cell basis, E. marina showed the highest concentrations of H2O2, 

indicating either a lower capacity for scavenging ROS species or that S. mucatinei may have a 

greater ability to keep ROS from forming in the first place through mechanisms such as NPQ 

(Fig. 6).  
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In evaluating the results of our ROS measurements, we cannot overlook the fact that we 

measured only H2O2 and none of the other ROS species that may have been present in the 

anemones. Nor can we ignore photochemical production of H2O2, which occurs when light 

interacts with the surface of the ocean. This background process can confound measurements of 

ROS in samples of tissues or even free-living microalgae in seawater (Zinser 2018). The amount 

of filtered seawater we added to homogenize our anemone tentacles was relatively small and we 

believe the impacts of photochemically-produced H2O2 were small, but this should be examined 

further.  

Nii and Muscatine (1997) studied effects of sublethal acute temperature stress in a 

tropical anemone/zooxanthellae symbiosis that included aposymbiotic individuals and 

determined that ROS production was primarily an animal response. Exposure to light did not 

increase the ROS production and ROS production tracked with an increase in dark respiration, 

leading to the conclusion that the root cause was increased mitochondrial activity in response to 

the temperature increase. It is clear, however, that more study of photochemical production of 

ROS in laboratory experiments is necessary to ensure that background abiotic processes do not 

confound measurements.  

Analyzing the aposymbiotic anemones allowed us to look at H2O2 production by the host 

without the complication of symbiont presence. While the aposymbiotic individuals had the 

lowest overall H2O2 production values, they still showed an increase in H2O2 production with 

increasing pCO2. This increase suggests a possible baseline host stress response to OA 

independent of the photosymbionts, though, again, there is no way with our data to eliminate 

abiotic photochemistry as a possible contributing factor. Many external stressors (hypoxia, 

temperature, irradiance, heavy metals, and herbicides) increase ROS concentrations in non-
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photosymbiotic marine organisms by inhibiting the action of ROS scavenging enzymes like 

superoxide dismutase and catalase (Mallick and Mohn 2000; Lesser 2006). These effects are 

often coupled with increased host respiration, which also increases ROS production. We saw this 

combination in our aposymbiotic A. elegantissima (Figs. 7, 9). The presence of either S. 

muscatinei or E. marina was associated with overall lower respiration rates and the patterns were 

different when pCO2 was increased.  

The ability of symbionts to reduce respiration  may be related to light-protective 

pigments, another source of ROS scavenging compounds, and additional NPQ processes 

including the xanthophyll cycle that dissipates excess light energy as heat in many algae species 

(Brown et al. 1999; Ferrier-Pages et al. 2014; Laloi and Havaux 2015; Shick and Dykens 1984). 

Another possibility is that the higher intracellular pH created by the photosynthesizing cells in 

the anemone tissue creating a buffering effect that compensated for the lower pH the animals 

were experiencing (Koch et al. 2020). However, it should also be recognized that, while the 

anemones in our respiration-measuring jars never experienced oxygen concentrations below the 

EPA ambient water quality guidelines of 5.5 mg/L, aposymbiotic anemones may have 

experienced some form of hyperventilation and were working harder to acquire oxygen than 

were symbiotic anemones, potentially with residual oxygen from their symbionts persisting in 

their tissues (Shick 1990).  

Studies investigating Symbiodinium symbioses in corals have shown that, when ROS 

concentrations increase, several photosynthetic parameters of the symbionts decrease. The corals 

in one study responded with an increase in ROS-scavenging species on the time scale of minutes 

to hours (Levy et al. 2006 and Nishiyama et al. 2006). In general, different species of 

Symbiodinium show different tolerances for temperature, light, and ROS, with tolerance tied to 
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more efficient ROS scavenging, maintenance of adequate NPQ, and a slower electron transport 

rate of PSII (Suggett et al. 2008; Jones et al. 2012, and Levy et al. 2006).  

ROS, as measured by H2O2 concentration, rose over time in all states and all treatments 

in our study, and pCO2 had a significant effect on gross photosynthesis (Figs. 7, 8). Previous 

studies using a variety of methods have demonstrated that baseline photosynthetic activity is 

higher in S. muscatinei than E. marina and that S. muscatinei responds to higher irradiance and 

temperature by increasing photosynthetic rates whereas E. marina respond with stagnant or 

decreasing photosynthetic rates depending on the length of exposure (Verde and McCloskey 

1996, 2007; Secord and Augustine 2000; Bergschneider and Muller-Parker 2008; Dimond et al. 

2013). Our experiment probably exaggerates potential effects of OA: the design exposed the 

anemones to chronic stress without the regular emersion that would occur with daily tidal 

exchanges.  Indeed, Dimond et al. (2017) found that, under shorter exposures to high light and 

temperature, anemones hosting S. muscatinei produced more H2O2 than those hosting E. marina 

when measured on a per symbiont cell basis, which is the opposite of what we found. The 

authors of that study also used rapid light curves to demonstrate that NPQ is higher in E. marina, 

which also tend to have higher concentrations of carotenoids (another avenue for NPQ). The 

longer-duration stress our experiment exposed the A. elegantissima to may have overcome these 

systems, leading to the decline of photosynthesis and rise of H2O2 in E. marina. It is also 

possible that the higher H2O2 on a per-protein basis in S. muscatinei is the result of the hyperoxic 

environment created by increased photosynthetic rates in this group. The O2 generated by 

photosynthesis is a strong oxidant and can lead to the production of ROS species.  

We expected that OA-related effects would be evident in the respiration rates of A. 

elegantissima exposed to high pCO2 levels and would differ among symbiotic groups. All 
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anemones showed an increase in respiration rate in higher pCO2 treatments and those increased 

over time, suggesting a stress response. Respiration was greatest in aposymbiotic individuals and 

individuals hosting E. marina and lowest in anemones hosting S. muscatinei, suggesting an 

animal-level stress response (Fig. 9). This is supported by previous studies pointing to increased 

mitochondrial activity both in animal cells and free-living microalgae in response to increasing 

temperature and pCO2 and lower pH (Nii and Muscatine 1997, Geider and Osborne 1989). While 

we did not experiment with temperature, the exposure to low pH caused by the high pCO2 

environments may have led to a similar increase in energy demand to counteract the low external 

pH, spurring mitochondrial activity and therefore increasing respiration in our aposymbiotic 

anemones. The low pH experienced by the animal cells could have been mitigated by the 

presence of carbonic anhydrase, an enzyme that is more abundant in anemones hosting S. 

muscatinei and helps maintain acid/base balance and pH homeostasis. Weis and Reynolds (1999) 

showed that A. elegantissima expression of CA increased in the presence of symbionts, 

indicating that presence of the symbiont can cause changes in expression of host genes.  

Studies of temperate coral-dinoflagellate symbioses show a positive connection between 

holobiont respiration and symbiont cell density (Hoogenboom et al. 2010, Starzark et al. 2014). 

Increased host respiration can lead to an increase in CO2 concentrations in the host tissues, 

fueling symbiont population growth (Harland and Davies 1995). We observed an increase in 

symbiont density with elevated respiration in anemones hosting S. muscatinei, but not in those 

hosting E. marina, likely because E. marina is not carbon-limited like S. muscatinei (Weis 

1993). This again suggests that S. muscatinei is a more beneficial symbiont under OA conditions 

in that these conditions relieve the carbon limitation for that symbiont and the responding 
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increase in cell density for that symbiont may offer 1) a buffering effect through enhanced CA 

activity and 2) higher potential for translocation of fixed carbon to the host.  

The combined impacts on symbionts and host in the present study show that the 

consequences of increasing pCO2 may be different for A. elegantissima in different symbiotic 

states. Particularly interesting is the shifting of symbiont complements toward S. muscatinei 

under elevated pCO2 conditions. Anemones hosting S. muscatinei at intermediate (1200 ppm) 

pCO2 levels showed a trend toward higher gross photosynthesis, higher cell densities, and lower 

respiration rates. These were all coupled with the highest CZAR scores in our treatments (Fig. 

11), suggesting that anemones hosting S. muscatinei could, at least initially, benefit from OA 

with more carbon being translocated to the host where it can be used for growth and 

reproduction. Previous work suggests that E. marina is a poorer symbiotic partner under normal 

conditions (Engbretson and Muller-Parker 1999; Dimond et al. 2017) and our results indicate 

that increasing pCO2 may only exacerbate this difference.  

If increasing pCO2 does favor symbiosis with S. muscatinei over E. marina, we are likely 

to see a shift in A. elegantissima symbiosis with an increasing proportion of the population 

hosting S. muscatinei (i.e., a “browning” of the A. elegantissima). This effect will be in addition 

to the browning that may occur in response to a concurrent increasing global temperature since S. 

muscatinei is the more thermotolerant of the symbionts (Secord and Augustine 2000; Verde and 

McCloskey 2007). A. elegantissima are important members of intertidal communities and 

function as both primary producers and heterotrophic predators. A shift from “green” to “brown” 

with the resulting changes in symbiont productivity and CZAR could produce changes in 

heterotrophic feeding patterns and primary productivity in the intertidal environments in which 

these anemones are abundant (Fitt et al. 1982; Hiebert and Bingham 2012). More importantly, 
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such a shift could have profound consequences for the anemones themselves. Bingham et al. 

(2014) showed that reproduction of A. elegantissima is related to symbiotic state. Individuals that 

host E. marina primarily reproduce sexually through spawning of sperm and eggs. Individuals 

hosting S. muscatinei, in contrast, primarily reproduce asexually through fission. A loss of E. 

marina from the landscape of A. elegantissima symbiotic states could, therefore, have far-

reaching implications for the genetic diversity and habitat extent of this important species.  
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Tables 

 

Table 1. LMM output for best fit model explaining H2O2 production on a per symbiont cell basis, 

based on pCO2 level, symbiotic state, and days in the experiment. Model building was based on 

removal of terms with p values >0.1 and examination of resulting AIC values.  

 

                               Value                Std.Err             DF              t-value                p-value 

 

(Intercept)               1.4756              0.1279             108             11.5301             <0.001 

symbiont_green      1.2062              0.0528               17             22.8315             <0.001 

pCO2                      -0.0001              0.0001              16              -1.3520               0.095 
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Table 1. LMM output for best fit model explaining H2O2 production on a per anemone biomass 

basis, based on pCO2 level, symbiotic state, and days in the experiment. Model building was 

based on removal of terms with p values >0.1 and examination of resulting AIC values.  

                                    Value                Std.Err              DF                t-value                p-value 

 

(Intercept)                    5.4394               0.0212               211             257.0668              <0.001 

day                              -0.0022               0.0004               211               -5.9244              <0.001 

symbiont_brown          0.4258               0.0189                 67               22.4969              <0.001 

symbiont_green           0.3570               0.0189                 67               18.8637              <0.001 

symbiont_mixed          0.3522               0.0189                 67               18.6073              <0.001 

pCO2                            -1.0·10-5             0.0001                 67                -0.4772                0.635 

day:symbiont_brown   0.0022               0.0003               211                 6.8088              <0.001 

day:symbiont_green    0.0002               0.0003               211                 0.6321                 0.528 

day:symbiont_mixed   0.0005               0.0003               211                 1.4738                 0.142 

day: pCO2                              3.0·10-6             2.36·10-7            211                14.0500              <0.001 
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Table 3. LMM output for best fit model explaining gross photosynthesis by oxygen production 

and based on pCO2 level, symbiotic state, and days in the experiment. Model building was based 

on removal of terms with p values >0.1 and examination of resulting AIC values.  

 

                                     Value               Std.Error            DF              t-value                p-value 

 

(Intercept)                    19.0499             1.2799             106              14.8832               <0.001 

day                                 0.2139             0.0335             106                6.3743               <0.001 

symbiont_green          -11.8775             0.9249               33             -12.8418              <0.001 

pCO2                              0.0001             0.0009               33                0.1875                 0.009 

day:symbiont_green     -0.2057             0.0474             106              -4.3345               <0.001 
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Table 4. LMM output for best fit model explaining biomass-specific dark respiration rate, based 

on pCO2 level, symbiotic state, and days in the experiment. Model building was based on 

removal of terms with p values >0.1 and examination of resulting AIC values.  

 

                                    Value               Std.Error             DF              t-value                p-value 

 

(Intercept)                    9.7196              0.3393              214              28.6458               <0.001 

day                              -0.0152              0.00711            214              -2.1498                  0.033 

symbiont_brown         -1.1262              0.1848               51               -6.0921               <0.001 

symbiont_green          -0.5522              0.1848               51               -2.9869                 0.004 

symbiont_mixed         -1.1782              0.1848               51               -6.3734               <0.001 

pCO2                            0.0005              0.0002               16                 1.8332                 0.045 

day: pCO2                    0.0001              0.0001              214                4.6253               <0.001 
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Table 5. LMM output for best fit model explaining symbiont cell density based on pCO2 level, 

symbiotic state, and days in the experiment. Model building was based on removal of terms with 

p values >0.1 and examination of resulting AIC values. 

        Value               Std.Err             DF              t-value               p-value 

 

(Intercept)                     3.9374             0.1960             106             20.0861             <0.001 

day                                0.0161             0.0025             106               6.3590             <0.001 

symbiont_green           -1.7166             0.1828              16              -9.3912             <0.001 

pCO2                             0.0005             0.0001              16                3.1524               0.006 

symbiont_green:pCO2 -0.0004             0.0001              16              -2.7628               0.014 

day:symbiont_green    -0.0171             0.0032             106             -5.2909             <0.001 
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Table 6. LMM output for best fit model explaining CZAR scores, based on pCO2 level, 

symbiotic state, and days in the experiment. Model building was based on removal of terms with 

p values >0.1 and examination of resulting AIC values. 

                                     Value               Std.Error            DF              t-value               p-value 

 

(Intercept)                    54.5163             0.8267              105             65.9398             <0.001 

day                                 0.1714             0.0299              105                5.7306             <0.001 

symbiont_green          -10.4748             0.5846               33             -17.9178             <0.001 

pCO2                              0.0001             0.0005               33                 0.3163              0.754 

day:symbiont_green     -0.2012             0.0211              105              -9.5163             <0.001 

day: pCO2                     -0.0001             0.00002            105              -2.8997               0.005 
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Table 7. LMM output for best fit model explaining the proportion of brown symbionts in mixed 

anemones based on pCO2 level and days in the experiment. Model building was based on 

removal of terms with p values >0.1 and examination of resulting AIC values. 

 

                            Value             Std.Error           DF             t-value                  p-value 

 

(Intercept)            0.4831             0.0211             53             22.906970             <0.001 

day                       0.0019             0.0002             53              7.631377               <0.001 

pCO2                0.0001             0.0001             16             0.836961                 0.015 
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Table 8: Summary of best fit LMM models with marginal and conditional R2 for each variable 

tested. Best fit model was based on lowest AIC score. 

 

 

 

 

 

 

 

 

Measured outcome Final Model 
Marginal 

R2 

Conditional 

R2 

H2O2 per symbiont cell  Symb + pCO2 0.76 0.94 

H2O2 per anemone biomass Day + Symb + pCO2 + Symb*Day + 
Day*pCO2 

0.84 0.94 

Gross Photosynthesis  Day + Symb + pCO2 + Symb*Day 0.65 0.82 

Respiration Day + Symb + pCO2 + Day*pCO2 0.41 0.78 

Symbiont density  Day + Symb + pCO2 + Symb*pCO2 + 
Symb*Day 0.62 0.97 

CZAR  Day + Symb + pCO2+ Symb*Day+ 
Day*pCO2 

0.46 0.75 

Prop. brown symbionts  Day+pCO2 0.45 0.55 
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Figure 1. Experimental setup of 18 aquaria used to create pCO2 levels of 800 ppm (ambient), 

1200 ppm, and 1800 ppm. Four A. elegantissima, one in each symbiont state were placed in each 

aquarium. The flow-through cooling jackets around each aquarium are not shown. 
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Figure 2. A) Respirometry jar with perforated anemone stand and pink oxygen sensor dot, B) 

magnetic stir table with one run of anemones in their water bath to control temperature (photo 

taken during the light incubation). 
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Figure 3. pH levels measured with in-situ electrode sensors over an 11-hour period from 9am 

to 8pm to show diurnal pH variability in the pCO2 treatments. Best-fit loess lines with 95% 

confidence intervals are shown. Each point represents the mean of two randomly chosen 

aquaria in each pCO2 treatment. 
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Figure 4. pCO2, calculated from DIC and spectrophotometric pH measurements made during 

daylight hours in each of the treatments. Results indicate that the levels were stable and stayed 

close to the intended levels of 800, 1200, 1800 ppm. Best-fit regression lines with 95% 

confidence intervals are shown. Each point represents the mean of 6 aquaria in each pCO2 

treatment. 
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Figure 5. pH as measured spectrophotometrically in each of the pCO2 treatments over the 10-

week experimental period. Best-fit regression lines with 95% confidence intervals are shown. 

Each point represents the mean of 6 aquaria in each pCO2 treatment. 
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Figure 6. H2O2 concentrations (measured on a per-symbiont-cell basis) for A. elegantissima hosting S. 

muscatinei (brown) or E. marina (green) in pCO2 levels of 800, 1200, or 1800 ppm across the 

sampling period. Regression lines with 95% confidence intervals are shown. 
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Figure 7. H2O2 concentrations (measured on the basis of host protein biomass) for A. 

elegantissima hosting S. muscatinei (brown), E. marina (green), with near 50/50 

populations of S. muscatinei and E. marina (mixed) and lacking symbionts (“apo”). 

Experimental conditions were pCO2 levels of 800, 1200, or 1800 ppm across a 10-week 

sampling period. Regression lines and 95% confidence intervals are shown. 
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Figure 8. Gross photosynthesis as measured by oxygen production for A. 

elegantissima hosting S. muscatinei (brown) or E. marina (green) in pCO2 levels of 

800, 1200, or 1800 ppm across the sampling period. Regression lines and 95% 

confidence intervals are shown. 
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Figure 9. Dark respiration rate of A. elegantissima in pCO2 treatments of 800, 1200, and 1800 

ppm. Best-fit regression lines with 95% confidence intervals are shown. 
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Figure 10. Densities of S. muscatinei and E. marina in green and brown anemones in each 

pCO2 treatment (800 ppm, 1200 ppm, 1800 ppm) over time. Regression lines with 95% 

confidence intervals are shown. 

 



 

61 
 

  

Figure 11. CZAR scores of A. elegantissima in pCO2 treatments of 800, 1200, and 1800 ppm. 

Best-fit regression lines with 95% confidence intervals are shown. 
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Figure 12. Proportion of the symbiont complement comprised of S. muscatinei (brown) in A. 

elegantissima with mixed symbiont complements. Best-fit regression lines with 95% confidence 

intervals are shown. 
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Figure 13. Densities of S. muscatinei and E. marina in A. elegantissima in mixed 

symbiont complements when exposed to pCO2 treatment of 800, 1200, and 1800 ppm). 

Best-fit regression lines with 95% confidence intervals are shown. 
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