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ABSTRACT 

Olefin metathesis is a reaction that creates new carbon-carbon double bonds by rearranging two 

alkenes. The reaction has undergone significant development since its discovery in the 1950s, from first 

reports to new catalysts and industrial uses, culminating in the 2005 Nobel Prize in chemistry. Grubbs 

ruthenium-based catalysts are widely used for such reactions, including ring closing metathesis (RCM) 

that involves the rearrangement of two alkenes on a single molecule to form a ring. During the course of 

investigating RCM reactions to produce eight-membered ring silyl ethers, we observed double bond 

isomerization when using the second-generation Grubbs catalyst and the Hoveyda-Grubbs catalyst but 

not the first-generation Grubbs catalyst. Isomerization during metathesis reactions can be problematic, 

giving undesired products and signaling catalyst degradation. If controllable, however, tandem 

metathesis/isomerization can be of value to make compounds that would otherwise be difficult to 

prepare. For this reason, the RCM/isomerization we observed was studied in detail. The impact of 

temperature, solvent, time, and additives on the distribution of isomerized and non-isomerized products 

were investigated. By monitoring the reaction via nuclear magnetic resonance (NMR) at different 

reaction times, we were able to conclude that ring closure generally occurs first, followed by 

isomerization of the double bond in the ring. For systems where a single isomerization event results in 

formation of a silyl enol ether, this was the major product obtained (which we explain as being driven by 

thermodynamics). However, the direction of isomerization when using the Grubbs second-generation 

catalyst was not entirely selective, giving a mixture of regioisomers representing both kinetic and 

thermodynamic products. This thesis describes investigations aimed at understanding what drives the 

isomerization (e.g. the catalyst species responsible, substrate structure considerations, reaction 

conditions) and whether we can control the direction of isomerization. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Olefin metathesis is a chemical reaction under which two olefins are exchanged to create new 

carbon-carbon double bonds. The first uncatalyzed metathesis reaction was reported in 1931 by 

Schneider and Frölich by heating propene at extreme temperatures (852oC) to obtain small amounts of 

2-butene and ethylene.1 In the late 1950’s, catalyzed metathesis was explored, which eventually led to 

its breakthrough in the 1960’s . The first catalysts used were molybdenum compounds supported on 

alumina,2 but eventual catalyst development led to more efficient, stable, and selective catalysts. This 

greatly broadened the scope of metathesis and such chemistry has found valuable uses in synthetic 

organic chemistry,3 pharmaceutical manufacturing,4,5 material science,6 and even protein modification.7  

A recent publication showcased the use of ring closing metathesis (RCM, see Section 1.3 “Types 

of olefin metathesis”) in the synthesis of bacterial macrolide rhizoxins. These naturally derived products 

have been shown to have cancer cell growth inhibiting properties.8 In Scheme 1.1, the use of RCM is 

seen twice in the retrosynthesis scheme of this compound. The first time it was utilized in making the 6-

membered lactone (4) and then a second RCM was used to form macrocyclic compound 2. This example 

demonstrates several important features of modern catalytic olefin metathesis including excellent 

functional group tolerance (e.g. oxygen, nitrogen, and halide heteroatoms) and the ability to 

chemoselectively access various ring-sizes by RCM. 
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Scheme 1.1. Total synthesis of rhizoxin F as reported by Liniger et al. Olefin metathesis, particularly RCM, 
has been used twice in the synthesis, specifically in compounds 2 and 4 as reported by Liniger et al.8 

 

Other studies have used metathesis in the synthesis of polymers, making this chemistry viable 

for material science applications. One such application is the synthesis of conjugated polymers.10 These 

polymers are also known as semi-conducting polymers since the conjugated system allow them to 

conduct electricity which gives them both plastic and electronic properties. Some applications of this 

material include stretchable electronics, organic solar cells, and even organic light emitting diodes 

(OLEDs).9  A recent study was able to synthesize a polymer with poly[2-methoxy-5-(2’-ethylhexyloxy)-

1,4-phenylene vinylene] (MEH-PPV) subunits, which is a widely studied polymer with applications in 
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OLEDs and photovoltaic devices due to its enhanced solubility, as seen in Scheme 1.2.10 In this study, 

they were able to induce metathesis using two different types of Grubbs catalysts, known as the second-

generation Grubbs catalyst and the second-generation Hoveyda-Grubbs catalyst. With optimization, 

they were able to obtain 100% conversion, impressively, and this method is attractive compared to 

other polymerization methods like Stille and polycondensation due to its strict alternating pattern of the 

monomers.  

Scheme 1.2. Electronically directed ROMP to D-A polymers adapted from Koehler et al.10 

 

1.2 Catalyst development 

Even after olefin metathesis gained popularity in the 1950’s, further catalyst development was 

still needed to drive these reactions to their full potential. The utility of the original tungsten, 

molybdenum, and rhenium metathesis catalysts was limited due to the harsh conditions required such 

as the presence of strong Lewis acids in the reaction. As a result, they are incompatible with many 

functional groups and hard to initiate and control due to the difficulty in forming an active catalyst 

species.11 Due to these challenges, interest in understanding olefin metathesis reactions resulted in 

further catalyst development. Despite their sensitivity to oxygen and water, molybdenum and tungsten 

alkylidene catalysts for olefin metathesis became more widespread due to their higher reactivity with 

olefins. Using ruthenium catalysts was not seriously considered until Grubbs made an interesting 

observation about the tolerance of ruthenium catalysts to other functional groups compared to other 

metals. Usually, a catalyst is considered “intolerant” to other functional groups when the catalyst 
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competitively binds to undesired functional groups rendering the catalyst inactive. A comparison of the 

reactivity of different metathesis-active metals is summarized in Figure 1.1. From this figure, Grubbs 

suggested that ruthenium is most suitable for olefin metathesis due to its strong reactivity with olefins 

and tolerance to (i.e. lower reactivity) other functional groups.12   

Titanium Tungsten Molybdenum Ruthenium 

Acids Acids Acids Olefins 

Alcohols, water Alcohols, water Alcohols, water Acids 

Aldehydes Aldehydes Aldehydes Alcohols, water 

Ketones Ketones Olefins Aldehydes 

Esters, amides Olefins Ketones Ketones 

Olefins Esters, amides Esters, amides Esters, amides 

 

Figure 1.1. Comparison of functional group reactivity of titanium, tungsten, molybdenum and ruthenium 
catalysts in olefin metathesis reactions.12 

Optimization of ruthenium (Ru) catalysts included exploration of attaching various ligands. It 

was observed that initiation occurs faster when the ruthenium complex contained a carbene source, 

obtained with the addition of ethyl diazoacetate during synthesis, as it generated active ruthenium 

alkylidene species. Other small molecules that were screened to determine if metathesis occurs include: 

diiodomethane, propylene oxide, tert-butylacetylene, and ethyl diazoacetate; however, it was observed 

that ethyl diazoacetate was necessary since it acts as a carbene source.13 Furthermore, the discovery 

that the tricyclohexylphosphine (PCy3) ligand was able to increase metathesis activity led to the eventual 

discovery of the first-generation Grubbs catalyst (Grubbs I, GI).14 This catalyst combined the bulky and 

strong electron-donating PCy3 ligands, the readily initiated alkylidiene moiety, and the functional group 

tolerance of ruthenium metal catalysts.  

Grubbs I (GI) catalyst has had lots of applications after its discovery, which include 

polymerization reactions, the synthesis of heterocyclic compounds, and even fused ring systems.15 

However, to improve the range of accessible products, a second-generation Grubbs catalyst was 

Increasing 
Reactivity 
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developed (GII).16 This catalyst had a bulky N-heterocyclic carbene (NHC) ligand in place of one of the 

PCy3 ligands, which is more basic and can increase the catalyst activity (Figure 1.2). For example, Scholl 

et al. compared the ring closing metathesis (RCM) product yields using both the GI and the GII catalysts 

of various dialkene substrates.16 The advantages of GII was most noticeable in the formation of tri- and 

tetrasubstituted olefin products, where GI would consistently result in lower percent conversions when 

compared to GII.  

More recently, Hoveyda and co-workers found an alternative catalyst that was also highly 

active, but was also recyclable, leading to the development of the Hoveyda-Grubbs catalyst (Hov-GII).17 

The new catalyst was advantageous due to the increase in stability, allowing the metathesis to occur in 

undistilled solvents and its ability to be recycled by column chromatography.18 When comparing the 

reaction rates between GII and Hov-GII during RCM of 4-methyl-N,N-divinylbenzenesulfonamide at 1% 

catalytic loading, Hov-GII was sluggish and resulted in a smaller conversion percentage than GII.19 

However, Hov-GII was shown to have higher conversion yields than GII for electron-poor olefins, 

particularly fluorinated olefins.20 A comparison of the Grubbs and Hoveyda-Grubbs catalyst structures 

are shown in Figure 1.2. 

 
Figure 1.2. Structures of common ruthenium catalysts used for metathesis. GI was first discovered, 
followed by GII and Hov-GII with the addition of bulky NHC ligand to increase the initiation rates and the 
increase of stability in the Hov-GII catalyst. 
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1.3 Types of olefin metathesis 

As shown in Figure 1.3, there are a variety of different types of olefin metathesis reactions that all 

undergo similar mechanisms. Cross metathesis (CM) was the first metathesis reaction type observed. It 

involves two molecules, each with an alkene, that react together and rearrange in such a way to form 

one fused product and often a byproduct of ethylene if the two reacting alkenes are terminal.21 If a 

cyclic molecule containing an alkene is opened during metathesis, this reaction is known as ring-opening 

metathesis (ROM). Often this process is combined with a subsequent cross metathesis resulting in a 

tandem ROM-CM reaction. This can be used to make polymers, or becomes ring-opening metathesis 

polymerization (ROMP).22 On the other hand, ring-closing metathesis (RCM) has two alkenes on a single 

molecule and the rearrangement is intramolecular, which results in a cyclic product (and release of 

ethylene as a byproduct if the alkenes are terminal). Most metathesis can also be extended to alkyne 

functionalities and similar reactions are observed as olefin metathesis.23  
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Figure 1.3. Variety of olefin metathesis reactions. 

Work in this thesis will primarily focus on RCM. As seen in Figure 1.3, RCM occurs when a 

compound contains two alkenes which react in an intramolecular fashion to create ring structures. One 

of the key conditions to obtain an RCM product is the dilution factor, otherwise unwanted CM reactions 

can occur (e.g. acyclic diene metathesis polymerization (ADMET).24 This becomes more of an issue when 
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trying to form less stable ring structures. However, since metathesis is in principle a reversible process 

(see Section 1.5), ADMET oligomers can ultimately be converted to RCM products under appropriate 

conditions.25 

1.4 Mechanism 

The Chauvin mechanism is now widely accepted as the mechanism under which metathesis 

occurs. However, when Chauvin first published the proposed mechanism in 1971, not many scientists 

recognized this mechanism as it introduced several new ideas, including the implication of the metal-

carbene in initiating the metathesis reaction, as well as the metallacyclobutane intermediate.27 A decade 

later, in 1980, Schrock’s work established the validity of the Chauvin mechanism, leading to its 

acceptance.26 The Chauvin catalytic cycle is shown in Figure 1.4, note that each step is reversible. 

 

Figure 1.4. Chauvin mechanism of metathesis using Grubbs catalyst. 
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Starting with the precatalyst, one of the PCy3 ligands dissociates to generate the active Ru-

alkylidene metathesis initiator. The active species then binds to one of the olefins and undergoes a [2+2] 

cycloaddition to form a metallacyclobutane intermediate. Afterwards, the metallacyclobutane 

undergoes a retro-[2+2] in which ethylene is produced. When another olefin coordinates, the newly 

generated alkylidene will coordinate to form another metallacyclobutane intermediate, after which the 

metathesis product is released and the catalyst is regenerated.27 Although there was prior consensus of 

the formation of the 14-electron metallacyclobutane intermediate, shown in blue in Figure 1.4, this 

intermediate species was isolated and characterized by Romero and Piers in 2005, further supporting 

the proposed mechanism.28 

1.5 Drawbacks/disadvantages of RCM 

Although RCM has a lot of potential in the synthesis of cyclic compounds in various ring sizes, 

there are a few drawbacks to this method. First, successful RCM can be dependent on the conditions 

under which the metathesis occurs. For instance, since Grubbs catalysts can be used in polymerization 

reactions as well, concentrated conditions may lead to polymerization due to intermolecular metathesis 

instead of intramolecular RCM. As a result, dilute conditions (typically 0.2 - 0.01 M) are generally 

required for RCM, which is not solvent efficient.29 Secondly, the GI, GII and Hov-GII are expensive 

catalysts, costing $107/gram, $503/2 grams, and $616/2 grams, respectively.30 Another drawback is 

catalyst decomposition during the catalyst turnover, which can impact not only yield and catalyst 

loading, but can also lead to unwanted isomerization events (GII and Hov-GII are more prone to such 

decomposition, which is described in further detail later in the thesis). Lastly, isomerization events can 

occur during metathesis when using GII and Hov-GII catalysts. For example, as shown in Scheme 1.3, 

when N-allyl-4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide is subjected to Hov-GII conditions, three 

different products were obtained.31 
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Scheme 1.3. RCM with Hov-GII leads to three possible products, as reported by Butilkov et al.31 

 

Such isomerization can be problematic when trying to optimize reactions because the side 

reactions can be hard to control, decreasing the yield. Furthermore, since the obtained products are 

very similar structurally, they can be very difficult to separate. Thus, it is important to understand what 

drives the double bond migration and whether there are ways to suppress unwanted isomerization. 

Alternatively, there may be ways to induce isomerization if the desired product includes a migrated 

double bond.  

1.7. Industrial Applications of Ru Metathesis Catalysts 

Despite their high cost, relatively low turn-over-numbers (TON=790-10,800 depending on the 

catalyst loading of GII),32 and potential for unwanted isomerization, ruthenium-based metathesis 

catalyst have been used in industry. Figure 1.5 shows nine different examples of pharmaceutical 

ingredients that use RCM in their total syntheses that have advanced to either clinical trials or even have 

been commercialized. For example, IDX316, a hepatitis C virus protease inhibitor that is currently in 

preclinical trials, contains a 14-membered macrocycle that is achievable with the use of the Hov-GII 

catalyst that able to induce RCM.33 Furthermore, Danoprevir, which is also a promising protease 

inhibitor that can be used as an oral treatment of the hepatitis C virus, uses a first generation Hoveyda 

catalyst at very dilute conditions at 0.01 M in 1,2-dichloroethane to produce the macrocycle, although 

later improvements in RCM allowed for the reaction to be performed at 0.1-0.2 M in toluene.34 For the 

treatment of osteoporosis and osteoarthritis, relacatib underwent clinical trials, and impressively, they 

were able optimize RCM in its synthesis using 0.5% Hov-GII catalyst loading to obtain 96% yield, which 



11 
 

was efficient enough to prepare over 200 kg of the product.35 Lastly, rolapitant, which has been 

approved by the FDA in 2015 for the prevention of chemotherapy-induced nausea and vomiting, also 

includes RCM in its synthesis using Hov-GII in toluene under heating conditions (60-80 °C) to yield the 

RCM product in 85% yield.36, 37 Clearly, there have been examples of impressive RCM applications at the 

industry scale, but adoption is still not widespread, due in part to the problems/drawbacks mentioned in 

the previous section. Additionally, at industrial scale, factors such as catalyst loading (e.g. as it relates to 

cost) and product selectivity (i.e. yield) become very important. Furthermore, if byproducts are formed 

that share similar physical properties (e.g. isomers), product separation can then be challenging which is 

not ideal for an industrial process. The study of unwanted isomer formation during metathesis is 

therefore important to help advance industrial metathesis applications.  
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Figure 1.5. Examples of active pharmaceutical ingredients that either have been commercialized or 
advanced to clinical trials that utilize ring closing metathesis in their complete synthesis.38 

Industrial RCM case study: Relacatib35 

As mentioned previously, relacatib is a cathepsin K inhibitor that was used in a clinical trial in the 

treatment of osteoporosis and osteoarthritis. Cathepsin K is a cysteine protease synthesized by 

osteoclast cells which can dissolve the collagen matrix in the bone after it has been demineralized by 
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acid. Thus, relacatib acts as an inhibitor of cathepsin K resulting in the suppression of bone degradation. 

One of the challenges with relacatib synthesis is the azepinone 7-membered ring that contains two 

stereocenters, and one way to approach its synthesis is with RCM. Initial RCM attempts to make a 

substructure of relacatib were less than ideal, requiring high catalyst loading (10%) of Hov-GII (Scheme a 

in Figure 1.6). At 5% catalyst loading, the reaction did not go to completion and the use of additives to 

push the RCM led to the decomposition of the starting material. Furthermore, complete removal of Ru 

was very difficult as using a Ru scavenger P(CH2OH)4Cl/NaOH decomposed the product and proceeding 

with such high Ru content is impractical from a safety standpoint. Thus, a new synthetic plan was 

needed if RCM was to be employed. It was reasoned that the presence of the electron-rich 

oxazolidinone group coordinates to the Ru center and inhibits turnover, which was the reason for high 

catalyst loading. By subjecting the material to the Curtius reaction prior to RCM, it created a product 

which had no chelating pocket so it should require lower catalyst loading. However, after hydrolysis of 

the oxazolidinone, the Curtius reaction on the corresponding carboxylic acid with DPPA also produced 

some undesired double bond migration (compound 14) resulting in low yields (eq. b, Figure 1.6). 

Instead, formation of the hydrazide followed by Curtius rearrangement gave the desired RCM precursor 

13 in 98 % yield (eq. c, Figure 1.6). When 13 was treated with the Hov-GII catalyst (1-2 mol%) in toluene 

at reflux, isomerization of the RCM precursor at 20-30% was observed alongside the desired RCM 

product. Reducing the temperature to 60 °C suppressed the side reactions completely. However, there 

was still an issue of reproducibility as no one solvent gave consistent results. For example, using 

tetrahydrofuran at 60 °C gave a range of 37-87% conversion and 2-60% isomerization. Adding additives 

such as acetic acid, styrene and tricyclohexylphosphine oxide, which are supposed to suppress 

unwanted isomerization, did not lead to much improvement in terms of conversion or consistency 

between trials. However, isolating the RCM precursor as its HCl salt was able to improve the purity of 

this compound. Using this purified compound, they got better consistency with RCM yields (typically 
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~90%), and reduced the isomerized products to less than 2% (compounds 14 and 17, Eq. d, Figure 1.6). 

The optimized RCM conditions were run in ethyl acetate as solvent (~0.5 M) at 60 °C with 1 mol% Hov-

GII catalyst for 1.5 h. The Ru was removed by extraction with a basic solution of cysteine, and 

purification involved crystallization to yield the desired RCM product 16 in 89% yield.  

 

Figure 1.6. Various reactions run by Wang et al. in the attempt to optimize RCM in relacatib synthesis.35 
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Although Figure 1.6 outlines one RCM route for the synthesis of a substructure of relacatib, an 

alternative route was also explored with impressive yields as shown in Scheme 1.4. Treatment of 

pthalimide 18 in toluene at reflux with only 0.5% Hov-GII loading gave 96% yield of the desired RCM 

product 19. Interestingly, the GII catalyst did not give consistent results between small- and large-scale 

reactions, so Hov-GII was the preferred catalyst. Surprisingly, no isomerization was observed and that 

has been credited to the steric bulk of the allylic substituents. This reaction has been scaled up in the 

production of relacatib to >200 kg.  

Scheme 1.4. Alternative RCM route in the synthesis of relacatib with 96% yield. 
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CHAPTER 2. TANDEM DIALLYLSILANE REARRANGEMENT/RCM 

2.1 Background 

The O’Neil group recently discovered an iodine-mediated rearrangement of diallylsilanes.70 The 

reaction is thought to proceed through formation of an intermediate cation 21, followed by 

intramolecular allylation to give iodosilane 22. Subsequent addition of an alcohol such as cyclohexanol 

(CyOH) or isopropanol (iPrOH) gave isolable silyl ether products featuring a new carbon-carbon bond 

(shown in red) and a new stereocenter (*). Among the different diallylsilanes tested, 

diallyldiphenylsilane (20) gave the highest yields of rearrangement products (over substitution), 

providing compound 23 in yields consistently >70% (Scheme 2.1). 

Scheme 2.1. Iodine-promoted rearrangement of diallyldiphenyl silane. 

 We recognized that trapping of the iodosilane intermediate with allyl alcohol would provide diene 

24, as shown in Scheme 2.1, setting the stage for a RCM reaction. To test this, we took diallyldiphenyl 

silane (1 equiv.), dissolved it in dichloromethane (0.1 M) and added iodine (1 equiv.), allowing the reaction 

to react at room temperature from 6-25 hours (extended time had no effect on the reaction), after which 

triethylamine (3.0 equiv.) was added at 0 °C, followed by allyl alcohol (2.0 equiv.). After letting the reaction 
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warm to room temperature overnight, it was quenched with DI water and purified by chromatography 

over silica to yield the diene in 93% yield.  

2.2 Initial RCM  

With compound 24 in hand, we then set out to investigate the RCM reaction. It was anticipated 

that the two alkenes present in compound 24 could undergo a metathesis reaction, resulting in an eight 

membered ring organosilane product 25 as shown in Scheme 2.2. Numerous examples of siloxacycle 

formation by RCM can be found, with the resulting products proving to be useful intermediates in 

synthesis.39,40 Among these, RCM reactions that form medium-ring (7- and 8-membered) oxa- (as 

opposed to dioxa-) silacycles such as our expected product 25 are less common .41 

Scheme 2.2. Expected oxasilacycle 25 by RCM of compound 24 compared to the more common 
dioxasilacycles that have been produced by RCM. 

 

One example of medium-ring oxasilacycle formation by RCM is by Devineau et al. who reported 

the synthesis of a pharmacologically interesting tricyclic cyclobutyl indane structure 29 featuring the 

RCM of silyl ether diene 28.42 Treatment of 28 as a dilute (0.007M) solution in toluene (PhMe) with the 

second-generation Grubbs’ catalyst (10 mol%) at room temperature gave the 7-membered siloxane 29 

in yields up to 85% (Scheme 2.3). The authors reported no isomerization of the double bond was 

detected during the reaction. 
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Scheme 2.3. Synthesis of tricyclic cyclobutyl indane 29 via RCM. 

 

Rodríguez-García et al. reported a tandem RCM/Hosomi–Sakurai reaction in their synthesis of the 

pterocarpan natural products.43 RCM of compound 30 delivered the benzoxasilepin 31 in excellent yield. 

Condensation of 31 and aldehyde 32 using BF3·Et2O then gave dihydrobenzofuran 33 exclusively as the 

cis stereoisomer (Scheme 2.4). 

Scheme 2.4. Synthesis of dihydrobenzofuran 33 via RCM. 

 

8-Membered oxasilacycles have also been prepared by RCM. Van Otterlo and co-workers used an RCM 

reaction the construct the of 8-membered silicon-containing benzo-fused heterocycle 35 in 82% yield in 

refluxing DCM.44 

Scheme 2.5. Synthesis of an 8-membered benzo-fused heterocycle by RCM with GII. 
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Volchkov et al. reported the synthesis of vinylsilane containing 8-membered oxacycles by 

chemoselective RCM of triene precursors 36.45 Yields of the RCM was sensitive to substitution at the allyl 

ether position, with yields being highest for the unsubstituted substrate (R = H, 96%). However, 

subsequent rhenium-catalyzed allylic transposition was best for RCM products with a substituent at the 

allyl ether position. The authors suggest that the low yield (49%) of the rhenium-promoted ring 

contraction when R = H is the consequence of unfavorable thermodynamics in forming terminal alkene 

from the internal one in the starting material. 

Scheme 2.6. Synthesis of an 8-membered oxacycle. 

 

Oxasilacycle formation by RCM has also been made enantioselective. The Hoveyda group was able to 

prepare enantioenriched (up to 93% ee) 7-membered oxasilacycles by asymmetric RCM using a chiral 

molybdenum catalyst. Subsequent transformations of the of the RCM products included the addition of 

MeLi, affording chiral alcohol 40 containing an allylsilane group. Chemoselective epoxidation followed 

by desilylation with TBAF gave diol 39 essentially as a single diastereomer and enantiomer.46 
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Scheme 2.7. Synthesis of 7-membered oxasilacycles followed by either treatment with MeLi or 
chemoselective epoxidation. 

 

Our RCM oxasilacycle investigations began with the treatment of iodine rearrangement product 24 with 

Grubbs-type catalysts under various conditions. Initial reactions were performed under a nitrogen 

atmosphere using either the GI or GII catalysts with 10% loading. The catalyst was added to the silane (1 

equiv.) in degassed dichloromethane (0.02 M) and the mixture was stirred at room temperature 

overnight.  

Scheme 2.8. Ring closing metathesis using Grubbs I. 

 

Somewhat surprisingly, different products were obtained depending on whether GI or GII catalysts were 

used. The NMR spectrum from the GI reaction matched what was expected for compound 25 (see 

Scheme 2.8) with alkene signals at 5.79 and 5.60 ppm and the protons neighboring oxygen signaling as 

diastereotopic protons at 4.55 and 4.48 ppm (top spectrum in Figure 2.1).  
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Figure 2.1. Crude 1H NMR spectra of RCM reactions of compound 24 using GI (top) and GII (bottom). 

 

Figure 2.2. COSY NMR of GII catalyzed RCM product 41a. 
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The NMR spectrum from the GII catalyzed reaction instead gave signals at 6.49 and 4.84 ppm that were 

coupled to one another according to COSY NMR (Figure 2.2). Together, these NMR signals are 

characteristic of an enol ether, suggesting isomerization had occurred during the GII reaction.  

Scheme 2.9. Ring closing metathesis using Grubbs II, resulting in isomerization products. 

 

Two different silyl enol ether RCM/isomerization products can be envisioned. If isomerization 

occurred before RCM, we would expect the 7-membered ring compound 41c, as shown in Scheme 2.9. If 

RCM occurred and was then followed by isomerization, we would obtain the 8-membered ring 

compound 41a. Ultimately detailed NMR analysis combined with high-resolution mass spectrometry 

confirmed that it was the 8-membered ring isomerized product that was obtained. Moreover, the 

isomerization was not 100% selective. Purifying the crude products over silica gel chromatography using 

2:1 hexanes: dichloromethane gave several different products as shown in Scheme 2.9. Among them, 

was product 41b where isomerization had occurred in a different direction. It is noteworthy that all of 

the shown products are all very similar in structure, which means they all have very similar polarity. 

Since column chromatography separates compounds based on polarity, separation was very challenging. 

Multiple solvent systems like etheyl acetate/hexanes, chloroform/ hexanes, were used before the 

optimal solvent system of hexanes:DCM was found to resolve the possible products. Also, it was found 

that longer columns (~25 cm) were better for separation since it provides more time for the products to 

separate on silica.  
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Figure 2.3. 1H NMR spectrum of compound 41b. 

 

Figure 2.4. COSY NMR spectrum of compound 41b. 
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More specifically, the 1H NMR of 41b (Figure 2.3) showed peaks at 5.57 ppm which correspond 

to the two alkene protons. Based on the COSY NMR (Figure 2.4), these peaks were coupled to 

diastereotopic protons at 2.52 and 2.03 ppm, and these protons were coupled to another pair of 

diastereotopic protons at 4.15 and 3.71 ppm. This suggests that the double bond is two methylene 

groups away from the oxygen atom, which is consistent with the structure 41b, showing that an 

alternative isomerization product is also formed. From the crude 1H NMR, the ratio of isomerized 

products 41a and 41b was approximately 1.79:1.00. 

Another interesting product that was isolated was compound 41d, NMR shown in Figure 2.5. 

There is a total of four alkene protons, which suggest that both double bonds in compound 24 migrated 

to disubstituted alkenes and RCM never took place.  

 

Figure 2.5. 1H NMR of compound 41d. 
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The last potential product in GII catalyzed RCM is product 41c, a 7-membered enol ether ring. 

Although it has not been isolated, mass spectrometry indicated that it is formed, unfortunately, it has 

the same Rf as the 8-membered product 41a, making it inseparable by chromatography. However, it can 

be detected by NMR as a small peak at 6.42 ppm, while the 8-membered ring contains a peak at 6.49 

ppm, both which can be seen in Figure 2.1. This product can be formed if only one of the double bonds 

isomerizes in compound 24, and then it proceeds to ring close, giving the ring contracted product 41c. 

Based on crude 1H NMR, the ratio between the different ring sized products 41a and 41c is 2.51:1.0.  

Our data indicates that the isomerization event is unique to the GII and Hov-GII catalysts. In fact, 

sequential treatment of 24 with GI followed by reaction with GII gave identical results (including a 

1.89:1.0 ratio of differentially isomerized RCM products (41a:41b) to the reaction with just Grubbs II. 

The only product not formed during this sequential GI/GII treatment is 41d, which is understandable 

since prior to GII, there is no more starting material 24 that can undergo both double bonds isomerizing 

to form 41d. The other surprising result is that 25 was not observed in the mixture of products that was 

obtained, which will be discussed in later sections.  

2.3. Mechanism of isomerization 

Ruthenium hydride 

One of the leading theories for isomerization is the formation of ruthenium hydride complexes 

as a result of catalyst decomposition, whose mechanism is shown in Figure 2.6.47, 48 GII is a precatalyst, 

which means that the PCy3 ligand needs to dissociate from the Ru to become the active species 42 that 

can catalyze RCM. However, in some cases, PCy3 attacks the carbene carbon atom, eventually leading to 

the elimination of phosphine ylide 43 and a 12-electron species 44. Product 44 can then proceed to bind 

to the mesityl rings of 42 resulting in the chloride bridged ruthenium dimer that then decomposes to 46 

with the generation of methyl tricyclohexylphosponium chloride (45). The last step involves oxidative 
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addition of the terminal alkylidyne of 46 and the migration of the two chlorides to yield the decomposed 

ruthenium hydride complex of 47. Interestingly, when 47 (1.5% mol equiv.) was added to allylbenzene to 

act as the isomerization catalyst, isomerization product (E)-prop-1-en-1-ylbenzene was obtained in 76% 

yield.47 Thus, the idea that ruthenium hydride can assist in isomerization has been supported by this 

study. 

 

Figure 2.6. Proposed GII decomposition mechanism by Grubbs.48 

One of the key steps in the decomposition of Grubbs II catalyst and formation of a ruthenium 

hydride is the binding of the 12-electron Ru species 44 to the NHC ring on another Ru molecule. Since GI 
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does not have the NHC ligand, it is not prone to the formation of the ruthenium hydride species via this 

mechanism. Therefore, isomerization tends not to be as much of an issue for the GI catalyst.48 On the 

other hand, similar isomerization has been observed with the use of Hov-GII catalyst. Although this 

catalyst does not contain a PCy3 ligand that is proposed to initiate the decomposition of GII, a different 

decomposition mechanism has been proposed which involves the byproduct ethylene generated during 

RCM and results in the formation of a similar ruthenium hydride.49 However, intermediates along this 

proposed decomposition pathway have not yet been isolated or characterized. 

Although Grubbs has a compelling mechanism for the formation of Ru-H, his group also 

proposed an alternative decomposition route via C-H bond activation. Blechert et al. built on this work 

to further study the decomposition of Hov-GII as shown in Figure 2.7.50,51 

 

Figure 2.7. Mechanism of C-H activation and insertion of the Grubbs and Hov-GII catalysts that contain 
NHC ligands. 
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One of the key steps in Blechert’s proposed mechanism involves a pericyclic cyclization with the 

NHC ligand. Since GI catalyst does not contain an NHC ligand, that could be another possible explanation 

why such Ru-H species are not formed with GI and isomerization is more of an issue with GII and Hov-GII 

catalysts.  

In our case, after the Ru-H species is formed, it can proceed to add the alkene and give rise to 

intermediates 25a and 25b, as shown in Figure 2.8.52 Depending on which neighboring proton is 

eliminated will lead to different products. For example, intermediate 25a has two neighboring protons 

that are suitable for elimination, Ha and Hb. If Hb is eliminated from 25a to generate the Ru-Hb, then the 

initial RCM product 25 is regenerated. On the other hand, if Ha is eliminated, then enol ether 41a would 

be formed. Thus, migration of the double bond has occurred. The same ideas can be applied to 25b, 

where elimination of Hc would regenerate the starting ring-closed product 25 while elimination of Hd will 

lead to isomerization in a different direction. Surprisingly though, despite the possible routes to 

regenerate product 25 even in the presence of Ru-H species, it is not observed when the reaction is run 

to completion with GII and Hov-GII, while 41a and 41b were isolated at 56% and 12% yields.  
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Figure 2.8. Possible mechanism using Ru-Hs to form isomerization products. 

To better understand the product distribution from these RCM reactions, DFT calculations were 

performed to calculate the relative energies of the different products. Calculations were performed 

using the ORCA software package using the def2-TZVP basis set (valence triple-zeta polarization) with an 

effective core potential (ECP) for the Iodine atom. DFT Geometry optimization was first performed at 

using DFT using the BP86 functional followed by a geometry optimization using the B3LYP functional. 

Both calculations used Grimme’s DFT-D3 dispersion correction with Becke-Johnson damping (D3BJ). The 

structure obtained using the B3LYP functional was further optimized using second order Moller-Plesset 

perturbation theory (MP2). Geometry optimization at the MP2 level used the resolution identity 

approximation (RI) that speeds up the MP2 calculation with minimal loss in accuracy. Structures shown 

are the final geometry optimized structure at the RI-MP2 level. For comparison of the relative energies, 

a single point MP2 energy calculation was performed on each of the optimized structures without the RI 

approximation.  
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All calculations were run on the SDSC Expanse supercomputer. The DFT calculations were performed on 

32 cpu cores and the MP2 calculation was performed on 128 cpu cores. 

 

Figure 2.9. Calculated relative energies of RCM products 25 and 41a,b. 

 Interestingly, compound 25 was calculated to be highest energy and this was not observed 

under isomerizing conditions (e.g. GII). The enol ether 41a was significantly more stable than 41b 

(difference of 18.68 kJ/mol), and that was the major regioisomer obtained. The most stable isomer 

containing a tri-substituted alkene was not observed, which we believe is the result of steric inhibition. 

With the calculated energies, we can compare our ratios to of 41a and 41b to those that are expected 

based on standard free-energy change and the equilibrium constant. With a different of 18.68 kJ/mol, 

the ratio between the two products is expected to be at the 10-3 scale.53 However, this was not 

observed, as our ratio between 41a and 41b was 5.6 x 10-1. 

41a 25 41b  
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Ruthenium nanoparticles 

A study done by Fogg et al. provided another perspective on catalyst decomposition. They 

suggested that Ru nanoparticles (RuNPs) formed during metathesis are another factor that contributes 

to olefin isomerization.54 By subjecting estragole to 4 different types of RuNPs, isomerization was 

observed in all cases, however, the most active RuNP was the one stabilized by an NHC ligand like that 

found on the GII catalyst. Further studies observed that commercially bought GII catalyst already 

contained RuNP aggregates. These NPs were isolated and used to induce isomerization in estragole, but 

results showed only 45% yield when compared to the 100% conversion that was seen with untreated 

commercially bought GII. The authors attribute the low activity of these NPs to their large size and 

partial oxidation, which limits the number of surface sites. A comparative study was done with 

commercial GII and with RNPs depleted GII by ultracentrifugation to look at the rates of metathesis and 

isomerization of estragole. The results showed only 15% less isomerization when using NP-depleted GII, 

suggesting that freshly decomposed catalyst plays a larger role in isomerization than the already-present 

RuNPs. To study this further, using in situ nephelometry to look at light scattering due to NPs, an 

increase in light scattering over the course of the reaction was observed indicating that RuNPs are 

formed during metathesis. This was again supported by electron microscopy that showed no RuNPs 

initially in styrene subjected to GII, however, after metathesis, electron microscopy showed an 

abundance of RuNPs. To determine whether it is the RuNPs or molecular species formed during catalyst 

decomposition that initiate isomerization, they performed a mercury poisoning experiment. Mercury 

poisoning is used to test involvement of surface-active metal(0) sites in catalysis, in other words, NPs. 

Their experiment showed a drop of 50% in isomerization by the introduction of mercury into the system. 

However, adding a substoichiometric amount of phosphine/phosphite poison, which targets RuNPS 

catalysis instead of molecular Ru specie catalysis, ceased isomerization completely.  
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CHAPTER 3. RESULTS/DISCUSSION 

3.1 Solvent, time, and temperature effects 

Given that RCM and isomerization both occur when compound 24 is subjected to GII and Hov-

GII conditions, we set out to explore what drives the isomerization and how different structural 

features, as well as reaction parameters, will affect the reaction results. One previous study suggested 

that RCM and isomerization are competitive processes. After Ru coordinates to the olefin, it can either 

proceed with the expected carbene exchange via metallacyclobutane intermediate (path a), or it can 

proceed to deprotonate the allylic proton, leading to a pi-allyl complex and eventually double bond 

migration (path b). These competitive reactions are illustrated in Figure 3.1.55 

 

Figure 3.1. Two pathways leading to RCM or olefin migration as reported by Boutgeois et al.55 

 

Considering that the ruthenium in the catalyst complex has a high oxidation state, the allylic 

proton is mostly likely trapped by the alkylidene carbon. Furthermore, since the NHC ligand is a strong 

sigma donor, it will increase the basicity of the alkylidene making GII and Hov-GII catalysts more likely to 

undergo that process. Since the solvent can affect the coordination between the catalyst and the 
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reactants, it can have a direct effect on the isomerization. Bourgeouis et al. did have results that showed 

this relationship between solvent and isomerization, as shown in Table 3.1.55 

 
Table 3.1. Influence of solvent on product distribution. 

Solvent RCM (%), 49a Isomerization (%), 49b 

Benzene 50-70 30-50 
Toluene 20 80 
DCE 90 10 
DME 0 100 

 

The authors rationalized the results by considering the coordination activity of the solvent. If the 

solvent is more coordinating (e.g. dimethoxyethane (DME)) to the catalyst, the more it will prevent the 

second double bond from coordinating to the Ru center, making isomerization the favored reaction. 

However, if isomerization is slower than RCM and coordination between the substrate and Ru catalyst is 

sufficiently rapid, RCM will be favored. To test whether the solvent will affect the distribution between 

products 41a, 41b, 41c, and 41d, we ran multiple reactions under the standard RCM conditions in 

toluene, benzene, THF, and DCM. Our results are summarized in Table 3.2, where the product 

distribution was determined by NMR analysis (Figure 3.2).  
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Figure 3.2. Example of crude NMR of GII (5 mol %) catalyzed RCM of 24 with peaks shown for 41a-d that 
were used for product distribution determination, see Table 3.2. 

 

 

 

 

 

 

41a 

41c 
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Table 3.2. Product distribution of solvent studies with Grubbs II using standard conditions at room 

temperature as determined by NMR. 

  RatioA 

Exp. # Parameter 41a 41b 25 41c 41d 

1 DCM, trial 1 2.51 1.40 0 1.0 0.72 

2 Toluene, trial 1 2.12 0.74 0 1.0 0.58 
3 Toluene, trial 2 2.28 0.79 0 1.0 0.58 

4 Benzene 1.59 0.65 0.92 1.0 0.58 

5 THFB 2.56 2.15 0 1.0 0 
Notes for Table: AProduct ratios were determined by integrating characteristic signals corresponding to 

the different products (see also Figure 3.2). BPerformed in deuterated THF (THF-d8). 

In general, the results from RCM gave comparable results. For instance, enol ether 41a was the 

major product in all cases, the result of RCM followed by isomerization. Interestingly, comparing the 

ratios between 41a:41b was different between running the trails in different solvents. For example, in 

DCM, the ratio is 1.79:1.00, while the average between the two toluene trials have a ratio of 2.88:1.00. 

However, the ratios between 41a and 41c are comparable between the two solvents. On the other 

hand, running the reaction in benzene also had an interesting effect on product distribution since 25 

was observed. Based on the study conducted by Boutgeois et al., benzene is less prone to isomerization 

than toluene, giving only 30-50% isomerization compared to 80% isomerization observed in toluene.54 

Our results are consistent with this study since benzene has non-isomerized product 25 after running 

the RCM, suggesting that not all of 25 was isomerized to products 41a and 41b. In general, DCM as 

solvent was the most consistent and drove isomerization to 100% when run with GII. It therefore 
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became the preferred solvent for the rest of the experiments to study how other parameters such as 

temperature and substrate structural features affect tandem RCM/isomerization.  

To see if isomerization can be suppressed or promoted with temperature, RCM was run at 0 °C, 

35 °C and room temperature. The crude NMR spectra of the three reactions are shown in Figure 3.3. 

 

Figure 3.3. NMR of product 24 run in DCM using GII run at room temperature (bottom), 0 °C (middle), 
and 35 °C (top). Presence of non-isomerized 25 detected when run at 0 °C with signals at 5.78, 5.59 and 
4.52 ppm. 

Interestingly, increasing the temperature to 35 °C had a profound effect on the product 

distribution between 41a and 41b (RCM/isomerization regioisomers). At room temperature, the ratio of 

41a:41b was 1.79:1.00, respectively, while at increased temperature (35 °C), the ratio changed to 

3.57:1.00 (Table 3.3). This would suggest that an increase in temperature favors isomerization to enol 

ether 41a instead of the other direction to 41b. When the temperature was decreased to 0 °C, non-

isomerized RCM product 25 was observed, while the ratio of 41a:41b did not change (1.77:1.00). 
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However, the ratio between the 8-membered enol ether 41a and the 7-membered ring 41c (i.e. RCM 

then isomerization vs isomerization then RCM) did show a significant change between all three runs. At 

room temperature, the ratio of 41a:41c was 2.51:1.00. At 35 °C, selectivity for 41a (i.e. RCM before 

isomerization) increased to now 5.36:1.00, whereas at 0 °C the ratio changed the selectivity changed to 

favor 41c (0.55:1.00 41a:41c). One possible explanation is that the lower temperatures favor a 

conformation of the starting material wherein the two reacting alkenes are not in close proximity, 

slowing down RCM and therefore increasing the amount of isomerization that occurs prior to RCM.  

Table 3.3. Product distribution of temperature studies of RCM of 24 with Grubbs II as determined by 

NMR. 

  Ratio 

Experiment Temperature 41a 41b 24 41c 41d 

6 room temperature (~20°C) 2.51 1.40  - 1.0 0.72 
7 35 °C 5.36  1.50  - 1.0 0.70 
8 0 °C 0.55 

 
0.31  5.0 1.0 1.34 

 

To further understand how the products are formed, a time study was conducted at room temperature 

in which NMR data was taken at 15 mins, 1, 2.5, 4.5, and 24 hours, as shown in Figure 3.4. 
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Figure 3.4. Time study of 24 subjected under standard RCM conditions in CD2Cl2. 

RCM to non-isomerized product 25 (signal peaks at 5.72, 5.52, and 4.50 ppm) was very rapid, as 

just 15 minutes was enough to convert nearly 50% of the starting material 24 (signal peaks at 5.85, 5.01, 

4.94 and 4.14 ppm). After 1 hour, 25 was predominantly observed with trace amounts of isomerized 

products 41a (signal peak at 6.39 ppm) and 41c (signal peak at 6.32 ppm). After 2.5 hours, we begin 

seeing 25 getting consumed and undergoing isomerization to form 41a, 41b (signal peaks at 4.06 and 

3.60 ppm), and 41c. Another 2 hours drove isomerization nearly to completion as trace amounts of 25 

were still detected and at 24 hours no more 25 was observed. This information provides an interesting 

perspective as it shows that isomerization to 41a and 41b occurs after 24 undergoes RCM. The fact that 

the 7-membered 41c is seen at 1 hour could suggest that within the hour, one of the double bonds in 24 
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isomerized prior to RCM, resulting in the ring contraction. Additionally, the ratios between 41a, 41b, and 

41c were stable after 24 h and were unaffected by extra time (up to 57 h).  

3.2 Structural features studies 

 Since evidence shows that Ru-H can promote isomerization by first coordinating to the alkene, 

exploring how structural features affect isomerization can provide interesting information on the effect 

of sterics. Thus, different substituted silanes were synthesized and then used in RCM (Table 3.4). These 

included diphenyl-, dimethyl-, and diisopropyl-substituted silanes, along with silacyclobutane. 

Treatment of these compounds with GII (10 mol%) in DCM at room temperature for 15 h gave a mixture 

of RCM and isomerized products as summarized in Table 3.4. 

 

Table 3.4. Product distribution of RCM with Grubbs II with different types of silane groups 

 

R Catalyst loading Yielda A B C D E 

Ph 10% 68 2.51 1.40 - 1.0 0.72 
Ph 5% 56 3.14 1.15 - 1.0 0.84 
Me 10% 28 2.03 1.08 - 1.0 0b 
Me 5% -- 5.08 2.81 - 1.0 0b 
i-Pr 10% 65 2.53 0b - 1.0 0b 

siletane 10% 77 6.57 1.00 - 0b 0b 

 
Notes for Table: aAll reactions were performed using Grubbs II catalyst in DCM at rt for 15 h. bPeaks 
corresponding to this compound were not observed in NMR spectra, however overlapping signals could 
have prevented the detection of very small amounts. 
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All four of these silanes were able to undergo RCM. Yields were generally high with the 

exception of the dimethyl silane. We hypothesize that larger groups on silicon aid the RCM through a 

Thorpe-Ingold type effect.56,57 No starting material was recovered from the dimethylsilane RCM. The 

mass balance from that reaction is presumed to be oligomeric material. Alternatively, the dimethylsilane 

RCM product is less stable to purification by chromatography on silica, giving lower isolated yields. 

Importantly, the 8-membered ring enol ether (A) was the major product in cases and none of the non-

isomerized RCM product (C) was observed. Additionally, the ratio of isomerized 8-membered ring RCM 

products were comparable, indicating that substitution at silicon does not affect the isomerization 

process. 

Since 24 was a result of an iodine promoted rearrangement reaction (see Scheme 2.1), the 

iodine remained on the RCM precursor. To see whether its bulky nature affects the product distribution, 

another RCM precursor was made using the synthesis shown in Scheme 3.1, where the precursor 

contains just a methyl group instead of the previous iodomethyl group. Using the conditions described 

by Suslova et al., treatment of diallyldiphenyl silane with BF3∙AcOH gave fluorosilane 50 in excellent 

yield.58 Substitution at fluorine for compound 51 was, as expected, more challenging than for the 

iodosilanes that we obtained from the iodine-promoted rearrangement. For instance, using our 

standard etherification conditions, (allyl alcohol, triethylamine, DCM, rt), no substitution was observed. 

Instead, a stronger nucleophile was first by deprotonation of allyl alcohol with KHMDS, which was then 

able to substitute fluorine giving ether 51 in 89% yield. 
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Scheme 3.1. Synthesis of RCM precursor 24 followed by RCM with GII.  

 

 When 51 was subjected to standard RCM conditions, the results were comparable to the 

iodomethyl precursor 24, indicating that the bulky iodomethyl group has little to no effect on 

isomerization. The ratio of 53a:53b:53c for the methyl substituted precursor was 2.24:1.09:1.00, while 

the iodomethyl gave ratios of 2.51:1.40:1.00 (41a:41b:41c). It is noteworthy that products 53b-d were 

not isolated. Interestingly though, when 51 was subjected to RCM at 45 °C, 53b was not observed. This 

could be explained if the products are in equilibrium and heating the reaction drives the equilibrium to 

the most stable product. It is possible that 53b is forming, but with the increased temperature, the 

double bond can migrate to form 53a. To test whether conversion between RCM products a and b is 

possible, 41b was subjected to GII catalyst and the results are shown in Figure 3.5. 
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Figure 3.5. Subjecting 41b under GII conditions to observe whether conversion between products is 
possible. Top spectrum is 41b and the bottom spectrum is the crude NMR after 24 hours reaction time 
with GII.  
 The results were fascinating. At room temperature, 41b was able to convert to 41a (new peaks 

at 6.45 and 4.82 ppm), indicating that conversion between RCM products is possible and isomerization is 

a reversible process. Furthermore, running the reaction for 96 hours did not change the ratio between 

41a and 41b when compared to 24 hours, both giving a ratio of 1:1. The fact that extending reaction 

time did not affect the distribution would indicate that equilibrium was reached. Another fascinating 

observation was that 25 was not observed at any point, even at 2.5 and 4 hours, suggesting that double 

bond migration can occur without going through 25 as an intermediate. This would also explain why 

increasing the temperature would decrease the amount of 41b and 53b since temperature can shift the 

equilibrium and conversion between products was happening at a faster rate.  
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 Another way to determine if steric hinderance plays a role in isomerization was by attaching a 

phenyl, hexyl, or methyl group on the ether carbon and subjecting to RCM (Scheme 3.2). Theoretically, 

isomerization to a tri-substituted enol ether would be favorable since that would be the most stable 

product.  

 

Scheme 3.2. RCM of phenyl, hexyl and methyl substituted silanes.  

However, when 54, 56 and 58 were all subjected to RCM using GI and GII catalysts, both catalysts gave 

the same non-isomerized RCM product (55, 57 and 59, respectively). The lack of isomerization in these 

RCM reactions, even when using the GII catalyst, suggests that the phenyl, hexyl and methyl groups 

were able to sterically hinder the isomerization. One possible explanation is that the alkene in RCM 

products 55, 57, or 59 is unable to coordinate to the catalyst preventing formation of a Ru-H species 
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responsible for isomerization (see Figure 3.1). Alternatively, the Ru-H species cannot effectively bind to 

the alkene in RCM products 55, 57, or 59.  Hydrometallation could also occur, but the subsequent beta-

hydride elimination to for the corresponding trisubstituted alkene enol ether is hindered in these 

systems so 55, 57, or 59 is regenerated. This could also be used to explain why we do not see any of 

trisubstituted alkene forming in the RCM of unsubstituted compounds, since even a methyl group on 52 

was able to prevent isomerization to form a tri-substituted alkene (see Scheme 3.1). However, we would 

expect to see isomerization in the other direction (e.g. compound 41b) from a Ru-H species. For 

instance, Cadot et al. reported a similar finding that isomerization by GII to the corresponding enol ether 

was prevented by substitution at C1 for allylic ethers instead giving the different regioisomer resulting 

from isomerization in the opposite direction (see boxed reaction in Scheme 3.2). However in our RCM 

reactions of compounds 54, 56, or 58 we simply saw no isomerization59 

 To determine how the ring size affects isomerization, 9-membered rings were also explored. The 

RCM precursors was synthesized using the same one-pot 2-step iodine rearrangement chemistry (see 

Scheme 2.1), except instead of trapping the intermediate iodosilane with allyl alcohol in step 2, 

homoallylic alcohol was used. Subjecting 60 to RCM with GI gave mostly starting material 60 with trace 

amount of RCM product 61, while using GII catalyst resulted in mostly the formation of 61 (Scheme 3.3 

and Figure 3.6). Interestingly, isomerization to an enol ether product did not occur to a large extent (see 

signals at 6.5 ppm in Figure 3.6). 

Scheme 3.3. Synthesis of 9-membered ring using RCM with GI and GII. 
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Figure 3.6. COSY NMR of 9-membered ring RCM product 61 catalyzed by GII. 

 One possible explanation for the lack of isomerization in this 9-membered ring RCM could be 

due to the lack of a neighboring acidic allylic proton that can be abstracted to form a Ru-H isomerizing 

species (see Figure 3.7). More specifically, in RCM product 61, the carbons immediately adjacent to the 

alkene do not contain an oxygen atom that would increase the acidity of those hydrogens. Whereas the 

allylic position in RCM product 25 is more easily deprotonated leading ultimately to the formation of a 

Ru-H that can then isomerize other RCM product molecules. 
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Figure 3.7. Proton abstraction representation of 9-membered ring vs 8-membered ring to form Ru-Hs. 

 The importance of the oxygen atom was also explored since other studies have demonstrated 

the susceptibility of allyl ethers to isomerization during metathesis,60,63 we hypothesize that its removal 

would reduce isomerization. Although it was difficult to synthesize an 8-membered non-ether RCM 

precursor, the 7-membered alternative ring was more readily prepared and was therefore chosen as our 

target. By reacting with allyl magnesium bromide, product 62 was obtained and subjected to RCM 

conditions using GII (Scheme 3.4). As predicted, isomerization was not observed with 62, instead giving  

the non-isomerized RCM product 63 in 33% yield.  

Scheme 3.4. Synthesis of all carbon 7-membered RCM product. 

 

3.3 Mechanistic investigations 

 To investigate the factors that affect isomerization and catalyst decomposition, further studies 

were conducted. Previous studies suggest that the presence of ethylene can cause catalyst 

decomposition, which is known to promote isomerization. 61,62 There are two ways to remove the 

ethylene formed during metathesis, one way is by running the reaction under slight vacuum, and the 

other is by running the reaction under a stream of nitrogen. Attempting the latter method with 24 and 
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GII, only isomerization products were formed, consistent with what was observed for reactions where 

ethylene was not removed. However, one notable difference was the ratio of isomers 41a:41b. Under 

standard conditions, the ratio was 1.79:1.00 in favor of the enol ether 41a. Running the reaction under a 

stream of nitrogen increased the ratio to 3.39:1.00. Still, only isomerized RCM products were obtained, 

indicating that ethylene was not responsible for isomerization in our reactions. 

 Another Ru isomerization catalyst is carbonyldihydridotris(triphenylphosphine)ruthenium(II) 

(RuClH(CO)(PPh3)3).This complex does not promote metathesis, just isomerization. A study done by 

Morgans et al. studied isomerization using this catalyst in various systems with different heteroatoms to 

see how it affects isomerization. They have found that isomerization ready occurs in good yields, 81-89% 

(Scheme 3.5) in systems containing oxygen and nitrogen heteroatoms.63  

Scheme 3.5. Isomerization induced by RuClH(CO)(PPh3)3 as studied by Morgans et al.63 

 

 Since we suspected a ruthenium hydride was responsible for isomerization in our reactions, we 

set out to examine how RuClH(CO)(PPh3)3 might promote isomerization of the dialkene RCM precursor 

24, along with RCM products 25, 41b and 52 and compare the results to GII catalyzed reactions. When 

diene 24 was subjected to the isomerization conditions described by Morgan et al. using 

RuClH(CO)(PPh3)3, the results showed 100% conversion of the starting material. The major product was 

41d, which we also obtained in small amounts from some GII-catalyzed reactions (see Table 3.2), where 

both alkenes have isomerized (Figure 3.8). RCM product 25 was also subjected to the Ru-H isomerization 

catalyst which yielded 100% conversion to enol ether 41a (Figure 3.9). None of the isomeric 41b was 

detected by NMR analysis from this reaction. Furthermore, when 41b was subjected to the same 

conditions, isomerization to 41a was also observed in 100% conversion (Figure 3.9). This further 
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corroborates the idea that conversion between isomerization products is possible, and that 41a is 

favored which is in line with our relative energy calculations. 

 

Figure 3.8. NMR spectra of isolated product 41d (top) and the crude mixture of 24 subjected to 
RuClH(CO)(PPh3)3 (bottom). 
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Figure 3.9. NMR spectra of isolated product 41a (top) and the crude mixture of 25 subjected to 
RuClH(CO)(PPh3)3 (middle) and crude mixture of 41b subjected to Ru-H, although the NMR shown is in 
toluene-d8 (bottom) while the top two spectra are in CDCl3. 

 On the other hand, whenever 52, which contains a methyl group instead of the iodomethyl 

group in 25, was taken through the isomerization route with Ru-H, isomerization to 53a was observed 

but only in 30% conversion (Figure 3.10). Lübbe et al. have reported that certain organic halides can 

impact RCM and isomerization performance, however their rationale was based on the formation of a 

carbocation from the organic halide which we do not think plays a major role in our system (i.e. the 

resulting primary carbocation would be high energy).64 The reaction of 52 with RuClH(CO)(PPh3)3 was 

run for only 2 hours, like the previous reactions with 24, 25 and 41b. It is possible that with extended 

reaction time 100% conversion could be achieved. 
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Figure 3.10. NMR spectra of isolated 52 (top), 53a (middle) and the crude mixture when 52 was 
subjected to RuClH(CO)(PPh3)3 (bottom). 

 

 The results we obtained from experiments with RuClH(CO)(PPh3)3 provide support for a Ru-H 

based isomerization in our RCM reactions. However, there are some notable differences. For instance, 

RuClH(CO)(PPh3)3 isomerization of RCM product 25 was completely regioselective, giving exclusively 

enol ether 41a. RCM reactions, in contrast, gave a mixture of 41a and its regioisomer 41b as an 

approximately 2.5:1 mixture on average. One explanation for these differences is that the nature of the 

Ru-H species formed during the RCM reactions, while similar to RuClH(CO)(PPh3)3, is not identical and 

this GII-derived Ru-H is a less selective isomerization catalyst. 

 Certain additives such as benzoquinone are known to prevent isomerization, which is thought to 

quench any ruthenium hydrides that might form.65 Although the exact mechanism for the prevention of 
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olefin migration is still not known, it has been proposed that either the benzoquinone prevents metal 

hydride formation or its rapid reaction with the generated hydrides during decomposition. This is due to 

the 1,4-benzoquinone being reduced to 1,4-hydroquinone upon reacting with the ruthenium hydride, 

which was observed by Hong et al. by NMR.65 

To examine the impact of benzoquinone additive on our RCM, two reactions were set up. The 

control reaction involved a sequential treatment of 24 with GI, and without quenching the reaction, GII 

was added and allowed to react overnight (a small amount of crude was taken out of the reaction flask 

right before the addition of GII and used for NMR analysis). The results are shown in Figure 3.11, where 

the middle spectrum shows all of 24 was consumed and RCM product 25 was formed after treatment 

with GI. After the addition of GII, all of 25 was consumed and converted to RCM products 41a, 41b and 

41c (top spectrum). When compared to the standard reaction of 24 and GII, the isomerization products 

41a and 41b were formed in comparable ratios, and about 65% less of 41c was formed. The only 

isomerized product not detected was 41d which was expected since there was no more 24 that can 

undergo both double bonds isomerizing without ring closing. Interestingly though, 41c was still formed, 

though at a smaller quantity (~65%). It was concluded that 41c forms by only one alkene isomerizing in 

24 prior to ring closing, and when RCM happens, the resulting product is the ring-contracted 41c 

product. Its formation would indicate that ring opening of 25 is possible, followed by one olefin 

migrating and then ring closing to form the contracted ring 41c. For the second experiment, after 

treatment with GI, without quenching the reaction like before, benzoquinone and GII were added and 

allowed to react overnight. The NMR spectrum is shown in Figure 3.11, bottom spectrum, which shows 

that all with the addition of benzoquinone isomerization was ceased as only 25 was detected. This 

experiment would suggest that Ru-H are indeed responsible for isomerization since the addition of 

benzoquinone was able to prevent 25 from isomerizing.  
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Figure 3.11. NMR spectra of sequential treatment of 24 with GI (middle), followed by GII (top), or 
followed by GII and benzoquinone (bottom), after which no isomerization was observed. 

Overall, while these experiments provide support for ruthenium-hydride catalyzed isomerization 

during our RCM reactions; as mentioned, the regioslectivity of isomerization (i.e. ratio of regioisomers 

41a to 41b) was different between the RCM and isomerization reactions performed using 

RuClH(CO)(PPh3)3. While differences in the nature of the ruthenium hydrides (e.g. ancillary ligands) 

could be responsible for these differences, the possibility of a secondary ruthenium nanoparticle 

mediated isomerization that could occur during RCM that might result in the formation of regioisomers 

should also be considered. One method to test for nanoparticles is to detect them in solution using a 

laser via the Tyndall Effect. Since nanoparticle clusters can scatter light, shining a laser beam through a 

solution that contains nanoparticles will make the beam visible, and the absence of a visible beam would 

indicate a lack of nanoparticles present.66,67 Attempting this method, we took a red laser with a 
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wavelength of 650 nm and at 0 mins, 30 mins, 2 hours, and 24 hours, monitored a RCM reaction with 24 

and GI, GII, and Hov-GII. The result pictures are summarized in Table 3.5.  

Table 3.5. Laser test for nanoparticles using GI, GII, and Hov-GII for RCM of 24. 

 

 Interestingly, all the catalysts had a visible laser beam through the solution at all time 

increments, suggesting the presence of nanoparticles in all three catalysts. Even as 0 mins, the presence 

of RuNPs were detected, which is consistent with a previous report that also detected NPs in 

commercially bought catalysts.54 These observations indicate that RuNPs could be contributors to the 

isomerization we observed during our RCM reactions. However, since RuNPs were detected in GI as well 

as GII and Hov-GII yet isomerization was not observed in GI catalyzed RCM reactions, we believe the 

contribution of RuNPs is minor compared to other possible isomerization mechanisms. 

To explore the generality of the metathesis/isomerization we observed, we prepared 

compounds 64 and 65 representing both subunits of our RCM precursor 24, and subjected each to GII 

individually (Eq. 2 and 3, Scheme 3.6), as well as together in an attempted  cross metathesis (CM) (Eq. 1, 
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Scheme 3.6). When 64 was treated with GII, the proton NMR showed isomerization of the alkene to 

form an enol ether (Eq. 2, Scheme 3.6). This might explain why although other silyl-protected allyl 

alcohols (e.g. TBS) will undergo productive CM, no examples of successful CM reactions with 64 have 

been reported.68 On the other hand, whenever 65 was treated using the same conditions with GII, 

predominately starting material was obtained with trace amounts of other unidentified products (Eq. 3, 

Scheme 3.6). Interestingly though, whenever 64 and 65 were subjected to CM conditions, CM did not 

occur, rather isomerization of both substrates occurred to give products 66 and 67 (Eq. 1, Scheme 3.6). 

Figure 3.12 shows the presence of 66 in the attempted CM with characteristic peaks at 6.11, 5.03, 4.40 

and 3.94 ppm. Since there is another alkene peak present in the crude mixture at 5.13 ppm that does 

not belong to either 66 or 65, we concluded that it belongs to isomerized product 67. 

Scheme 3.6. Three reactions used to explore isomerization in cross metathesis. 
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Figure 3.12. NMR spectra of CM results of 64 and 65 with GII (top), 65 treated individually with GII 
(middle) and 23 treated with GII (bottom).  

One possible explanation for the lack of isomerization upon treatment of 65 with GII could be 

that no Ru-H isomerizing species were formed since 65 does not contain ether protons next to the 

alkene which can be more readily abstracted (see Scheme 3.2). However, since 64 does have ether 

protons in the allylic position that can be abstracted to form Ru-H, isomerization occurs to give 66.69 

When 64 and 65 were subjected to CM, 64 was able to induce Ru-H formation, resulting in its 

isomerization to 66, and the newly formed Ru-H proceeded to promote the isomerization of 65 to 67. 

Now with two di-substituted alkenes present in the reaction mixture, metathesis becomes challenging 

and no CM was observed. Thus, the importance of the heteroatom for isomerization was established as 

it promotes proton abstraction to form Ru-H, while the attempted CM shows that isomerization is not 

specific to just cyclic structures. A study done O’Neil and Cummins further supports that CM can occur 



56 
 

from compounds of type 65 with GII in excellent yields as long as there is no heteroatom present to 

induce proton abstraction (Scheme 3.7).70 

Scheme 3.7. Successful CM in 98% yield using GII. 

 

 We also looked at whether isomerization in different directions can occur in acyclic systems 

when treated with either GII or RuClH(CO)(PPh3)3. Cis and trans silyl ethers 70-73 containing either a 

tert-butyldiphenyl- (TBDPS) or triethyl- (TES) silane groups were prepared as outlined in Scheme 3.8. 

These systems contain an alkene that neighbors ether protons which can be abstracted to form Ru-H 

and foster isomerization. They also contain a methylene group on the other side of the alkene providing 

the opportunity to isomerize in a different direction without being too sterically hindered. Given these 

parameters, we expected that similar to the ring structures, we would see isomerization occurring in 

both directions after treatment with GII and only to the enol ether with RuClH(CO)(PPh3)3.  

Scheme 3.8. General synthesis of acyclic silanes that were then treated with GII and RuClH(CO)(PPh3)3. 
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Figure 3.13. Structures of 4 different acyclic products synthesized and treated with GII and 
RuClH(CO)(PPh3)3. 

After treating the 4 different acyclic compounds (Figure 3.13) with GII or with RuClH(CO)(PPh3)3, 

there was no difference in the trends observed between substrates containing either a TBDPS or TES 

groups (Table 3.6). Whenever trans isomers 70 and 72 were treated with GII, in both cases, 

isomerization to the enol ether occurred, however, not at 100% conversion as some of the starting 

material was still detected. On the other hand, treatment using RuClH(CO)(PPh3)3 resulted in 100% 

conversion to the corresponding enol ether as a 2:1 ratio of cis:trans isomers 75:74 or 76:77. In fact, the 

2:1 trans:cis ratio was consistent for all reactions of 70, 71, 72, and 73 using RuClH(CO)(PPh3)3 and the 

NMR spectra were very clean with little to none other byproduct formation. Distinction between the cis 

and trans isomers was achieved by looking at coupling constants of the two peaks at 6.26 and 6.19 ppm 

(see Figure 3.14 for example). The peak at 6.26 ppm has a coupling constant of 11.9 Hz which is 

characteristic to trans coupling and the peak at 6.19 ppm has a much smaller coupling constant of 5.8 Hz 

which we have assigned as the cis isomer. Somewhat surprisingly, using GII to induce isomerization only 

produced the enol ether as detectable by NMR, and did not result in formation of regioisomer 78 
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(compound 78 was synthesized separately and used as a reference NMR, Figure 3.14). Another 

interesting result was obtained upon treatment of 73 with Grubbs II. Synthesizing 73 was not 100% 

selective for the cis isomer and therefore a mixture of cis and trans isomers (72 and 73) was taken into 

the reaction with GII. The only starting material detected corresponded to the trans isomer 72, 

indicating that the cis isomer is more prone to isomerization. This would also be consistent with the 

result that treatment of 70 and 72, both of which are trans alkenes, with GII did not result in full 

consumption as 53% and 61% of the starting material was observed by NMR, respectively. On the other 

hand, the cis compounds (30 and 32) did give 100% conversion to isomerized products upon treatment 

with GII in this case. 

Table 3.6. Summary of results when acyclic substrates were treated with GII and RuClH(CO)(PPh3)3 as 
determined by NMR integration. 

Silane Catalyst Starting material Cis isomer (%) Trans isomer (%) 

70 Grubbs II 53 12 34 
70 RuClH(CO)(PPh3)3 0 70 30 
71 Grubbs II 0 37 63 
71 RuClH(CO)(PPh3)3 0 69 31 
72 Grubbs II 61 16 23 
72 RuClH(CO)(PPh3)3 0 68 32 
73 Grubbs II 30a 23 46 
73 RuClH(CO)(PPh3)3 0 68 32 
     

Notes for table: a73 staring material was present as a mixture of cis and trans, the starting material 
detected corresponds to the trans isomer, suggesting that all of the cis isomer was consumed. 
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Figure 3.14.  NMR spectra of 71 (top, purple trace) was treated with RuClH(CO)(PPh3)3 (blue trace), GII 
(green trace), and 78 (bottom, red trace) used as a reference NMR. 

Thus, these conclusions provide some insight why our RCM product 25 behaved in such a characteristic 

way. The fact that it contains a cis alkene makes it more prone to isomerization, which can explain why 

we have seen 100% isomerization with the treatment of GII. Also, RuClH(CO)(PPh3)3 is a more selective 

isomerizing catalyst, which was confirmed by the treatment of 70, 71, 72, and 73 with this preformed 

Ru-H and resulting in isomerization exclusively to the enol ether. This selective isomerization was also 

observed with 25 which isomerized selectively to enol ether 41b. 

 

 

 

Cis Trans 
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CHAPTER 4. APPLICATIONS  

4.1. Psymberin fragment synthesis 

 Given that we were able to successfully synthesize functionalized medium ring silyl ethers, we 

looked for opportunities to make use of these compounds as synthetic intermediates and put such 

products into context. One such application was using 25 to synthesize psymberin, which is a rather 

fascinating compound with a lot of history. Psymberin belongs to the pederin family and pederin was 

first isolated in 1919 from Paederus fescipes by Netolitzky, which is a Japanese beetle with toxic effects 

that can lead to skin irritation.71 Although the Chinese have been using the cytotoxic extracts from these 

beetles as early as 739 AD to cure blains and lichens,72 it was not until recently that its medical potential 

was explored further with much enthusiasm. Whenever these beetles are harmed or injured, they 

release the toxic extract pederin that blocks mitosis even in small concentrations (about 1 ng/mL).73 

Though there can be many complications with exposure to this toxin, pederin shows cytotoxicity against 

various tumor cell lines in vitro and in vivo.74 Further studies on this compound showed that pederin is 

not produced by the beetles themselves, but by symbiotic bacteria living on the beetles.75, 76 Another 

member of the pederin family is psymberin, which was discovered in 2004 from the sponges 

Psammocinia sp. and Ircinia ramosa by Crews and Pettit, respectively77,78 When psymberin was tested 

against 60 different human cell lines, it showed  impressively high cytotoxicity values for certain cancers 

like melanoma, breast and colon (LC50<2.5 × 10-9 M), while leukemia cell lines are relatively unaffected 

(LC50<2.5 × 10-5 M) with a difference at the 104 scale.79 With this great potential antitumor activity, 

psymberin research became of much interest, and since it is not sustainable to extract the toxin from 

sponges, synthetic methods have been explored. One possible route is outlined in Figure 4.1 which was 

reported by Jiang et al.80 
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Figure 4.1. Retreosynthesis of psymberin as reported by Jiang et al.80 

The Jiang synthesis of psymberin involves coupling fragments 79, 80, and 81. We set out to 

investigate a synthesis of key fragment 79 from our RCM product 25 (Scheme 4.1). Compound 25 was 

first subjected to a Sharpless asymmetric dihydroxylation reaction (AD) using AD-mix-β.  However, with 

the dihydroxylation reaction, we ran into a few challenges. The first being that at 0 °C, the reaction 

would not initiate despite running the reaction for 72 hours, only starting material was obtained. Even 

with the addition of methanesulfonamide, which has been previously shown by Junttila to accelerate 

the AD of aliphatic olefins regardless if they were terminal or nonterminal alkenes,81 the AD failed to 

proceed. However, running the reaction at room temperature without the methanesulfonamide we 

were able to get the dihydoxylation product 82 at 56% yield. Based on Sharpless’ model, we expected to 

obtain 82 enriched as the 2R,3S-stereoisomer which would map onto psymberin.  
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Scheme 4.1. Synthesis of fragment 79 from the RCM product 6.  

 

After 82 was obtained, a two-step elimination of iodine yielded 84 in (74%) for the two steps. 

The next step involved making an acetal to protect the hydroxyl groups, which gave 85 in 82% yield.82 

Finally, the silicon group was removed with tetrabutylammonium fluoride trihydrate (TBAF·3H2O) which 

proceeded smoothly to give 86 in 59% yield. The NMR obtained for 86 matched that reported in the 

literature by Jiang and all further steps to obtain psymberin fragment 79 can be followed by the 

procedures listed by Jiang.  

 Unfortunately, we learned that there was little to no enatioselectivity for the AD. This was 

determined by a comparison of optical rotation data of 86, which showed [α]D= -0.52 (DCM, c = 0.39) 

while Jiang et al. reported [α]D= +29.0 (EtOAc, c = 0.224). This is perhaps not surprising since it is known 

that cis-alkenes are not good substrates for AD. Disubstituted cis alkenes are generally lower yielding 

(yields not exceeding 35%) and give low enantiomeric excess.83,84 The selectivity becomes even more 

difficult when the two substituents are similar in size since the prochiral asymmetry begins to vanish and 

the enantiofacial selection becomes more difficult. However, it is possible that different ligands for AD 
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catalysis could increase the enantioselectivity of this reaction and should be investigated further.85 

Nonetheless, overall yields for our sequence were good. If the dihydroxylation (or a similar reaction) 

could be made more enantioselective we think it represents an efficient method for synthesizing this 

fragment of psymberin. 

4.2. Sugar derivative synthesis  

 We also thought our chemistry could be used to synthesize the sugar derivative compound 88 

(3-deoxy-D-fructose), another product that has biological importance. Compound 88 has been found in 

mammalian blood and urine and higher concentrations have been found in diabetics. It is a degradation 

product of 89 (3-deoxyglucosone), which is an intermediate in the nonenzymatic polymerization and 

decomposition of proteins. In mammals, a significant amount of 89 is reduced to 88 to improve its 

stability, thus making it less damaging to the tissue.86 The synthetic route to 88, and the degradation in 

the mammalian body by 2-oxoaldehyde reductase is outlined in Scheme 4.2.  

Scheme 4.2. Synthesis of 3-deoxy-D-fructose from acetal 85 and the degradation of 3-deoxyglucosone 
89.  

 

 By taking the previously prepared acetal 85 (Scheme 4.1) and reacting with the oxidizing agent 

meta-chloroperoxybenzoic acid (mCBPA), potassium difluoride in dimethylformamide, the silicon-carbon 

bond is broken and the diphenylsilane group cleaves to yield 87 in 44% yield. Different conditions for 

this oxidative cleavage were screened (e.g. no KHF2, used acetonitrile as solvent, used mCBPA followed 

by TBAF·3H2O), however we found the original conditions proposed by Tamao in 1982 proved to be 
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most effective.87 Though the yield was not the best, further optimizations might be possible given the 

continued interest in this reaction.88  

4.3. Conclusions and outlook 

 With the many observations we have made concerning RCM and isomerization, there are a few 

key take-aways. First, GII and Hov-GII are more prone to inducing isomerization compared to GI, and this 

could be due to catalyst decomposition during metathesis with the formation of Ru-Hs and facilitated by 

the NHC ligands present on the GII and Hov-GII catalysts but not GI. Other studies have shown that Ru-

Hs are active isomerization catalysts our experiments are consistent with these results. Another 

explanation could be the formation of RuNPs during metathesis, although further investigation is still 

needed. For instance, conducting a mercury poising experiment that inhibits NP catalysis could provide 

interesting data if it does decease the extent of isomerization, as it would validate the theory of NP-

induced isomerization. However, the presence of NPs in reactions with GI where no isomerization was 

observed would point to a minor role of NPs for inducing isomerization. The last explanation involves 

the abstraction of allylic protons by the catalyst which can lead to an isomerization pathway. Since the 

NHC ligand makes the Ru metal more basic, GII and Hov-GII are more prone to undergoing isomerization 

via abstraction versus GI which does not contain a NHC ligand. 

 Since conversion between different isomerization products is possible, this equilibrium can be 

controlled by time and temperature. Decreasing the temperature prevents isomerization from occurring 

while the increase in temperature has shown to increase isomerization to the most stable product. Also, 

if the reaction time is decreased (e.g. <1 hr), not enough time is given for the reaction to undergo 

isomerization so non-isomerized RCM product can be obtained. Furthermore, steric hinderance can 

have a significant impact on determining whether isomerization occurs. Different substituents like 

methyl, phenyl, hexyl and iodomethyl groups were studied and each showed that isomerization to a tri-

substituted alkene does not occur presumably due to hindering allylic hydrogen abstraction. Also, the 
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oxygen heteroatom is essential for isomerization since an oxygen-free system did not undergo 

isomerization. Increasing the ring size resulted in an alkene that is further way from oxygen influence 

and isomerization was not detected for that compound either. Lastly, we looked at the generality of 

isomerization and whether acyclic compounds have similar trends as observed for ring-structures. From 

those studies, we determined that cis alkenes are more prone to isomerization than trans alkenes, 

although isomerization in both directions was not observed in the same way 8-membered rings were. 

 Future work could involve investigating RuNP effects and how those differ between GI, GII and 

Hov-HII. Also, by conducting deuterium labeling experiments, it may be possible to distinguish between 

the different isomerization pathways by monitoring where deuterium is incorporated into the final 

products. We also explored the synthetic utility of our non-isomerized RCM product in synthesizing a 

pysmberin fragment as well as a sugar derivative, although enantioselectivity of the AD remains to be 

optimized. Given the multiple functional groups present in our RCM products (e.g. alkene, enol ether, 

alkyl halide, C-Si bond), we expect these compounds can serve as useful intermediates to access a 

variety of important structures which remains to be explored.  
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CHAPTER 5. EXPERIMENTALS 

General procedure A- iodine rearrangement 

 

Into a flame dried flask under nitrogen, diallyldiphenyl silane (1 equiv.) and dry dichloromethane (0.1 M) 
was added, followed by iodine while stirring (1 equiv.). The solution was stirred at room temperature 
overnight, then cooled to 0°C. Triethylamine was added (3.0 equiv.) followed by the alcohol (2 equiv.) 
and the solution was allowed to warm to room temperature overnight while stirring. The reaction was 
quenched with deionized water, extracted with DCM three times, dried over MgSO4, and concentrated 
by rotary evaporation. The crude product was purified by silica gel chromatography using 10:1 
hexanes:ethyl acetate solvent system to yield product as an oil. 
 
 
General procedure B- ring closing metathesis 
 

 
Into a flame dried flask under nitrogen, the substrate (1.0 equiv.)  was added, followed by dry 
dichloromethane (0.02 M). The solution was degassed three times by freezing in liquid nitrogen, 
pumping with vacuum, and thawing under nitrogen. While stirring, the Grubbs catalyst was added (5-10 
mol %) and allowed to stir at room temperature overnight. The reaction was concentrated by rotary 
evaporation, followed by column chromatography with silica gel using 2:1 hexanes:dichloromethane 
solvent system. 
 
 
General procedure C- isomerization using Ru-H catalyst 
 

 
 
The following reaction was performed in a dry NMR tube. The substrate (1.0 equiv. ) was added to dry 
NMR tube under a nitrogen atmosphere. In a separate flame dried flask under nitrogen, dry toluene-d8 
or benzene-d6 (0.2 M) was added and the solvent was degassed three times by freezing in liquid 
nitrogen, pumping with vacuum, and thawing under nitrogen. The degassed solvent was then added via 
syringe to the NMR tube containing the substrate under nitrogen, followed by RuClH(CO)(PPh3)3 catalyst 
(5 mol %). The NMR tube was capped and sealed using parafilm and placed into preheated sand at 100° 
C and allowed to heat for 2 hours. NMR data was collected directly from this sample. 
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(allyloxy)(2-(iodomethyl)pent-4-en-1-yl)diphenylsilane (24) 
 

  

Following general procedure A, the diallyl product was obtained by reacting diallyldiphenyl silane (5.0 

mL, 19 mmol) with iodine (4.8002 g, 18.913 mmol) in  dichloromethane (190 mL), followed by 

triethylamine (7.9 mL, 57 mmol) and allyl alcohol (26 mL, 38 mmol). The crude product was purified by 

chromatography on silica (10:1 hexanes:ethyl acetate, Rf =0.5 ) to yield 24 (7.8387 g, 93%) as an oil. 

1H NMR (500 MHz, CDCl3) δ 7.61 (dq, J = 6.4, 1.2 Hz, 4H), 7.42 (m, 6H), 5.82 (ddt, J = 17.1, 10.2, 6.8 Hz, 

1H), 5.63 (ddt, J = 17.2, 10.2, 7.2 Hz, 1H), 5.05 (m, 3H), 3.74 (m, 2H), 3.29 (h, J = 5.1 Hz, 2H), 2.33 (qt, J = 

6.7, 1.4 Hz, 2H), 2.17 (m, 1H), 2.10 (m, 1H), 1.53 (m, 1H), 1.27 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 132.7, 131.6, 130.7, 126.2, 124.1, 113.5, 110.7, 60.6, 37.3, 30.5, 15.7. 

 

(But-3-en-1-yloxy)(2-(iodomethyl)pent-4-en-1-yl)diphenylsilane (60) 

 

Following general procedure A, the diallyl product was obtained by reacting diallyldiphenyl silane (0.5 
mL, 1.9 mmol) with iodine (0.48 g, 1.89 mmol)in dichloromethane (19 mL), followed by triethylamine 
(0.80 mL, 5.67 mmol) and 3-buten-1-ol (0.27 g, 3.78 mmol). The crude product was purified by 
chromatography on silica (20:1 hexanes:ethyl acetate, Rf = 0.7) to yield 60 (0.63 g, 72%) as an oil. 

 
1H NMR (500 MHz, CDCl3) δ 7.58 (m, 4H), 7.40 (m, 6H), 5.80 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H), 5.60 (ddt, J = 
17.2, 10.2, 7.2 Hz, 1H), 3.72 (m, 2H), 3.27 (m, 2H), 2.31 (qt, J = 6.7, 1.4 Hz, 2H), 2.15 (m, 1H), 2.07 (m, 
1H), 1.50 (m, 1H), 1.23 (m, 2H). 
 
13C NMR (126 MHz, CDCl3) δ 135.6, 135.2, 134.7, 134.7, 134.7, 134.7, 130.0, 130.0, 127.9, 127.8, 117.3, 
116.6, 63.2, 41.3, 37.1, 34.5, 19.7, 19.5. 
 

 

1-phenylprop-2-en-1-ol 
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1-phenylprop-2-en-1-ol was prepared by adding benzaldehyde (0.96 mL, 9.4 mmol) into a flame dried 
flask under nitrogen, followed by tetrahydrofuran (47 mL) and the solution was cooled to 0 °C in an ice 
bath. Vinyl magnesium bromide, 1.0 M solution in THF, (11.3 mL, 11.3 mmol), was added dropwise and 
the solution was stirred at 0°C for one hour and then allowed to warm to room temperature for 3-4 
hours while stirring. The reaction was quenched using saturated ammonium chloride, extracted with 
ethyl acetate three times, followed by washing with brine and drying over MgSO4 and concentrating by 
rotary evaporation. The crude alcohol was purified by silica gel chromatography using 4:1 hexanes:ethyl 
acetate solvent to yield product in 39% yield (0.4970 g) as an orange oil. 
 

1H NMR (500 MHz, CDCl3) δ 7.35 (m, 5H), 6.06 (ddd, J = 17.1, 10.2, 6.0 Hz, 1H), 5.36 (dt, J = 17.1, 1.4 Hz, 

1H), 5.21 (m, 2H). NMR matched previously reported data.89 

 

(2-(iodomethyl)pent-4-en-1-yl)diphenyl((1-phenylallyl)oxy)silane (54) 

 

  
Following general procedure A, the diallyl product was obtained by reacting diallyldiphenyl silane 
(0.2496 g, 0.9439 mmol) with iodine (0.2407 g, 0.9483 mmol) in dichloromethane (9.5 mL), followed by 
triethylamine (0.39 mL, 2.8 mmol) and the previously prepared 1-phenylprop-2-en-1-ol alcohol (0.1990 
g, 1.476 mmol). The crude product was purified by chromatography on silica (10:1 hexanes:ethyl 
acetate, Rf = 0.6) to yield product in 70% yield (0.3458 g) after purification. 
 
1H NMR (500 MHz, CDCl3) δ 7.42 (m, 10H), 5.94 (m, 1H), 5.50 (m, 1H), 5.18 (m, 2H), 5.02 (m, 2H), 3.15 

(m, 2H), 2.00 (m, 2H), 1.44 (m, 1H), 1.21 (m, 2H).  

13C NMR (126 MHz, CDCl3) δ 135.6, 135.5, 134.8, 130.0, 128.3, 127.9, 127.9, 127.8, 127.4, 126.4, 126.4, 

117.3, 117.2, 114.2, 114.2, 41.3, 41.0, 34.3, 34.2, 20.2, 20.1, 19.9 19.8. 

 
 
1-octene-3-ol 

 
 
1-octene-3-ol was prepared by adding hexanal (1.23 mL, 9.98 mmol) into a flame dried flask under 
nitrogen, followed by tetrahydrofuran (48 mL) and the solution was cooled to 0 °C in an ice bath. Vinyl 
magnesium bromide, 1.0 M solution in THF, (12.0 mL, 12.0 mmol), was added dropwise and the solution 
was stirred at 0°C for one hour and then allowed to warm to room temperature for 3-4 hours while 
stirring. The reaction was quenched using saturated ammonium chloride, extracted with ethyl acetate 
three times, followed by washing with brine and drying over MgSO4 and concentrating by rotary 
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evaporation. The crude alcohol was purified by silica gel chromatography using 4:1 hexanes:ethyl 
acetate solvent (Rf= 0.4)  to yield product in 39% yield (0.5042 g) as a yellow oil. 
 
1H NMR (500 MHz, CDCl3) δ 5.869 (ddd, J = 16.9, 10.4, 6.2 Hz, 1H), 5.218 (dt, J = 17.1, 1.4 Hz, 1H), 5.100 

(dt, J = 10.4, 1.4 Hz, 1H), 4.097 (m, 1H), 1.412 (m, 8H), 0.889 (t, J = 6.9 Hz, 3H). NMR data matches that 

reported previously. 90 

 
(2-(iodomethyl)pent-4-en-1-yl)(non-1-en-3-yloxy)diphenylsilane (56) 

 
 
Following general procedure A, the diallyl product was obtained by reacting diallyldiphenyl silane 
(0.2516 g, 0.9514 mmol) with iodine (0.2406 g, 0.9480 mmol) in dichloromethane (9.5 mL), followed by 
triethylamine (0.39 mL, 2.8 mmol) and the previously prepared 1-octene-3-ol (0.2426g, 1.892 mmol) to 
yield product at 76% yield (0.3831 g) as an oil after purification with silica gel chromatography (10:1 
hexanes: ethyl acetate, Rf=0.5).  
 
1H NMR (500 MHz, CDCl3) δ 7.61 (dtd, J = 9.5, 4.7, 2.4 Hz, 4H), 7.41 (m, 6H), 5.82 (dddd, J = 17.2, 10.4, 

6.8, 3.6 Hz, 1H), 5.61 (ddt, J = 17.2, 10.2, 7.2 Hz, 1H), 5.03 (m, 4H), 4.14 (qd, J = 6.7, 2.5 Hz, 1H), 3.28 

(ddd, J = 9.5, 7.0, 4.1 Hz, 1H), 3.20 (dt, J = 9.5, 5.5 Hz, 1H), 2.14 (m, 1H), 2.06 (m, 1H), 1.53 (m, 1H), 1.45 

(m, 1H), 1.24 (m, 10H), 0.85 (td, J = 7.3, 1.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 140.9, 140.9, 135.7, 135.6, 135.2, 135.0, 134.9, 134.5, 129.9, 128.0, 127.8, 
127.8, 127.6, 117.3, 114.7, 75.1, 41.4, 41.1, 37.7, 34.4, 31.7, 24.5, 22.6, 20.1, 19.9, 14.0. 
 

Fluoro(2-methylpent-4-en-1-yl)diphenylsilane (50). 

 

Into a flame dried flask under nitrogen, diallyldiphenyl silane (0.2075 g, 0.7843 mmol) and dry 

dichloromethane (1.5 M, 0.50 mL). Into a separate flame dried flask under nitrogen, BF3·2AcOH (0.1480 

g, 0.7876 mmol) and dichloromethane (1.0 M, 0.76 mL) were added to make a diluted solution, which 

was added slowly over the course of 10 mins to the flask containing the silane. The solution was stirred 

at room temperature for 4.5 hours. Reaction was quenched using DI water, extracting with DCM three 

times, dried over MgSO4, and concentrated by rotary evaporation to give product in 99% yield as an oil. 

No purification followed. 

 



70 
 

1H NMR (500 MHz, CDCl3) δ 7.53 (m, 10H), 5.73 (ddtd, J = 17.2, 10.4, 7.0, 2.6 Hz, 1H), 4.98 (m, 2H), 2.08 
(m, 1H), 2.02 (m, 1H), 1.89 (dttd, J = 18.2, 9.0, 5.0, 4.0, 2.1 Hz, 1H), 1.37 (dddd, J = 18.5, 11.0, 5.6, 3.1 Hz, 
1H), 1.11 (dddd, J = 15.6, 9.1, 6.6, 2.9 Hz, 1H), 0.96 (dd, J = 6.8, 2.7 Hz, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 137.1, 134.5, 134.0, 132.1, 130.5, 128.3, 128.0, 116.2, 44.5, 28.5, 22.5, 21.9, 

21.8. 

 

(allyloxy)(2-methylpent-4-en-1-yl)diphenylsilane (51) 
 

 
Into a flame dried flask under nitrogen, allyl alcohol (0.02 mL, 0.25 mmol) and tetrahydrofuran (0.88 mL) 
were added and cooled to 0 °C. Potassium bis(trimethylsilyl)amide (KHMDS) (0.50 mL, 0.5 M solution in 
toluene) was added and then stirred at 0 °C for 30 mins, after which the fluorosilane (0.0496 g, 0.1744 
mmol) was added. The solution was allowed to warm to room temperature overnight. The reaction was 
quenched with deionized water, extracted with methyl tert-butyl ether three times, dried over MgSO4, 
and concentrated by rotary evaporation. The crude mixture was purified with silica gel column 
chromatographyusing 10:1 hexanes: ethyl acetate solvent system (Rf=0.3) to yield the product in 83% 
yield (0.0562 g) as an oil. 
 
 
1H NMR (500 MHz, CDCl3) δ 7.62 (dt, J = 8.0, 1.7 Hz, 4H), 7.41 (m, 6H), 5.94 (ddt, J = 17.1, 10.4, 4.6 Hz, 
1H), 5.73 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.35 (dq, J = 17.0, 1.9 Hz, 1H), 5.13 (dq, J = 10.4, 1.7 Hz, 1H), 
4.97 (m, 2H), 4.23 (dt, J = 4.6, 1.7 Hz, 2H), 2.08 (m, 1H), 1.97 (dtt, J = 13.6, 6.9, 1.1 Hz, 1H), 1.82 (m, 1H), 
1.34 (dd, J = 15.2, 5.0 Hz, 1H), 1.08 (dd, J = 15.2, 8.7 Hz, 1H), 0.93 (d, J = 6.7 Hz, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 137.5, 136.8, 135.4, 135.3, 134.7, 129.8, 127.8, 115.9, 114.4, 64.3, 44.7, 
28.7, 22.6, 21.5. 
 

 
allyl(2-methylpent-4-en-1-yl)diphenylsilane (62) 
 

 
 
Into a flame dried flask under nitrogen, the fluorosilane (0.0551 g, 0.1937 mmol) and pentanes (0.35 mL) 
were added and cooled to -78 °C. Allylmagnesium bromide (0.21 mL, 1.0 M solution in ether) was added 
dropwise and then stirred at 0 °C for 2 hours, after which it was allowed to warm to room temperature 
overnight. The reaction mixture was diluted in hexanes and then quenched in ammonium chloride and 
extracted with hexanes three times, dried over MgSO4, and concentrated by rotary evaporation. The 
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crude mixture was purified by silica gel column chromatography using 10:1 hexanes:MTBE solvent 
system (Rf=0.5) to yield the product in 68% yield (0.0405 g) as an oil. 

 
1H NMR (500 MHz, CDCl3) δ 7.537 (m, 4H), 7.391 (m, 6H), 5.772 (m, 2H), 4.933 (m, 4H), 2.159 (ddd, J = 

6.7, 3.0, 1.5 Hz, 2H), 2.031 (dddt, J = 12.9, 7.1, 5.7, 1.3 Hz, 1H), 1.926 (m, 1H), 1.781 (dddd, J = 13.9, 12.3, 

7.1, 4.3 Hz, 1H), 1.295 (dd, J = 15.0, 5.0 Hz, 1H), 1.012 (m, 1H), 0.850 (d, J = 6.6 Hz, 2H). 

13C NMR (126 MHz, CDCl3) δ 137.44, 135.00, 134.09, 133.73, 129.47, 129.22, 127.74, 115.89, 114.73, 

114.49, 44.91, 29.14, 22.76, 21.31, 20.02, 19.86. 

 
(Z)-4-(iodomethyl)-2,2-diphenyl-3,4,5,6-tetrahydro-2H-1,2-oxasilocine 

 
 
Following general procedure B, diallyl silane 24 (3.0028 g, 6.6996 mmol) was added to dichloromethane 
(335 mL), degassed, followed by the addition of first-generation Grubbs catalyst (0.2752 g, 0.3344 
mmol). The product was obtained at 74% (2.0960 g) yield as an oil after purification on silica gel 
chromatography using 2:1 hexanes:DCM (Rf=0.3). 
 
1H NMR (500 MHz, CDCl3) δ 7.61 (m, 2H), 7.55 (m, 2H), 7.38 (m, 6H), 5.79 (dt, J = 11.2, 4.7 Hz, 1H), 5.60 
(dddt, J = 11.3, 9.8, 8.2, 1.6 Hz, 1H), 4.55 (dd, J = 15.5, 4.5 Hz, 1H), 4.48 (dd, J = 15.6, 5.2 Hz, 1H), 3.18 (d, 
J = 7.7 Hz, 2H), 2.84 (ddd, J = 13.7, 9.6, 4.3 Hz, 1H), 2.39 (ddd, J = 13.5, 8.3, 5.5 Hz, 1H), 2.17 (ddtd, J = 
11.3, 9.7, 7.1, 4.3 Hz, 1H), 1.58 (ddd, J = 14.9, 4.3, 1.0 Hz, 1H), 1.23 (dd, J = 14.9, 10.9 Hz, 1H). 
 
13C NMR (126 MHz, CDCl3) δ 135.7, 134.9, 134.1, 131.8, 130.0, 128.0, 127.3, 62.2, 37.4, 31.8, 19.4, 16.9. 
 

 
(Z)-4-(iodomethyl)-2,2-diphenyl-3,4,5,6-tetrahydro-2H-1,2-oxasilocine (41a) 

 
 
Following general procedure B, diallyl silane 24 (1.9999 g, 4.4601 mmol) ) was added to 
dichloromethane (323 mL), degassed, followed by the addition of second-generation Grubbs catalyst 
(0.1898 g, 0.2236 mmol). The product was obtained at 56% (1.0413 g) yield as an oil after purification on 
silica gel chromatography using 2:1 hexanes:DCM (Rf=0.5). 
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1H NMR (500 MHz, CDCl3) δ 7.70 (dd, J = 7.6, 1.6 Hz, 2H), 7.60 (m, 2H), 6.49 (d, J = 5.8 Hz, 1H), 4.84 (ddd, 
J = 9.8, 7.3, 5.8 Hz, 1H), 3.30 (dd, J = 9.5, 5.6 Hz, 1H), 3.25 (dd, J = 9.5, 5.3 Hz, 1H), 2.56 (tdd, J = 13.3, 9.8, 
3.7 Hz, 1H), 2.05 (m, 1H), 1.94 (m, 1H), 1.77 (tt, J = 12.9, 3.7 Hz, 1H), 1.35 (m, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 141.4, 134.5, 133.9, 130.2, 130.2, 128.2, 127.9, 112.8, 36.1, 33.7, 21.5, 21.2, 
20.9. 

 

(Z)-4-(iodomethyl)-2,2-diphenyl-3,4,7,8-tetrahydro-2H-1,2-oxasilocine (41b) 

 
 
Following general procedure B, diallyl silane 24 (1.9999 g, 4.4601 mmol) ) was added to 
dichloromethane (323 mL), degassed, followed by the addition of second-generation Grubbs catalyst 
(0.1898 g, 0.2236 mmol). The product was obtained at 12% (0.2242 g) yield after purification on silica gel 
chromatography using 2:1 hexanes:DCM (Rf=0.3).  
 
1H NMR (500 MHz, CDCl3) δ 7.60 (m, 2H), 7.51 (m, 2H), 7.37 (m, 6H), 5.57 (m, 2H), 4.15 (dt, J = 11.0, 3.4 
Hz, 1H), 3.71 (ddd, J = 12.6, 11.1, 1.8 Hz, 1H), 3.34 (dd, J = 9.5, 5.3 Hz, 1H), 3.28 (dd, J = 9.5, 7.6 Hz, 1H), 
3.15 (m, 1H), 2.52 (m, 1H), 2.03 (m, 1H), 1.61 (dd, J = 14.7, 2.6 Hz, 1H), 1.43 (dd, J = 14.7, 12.7 Hz, 1H). 
 
13C NMR (126 MHz, CDCl3) δ 137.2, 134.8, 134.0, 129.8, 129.7, 128.1, 127.8, 127.4, 64.7, 35.9, 31.6, 25.5, 
16.7. 
 

((Z)-2-(iodomethyl)pent-3-en-1-yl)diphenyl(((Z)-prop-1-en-1-yl)oxy)silane (41d) 

 

 
 
Following general procedure B, diallyl silane 24 (1.9999 g, 4.4601 mmol) ) was added to 
dichloromethane (323 mL), degassed, followed by the addition of second-generation Grubbs catalyst 
(0.1898 g, 0.2236 mmol). The product was obtained at 11% (0.2143 g) yield after purification on silica gel 
chromatography using 2:1 hexanes:DCM (Rf=0.6).  

 
1H NMR (500 MHz, CDCl3) δ 7.58 (ddt, J = 8.0, 4.2, 1.6 Hz, 5H), 7.40 (m, 7H), 6.18 (dp, J = 5.5, 1.6 Hz, 1H), 
5.29 (m, 1H), 5.13 (m, 1H), 4.55 (p, J = 6.6 Hz, 1H), 3.20 (m, 2H), 2.42 (m, 1H), 1.68 (dd, J = 6.7, 1.8 Hz, 
3H), 1.49 (dd, J = 6.4, 1.6 Hz, 3H). 
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13C NMR (126 MHz, CDCl3) δ 137.2, 134.8, 134.0, 129.8, 129.7, 128.1, 127.8, 127.4, 64.7, 35.9, 31.6, 25.5, 
16.7. 
 

(Z)-4-methyl-2,2-diphenyl-3,4,5,8-tetrahydro-2H-1,2-oxasilocine (52) 

 

 
 
Following general procedure B, diallyl silane 51 (0.0524 g, 0.1625 mmol) was added to dichloromethane 
(7.8 mL), degassed, followed by the addition of first-generation Grubbs catalyst (0.0092 g, 0.0112 
mmol). The product was obtained at 84% (0.0402 g) yield as an oil after purification on silica gel 
chromatography using 10:1 hexanes:ethyl acetate (Rf=0.5).  
 
1H NMR (500 MHz, CDCl3) δ 7.65 (dd, J = 7.4, 1.8 Hz, 2H), 7.57 (dd, J = 7.6, 1.5 Hz, 2H), 7.39 (dddd, J = 
18.6, 9.4, 4.4, 2.8 Hz, 6H), 5.79 (dt, J = 10.7, 5.2 Hz, 1H), 5.71 (dt, J = 11.1, 8.6 Hz, 1H), 4.52 (qd, J = 14.8, 
5.1 Hz, 2H), 2.67 (m, 1H), 2.13 (m, 2H), 1.41 (dd, J = 15.2, 4.0 Hz, 1H), 1.20 (dd, J = 15.2, 10.1 Hz, 1H), 
1.07 (d, J = 6.3 Hz, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 134.4, 134.2, 134.0, 130.6, 130.5, 130.0, 129.6, 129.6, 128.1, 128.1, 127.9, 
127.8, 116.3, 61.6, 34.6, 29.5, 25.2, 21.6. 
 

  
(Z)-4-methyl-2,2-diphenyl-3,4,5,6-tetrahydro-2H-1,2-oxasilocine (53a) 
 

 
 
Following general procedure B, diallyl silane 51 (0.0719 g, 0.0.2230 mmol) was added to 
dichloromethane (10.9 mL), degassed, followed by the addition of second-generation Grubbs catalyst 
(0.0099 g, 0.0117 mmol) and heated at 45 °C overnight. The product was obtained at 74% (0.0486 g) 
yield as an oil after purification on silica gel chromatography using 2:1 hexanes:DCM (Rf=0.4).  
 
 
1H NMR (500 MHz, CDCl3) δ 7.66 (m, 2H), 7.57 (dt, J = 6.5, 1.6 Hz, 2H), 7.38 (m, 6H), 6.44 (d, J = 5.8 Hz, 
1H), 4.78 (ddd, J = 9.9, 7.2, 5.8 Hz, 1H), 2.55 (tdd, J = 13.2, 9.5, 3.6 Hz, 1H), 2.03 (m, 1H), 1.97 (ddq, J = 
14.3, 7.7, 4.2, 3.5 Hz, 1H), 1.60 (tt, J = 13.0, 3.9 Hz, 1H), 1.22 (m, 3H), 1.06 (d, J = 6.6 Hz, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 141.1, 134.5, 133.9, 129.9, 128.1, 127.9, 113.2, 38.1, 27.1, 26.6, 21.9, 21.7. 
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(Z)-8-hexyl-4-(iodomethyl)-2,2-diphenyl-3,4,5,8-tetrahydro-2H-1,2-oxasilocine (57) 

 
 
Following general procedure B, diallyl silane 51 (0.1401 g, 0.2631 mmol) was added to dichloromethane 
(13.2 mL), degassed, followed by the addition of first-generation Grubbs catalyst (0.0218 g, 0.0265 
mmol) at room temperature. The product was obtained at 88% (0.1240 g) yield as an oil after 
purification using an automated column on silica gel (Rf=0.5 in 2:1 hexanes:DCM).  

 
Spectral data for the mixture of diastereomers:  

1H NMR (500 MHz, CDCl3) δ 7.58 (tt, J = 7.9, 1.9 Hz, 6H), 7.52 (m, 2H), 7.36 (m, 12H), 5.78 (dd, J = 11.0, 
6.2 Hz, 1H), 5.60 (ddd, J = 16.9, 11.0, 6.7 Hz, 2H), 5.44 (dt, J = 11.2, 8.9 Hz, 1H), 4.57 (dq, J = 12.8, 6.2 Hz, 
2H), 3.23 (qd, J = 9.5, 6.7 Hz, 2H), 3.10 (m, 2H), 2.79 (ddd, J = 12.8, 8.9, 3.5 Hz, 1H), 2.54 (dt, J = 13.1, 6.6 
Hz, 1H), 2.46 (m, 1H), 2.40 (m, 1H), 2.24 (ddd, J = 13.2, 8.8, 6.4 Hz, 1H), 1.97 (m, 1H), 1.74 (m, 2H), 1.61 
(m, 3H), 1.29 (m, 12H), 0.89 (td, J = 7.0, 2.9 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 136.7, 136.3, 134.2, 134.0, 133.9, 129.9, 129.7, 129.6, 129.5, 128.2, 127.8, 
127.8, 127.6, 71.2, 69.5, 38.4, 38.0, 37.7, 37.1, 32.6, 32.3, 31.8, 25.3, 25.2, 22.7, 20.6, 19.5, 18.5, 15.6, 
14.1. 

 
 
(Z)-4-(iodomethyl)-2,2,8-triphenyl-3,4,5,8-tetrahydro-2H-1,2-oxasilocine (55) 

 
 
Following general procedure B, diallyl silane 54 (0.0801 g, 0.1527 mmol) was reacted with the first-
generation Grubbs catalyst (0.0118 g, 0.0143 mmol) dichloromethane (7.0 mL). The product was 
obtained at 57% (0.0436 g) yield as an oil after purification in 2:1 hexanes:DCM solvent system (Rf=0.5). 

 
Spectral data for the mixture of diastereomers:  

1H NMR (500 MHz, CDCl3) δ 7.63 (m, 9H), 7.41 (m, 24H), 6.00 (dd, J = 10.8, 6.8 Hz, 1H), 5.76 (m, 5H), 5.56 
(ddd, J = 11.2, 9.6, 8.3 Hz, 1H), 3.31 (qd, J = 9.6, 6.7 Hz, 3H), 3.17 (dd, J = 7.5, 1.9 Hz, 2H), 2.91 (ddd, J = 
12.8, 9.0, 3.4 Hz, 1H), 2.67 (dt, J = 13.3, 6.4 Hz, 1H), 2.59 (m, 1H), 2.51 (m, 1H), 2.40 (ddd, J = 13.2, 9.0, 
6.8 Hz, 1H), 2.07 (dtp, J = 16.5, 6.7, 3.8, 3.4 Hz, 1H), 1.74 (dd, J = 15.1, 5.3 Hz, 1H), 1.65 (dd, J = 15.1, 3.4 
Hz, 2H), 1.31 (m, 6H), 0.90 (t, J = 6.8 Hz, 2H). 
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13C NMR (126 MHz, CDCl3) δ 143.8, 143.3, 136.5, 135.7, 134.7, 134.2, 134.1, 134.0, 133.9, 130.2, 129.9, 
129.8, 129.7, 128.8, 128.4, 128.0, 127.9, 127.9, 127.2, 127.1, 125.9, 125.8, 72.6, 70.6, 38.5, 37.1, 32.9, 
32.2, 20.9, 19.9, 18.5, 15.4. 

 
 
3-methyl-1,1-diphenyl-2,3,4,7-tetrahydro-1H-silepine (63) 
 

 
 
Following general procedure B, diallyl silane 62 (0.0658 g, 0.2147 mmol) was reacted with the second-
generation Grubbs catalyst (0.0179 g, 0.0211 mmol) in dichloromethane (9.4 mL). The product was 
obtained at 33% (0.0195 g) yield as an oil after purification in 4:1 hexanes: dichloromethane solvent 
system (Rf=0.2). 
 
1H NMR (500 MHz, CDCl3) δ 7.56 (m, 2H), 7.45 (dq, J = 6.7, 2.4 Hz, 2H), 7.35 (m, 6H), 5.78 (m, 1H), 5.63 
(dtd, J = 10.2, 7.8, 1.9 Hz, 1H), 2.23 (ddd, J = 14.5, 6.7, 2.0 Hz, 1H), 2.16 (tdd, J = 9.1, 7.7, 3.9 Hz, 1H), 2.09 
(ddd, J = 7.9, 4.0, 2.1 Hz, 1H), 2.03 (ddd, J = 14.5, 8.1, 1.5 Hz, 1H), 1.95 (m, 1H), 1.58 (ddt, J = 14.7, 3.3, 
1.5 Hz, 1H), 1.11 (dd, J = 14.8, 11.2 Hz, 1H), 1.05 (d, J = 6.6 Hz, 3H). 
 
13C NMR (126 MHz, CDCl3) δ 134.8, 134.2, 129.2, 129.1, 128.7, 127.8, 127.8, 127.1, 36.7, 29.6, 27.8, 25.4, 
13.7. 
 

(Z)-4-(iodomethyl)-2,2-diphenyl-2,3,4,5,8,9-hexahydro-1,2-oxasilonine (61) 
 

 
 
Following general procedure B, diallyl silane 60 (60 mg, 0.13 mmol) was reacted with the second-
generation Grubbs catalyst (11 mg, 0.013 mmol) in dichloromethane (5 mL). The crude product was 
purified by chromatography on silica (20:1 hexanes:ethyl acetate) to give 61 (35 mg, 62%) as an oil.  
 
1H NMR (500 MHz, CDCl3) δ 7.57 (td, J = 7.5, 1.6 Hz, 4H), 7.37 (m, 6H), 5.75 (m, 1H), 5.55 (td, J = 10.6, 6.2 
Hz, 1H), 3.89 (ddd, J = 10.9, 6.6, 2.0 Hz, 1H), 3.68 (ddd, J = 10.7, 8.8, 1.5 Hz, 1H), 3.20 (m, 2H), 2.79 (ddd, 
J = 14.3, 10.3, 4.8 Hz, 1H), 2.48 (dt, J = 15.9, 8.4 Hz, 1H), 2.39 (dt, J = 12.6, 5.6 Hz, 1H), 2.25 (dt, J = 14.7, 
7.5 Hz, 1H), 2.18 (m, 1H), 1.44 (ddd, J = 14.7, 3.2, 1.1 Hz, 1H), 1.22 (dd, J = 14.7, 10.8 Hz, 1H). 
 
13C NMR (126 MHz, CDCl3) δ 134.4, 129.9, 129.8, 129.2, 127.9, 127.9, 64.2, 36.8, 32.2, 30.1, 19.2, 17.2. 
 



76 
 

(1R)-1-((6S)-4-(iodomethyl)-2,2-diphenyl-1,2-oxasilinan-6-yl)ethane-1,2-diol (82) 

 
 
Into a round bottom flask, to a stirring solution of tert-butyl alcohol (4.47 mL) and deionized water (4.47 
mL), AD-mix-β (1.2539 g, 1.609 mmol) was added and stirred at room temperature until the solution 
became transparent. At 0 °C, product 25 (0.3757 g, 0.8937 mmol) was added and the solution was 
allowed to warm to room temperature and stirred for 70 hours. The solution was cooled to 0 °C again 
and sodium sulfate was added and stirred for 4 hours. After filtering over celite, the mixture was 
extracted with dichloromethane three times, dried over MgSO4, and concentrated by rotary 
evaporation. After purifying using silica gel column chromatography with 1:2 hexanes: ethyl acetate 
solvent system (Rf=0.4), the product was obtained as a mixture of diastereomers at 56% yield as an oil.  
 
 
Spectral data for the mixture of diastereomers:  

1H NMR (500 MHz, CDCl3) δ 7.63 (dd, J = 7.8, 1.4 Hz, 2H), 7.60 (dd, J = 8.0, 1.4 Hz, 2H), 7.53 (m, 2H), 7.50 

(m, 2H), 7.47 – 7.33 (m, 12H), 4.15 (ddd, J = 10.7, 6.9, 4.1 Hz, 1H), 4.12 (dd, J = 14.2, 7.1 Hz, 1H), 4.03 

(ddd, J = 11.3, 5.2, 1.8 Hz, 1H) 3.89 – 3.74 (m, 4H), 3.70 – 3.59 (m, 2H), 3.28 (dd, J = 9.7, 5.5 Hz, 1H), 3.24 

– 3.16 (m, 2H), 2.64 (bs, 1H), 2.48 (bs, 1H), 2.40 (m, 1H), 2.28 (bs, 1H), 2.12 (m, 1H), 2.08 (m, 1H), 1.91 

(m, 1H), 1.80 (ddd, J = 14.3, 7.9, 4.0 Hz, 1H), 1.57 – 1.50 (m, 2H), 1.30 (m, 1H), 1.26 (m, 1H), 1.18 (dd, J = 

15.0, 8.5 Hz, 1H), 0.86 (dd, J = 14.4, 13.0 Hz, 1H). 

13C NMR (126 MHz, CDCl3) δ 135.26, 135.23, 134.30, 134.24, 134.22, 134.18, 134.11, 134.00, 133.24, 

130.59, 130.45, 130.44, 130.36, 128.41, 128.23, 128.20, 128.18, 128.09, 76.12, 74.53, 73.62, 72.24, 

63.75, 63.48, 37.81, 36.56, 35.22, 33.52, 18.85, 18.52, 17.08, 16.06. 

 

 
(1R)-1-((6S)-2,2-diphenyl-4-((phenylselanyl)methyl)-1,2-oxasilinan-6-yl)ethane-1,2-diol (83) 
 

 
 
Into a flame dried flask under nitrogen, the dihydroxylation product 82 (0.8479 g, 1.8661 mmol) was 
added, followed by acetonitrile (9.33 mL) and cesium carbonate (0.9149 g, 2.808 mmol). While the 
solution is stirring, benzeneselenol (0.28 mL, 2.6 mmol) was added dropwise via syringe. After stirring at 
room temperature for 1 hour, the reaction was quenched with ammonium chloride, extracted with 
methyl tert-butyl ether three times, washed with 15% sodium hydroxide solution, dried over MgSO4, 
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and concentrated rotary evaporation. The crude mixture was purified by silica gel column 
chromarography using 1:2 hexanes: ethyl acetate solvent system (Rf= 0.3) to yield the product in 89% 
yield (0.8021 g) as an oil. 
 
Spectral data for the mixture of diastereomers: 

 1H NMR (500 MHz, CDCl3) δ 7.61 (dd, J = 7.7, 1.5 Hz, 2H), 7.57 (dd, J = 7.6, 1.5 Hz, 2H), 7.50 – 7.46 (m, 

6H), 7.45 – 7.37 (m, 12H), 7.36 – 7.32 (m, 4H), 7.25 – 7.21 (m, 4H), 4.15 (m, 1H), 4.12 (dd, J = 14.1, 7.2 

Hz, 1H), 3.97 (ddd, J = 11.4, 5.1, 1.7 Hz, 1H), 3.84 – 3.74 (m, 4H), 3.63 (q, J = 5.4 Hz, 1H), 3.55 (p, J = 5.8 

Hz, 1H), 3.00 (dd, J = 12.2, 6.5 Hz, 1H), 2.93 (dd, J = 12.0, 6.5 Hz, 1H), 2.90 (dd, J = 7.5, 5.2 Hz, 1H), 2.52 

(d, J = 7.0 Hz, 1H), 2.43 (m, 1H), 2.35 (d, J = 6.6 Hz, 1H), 2.20 (dd, J = 7.7, 4.2 Hz, 1H), 2.08 – 1.96 (m, 2H), 

1.81 (ddd, J = 14.3, 6.9, 3.4 Hz, 1H), 1.63 (dt, J = 14.3, 2.7 Hz, 1H), 1.50 (dd, J = 15.0, 5.3 Hz, 1H), 1.37 – 

1.23 (m, 3H), 0.90 – 0.78 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 134.28, 134.18, 134.12, 133.94, 132.91, 132.77, 130.46, 130.31, 130.27, 

130.20, 129.11, 128.28, 128.23, 128.08, 128.04, 126.99, 126.96, 76.44, 74.47, 73.84, 72.27, 63.68, 63.49, 

60.41, 39.38, 37.74, 35.62, 34.94, 31.28, 21.07, 18.12, 16.50, 14.22. 

 

(1R)-1-((6S)-2,2-diphenyl-4-((phenylselanyl)methyl)-1,2-oxasilinan-6-yl)ethane-1,2-diol (84) 

 

Into a flame dried flask under nitrogen, the selenium product 83 (0.8021 g, 1.6588 mmol) was added, 
followed by toluene (5.92 mL) and Hunig’s base (1.44 mL, 8.29 mmol). 3-phenyl-2-(phenylsulfonyl)-1,2-
oxiziridine (0.4773 g, 1.827 mmol) was add in three portion-wise every 10 mins. After the last addition, 
the solution was stirred at room temperature for 10 mins, after which it was heated to 100 °C for 5 
hours and then allowed to cool to room temperature overnight. The reaction was quenched with 
saturated sodium bicarbonate, extracted with methyl tert-butyl ether three times, dried over MgSO4, 
and concentrated by rotary evaporation. The crude mixture was purified by silica gel chromatography 
using 1:1 hexanes: ethyl acetate solvent system (Rf=0.3) to yield the product in 83% yield (0.4486 g) as a 
bright yellow solid.  
 
1H NMR (500 MHz, CDCl3) δ 7.65 (m, 2H), 7.56 (m, 2H), 7.43 (m, 6H), 4.83 (dt, J = 5.5, 1.8 Hz, 2H), 4.02 
(ddd, J = 11.0, 5.3, 2.4 Hz, 1H), 3.84 (m, 2H), 3.71 (m, 1H), 2.50 (dt, J = 13.0, 2.2 Hz, 2H), 2.34 (dd, J = 
14.0, 1.8 Hz, 1H), 2.29 (d, J = 12.2 Hz, 1H), 2.09 (dt, J = 13.8, 2.3 Hz, 1H). 
 
13C NMR (126 MHz, CDCl3) δ 142.8, 134.4, 134.2, 133.3, 130.5, 130.3, 128.1, 111.2, 77.5, 74.4, 63.5, 60.4, 
40.6, 24.2, 21.1, 14.2. 
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(S)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-methylene-2,2-diphenyl-1,2-oxasilinane (85) 
 

 
Into a flame dried flask under nitrogen, product 84 (0.0487 g, 0.149 mmol) was added, followed by 

reagent grade acetone (0.77 mL) , 2,2-dimethoxypropane (0.08 mL (0.6 mmol), and p-toluenesulfonic 

acid (0.0030 g, 0.017 mmol). After stirring for 1 hour at room temperature, triethylamine (0.05 mL) was 

added and the solution was concentrated by rotary evaporation. The crude product was purified by 

silica gel column chromatography using 4:1 hexanes: ethyl acetate solvent system (Rf=0.6) to yield the 

product in 82% yield (0.0446 g) as a yellow solid. 

H NMR (500 MHz, CDCl3) δ 7.63 (m, 2H), 7.56 (m, 2H), 7.42 (m, 6H), 4.83 (d, J = 1.8 Hz, 2H), 4.13 (m, 1H), 

4.03 (m, 2H), 3.82 (ddd, J = 10.3, 7.8, 2.7 Hz, 1H), 2.67 (ddd, J = 13.2, 2.7, 1.6 Hz, 1H), 2.32 (dd, J = 13.9, 

1.7 Hz, 1H), 2.20 (dd, J = 13.1, 10.0 Hz, 1H), 2.10 (dt, J = 13.8, 2.0 Hz, 1H), 1.41 (s, 3H), 1.37 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 142.7, 135.0, 134.4, 134.0, 130.3, 128.0, 110.9, 109.5, 79.1, 67.7, 41.8, 26.8, 
25.4, 24.3. 
 
(S)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methylbut-3-en-1-ol (86) 
 

 
Into a flame dried flask under nitrogen, acetal product 85 (0.0446 g, 0.122 mmol), and acetonitrile (1.22 
mL) were added. While stirring, tetrabutylammonium fluoride trihydrate (0.2315 g, 0.7337 mmol) was 
added and heated at 65 °C for one hour. The reaction was quenched with saturated ammonium 
chloride, extracted with ethyl acetate three times, dried over MgSO4, and concentrated by rotary 
evaporation. The crude product was purified by silica gel column chromatography using 2:1 hexanes: 
ethyl acetate solvent system (Rf=0.3) and the product was obtained at 59% yield (0.0133 g) as a colorless 
oil. [α]D= -0.52 (DCM, c = 0.39) 
 
1H NMR (500 MHz, CDCl3) δ 4.89 (p, J = 1.6 Hz, 1H), 4.81 (dq, J = 2.1, 0.9 Hz, 1H), 4.00 (m, 3H), 3.85 (dtd, 
J = 9.1, 4.4, 2.1 Hz, 1H), 2.30 (ddd, J = 14.0, 4.0, 1.3 Hz, 1H), 2.11 (ddd, J = 14.0, 9.4, 0.9 Hz, 1H), 1.99 (d, J 
= 2.4 Hz, 1H), 1.78 (t, J = 1.1 Hz, 3H), 1.43 (s, 3H), 1.36 (s, 3H). NMR data matches previously reported 
data.91  
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(S)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-ene-1,3-diol (87) 
 

 
 
Into a flame dried flask under nitrogen, acetal product 85 (0.1068 g, 0.2914 mmol) )was added, followed 
by dimethylformamide (1.46 mL). While stirring, potassium bifluoride (0.0458 g, 0.0586 mmol) was 
added, followed by meta-chloroperoxybenzoic acid (0.1260 g, 0.7301 mmol). After stirring at room 
temperature for 3 hours, the reaction was quenched using saturated sodium bicarbonate, extracted 
with ethyl acetate three times, dried over MgSO4, and concentrated by rotary evaporation. The crude 
product was purified by silica gel column chromatography using 4:1 hexanes: ethyl acetate solvent 
system (Rf=0.1) to yield the purified product in 44% yield (0.0260 g) as an oil. 
 
1H NMR (500 MHz, CDCl3) δ 5.12 (s, 1H), 4.99 (s, 1H), 4.08 (m, 2H), 4.00 (m, 2H), 3.91 (m, 1H), 3.78 (ddd, 

J = 9.3, 5.2, 3.1 Hz, 1H), 2.43 (ddd, J = 14.3, 3.1, 1.1 Hz, 1H), 2.14 (ddd, J = 14.3, 9.3, 1.0 Hz, 1H), 1.40 (s, 

3H), 1.33 (s, 3H). NMR data matches previously reported data.92  

 

ethyl (E)-5-methylhex-2-enoate (90) 

 

Into a flame dried flask under nitrogen, isovaleraldehyde (0.5 mL, 4.6 mmol) and dichloromethane (23 

mL) were added, followed by (carbethoxymethylene)triphenylphosphorane (1.9174 g, 5.5033 mmol). 

The solution was stirred at room temperature overnight and then concentrated by rotary evaporation. 

Crude product was purified by silica gel column chromatography using 10:1 hexnaes: ethyl acetate (Rf-

=0.3) to give the product in 90% yield (0.6428 g) as an oil. 

1H NMR (500 MHz, CDCl3) δ 6.94 (dt, J = 15.3, 7.5 Hz, 1H), 5.80 (dt, J = 15.6, 1.5 Hz, 1H), 4.18 (q, J = 7.1 

Hz, 2H), 2.08 (td, J = 7.1, 1.5 Hz, 2H), 1.75 (p, J = 6.7 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.92 (d, J = 6.6 Hz, 

6H). NMR data is consistent with previously reported data.93 
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methyl (Z)-5-methylhex-2-enoate (91) 

 

Into a flame dried flask under nitrogren, 18-crown-6 (0.9671 g, 3.659 mmol)  and tetrahydrofuran (37 
mL) was added and cooled to -78 °C. Phosphonoacetate (0.78 mL, 3.7 mmol) was added, followed by 
potassium bis(trimethylsilyl)amide (KHMDS) (7.3 mL, 3.7 mmol, 0.5 M solution in toluene) and 
isoveraldehyde (0.40 mL, 3.7 mmol). The reaction was allowed to warm to room temperature overnight. 
The reaction was quenched using saturated ammonium chloride, extracted with methyl tert-butyl ether, 
dried over MgSO4, and concentrated by rotary evaporation. The crude product was purified by silica gel 
column chromatography using 10:1 hexanes: ethyl acetate (Rf=0.4) to yield the product in 39% yield 
(0.2236 g) as an oil which contained 1:1 cis:trans isomers. 
 
1H NMR (500 MHz, CDCl3) δ 6.25 (dt, J = 11.6, 7.5 Hz, 1H), 5.81 (d, J = 11.6 Hz, 1H), 3.71 (s, 3H), 2.56 (td, J 
= 7.2, 1.8 Hz, 2H), 1.74 (m, 1H), 0.94 (d, J = 6.6 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 166.91, 149.83, 119.76, 50.94, 37.74, 28.51, 22.32. 
 
(E)-5-methylhex-2-en-1-ol (93) 
 

 
 
 
Into a flame dried flask under nitrogen, the ester 90 (0.6428 g, 4.114 mmol ) and dichloromethane (21 
mL) was added and cooled to -78° C.  Diisobutylaluminium hydride (DIBAL-H) (10.3 mL, 10 mmol, 1.0 M 
solution in hexanes) was added slowly and the solution was stirred for 1 hour at -78° C. To quench the 
reaction, 50 mL of ethyl acetate was added to dilute the solution and 50 mL of Rochelle’s solution was 
added into another round bottom flask. The diluted ethyl acetate solution was added to the flask 
containing the Rochelle’s solution and the combined mixture was stirred vigorously for 45 min, or until 
the layers were visible separated. The organic layer was collected, dried over MgSO4 and concentrated 
by rotary evaporation to give desired product in 91% yield. The crude product was used directly without 
further purification. 
 

1H NMR (500 MHz, CDCl3) δ 5.65 (m, 2H), 4.09 (d, J = 5.3 Hz, 2H), 1.94 (m, 2H), 1.63 (p, J = 6.7 Hz, 1H), 

1.29 (m, 1H), 0.89 (m, 6H).  NMR matches previously reported data.94 

 

 

 



81 
 

(Z)-5-methylhex-2-en-1-ol (94) 

 

 
Into a flame dried flask under nitrogen, the ester 91 (0.2236 g, 1.431 mmol ) and dichloromethane (7.2 
mL) was added and cooled to -78° C.  Diisobutylaluminium hydride (DIBAL-H) (3.6 mL, 3.6 mmol, 1.0 M 
solution in hexanes) was added slowly and the solution was stirred for 1 hour at -78° C. To quench the 
reaction, 20 mL of ethyl acetate was added to dilute the solution and 20 mL of Rochelle’s solution was 
added into another round bottom flask. The diluted ethyl acetate solution was added to the flask 
containing the Rochelle’s solution and the combined mixture was stirred vigorously for 45 min, or until 
the layers were visible separated. The organic layer was collected, dried over MgSO4 and concentrated 
by rotary evaporation. The crude product was purified using silica gel column chromatography with 4:1 
hexanes: ethyl acetate solvent system (Rf=0.2) to give a 3:1 cis:trans isomers of the product in 43% yield 
(0.0704 g) as an oil. 
 
1H NMR (500 MHz, CDCl3) δ 5.65 (m, 1H), 5.55 (m, 1H), 4.19 (d, J = 7.3 Hz, 2H), 1.96 (m, 2H), 1.63 (dpd, J 
= 13.3, 6.7, 1.6 Hz, 1H), 0.90 (d, J = 6.7 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 131.88, 129.05, 58.65, 36.45, 28.50, 22.25. 
 
(E)-tert-butyl((5-methylhex-2-en-1-yl)oxy)diphenylsilane (70) 
 

 
 
Into a flame dried flask under nitrogen, the alcohol 93 (0.1010 g, 0.8845 mmol), dichloromethane (4.4 
mL) and imidazole (0.1191 g, 1.752 mmol ) were added and cooled to 0 °C. Either tert-
butylchlorodiphenylsilane (0.25 mL, 0.96 mmol) was added and the solution was allowed to come to 
room temperature over 2 hours while stirring. The reaction was quenched with saturated aq. sodium 
bicarbonate, extracted with dichloromethane three times, dried over MgSO4, and concentrated by 
rotary evaporation. The crude mixture was purified by silica gel column chromatography using 10:1 
hexane:ethyl acetate solvent system (Rf=0.5) to give the product in 88% yield (0.2742 g) as an oil. 
 
1H NMR (500 MHz, CDCl3) δ 7.69 (dt, J = 6.6, 1.6 Hz, 4H), 7.38 (m, 6H), 5.64 (m, 1H), 5.54 (m, 1H), 4.17 
(dd, J = 5.0, 1.4 Hz, 2H), 1.91 (td, J = 6.9, 1.3 Hz, 2H), 1.61 (dp, J = 13.4, 6.7 Hz, 1H), 1.05 (s, 9H), 0.88 (d, J 
= 6.6 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 135.6, 134.0, 130.0, 129.8, 129.5, 127.6, 64.7, 41.6, 28.3, 26.9, 22.3, 19.2. 
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(E)-triethyl((5-methylhex-2-en-1-yl)oxy)silane (72) 
 

 
 
Into a flame dried flask under nitrogen, the alcohol 93 (0.1006 g, 0.8810 mmol), dichloromethane (4.4 
mL) and imidazole (0.1192 g, 1.755 mmol ) were added and cooled to 0 °C. Either tert- 
chlorotriethylsilane (0.16 mL, 0.96 mmol) was added and the solution was allowed to come to room 
temperature over 2 hours while stirring. The reaction was quenched with saturated aq. sodium 
bicarbonate, extracted with dichloromethane three times, dried over MgSO4, and concentrated by 
rotary evaporation. The crude mixture was purified by silica gel column chromatography using 10:1 
hexane:ethyl acetate solvent system (Rf=0.6) to give the product in 83% yield (0.1680 g) as an oil. 
 
1H NMR (500 MHz, CDCl3) δ 5.63 (m, 1H), 5.54 (m, 1H), 4.12 (dd, J = 5.5, 1.2 Hz, 2H), 1.92 (td, J = 6.8, 1.2 
Hz, 2H), 1.62 (m, 1H), 0.96 (t, J = 8.0 Hz, 9H), 0.88 (d, J = 6.6 Hz, 6H), 0.61 (q, J = 8.0 Hz, 6H). 

 
13C NMR (126 MHz, CDCl3) δ 130.5, 130.2, 63.8, 41.6, 28.3, 22.3, 6.8, 6.4, 4.5. 

 

(Z)-tert-butyl((5-methylhex-2-en-1-yl)oxy)diphenylsilane (71) 

 
Into a flame dried flask under nitrogen, the alcohol 94 (0.0357 g, 0.313 mmol), dichloromethane (1.6 
mL) and imidazole (0.0426 g, 0.625 mmol) were added and cooled to 0 °C. Either tert-
butylchlorodiphenylsilane (0.09 mL, 0.34 mmol) was added and the solution was allowed to come to 
room temperature over 3 hours while stirring. The reaction was quenched with saturated aq. sodium 
bicarbonate, extracted with dichloromethane three times, dried over MgSO4, and concentrated by 
rotary evaporation. The crude mixture was purified by silica gel column chromatography using 10:1 
hexane:ethyl acetate solvent system (Rf=0.6) to give the product in 72% yield (0.079 g) as an oil with a 
3:1 mixture of cis:trans isomers. 
 

 
1H NMR (500 MHz, CDCl3) δ 7.72 (dd, J = 7.7, 1.5 Hz, 4H), 7.47 – 7.38 (m, 6H), 5.67 (dddd, J = 12.6, 6.3, 
4.4, 2.8 Hz, 1H), 5.45 (dtt, J = 11.0, 7.5, 1.7 Hz, 1H), 4.28 (d, J = 6.2 Hz, 2H), 1.78 (td, J = 7.3, 1.5 Hz, 2H), 
1.55 (sept, J = 6.7 Hz, 1H), 1.07 (s, 9H), 0.84 (d, J = 6.7 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 135.6, 134.0, 129.1, 129.6, 127.6, 60.3, 36.6, 28.5, 26.9, 26.8, 22.3. 
 
(Z)-triethyl((5-methylhex-2-en-1-yl)oxy)silane (73) 
 

 
Into a flame dried flask under nitrogen, the alcohol 94 (0.0357 g, 0.313 mmol), dichloromethane (1.6 
mL) and imidazole (0.0429 g, 0.651 mmol ) were added and cooled to 0 °C. Chlorotriethylsilane (0.06 mL, 
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0.34 mmol) was added and the solution was allowed to come to room temperature over 3 hours while 
stirring. The reaction was quenched with saturated aq. sodium bicarbonate, extracted with 
dichloromethane three times, dried over MgSO4, and concentrated by rotary evaporation. The crude 
mixture was purified by silica gel column chromatography using 10:1 hexane:ethyl acetate solvent 
system (Rf=0.6) to give the product in 86% yield (0.0611 g) as an oil with a mixture of 3:1 cis:trans 
isomers.  
 
1H NMR (500 MHz, CDCl3) δ 5.57p (m, 1H), 5.45 (dtt, J = 10.9, 7.5, 1.6 Hz, 1H), 4.21 (m, 2H), 1.92(m, 2H), 
1.62 (dtd, J = 13.4, 6.7, 1.9 Hz, 1H), 0.96 (t, J = 6.8 Hz, 9H), 0.89 (d, J = 6.6 Hz, 6H), 0.61 (q, J = 7.8 Hz, 6H). 
 
13C NMR (126 MHz, CDCl3) δ 130.1, 129.7, 59.0, 36.6, 28.6, 22.3, 6.8, 4.5. 
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SPECTRA 

 

 

 

 

 

 



85 
 

 

 

 



86 
 

 

 

 

 



87 
 

 

 

 

 



88 
 

 

 

 



89 
 

 

 

 

 



90 
 

 

 

 



91 
 

 

 

 

 



92 
 

 

 

 



93 
 

 

 

 

 



94 
 

 

 

 

 



95 
 

 

 

 

 



96 
 

 

 

 

 



97 
 

 

 

 



98 
 

 

 

 

 



99 
 

 

 

 



100 
 

 

 

 

 



101 
 

 

 

 



102 
 

 

 

 



103 
 

 

 

 



104 
 

 

 

 

 



105 
 

 

 

 

 



106 
 

 

 

 

 



107 
 

 

 

 



108 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

 

 

 

 

 



110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

 

 

 

 

 



112 
 

 

 

 

 

 



113 
 

 

 

 

 

 



114 
 

 

 

 

 

 



115 
 

 

 

 
 
 
  



116 
 

WORK CITED 

 
1Schneider, V. and Frölich P. K. Industrial and Engineering Chemistry. 1931, 23, 1405-1410. 
2 Banks, R. L. and Bailey G. C. Industrial and Engineering Chemistry Product Research and Development. 1964, 3 (3), 
170-173. 
3 Handbook of Metathesis, 2nd ed. (Eds.:R.H.Grubbs, A. G. Wenzel), Wiley-VCH, Weinheim, 2015. 
4 Hughes, D.; Wheeler, P. and Ene, D. Organic Process and Development. 2017, 21 (12), 1938-1962. 
5 Higman, C. S.; Lummiss, J. A. M. and Fogg, D. E. Angewandte Chemie International Edition. 2016, 55, 3552–3565. 
6 Theunissen, C.; Ashley, M. A. and Rovis T. Journal of the American Chemical Society. 2019, 141 (17), 6791-6796. 
7 Mesina, M. S. and Maynard, H. D. Materials Chemistry Frontiers. 2020, 4 (4), 1040-1051. 
8 Liniger, M.; Neuhaus, C. M. and Altmann, K-H. Molecules. 2020, 25(19), 4527. 
9 Bloom, P. W. M. Advanced Materials Technologies.2020, 5(6), 2000144. 
10 Koehler, S. L.; Hu, J. and Elacqua, E. Synlett. 2020, 31(15), 1435-1442. 
11 Trnka, T. M and Grubbs, R. H. Accounts of Chemical Research. 2001, 34, 18-29. 
12 Grubbs, R. H. Journal of Macromolecular Science, Pure and Applied Chemistry. 1994, A31, 1829-1833. 
13 France, M. B. and Grubbs, R. H. Macromolecules.1993, 26, 4739-4741. 
14 Nguyen, S. T.  The Designs, Synthesis, and Applications of Well-Defined, Single Component Group VIII Olefin 
Metathesis Catalysts. Ph.D. Thesis, California Institute of Technology, 1995¸ Chapter 8. 
15 Furstner, A. Angewandte Chemie International Edition. 2000, 39(17), 3012-3043. 
16 Scholl, M.; Ding, S.; Lee, C. W. and Grubbs, R. H. Organic Letters. 1999, 1(6), 953-956. 
17 Garber, S. B.; Kingsbury, J. S.; Gray, B. K. and Hoveyda, A. H. Journal of the American Chemical Society. 2000, 
122(34), 8168-8179. 
18 Veldhuizen, J. J. V.; Garber, S. B.; Kingsbury, J. S. and Hoveyda, A. H. Journal of the American Chemical Society. 
2002, 124 (18), 4954-4955. 
19 Wakamatsu, H. and Blechert, S. Journal of the German Chemical Society. 2002, 41(5), 794-796. 
20 Imhof, S.; Randl, S. and Blechert, S. Chemical Communications. 2001, 1692-1693. 
21 O'Leary, D.J. and O'Neil, G.W. (2015). “Cross‐Metathesis” In Handbook of Metathesis Vol. 2: Applications in 
Organic Synthesis, Second Edition (Eds R.H. Grubbs, A.G. Wenzel, D.J. O'Leary and E. Khosravi), pp 171-294. Wiley-
VCH, Weinheim Germany. 
22 For a review see: Bielawski, C. W.; Grubbs, R. H. Progress in Polymer Science. 2007, 32, 1-29. 
23 Ehrhorn, H. and Tamm, M. Chemistry: A European Journal. 2019, 25(13), 3190-3208. 
24 da Silva, L. C.; Rojas, G.; Schulz, M. D.; Wagener, K. B. Progress in Polymer Science. 2017, 69, 79-107. 
25 Conrad, J. C.; Eelman, M. D.; Silva, J. A. D.; Monfette, S.; Parnas, H. H.; Snelgrove, J. L. and Fogg, D. E. Journal of 
the American Chemical Society. 2007, 129, 1024-1025. 
26 Schrock, R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G. and Fellmann, J. Journal of Molecular Catalysis. 1980, 
8(1-3), 73-83. 
27 Astruc, D. New Journal of Chemistry. 2005, 29, 42-56. 
28 Romero, P. E. and Piers, W. E. Journal of the American Chemical Society. 2005, 127(14), 5032-5033. 
29 Sinclair, F,; Alkattan, M.; Prunet, J. and Shaver, M. P. Polymer Chemistry. 2017, 8, 3385-3398. 
30 Data obtained from sigmaaldrich.com on the 16th of November, 2020. 
31 Butilkov D,; Frenklahm A.; Rozenberg, I.; Kozuch, S. and Lemcoff, N. G. ACS Catalysis. 2017, 7(11), 7634-7637. 
32 Ngo, H. L.; Jones, K. and Foglia, T. A. Journal of the American Oil Chemists’ Society. 2006, 83(7), 629-634. 
33 Arumugasamy, J, et al. Organic Process Research & Development. 2013, 17(5), 811-828.  
34 Yee, N.K.; Wei, X.; Busacca, C.A.; Zeng X.; Fandrick, D.R.; Song, J.J. and Senanayake, C.H. “9.19 Synthesis of the 
Leading HCV Protease Inhibitors.” Comprehensive Chirality, edited by Erick M. Carreira and Hisashi Yamamoto, 
Elsevier, 2012, pp. 483-506. 
35 Wang, H.; Matsuhashi, H.; Doan, B. S.; Goodman, S. N.; Ouyang, X.; Clark, W. M., Jr. Tetrahedron, 2009, 65 (32), 
6291-6303. 

 



117 
 

 

36 Flcik, A. C.; Dina, H. X.; Leverett, C. A.; H=Kyne, R. E.; Lie, K.K-C.; Fink, S. J. and O’Donnell, C. J. Journal of 
Medicinal Chemistry. 2017, 60 (15), 6480-6515. 
37 Wu et al. US Patent 9, 249,144 B2, 2016. 
38 Yu, M.; Lou, S. and Gonzalez-Bobes, F. Organic Process Research & Development. 2018, 22(8), 918-946. 
39 Cusak, A. Chemistry-a European Journal. 2012, 18, 5800-5824. 
40 Hanson, P.; Maitra, S.; Chegondi, R.; Markley, J. J. "Synthesis of Heterocycles Containing Si, P, or B" in Handbook 
of Metathesis, 2nd Ed. (Eds. D. J. O'Leary and R. H. Grubbs), pp 29-34. Wiley-VCH, Weinheim Germany 
41 For an example of a non RCM-based syntheses of medium ring oxasilacycles see: Greene, M. A.; Prevost, M.; 
Tolopilo, J.; Woerpel, K. A. "Diastereoselective Synthesis of Seven-Membered-Ring trans-Alkenes from Dienes and 
Aldehydes by Silylene Transfer" J. Am. Chem. Soc. 2012, 134, 12482-12484. 
42 Devineau, A.; Grosbois, M.; Carletti, I.; Vacher, B. Journal of Organic Chemistry. 2008, 74, 757-763 
43 Jimenez-Gonzalez, L.; Alvarez-Corral, M.; Munoz-Dorado, M. and Rodriquez-Garcia, I. Chemical Communications. 
2005, 21, 2689-2691. 
44 Scalzullo, S. M.; Islam, R. U.; Morgans, G. L.; Michael, J. P. and L.van Otterlo, W. A. Tetrahedron Letters. 2008, 49, 
7403-7405. 
45 Volchkov, I.; Park, S. and Lee, D. Organic Letters. 2011, 13, 3530-3533. 
46 Kiely, A. F.; Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. Journal of the American Chemical Society. 2002, 124, 
2868-2869. 
47 Hong, S. H.; Wenzel, A. G.; Salguero, T. T.; Day, M. W. and Grubbs, R. H. Journal of the American Chemical 
Society. 2007, 129(25), 7961-7968. 
48 Hong, S. H.; Day, M. W. and Grubbs, R. H. Journal of the American Chemical Society. 2004, 126(24), 7414-7415. 
49 Hong, S. H.; Wenzel, A. G.; Salguero, T. T.; Day, M. W. and Grubbs, R. H. Journal of the American Chemical 
Society. 2007, 129(25), 7961-7968 
50 Sandford, M.S.; Love, J.A. and Grubbs, R.H. Journal of the American Chemical Society. 2001, 123, 6543–6554. 
51 Vehlow, K.; Gessler, S. and Blechert, S. Angewandte Chemie International Edition. 2007, 46, 8082–8085. 
52 Fustero, S.; Sanchez-Rosello, M.; Jimenez, D.; Sanz-Cervera, J. F.; Pozo, C. and Acena, J. L. The Journal of Organic 
Chemistry. 2006, 71 (7), 2706-2714.  
53 Berg, J. M.; Tymoczko, J. L. and Stryer, L. Biochemistry. 5th edition. New York: W H Freeman; 2002. Section 8.2, 
“Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes.” 
54 Higman, C. S.; Lanterna, A. E.; Marin, M. L.; Scaiano, J. C. and Fogg, D. E. ChemCatChem Communications. 2016, 
8, 2446-2449. 
55 Bourgeois, D.; Pancrazi, A.; Nolan, S. P. and Prunet, J. Journal of Organometallic Chemistry. 2002, 643-644, 247-
252. 
56 Brown, R. F. and van Gulick, N. M. Journal of Organic Chemistry. 1956, 21(9), 1046-1049. 
57 O’Neill, M. J.; Riesebeck, T. and Cornella, J. Angewandte Chemie International Edition. 2018, 57(29), 9103-9107. 
58 (a) Suslova, E. N.; Albanov, A. I. and Shainyan, B. A. Russian Journal of General Chemistry 2008, 78, 1016-1017. 
(b) Suslova, E. N.; Albanov, A. I. and Shainyan, B. A Journal of Organometalic Chemistry. 2009, 694, 420-426. 
59 Cadot, C.; Dalko, P. I. and Cossy, J. Tetrahedron Letters. 2002, 43, 1839-1841.  
60 Taher, A.; Aderibigbe, B. A.; Morgans, G. L.; Madeley, L. G.; Khanye, S. D.; van der Westhuizen, L.; Fernandes, M. 
A.; Smith, V. J.; Michael, J. P.; Green, I. R. and van Otterlo, W. A. L. Tetrahedron. 2013, 69, 2038-2047. 
61 Smit, W.; Foscato, <.; Occhipinti, G. and Jensen, V. R. ACS Catalysis. 2020, 10(12), 6788-6767. 
62 Hoveyda, A. H.; Lio, Z.; Qin, C.; Koengeter, T. and Mu, Y. Angewandte Chemie International Edition. 2020, 59(50), 
22324-22348.  
63 Morgans, G. L.; Ngidi, L.; Madeley, L. G.; Khanye, S. D.; Michael, J. P.; de Koning, C. B. and van Otterlo, W. A. L. 
Tetrahedron. 2009, 65, 10650-10659. 
64 Lubbe, C.; Dymrath, A.; Neumann, H.; Schuffer, M.; Zimmermann, R.; Beller, M. and Kadyrov. R. ChemCatChem. 
2004, 6,684-688. 
65 Hong, S. H.; Sanders, D. P.; Lee, C. W. and Grubbs, R. H. Journal of the American Chemical Society. 2005, 127(49), 
17160-17161.  

 



118 
 

 

66 Xiao, W.; Deng, Z.; Huang, J.; Huang, Z.; Zhaung, M.; Yuan, Y.; Nie, J. and Zhang, Y. Analytical Chemistry. 2019, 
91(23), 15115-15122. 
67 Widegren, J. A. and Finke, R. G. Journal of Molecular Catalysis A: Chemical. 2003, 198, 317-341. 
68 For a recent example see: Ohta, R.; Oguro, A.; Nishimura, K.; Murai, K.; Fujioka, H. and Arisawa, M. Organic and 
Biomolecular Chemistry. 2019, 17, 867-875. 
69 Thomas, R. M.; Federov, A.; Keitz, B. K. and Grubbs, R. H. Organometallics 2011, 30, 6713-6717. 
70 O’Neil, G. W. and Cummins, E. J. Tetrahedron Letters. 2017, 58, 3406-3409. 
71 Netolitzky, Z. Angewandte Entomologie. 1919, 5, 252–257. 
72 Frank, J. H. and Kanamitsu, K., Journal of Medical Entomology. 1987, 24, 155–191. 
73 Qadir, S. N. R.; Raza, N. and Rahman, S. B. Dermatology Online Journal. 2006, 12, 9. 
74 Soldati, M.; Fioretti, A. and Ghione, M. Experientia. 1966, 22, 176–178. 
75 Piel, J. Proceedings of the National Academy of Sciences of the USA. 2002, 99, 14002–14007; 
76 Piel, J.; Höfer, I. and Hui, D. Journal of Bacteriology. 2004, 186, 1280–1286. 
77 Cichewicz, R. H.; Valeriote, F. A. and Crews, P. Organic Letters. 2004, 6, 1951–1954. 
78 Pettit, G. R.; Xu, J.‐P.;  Chapuis, J.‐C.; Pettit, R. K.; Tackett, L. P.; Doubek, D. L.; Hooper, J. N. A. and Schmidt J. 
M. Journal of Medicinal Chemistry. 2004, 47, 1149–1152. 
79 Bielitza, M. and Pietruszka, J. Angewandte Chemie International Edition. 2013, 52(42), 10960-10985.  
80 Jiang, X.; Garcia-Fortanet, J. and De Brabander, J. K. Journal of the American Chemical Society. 2005, 127, 11254-
11255.   
81 Junttila, M. H. and Hormi, O. O. E. The Journal of Organic Chemistry. 2009, 74(8), 3038-3947. 
82 Urosa, A.; Marcos, I. S.; Diez, D.; Padron, J. M. and Basabe, P. The Journal of Organic Chemistry. 2015, 80, 6447-
6455.  
83 Wang, Z-M.; Kakiuchi, K. and Sharpless, K. B. The Journal of Organic Chemistry. 1994, 59, 6895-6897. 
84 Wang, L. and Sharpless, K. B. Journal of the American Chemical Society. 1992, 114(19), 7568-7570. 
85 Becker, H.; King, S. B.; Taniguchi, M.; Vanhessche, K. P. M. and Sharpless, K. B. Journal of Organic 
Chemistry. 1995, 60(13), 3940–3941 
86 Gintner, M.; Denner, C.; Schmolzer, C.; Fischer, M.; Fruhauf, P.; Kahig, H. and Schmid, W. Monatshefte für 
Chemie. 2017, 150, 849-860. 
87 Tamao, K.; Ishlda, N.; Tanaka, T. and Kumada, M. Organometallics. 1983, 2(11), 1694-1696. 
88 Roy, A. and Oestreich, M. Angewandte Chemie International Edition. 2021,  60, 4408-4410. 
89 Org. Biomol. Chem., 2004, 2, 1315-1329. 
90 Org. Biomol. Chem., 2004, 2, 1315-1329 
91 Jiang, X., Garcia-Fortanet, J. and De Brabander, J. K. Synthesis and Complete Stereochemical Assignment of 
Psymberin/Irciniastatin A. J. Am. Chem. Soc. 2005, 127, 32, 11254–11255. 
92 Gintner, M., Denner, C., Schmölzer, C. et al. Synthesis of 3-deoxy-2-uloses via the indium-mediated allylation 

reaction. Monatsh Chem , 2019, 150, 849–860. 

93 Org. Lett. 2013, 15, 17, 4616–461 
94 Org. Lett. 2013, 15, 17, 4616–461 
 
 


	Synthesis and Reactions of Medium-Ring Silyl Ethers
	Recommended Citation

	tmp.1622244117.pdf.1bEje

