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Abstract 

Primary and secondary coordination sphere interactions with proximal Brønsted-Lowry 

acid/base sites were investigated using a family of pyridinediimine (PDI) complexes. The PDI 

ligands used in this project could be easily prepared by the Schiff base reactions with 

commercially available diamines as proton relays. Upon activation, the pendant Brønsted site 

and accessible electrons were arranged in a single scaffold that allowed the transportation of 

both protons and electrons to occur.  

Two new PDI complexes with morpholine (6) and pyrrolidine (7) derivatives were 

introduced to the pendant PDI family. The proton dissociation constant of 6Fe(CO)2 and 7Fe(CO)2 

were measured [pKa (CD3CN) = 17.1 and 18.3, respectively]. The PDI complexes were subjected 

to reactions with nitrite and monitored via UV-Vis and IR spectroscopy, in which they exhibited 

much faster initial rates than some of the previously reported pendant PDI complexes. The rate 

enhancement effect was clearly evidenced by the stability of the corresponding mononitrosyl 

iron complex (MNIC) intermediate. These results had not yet been observed in other 

mononuclear PDI complexes and was attributed to the unique combination of proton 

responsivity, redox-activity and hemilability in 6 and 7. 
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Chapter 1  –  Introduction 

 Chemical Activation in Biology 

The biogeochemical cycle encompasses a diversity of pathways ranging from the 

metabolism of small molecules such as CO2, NO2
-, O2, to the biosynthesis of complex molecules.1–

4 From photosynthesis to respiration, almost all the important chemical transformations in 

biology are mediated by metalloenzymes found in microorganisms and plants.1  

One of the most exemplified biological processes of interest is the nitrogen cycle. 

Unsurprisingly, a major portion of naturally occurring nitrogen exists as inorganic nitrogen 

species, either in the most inert form, N2, or in a highly oxidized form, NO3
-.5–7 These readily 

available nitrogen sources are however often toxic or unsuitable for biosynthetic purposes.  The 

required transformation takes place in the nitrogen cycle via the activation of inorganic nitrogen 

mediated by various metalloenzymes classified by their native functions. The reductive processes 

of generating NH3 or glutamine are accomplished by nitrogenases. Nitrate reductases (NaRs) and 

nitrite reductases (NiRs) are responsible for nitrogen fixation, nitrogen assimilation and 

denitrification, respectively. Concomitantly, the nitrogen cycle turns over as the oxidative 

processes occurs, countering the production of reduced nitrogen. Other assimilatory processes 

mediated by NiRs and NO reductases (NORs) in bacteria and fungi produce N2O from NO2
– and 

NO.7 All of these transformations occur in ambient conditions. On the other hand, chemical 

transformation of small molecules in a laboratory setting tends to be thermodynamically 

challenging and often requires harsh reaction condition to elevate overpotential.8,9 The difficulty 
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to industrially derive energy from small molecules can exemplified by the Nobel-winning Haber-

Bosch process, which accounts for the global production of NH3 from atmospheric N2.7 The 

process poses a tremendous energy footprint due to the excessive consumption of H2 gas as the 

reducing agent under high temperature and high pressure conditions,10 contrary to the biological 

transformation of N2 to NH3/NH4
+, which requires energy via ATP hydrolysis.6,11 Unlike the 6-

electron Haber-Bosch process, the nitrogenase-mediated process takes place in the presence of 

both protons and electrons under ambient conditions and also produces H2 as a by-product. In 

the well-examined FeMoco containing nitrogenases,12,13 eight electrons are involved. Two out of 

eight electrons are consumed to form one equivalent of H2 per N2 activated. The reduced 

activation energy in nitrogenase is ascribed to a combination of ligand and/or active site 

interactions that facilitate the binding to MgATP and electron transfer.14,15 

 

Figure 1.1   Haber-Bosch process vs nitrogen fixation mediated by nitrogenase. 

In the assimilatory pathway of the nitrogen cycle, nitrite reduction is mediated by either 

cytochrome cd1 or multicopper NiRs.6 Although the NiR family consists of a relatively limited 
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variation of active sites—comparing to other metalloenzymes, these systems are ubiquitous and 

representative of other active sites in nature. In the context of molecular catalysis, the structural 

effect is ascribed to the primary and secondary coordination sphere configuration. In order to 

gain better understanding in how biology handles the cost of activation energy, the coordination 

and reactivity in these metalloenzymes will be explored. 
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 Active Site with Iron  

The most common NiRs are cytochrome related metalloenzymes, which are classified based 

on the heme-iron cofactor presented in these proteins.16 In fact, the iron-porphyrin moiety is an 

extremely common motif in biology. Porphyrin rings with modifications allow the hemeproteins 

to cover a wide spectrum of functionalities, ranging from the transferring of electrons to the 

scavenging, sensing and/or transportation17–20 of other small molecules (Figure 1.2). Low 

molecular weight proteins containing these hemes are known as cytochromes, and they are the 

key cofactors and participants in a variety of biological processes. 

 

Figure 1.2   Common heme structures and examples of hosting proteins. This figure 
was adapted from literature.6   

How are heme irons so ubiquitous? One consideration is the FeII/III reduction potentials of 

the cytochrome family, which span about from -475 mV to +450 mV vs NHE,16 in the range 

necessary for those biological processes.21 Remarkably, modulation of the redox properties of  

1FeII/III through the secondary coordination sphere can be just as effective as tuning via the 

primary sphere.22,23 Attributed to the electrostatic interactions, proximal side chains with positive 

charges or hydrogen bonding can lead to an anodic shift of FeII/III, and inversely, negatively 
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charged residues in proximity can lead to a cathodic shift.16 All of these modifications can also 

affect the liability and substrate binding/releasing. 

 

 
 

Figure 1.3   Cytochrome cd1 from Pseudomonas aeruginosa. Some of the variations 
in axial ligands were shown (PDI ID: 5GUW)24.  

Similar redox tuning properties has been reported in most synthetic complexes, where a 

wide range of  FeII/III redox potentials have become accessible.25 In complexes incoporated with 

proximal Lewis acids (Figure 1.4, A – D, ΔE1/2 values represent the difference in metal-based 

reduction potentials before and after encapsulation), the metal-based reduction potentials are 

typically shifted anodically upon the encapsulation of a redox inactive alkai ion.26–28 On the other 

hand, with a redox-active ligand scaffold such as the pyridinediimine (PDI) family, accessible 

energy should be evaluated by the ligand-based reduction potentials.29–31 In the recently 

reported PDI systems Fe(15c5PDI)(CO)2 (15c5 = 15-crown-5 ether) and Fe(15bz5PDI)(CO)2 (15bz5 = 

benzo-15-crown-5 ether), only 31 and 50 mV anodic shift were resulted, respectively, upon the 
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encapsulation of redox inactive metal such as Na+ (Figure 1.4,  E and F, ΔE1/2 values represent the 

difference in ligand-based reduction potentials).32,33 

 

Figure 1.4   Redox potential coupled to proximal Lewis acids. Chemdraw of (A) crown 
ether appended ferrocene,34 (B) crown ether incorporated Co(salen),35 (C) bimetallic 
metalloligand system36,37 and (D) manganese cubane core structure27,38,39 (Mn+ = alkai 
metal ion). (E) and (F) are PDI complexes Fe(15c5PDI)(CO)2 and Fe(15bz5PDI)(CO)2.   

Considerable change in redox potential has been also reported in model systems 

incorporated H-bonding network in the secondary coordination sphere.40–42 The reduction 

potentials are shifted anodically upon the protonation of the Brønsted base bearing secondary 

sphere (Figure 1.5, A – C, ΔE1/2 values represent the difference in metal-based reduction 

potentials before and after protonation).8,43,44 Similar to the uncoupling effect in the 

Fe(15bz5PDI)(CO)2 systems, the anodic shifting is minimized in the pendant Bronted base 

incorporated PDI family upon protonation (Figure 1.5, D and E, ΔE1/2 values represent the 

difference in ligand-based reduction potentials).45 
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Figure 1.5   Redox potential coupled to proximal Brønsted acid/base. Chemdraw of 
protonated (A) FeII(tris(2,2’bisimdazoline)2+,43,46 (B) [(TPP)FeII(ImH)2] (TPP = 
tetraphenylporphyrin; ImH = 4-methylimidazole),47 (C) Ttzt-Bu,MeCuCl (Ttz = 
[tris(triazolyl)borate]),48 63(D) and (E) are PDI complexes Fe(DEAPDI)(CO)2 and 
Fe(didpa)(CO)2 (DEA = diisopropylamine; didpa = [(2,6-
iPrC6H3)(N=CMe)(N(iPr)2C2H4)(N=CMe)C5H3N]).49,50  
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 Copper Active Site 

Apart from the Fe-type NiR, the genetically unrelated Cu-NiR family accounts for a third of 

the denitrifying reactions in nature. Both Type 1 and Type 2 copper active sites have been found 

in Cu-NiR. The T1 copper delivers electrons over a distance of 13 Å to the T2 site where the bound 

NO2
- is subsequently reduced.51  

 

Figure 1.6   Dicopper nitrite reductase (Cu-NiR). Monomeric T1 and T2 copper centers 
within the same subunit of Achromobacter cycloclastes Cu-NiR (PDB ID: 1NIA).52 
ChemDraw representations of the T1 (left) and T2 (right) site are shown.  

Copper active sites have been found in well-conserved coordination spheres in different 

enzymes. The types of copper centers are classified by their ligand environment, geometry and 

spectroscopic properties. The most prominent copper sites are the T1 family as they are 

ubiquitous electron transporters. T1 copper center has a characteristic 2N1S trigonal planar base 

stabilized by two histidine and one cysteine, and a weak axial coordination to methionine. The 

geometric configuration is in fact not favorable for the biological active form of Cu2+ but slightly 

favorable for the reciprocate Cu+. The constraint imposed by the active site ligands is known as 

the entatic state,53,54 which serves as a rack that configures the Cu2+ center in a position that 

minimizes the internal reorganization energy (λint) for the formation of Cu+. The effect due to 



 

9 

 

reorganization described in the semiclassical Marcus equation is pronounced, as the lowered 

overall λ is directly proportional to the increase of kET.21 

In my undergraduate research, some copper complexes have been made using the 

pyridindiimine ligands with structural constrain that resemble the entatic state in copper 

proteins. The rate constant of electron transfer was initially studied via the NMR line broadening 

experiments plotting Cu2+ concentrations vs the-width-at-half-maximum of a chosen resonance. 

Nevertheless, the project was obstructed as the disproportionation of Cu+ into Cu2+ and Cu0
 

occurred readily at room temperature even though the PDI ligand was supposed to stabilize these 

Cu complexes. The spontaneous formation of two other paramagnetic species resulted in much 

broader NMR baseline, making any line broadening data insignificant comparing to the baseline 

concentration. This was improved slightly when the NMR experiments were repeated at lowered 

temperatures, although a cryogenic temperature might be required to eliminate any interference 

due to disproportionation reactions. The currently available NMR instrument is, however, not 

optimized for frozen NMR sample. Therefore, alternative methods of measuring ET rate would 

be necessary to iterate our data.  
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Figure 1.7   NMR line broadening experiments at 278K, 288K and 298K. The 
broadening are relatively small comparing to the width of the baseline (purple line, 
[Cu2+] = 0 mM) due to disproportionation, which was only slightly improved at 278K. 

 

 Research Objectives 

Using the synthetic models, some typical structural features implicated by Fe- and Cu-NiRs 

were examined, such as the coordination environment that influences ET rate, ligand binding, 

rate determining step and other kinetic parameters favoring substrate activation. One of these 

effects has been explored in my undergraduate research involving the Cu(PDI) complexes. For 

our ongoing interest in small molecule activation, we continued to use PDI as a platform to 

incorporate biological relevant features in metalloenzymes. Specifically, the coordination sphere 

interactions allowing rapid transfer of both protons and electrons are revisited. With the 

available instrumentation in hand, a family of Fe(PDI) complexes integrating proton responsivity 

were synthesized and characterized.  
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Chapter 2  –  Synthesis and Characterization of PDI Complexes. 

 Synthesis of Symmetric PDI Ligands 

First due to the development of using Fe- and Co-PDI catalysts in olefin polymerization,55–

59 a variety of pyridinediimine (PDI) ligands have been reported with detailed experimental 

procedures and characterization.60–64 The PDI scaffolds were chosen to modulate bioinspired 

catalysts due to their versatile redox-activity given that they can store electrons in the metal-

ligand cooperative conjugation.61,62,65,66,64 In the synthetic perspective, PDI ligands are highly 

accessible and tunable. The reaction conditions and chemicals required for the Schiff-base 

condensation are typically safe to handle.  

Symmetric ligands 1 – 3 in Scheme 2.1 are generally formed via the acid-catalyzed 

condensation of commercially available 2,6-diacetylpyridine with the corresponding ortho-

substituted aniline. The reaction can be easily driven to completion by the removal of water being 

generated as a by-product.  

Scheme 2.1 Generic synthesis of symmetric PDI ligands. 

 
 

In our hands, symmetric bis-ligands (2,6-(2,6-R2C6H3N=CMe)2C5H3N) 1 – 3 were synthesized 

using a Dean-Stark apparatus, in which a mixture of 2,6-diacetylpyridine, excess of aniline (1: 

aniline, 2: 2,6-dimethylaniline or 3: 2,6-diisopropylaniline) and a catalytic amount of p-
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toluenesulfonic acid (p-TSA or TsOH) in toluene was allowed to reflux at 84°C for 12 – 36 hours. 

Due to the water-toluene azeotrope, the by-product water evaporated below its normal boiling 

point and condensed in the Dean-Stark trap. The utilization of the Dean-Stark apparatus 

effectively drives the reaction to completion.  

Depending on the stability of the aniline derivatives, the reaction in Scheme 2.1 often 

resulted in a mixture of the bis- and mono-substituted imines. One way to purify the desired 

product is flashing through a neutral alumina column with a solvent mixture such as 

hexane/EtOAc. Alternatively, the desired product can be purified when a suitable solvent for 

washing or re-crystallization is identified. For example, 1 and 2 can be re-crystallized in dry 

ethanol and methanol, respectively, while leaving 1’ and 2’ in solution. On the other hand, the 

purification of 3 can be simply achieved by washing the crude solid with acetone due to the fact 

that 3 is insoluble in most polar solvents, including acetone.   

A series of symmetric dibenzoylpyridinediimine (BPDI) ligands analogous to 2 and 3 were 

also synthesized and characterized (Scheme 2.2). The synthesis procedure of BPDI 4 and 5 is the 

same as 1 – 3, followed by a flash column with silica (CHCl3/pentane/Et3N) or simply a MeOH 

wash to purify the bis-imines. The 1H NMR spectrum is in agreement with the reported data in 

literature.59,67,68 
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Scheme 2.2 Generic synthesis of symmetric BPDI ligands; mono-substituted products are 
omitted. 

 
 

 Remarks of Steric and Chelating Effect  

Using the symmetric PDI and BPDI ligands, the synthesis of monomeric square planar (SP) 

CuI compounds becomes accessible. Although unusual for the d10 configuration, these ligands 

impose a geometric constraint on the CuI center similar to the entatic state in the biological 

copper centers introduced above. In T1 copper active sites, the CuI/II center is forced to reside in 

the NNS trigonal planar with an axial S atom from methionine. The 2N2S pocket chelates the CuI/II 

center in a rack that is “uncomfortable” for CuII but slightly preferable for CuI. This configuration 

ultimately reduces the reorganization energy required for the geometric rearrangement between 

CuI/II occurs during ET.69–72,53 Unlike those in nature, the rack state in Cu(PDI) system is  inversed—

it is the CuI center that adapted the “uncomfortable” configuration, which favors the 

reorganization from CuI to CuII in the synthetic model. X-ray crystallographic data revealed that 

the monomeric CuI(PDI) family were distorted square planar,73 quantified by the τ4 parameter 

derived from the sum of the two largest angles in the copper center divided by 141˚, with 0 being 

a perfect square planar and 1 being a perfect tetrahedral.74  
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Figure 2.1   Examples of monomeric CuI(PDI) complexes. ORTEP and Chemdraw of 
[2CuI(CH3CN)][PF6] and [4CuI(CH3CN)][PF6]. Counter ions are omitted for clarity.  

 Synthesis of Asymmetric Pyridinediimine Scaffolds 

To further explore the realm of biocatalysis modeling, the mono-substituted iminopyridine 

was utilized to install chemical derivatives of functional residues in metalloenzymes. Two PDI 

systems incorporated with neutral base derivatives, MorPDI (6) and PyrrPDI (7) (Mor = morpholine; 

Pyrr = pyrrolidine) have been synthesized and characterized.  

Scheme 2.3 Condensation reaction with proton responsive diamines and subsequent 
protonation.75,76 The pKa values in CD3CN of conjugated acids of morpholine, 
pyrrolidine and  diisopropylamine are shown in blue.   
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The procedure of making didpa (8) has been adapted for the preparation of 7, which 

involved a 36-hour-incubation of a sealed pressure vial containing 3’ and a large excess of the 

diamine (Scheme 2.3). After an overnight freeze precipitation in MeOH or MeCN, 7 was isolated 

in decent yield (72%). The unreacted diamine was most likely not recoverable after the long 

exposure to heat. On the other hand, attempts to synthesize 6 using the same method were 

unsuccessful.  

Depending on the reaction mixture and the pKa of the pendant amine, residual water may 

further react with the product non-catalytically as an acid. Furthermore, the properties of 

diamines can dramatically affect the solubility, and consequently the yield and purity of basePDI. 

The base-catalyzed method tends to be synthetically more compatible with the basePDI with a 

more basic pendant amine. The pKa values (in CD3CN) of the base analogues of 7 (pyrrolidine, 

19.6) and 8 (diisopropylamine, 19.2) are very similar, whereas the pendant base analogue of 6 

(morpholine, 16.6) is considerably more acidic.  

The Dean-Stark method was also attempted to synthesize basePDI (6 – 8). Under the 

condition analogous to the synthesis of 1 – 5, a mixture containing 3’ and the starting diamines 

(baseNC2H4NH2) for basePDI quickly turned into dark brown when treated with toluene and catalytic 

TsOH. The precipitation of a water-soluble white salt occurred as the brown mixture cooled back 

to room temperature. The 1H NMR of the white precipitate isolated from the Dean-Stark mixture 

intended for 7 reveal that it is either a decomposition product of toluene or 2,6-diisopropylaniline 

(Figure S2).  



 

16 

 

Scheme 2.4 Metal-templated condensation of 6. 

 

The scaffold of 6 has been shown accessible via a metal-templated Schiff base synthesis. 

Under a flow of N2, a solution containing the MorNC2H4NH2 was added to a warm suspension of 3’ 

and FeX2 (X = Cl- or Br-) in EtOH and allowed to reflux overnight. The one-pot synthesis shown in 

Scheme 2.4 generated 6FeX2 directly. Unlike 6FeX2, the metal-templated synthesis of 7FeX2 or 

8FeX2 in EtOH yielded a sticky purple mixture ascribed to the protonation in the pendant base. 

Analogous to the previously reported 8FeX2, spectroscopically pure 7FeCl2 can be obtained by 

simply mixing the pure ligand and FeCl2 in solution and crystallized in MeOH/Et2O layer diffusion. 
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Chapter 3  –  Redox Property in Multifunctional Pyridinediimine 

 Ligand-based electron reservoir 

As introduced in Chapter 2, the PDI backbone was chosen to be our modeling platform due 

to the ability of electron storage and the resulting coordination scaffold with accessible redox 

states. The redox non-innocent neutral PDI0 can undergo various reductions to obtain up to three 

electrons, spanning the formal electronic configurations of PDI0
, [PDI]-

, [PDI]2- and [PDI]3- that 

allow the lower-oxidation states to be chemically accessible when coordinated to a metal and 

even main group atoms. Extensive spectroscopic and computational studies have revealed 

multireference characters 3Fe(CO)2 (3 = iPrPDI) arising from a mixed oxidation states of Fe(PDI) 

unit. For simplicity, the PDI ligand are shown in either the neutral or the reduced formed (Figure 

3.1). The dash lines represent the ambiguous oxidation states in [PDI]n- (n = 1, 2 and 3) and the 

delocalized electron(s). 

 

Figure 3.1   Electronic structure of PDI ligand and corresponding bond lengths. 
Chemdraw representations of electronic structures of PDI0 and the collective 
structure of singly and doubly reduced [PDI]n- (n = 1 and 2). The Cimine-Nimine

 (green 
arrow) and Cimine-Cipso (red arrow) bond lengths in [PDI]n, (n = 0, 1, 2 and 3) are listed 
in the table adapted from literature.77   
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 Synthesis and Characterization of Fe(PDI)(CO)2 

Scheme 3.1 Two-electron reduction of (basePDI)FeX2. 

 

Dianionic PDI can be accessed via the chemically stable form of Fe(PDI)(CO)2. To generate  

the two-electron-reduced species, the five coordinate high-spin Fe(PDI)X2 complexes (S = 2) were 

treated with excess NaHg under a CO pressure (Scheme 3.1).55,65,78,79 The reduction of 

Fe(basePDI)X2 resulted in Fe(basePDI)(CO)2 with the diagnostic νCO frequencies of 1934 and 1871 

cm-1 for 6Fe(CO)2  and 1942 and 1876 cm-1 for 7Fe(CO)2 (Figure S5).  

 

Figure 3.2   Solid-state structures of 6Fe(CO)2 and 7Fe(CO)2. rendered at 30% 
probability (6 = MorPDI and 7 = PyrrPDI). The H atoms have been omitted for clarity. 
6Fe(CO)2: Cimine-Nimine bond lengths = 1.332(2) and 1.324(2) Å; Cimine-Cipso bond lengths 

= 1.423(2) and 1.434(2) Å. Selected bond angles (): ∠OC—Fe—CO 97.62(9), ∠N(2)—
Fe(1)—CO 156.22(7), ∠N(1)— Fe(1)—N(3) 153.42(5). 7Fe(CO)2: Cimine-Nimine bond 
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lengths = 1.332(2) and 1.324(2) Å; Cimine-Cipso bond lengths = 1.426(2) and 1.438(2) Å. 

Selected bond angles (): ∠OC—Fe—CO 95.65(7), ∠N(2)—Fe(1)—CO 153.81(7), 
∠N(1)—Fe(1)—N(3) 154.16(6).   

X-ray diffraction data of 6Fe(CO)2 and 7Fe(CO)2 elucidated square pyramidal solid state 

structures (τ5 = 0.05 in 6 and 0.01 in 7).80 The PDI Cimine-Nimine and Cimine-Cipso bond lengths were 

in the range diagnostic of reduced PDI. The room temperature zero-field Mossbauer spectra 

yielded δ = -0.08(1), ΔEQ = 1.46(2) mm/s in 6Fe(CO)2 and δ = -0.089(3), ΔEQ = 1.197(3) mm/s in 

7Fe(CO)2, indicative of the S = 0 configurations similar to the previously reported complexes. 

As expected, 6Fe(CO)2 and 7Fe(CO)2 were both diamagnetic and afforded clean 1H and 13C 

NMR spectra (Figure S6-7). This allowed the direct measurement of pKa values based on the 1H 

NMR chemical shifts of [MorNH]+ in 6Fe(CO)2 and [PyrrNH]+ in 7Fe(CO)2 according to literature 

procedures.50,81 For 6, [HEt3N][BPh4] (pKa ~ 18) was added to 6Fe(CO)2 in CD3CN and the averaged 

pKa value of 17.1 was determined. In the contrary, due to the poor solubility of 7Fe(CO)2 in CD3CN, 

[H7Fe(CO)2][BPh4] was prepared separately and titrated with Et3N, yielding an averaged pKa value 

of 18.3. The experiment was repeated with pyrrolidine (pKa = 19.56), resulting in consistent pKa 

values of 18.53 and 18.54 for the [PyrrNH]+ in 7.  

 Characterization of Hemilabile Ligand 

The redox activity of 6Fe(CO)2 and 7Fe(CO)2 was probed by cyclic voltammetry, scanning 

two individual events near the open circuit potential (OCP) which were expected for PDI 

complexes. In the symmetric such as Fe(iPrPDI)(CO)2, one of these events was ascribed to the one-

electron ligand oxidation, and the other was ascribed to the one-electron metal-based reduction 
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resulted from metal-ligand cooperativity (Figure 3.3). Other asymmetric Fe(PDI)(CO)2 complexes 

also revealed behaviors closely similar to Fe(iPrPDI)(CO)2, such as the previously reported 

8Fe(CO)2 (8 = didpa). The small deviation in the redox potentials was attributed to the uncoupled 

nature in the PDI backbone.  

 

Figure 3.3   Reduction of Fe[PDI]0. The signle electron is represented by the dot (•).  

While the characteristic oxidation and reduction events were probed in 6Fe(CO)2 and 

7Fe(CO)2 (SI F), unusual kinetic behavior was identified in the ligand oxidation events. In 6Fe(CO)2 

and 7Fe(CO)2, distinct scan rate dependence was observed during ip vs. (scan rate)1/2 

measurements (Figure 3.4). Normally, the ligand oxidation event is reversible when coordinating 

solvent such as MeCN is avoided. Unlike 8Fe(CO)2, electron transfer to the [PDI]2- to [PDI]- in 6 

and 7 were rate limited;  at slower scan rates, the couple was irreversible in DCM and became 

reversible at faster scan rates.  
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Figure 3.4   Cyclic voltammograms of 6Fe(CO)2, 7Fe(CO), and 8Fe(CO) in DCM (from 
left to right). The change from “open” to “closed” is proposed to occur when Nbase 
binds to the oxidized iron center.   

 

As shown in Figure 3.4, when 6Fe(CO)2 was scanned faster, ipc/ipa became closer to 1. 

Similarly, the reversibility in 7Fe(CO)2 was gradually restored as the scan rate was increased to 

1000 mV/s, although not as pronounced as in 6Fe(CO)2. The scan rate dependence in these two 

experiments corresponded to the ErCi mechanism, where the reversible electron transfer was 

followed by irreversible chemical step presumed to be the coordination of pendant nitrogen to 

the metal center. The response to scan rates observed in 6 and 7 was indicative of their different 
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association and dissociation equilibrium of hemilabile ligand and the competition between kc and 

kET.  

Additionally, a “closed” form similar to the product in Figure 3.4 can be synthesized 

separately by adding 7 to Fe(OTf)2. While the preparation method was analogous to 7FeCl2, the 

product of 7Fe(OTf)2 was visibly red instead of blue. The preliminary X-ray crystal structure of 

7Fe(OTf)2 revealed that the pyrrN was coordinated to the iron center, forming a six-coordinate 

complex with two axial OTf ions. This result was complementary to the rate-limiting effect 

observed in the voltammograms as the structure of 7Fe(OTf)2 elucidated the product formed 

during the irreversible chemical step, which was evidential to the hemilabile property when the 

complex is less electron-rich. 
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Chapter 4 – Nitrite Reduction  

 Proton Coupled Electron Transfer 

One crucial implication of the interactions with proximal ligands in the active site of 

metalloenzymes is to regulate proton-coupled electron transfer (PCET) with specific rate and 

selectivity enhancement. Encompassing the oxidation states of nitrogen from 5+ (nitrate) to 3- 

(NH3), the redox processes navigating among these nitrogen species are highly pH dependent. 

For example, as shown in Table 4.1, the reduction from NO2
- to NO• ranges from 1 V in acidic 

conditions to -0.46 V in basic conditions,82 and the subsequent reduction of NO• is governed by 

the acidity of the solution. Generally, a basic or acidic environment can enhance the reducing or 

oxidizing power, respectively, of NOx species. When a strong enough reductant is available, the 

reduction from NO• to NO- can be driven by the formation of HNO under acidic conditions. 

Otherwise, the formation of N2O is much more favorable than NO- under acidic conditions, as 

protonation on NOx promotes the N-O bond cleavage.  

Table 4.1 Reduction potentials of selected reactions in the nitrogen cycle. 

 Condition E˚ (V vs NHE) E ˚ (V vs Fc+/0)ǂ Ref 

HNO2 + H+ + e- → NO• + H2O pH 1 1.00 0.60  82 

NO2
- + 2H+ + e- → NO• + H2O pH 7 0.37 -0.03 82 

NO2
- + H2O + e- → NO• + 2OH- pH 14 -0.46 -0.86 82 

2HNO2 + 4H+ + 4e- → N2O + 3H2O pH 0 1.297 0.897 83 

2NO2
- + 3H2O + 4e- → N2O + 6OH- pH 14 0.15 -0.55 83 

NO• + H+ + e- → HNO pH 7 -0.684 -1.084 84 

NO• + e- → NO- pH 10 -0.768 -1.168 84 

2NO• + 2H+ + 2e- → N2O + H2O pH 0 1.59 1.19 83 

2NO• + H2O + 2e- → N2O + 2OH- pH 14 0.79 0.39 83 
ǂFerrocene standard from literature (E1/2 = 0.400 V vs NHE in MeCN) was used.84 
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The dependence on proton association is also manifested in the hydrophobic core of 

metalloenzymes, where protons are made accessible in proximity via the H-bonding network in 

the secondary coordination sphere. An analogous effect facilitating proton-couple PCET can be 

achieved by integrating the electron storing PDI with a hemilabile proton responsive ligand. The 

pendant base allows the entry of protons, and the hemilability enhance the displacement of 

activated substrates. According to the estimated E˚ values referenced to ferrocene in Table 4.1, 

the electron from the one-electron ligand oxidation of Fe(PDI)(CO)2 (E1/2 = ~-0.5 – 0.6 V vs Fc) can 

be used in the transformation of one equivalent of NO2
- to NO•.  

Scheme 4.1 PDI systems reported with nitrite reduction activity. 

 

 Characterization of Dinitrosyl Iron Complexes (DNICs) 

The treatment of NO2
- with the previously reported (PDI)Fe(CO)2 systems has been 

determined to yield the corresponding dinitrosyl iron complex (DNIC) (Scheme 4.1).49,85,86 These 

DNICs have been described as {Fe(NO)2}9 using the Enemark-Feltham (E-F) notation.87 The 

superscript is the sum of the total number of Fe0 d electrons and the pi* electrons from two NO• 

ligands subtracted by the cationic charge of the entire unit (8 + 1 + 1 -1 = 9).  
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Scheme 4.2 Synthesis of DNICs. 

 

Using 6Fe(CO)2 and 7Fe(CO)2, two new DNICs were synthesized in a THF/MeOH solvent 

mixture with 2 equivalents of NaNO2 and 4 equivalent of [NH4][BPh4] or [HEt3N][BPh4]. The 

products, namely [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4] were isolated in 30% yield after a series 

of purification and re-crystallization. X-ray quality crystals were obtained from the 

spectroscopically pure products. Experimental data of [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4], 

including the bond lengths, bond angles, E1/2 values and IR stretches, are consistent with other 

PDI DNICs.49,85,86 The differences between the asymmetric and symmetric νNO frequencies 

(ΔνNO, Table 4.2) fit in the mononuclear five-coordinate DNIC category.88  

Table 4.2 Values of τ5 and ΔνNO for [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4]. 

 [6Fe(NO)2][BPh4] [7Fe(NO)2][BPh4] 

τ5 0.32 0.24 

ΔνNO (MeCN, cm-1) 72 74 

ΔνNO (ATR, cm-1) 74 69 

Δν15NO (ATR, cm-1) 72 70 
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Additionally, the electronic states of [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4] have been 

recently investigated using broken-symmetry density functional theory (BS-DFT), re-iterating the 

E-F assignment of {FeNO}9 with a PDI0 scaffold.89 Based on the Kohn-Sham reference, the 

optimized geometry suggested a S = ½ configuration with a formal assignment of 

[(PDI0)FeII(NO•)(NO-)]+
, but the BS solution did not exclude the multireference character, given 

the configuration of [(PDI0)FeIII(NO-)2]+ could also fit in the {FeNO}9 description.89,90  

 

Figure 4.1   Solid state structures of [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4]. ORTEP 
view at ellipsoid probability of 50%. For clarity, [BPh4]- and all H atoms have been 
omitted. Cimine–Nimine bond lengths: 1.280(3) and 1.290(3) Å in [6Fe(NO)2][BPh4]; 
1.283(2) and 1.285(2) Å in [7Fe(NO)2][BPh4]. Cimine–Cipso bond lengths: 1.486(4) and 
1.483(5) Å in [6Fe(NO)2][BPh4]; 1.488(3) and 1.488(3) Å in [7Fe(NO)2][BPh4].  Both 
exhibit FeNO in the attracto conformation.  

 

 Kinetics of Nitrite Reduction  

The reaction in CH3CN with 2 equiv. of TBANO2 and 4 equiv. of [HEt3N][BPh4] were 

monitored spectroscopically. The initial rates for the decay of 6Fe(CO)2 and 7Fe(CO)2 obtained 

from the UV-Vis kinetics were 2.30 x 10-8 Ms-1 and 7.07 x 10-8 Ms-1, respectively. To compliment 

the kinetics data, the product(s)  in these reactions were determined using IR spectroscopy to 
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observe the formation of νNO. When the reaction of 7Fe(CO)2 + 4[HEt3N][BPh4]   + 2TBANO2 was 

monitored by liquid IR (Figure 4.2), an intermediate was identified as a broad band at 1667 cm-1 

appeared, prior to the formation of DNIC νNO. The poor line shape of the band at 1667 cm-1 was 

due to the precipitation in the liquid cell during the formation of the mononitrosyl intermediates. 

These liquid IR data also suggested that the DNIC products formed in solution (CH3CN) had the 

same solid state structures of [6Fe(NO)2][BPh4] and [7Fe(NO)2][BPh4] (Figure S18 and S29). 

 

Figure 4.2   Reactions of 4[HEt3N][BPh4] + 2TBANO2 monitored in solution IR (CH3CN): 
(left) with 7Fe(CO)2 and (right) stack view with 6Fe(CO)2, 7Fe(CO)2 and 8Fe(CO)2.  

 

 Characterization of Mononitrosyl Iron Complexes (MNICs) 

Adjusting the reaction stoichiometric ratio to 1:1:2 [7Fe(CO)2 : NO2
- : 2H+] led to an almost 

exclusive formation of MNIC ([7FeNO]+). The formation of [7FeNO][BPh4] was presumably driven 
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by its insolubility in both polar and non-polar solvent. The crystals of [7FeNO][BPh4] were 

insoluble in alcohols, including MeOH, EtOH and isopropyl alcohol, as well as Et2O and pentane. 

Hence [7FeNO]+ can be easily purified by washing with these solvents. A similar result was 

obtained when reacting 6Fe(CO)2 with NO2
- and 2H+ with the exception of [6FeNO][BPh4]  being 

soluble in most organic solvents, which is potentially an effect due to additional proton affinity 

of the morpholine oxygen atom. These newly identified MNIC complexes have been isolated in 

decent quantity, presumably due to the hemilability of the non-bulky pendant base.  

Scheme 4.3 Synthesis of MNICs. 

 
 

 

Figure 4.3   Solid state structures of (left) [6FeNO]+ and (right) [7FeNO]+ , ORTEP 
rendered in view at 50% ellipsoid probability (all H-atoms and the BPh4

- have been 
omitted). Cimine-Nimine bond lengths: 1.314(1) and 1.313(2) Å in [6FeNO]+; 1.315(2) 
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and 1.313(2) Å in [7FeNO]+. Cimine–Cipso bond lengths: 1.446(2) and 1.440(2) Å in 
[6FeNO]+; 1.453(2) and 1.439(2) Å in [7FeNO]+.  

 
Table 4.3 Selected experimental bond distances, angles of NICs.  

 [6FeNO][BPh4] [7FeNO][BPh4] [6Fe(NO)2][BPh4] [7Fe(NO)2][BPh4] 

Fe—PDIN1 (Å) 2.035(1) 2.031(1) 2.233(3) 2.216(2) 

Fe—PDIN2 (Å) 1.836(1) 1.830(2) 2.065(2) 2.080(1) 

Fe—PDIN3 (Å) 1.894(1) 1.894(1) 2.171(3) 2.138(2) 

 Fe— 
hemiN (Å) 2.076(1) 2.066(1) -- --  

Fe—N[O] (Å) 1.679(1) 1.677(2) 1.696(3), 
1.694(2) 

1.693(2), 
1.696(2) 

N—O (Å) 1.183(2) 1.182(2) 1.165(3), 
1.168(3) 

1.170(3), 
1.173(3) 

τ5 0.12 0.09 0.32 0.24 

∠ Fe—N—O (°) 154.4(1) 150.9(2) 162.1(2) 
160.8(3) 

161.9(2) 
160.4(2) 

∠ [O]N—Fe—N[O] -- -- 108.6(1) 108.7(1) 

ν NO (MeCN, cm-1) 1678 1675a 1794, 1722 1795, 1721b 

ν NO (ATR, cm-1) 1687 1667 1783, 1709 1785, 1716 

ν 15NO (ATR, cm-1) 1654 1635 1749, 1677 1752, 1682 

δ (mm/s) 0.095(5) 0.042(3) -- 0.32(3) 

ΔEQ (mm/s) 0.415(9) 0.489(5) -- 0.82(9) 
aShifted to 1667 cm-1 as it precipitated as the spectrum became poorly resolved. bThe final νNO bands upon the 

complete disappearance of νNO of MNIC.  
 
 

Each of the solid FT-IR spectra of [6FeNO][BPh4] and [7FeNO][BPh4] had an intense vNO 

band at 1687 and 1666 cm-1 (ν15NO = 1654 and 1635 cm-1), respectively (Figure S22 and S13). This 

suggested that the MNIC intermediates, 6FeNO][BPh4] and [7FeNO][BPh4], were chemically 

stable, and they exhibit in solution with structures virtually identical to their solid states. Both 

MNICs were square pyramidal (τ5 = 0.12 for [6FeNO][BPh4] and 0.09 for [7FeNO][BPh4]),80 where 

the hemilabile base and the PDI formed an N4 plane. The axial NO ligand adapted an unusual 
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angle for most iron nitrosyl complexes in both cases,91,92 with the ∠Fe—N—O of 154.4(1)° for 

[6FeNO][BPh4] and 150.9(2)° for [7FeNO][BPh4]. Some of the important spectroscopic data of 

these MNICs are summarized in Table 4.3.  

Unlike the ill-resolved 1H NMR spectrum of the DNICs (Figure S19-S20 and S27-S28), the 

spectra of both [7FeNO][BPh4] and [6FeNO][BPh4] is indicative of an overall S = 0 environment in 

both MNICs as they show well resolved resonance that can be integrated for the total number of 

protons. Figure 4.4 illustrates the coupling of the pyrrolidine protons in [7FeNO][BPh4] when the 

pyrrN coordinates to the iron center (A)  in comparison to (B) and (C), where the pendant pyrrole 

is non-coordinating. The hemilabile effect also applies to the morpholine protons in 

[6FeNO][BPh4] and can be monitored by 1H NMR for future reactivity studies. 

 



 

31 

 

 

Figure 4.4   Stacked 1H NMR (500 MHz) spectrum of [7FeNO][BPh4], 
[H7Fe(CO)2][BPh4] and 7Fe(CO)2 (A, B and C, respectively). All recorded in CD2Cl2.  

 

Mossbauer parameters, ∠Fe—N—O and vNO values were suggestive of {FeNO}7 with a NO• 

ligand in 6 and 7MNICs, contradicting to the diamagnetic behavior observed in 1H NMR, as no 

diamagnetic {FeNO}7 has been reported. In order to verify the E-F assignment for these MNICs, 

the electronic state of the PDI ligand were investigated. In both 6 and 7MNICs, the Cimine-Nimine 

and Cimine-Cipso bond lengths are similar to those observed in a reduced PDI scaffold. The presence 

of a reduced PDI ligand in MNICs were complimented by BS-DFT calculations, yielding the most 

stable solutions of BS(2,2) and BS(0,0), where the BS(m,n) notation represents the m electrons 

on the iron center antiferromagnetically coupled to the n electrons on the ligands. Both BS 
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solutions indicated that the PDI is singly reduced, and the MNICs can be formally assigned as 

Fe(II)(↑↑)NO•(↓)PDI•−(↓) for BS(2,2) and Fe(II)(↑↓)NO•(↑)PDI•−(↓) for BS(0,0). These allows 

the configuration of diamagnetic {FeNO}7 as in the charge formula of [FeNO]2+[PDI]-[BPh4]-. The 

superscript on the E-F notation in this case is the sum of the total number of Fe0 d electrons and 

the pi* electrons from NO• subtracted by the cationic charge of the [FeNO]2+ unit (8 + 1 – 2 = 7).    
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 Kinetic Enhancing Properties 

 
 

Figure 4.5   PDI complexes tested and their pKa values in CD3CN. 

 

As mentioned in 4.2, the reaction in CH3CN with 2 equiv. of TBANO2 and 4 equiv. of 

[HEt3N][BPh4] (pKa = 18) monitored via UV-Vis yielded initial rates of 2.30 x 10-8 Ms-1 for 6Fe(CO)2 

and 7.07 x 10-8 Ms-1 for 7Fe(CO)2. The difference in the rates is ascribed to the pKa of the pendant 

base, as the more acidic pendant PDI 6 ensued the same rate as the control with no 

enhancement. The non-Brønsted PDI complex 9Fe(CO)2 was chosen for the control experiment, 

as it contains a proton-responsive ligand (H-bond forming) that does not participate in acid and 

base chemistry. While the acidity of 7 is virtually the same as the proton source, it pertained a 

much faster rate comparing to the more basic PDI, 8.  

Replacing the proton source with [HLut][BPh4] (pKa = 14.1), a much greater rate 

enhancement effect relative to 9Fe(CO)2 was observed in the systems involving hemilabile PDI, 
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namely 6 and 7. The stronger acid increases the initial rates by 40 times for 6Fe(CO)2 and 

7Fe(CO)2, while only 10 times for 8Fe(CO)2.  

 

Figure 4.6   Initial rate kinetics with [HEt3N]+ vs [HLut]+ as the acid source.  Both 
contained [BPh4]- anions. All reactions were carried out with 1:2:4 molar 
equivalent  of [LFe(CO)2 : TBANO2 : 2H+].  

In summary, the kinetic experiment demonstrated the rate enhancing ability of the proton-

responsive secondary coordination sphere, in agreement with the previously reported observed 

in pendant PDI with Brønsted acid/basicity. While the exact contribution of pKa in nitrite 

reduction is still underway, the kinetic data have been conclusive of the significance of hemilabile 

ligand. 
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Conclusion 

Catalysis by metalloenzymes is often accompanied by the proximal access to protons near 

the active site. In synthetic systems, however, protonation near the metal center generally 

results in a prominent positive shift of redox potential, limiting electron transfer to the substrate. 

In order to understand the cause of this limitation, it is of our interest to investigate how the pKa 

and redox potential are coupled/uncoupled in synthetic ligand scaffolds.  

When functional groups are added to the system, the reduction potential of the redox 

active center can vary drastically, depending on the electron withdrawing/donating 

characteristics introduced to the ligand scaffold. In many cases where biomimetic motifs such as 

a Lewis acid or proton relay is incorporated, the coupling effect in proximity to the redox active 

center typically results in significant anodic shifts in the reduction potential. Unlike these 

compounds, the attenuation of reduction potential is not observed in the PDI systems with 

appended Lewis or Brønsted acid/bases in the secondary coordination spheres. The ligand-based 

reduction potential of the PDI systems is in fact conserved, regardless of the type of functional 

groups nearby. In previous work, the uncoupling between redox potential and secondary sphere 

was utilized to demonstrate the kinetic significance of encapsulated Lewis acids in the crown 

ether PDI system, showing that the reduction of nitrite is orders of magnitude faster with the 

presence of a proximal Lewis acid. The initial rate of Na+ encapsulated Fe(15c5PDI)(CO)2 was 2.30 

x 10-8 Ms-1, which was about 3 times faster than without encapsulation of Na+.45 Under the same 

condition, the initial rates of 7.07 x 10-8 Ms-1 for 7Fe(CO)2 and 2.30 x 10-8 Ms-1 for 6Fe(CO)2 were  

comparable to the Fe(15c5PDI)(CO)2 studies. 
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The pKa values of [H6Fe(CO)2][BPh4] and [H7Fe(CO)2][BPh4] were reiterated with other 

organic acids in CD3CN, where consistent results have been obtained. The final pKa values in 

acetonitrile of [H6Fe(CO)2][BPh4] and [H7Fe(CO)2][BPh4] have been determined to be 17.1 and 

18.3, respectively. Using a stronger acid like [HLut]+, the initial rates of nitrite reduction increased 

dramatically for both 7Fe(CO)2 and 6Fe(CO)2 (Figure 4.6). These results have proven the kinetic 

significance of protonation at the pendant bases during nitrite reduction. 

Lastly, the investigation in the electrochemical properties of the Fe(CO)2 and the 

protonated analogues had confirmed uncoupling effect between the activated secondary 

coordination spheres and the ligand-based redox potentials. In the 7Fe(CO)2 system, upon 

protonation, the ligand based redox potential was ensued in a negligible anodic shift of merely 

65 mV. This finding was consistent with the previously reported PDI systems (Figure 1.5 D and 

E).50 The uncoupling of the ligand-based reduction enables the utilization of PDI complexes as a 

versatile platform for modeling and functionalization. The ability to attain their redox allows the 

incorporation of cooperativity in the secondary coordination sphere, which opens avenues for 

designing new biomimetic models and catalysts suitable for small molecule activation.   
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Supporting Information 

General Consideration  

Most reagents for ligand synthesis, such as 1-(2-aminoethyl)pyrrolidine (≥98.0%), were 

purchased from TCI America and were used as received without distillation or other treatments. 

Tetrahydrofuran and diethyl ether were purged with N2 for 30 mins and circulated for 6 hours in 

the VAC solvent purification system prior to storage. Pentane, acetonitrile, methanol and 

dichloromethane was dried and deoxygenated with a PureSolv solvent purification system (CuO 

and alumina columns). Deuterated solvents including were purchased from Cambridge Isotope 

Laboratories. Fresh or re-activated molecular sieves (3Å and 4Å) were added to acetonitrile and 

methanol for glovebox storage. All solvents, including CDCl3, CD3CN and CD2Cl2, were degassed 

before use. Air sensitive materials were handled using standard Schlenk techniques and/or 

stored under N2. The following materials were synthesized according to literature procedures: 

[(2,6-iPr-C6H3)N=CMe)(O=CMe)C5H3N],58 [HEt3N][BPh4],93 [H(2,6-lutidinium)][BPh4].94  

All infrared spectra were recorded on a Thermo Scientific Nicolet iS10 FT-IR spectrometer. 

For general characterizations, an ATR accessory was used for solid samples. The yield 

determination of Fe(PDI) nitrite reduction was performed using the Smart Transmission 

accessory. All liquid IR samples and the solvent backgrounds were prepared under N2 and sealed 

in a Teflon-capped liquid cell equipped with either NaCl or CaF2 plates. NMR spectra were 

acquired using either the Unity Inova 300 MHz FT-NMR or the Bruker 500 MHz FT-NMR 

spectrometer. The specific operating frequencies and deuterated solvent were indicated 
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individually. All chemical shifts were reported with respect to the internal signal of SiMe4 at 0 

ppm, with the exception for all the 19F and 31P NMR spectra, in which the chemical shifts were 

referenced to 1,1,1-trifluorotoluene in C6D6 (-63.72 ppm) and D3PO4 in D2O (0 ppm), respectively. 

Mass spectra were collected using the Agilent GC-MS EI system equipped with a HP-5MS column 

(30 m x 0.25 mm x 0.25 um). UV-Vis spectra and kinetics data were obtained using the Jasco V-

670 Spectrometer equipped with a Peltier controlled 6-cell linear autosampler. Cuvettes were 

21-Q-10 Spectrosil® quartz from Starna Cells. All data were obtained at 298 K. 

Elemental analyses were performed by ALS (formerly Columbia Analytical Services) in 

Tuscon, AZ. Electronic paramagnetic resonance (EPR) spectra were recorded using a Bruker EMX 

spectrometer equipped with an ER041XG microwave bridge, an Oxford Instrument liquid-helium 

quartz cryostat, and a dual mode cavity (ER4116DM). Mössbauer spectra were recorded at room 

temperature with a constant acceleration spectrometer (Wissel GMBH, Germany) in a horizontal 

transmission mode using a 50 mCi 57Co source. Approximately 0.200 g of sample was crushed in 

a Mössbauer sample holder and a drop of Paratone-N was used to cover the sample to prevent 

oxidation. Data acquisition varied from 2 to 7 days to get a statistically reasonable spectrum for 

each sample to analyze. The velocity scale was normalized with respect to metallic iron at room 

temperature; hence all isomer shifts were recorded relative to metallic iron. The Mössbauer 

spectra were fitted by assuming Lorentzian line shapes using the NORMOS (Wissel GMBH) least-

square fitting program. The isomer shift and quadrupole splitting parameters were determined 

from the fitted spectra.  
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Ligand Synthesis 

[(2,6-iPr-C6H3)N=CMe)(C4H8NC2H4)N=CMe)C5H3N] (7). A dry 25 mL pressure vial containing 

[(2,6-iPr-C6H3)N=CMe)(O=CMe)C5H3N] (1.72 g, 5.33 mmol) and excess 1-(2-

aminoethyl)pyrrolidine (3.00 g, 26.3 mmol) was sealed under N2 with a pressure lid and incubated 

in a silicon-based oil bath at 90°C for 36 hours. Dry MeCN was added to the resulting oil and 

cooled to -4°C. The precipitation was collected via filtration and washed with cold MeOH, yielding 

1.56 g (70%) of pale yellow product. GC-MS (EI) [M•+] m/z calcd for C27H38N4: 418.31 (100.0%), 

419.31 (29.2%), 420.32 (2.7%). Found: 418.300 (100%), 419.300 (30%), 420.300 (3.5%). 

 

Figure S1   FT-IR (ATR): 1640 cm-1(imine C=N). 
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Figure S2   1H NMR (500 MHz, CDCl3, δ): 8.35 (d, 1H), 8.19 (d, 1H), 7.81 (t, 1H), 7.17 – 
7.08 (m, 3H), 3.74 (t, 2H), 2.94 (t, 2H), 2.79 – 2.72 (m, 2H), 2.66 – 2.64 (m, 4H), 2.45 
(s, 3H), 2.24 (s, 3H), 1.84 – 1.81 (m, 4H), 1.15 (dd, 12H).  

 
 
 

 
 

Figure S3   13C NMR (125 MHz, CDCl3, δ): 167.14, 156.46, 154.80, 146.54, 136.70, 
135.83, 123.49, 122.97, 121.82, 121.45, 57.11, 54.72, 52.50, 28.26, 23.53, 23.20, 
22.90, 17.16, 13.97. 
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Preparation of 7FeX2 

To a scintillation vial containing 7 (0.500 g, 1.20 mmol) and FeBr2 (0.270 g, 1.25 mmol), 

approximately 10 mL of THF was added, resulting in an immediate color change to blue. After 

stirring overnight, a large amount of product precipitated in THF. A Büchner funnel was used to 

collect the fine precipitate upon a vacuum filtration. The collected material was washed a few 

times with Et2O and allowed to dried, yielding 0.62 g (82%) of 7FeBr2 powder that was used 

subsequently without re-crystallization. FTIR (ATR): 1615, 1580 cm-1 (C=N). Alternatively, 7FeCl2 

was prepared in the same manner with FeCl2 and re-crystalized in MeOH/Et2O to afforded 

needle-like crystals. X-ray quality crystals of 7FeCl2 were obtained by MeOH/Et2O vapor diffusion.  
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Preparation of 7Fe(CO)2 

To a dry Fischer-Porter tube equipped with a magnetic stir bar, 7FeBr2 (0.6195 g, 0.9767 

mmol), NaHg (1.49 g, 5% Na) and 20 mL DCM was added. The tube was sealed with a pressure 

gauge and charged with 40 psi of CO. After vigorously stirring for 36 hours at room temperature, 

the reaction was then evacuated via a Schlenk line until the solvent was mostly evaporated. The 

crude material was treated with Et2O, generating a dark green solution where NaHg by-products 

and unreacted 7FeBr2 remained insoluble. The Et2O solution was cautiously filtered through 

Celite and left to evaporate overnight to afford diamond-shaped crystals of 7Fe(CO)2 (0.2937 g, 

57 %). Sample was sent for elemental analysis (calculated for C29H38FeN4O2: C, 65.66; H, 7.22; Fe, 

10.53; N, 10.56; O, 6.03).  
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Figure S4   FT-IR (ATR): 1942, 1876 cm-1 (asymmetric  and symmetric C=O). 
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Figure S5   1H NMR (500 MHz, CD2Cl2, δ): 8.05 (d, 1H), 8.01 (d, 1H), 7.49 (t, 1H), 7.29 – 
7.20 (m, 3H), 4.37 (m, 2H), 2.85 (m, 2H), 2.68 (s, 3H), 2.59 (br, 4H), 2.47 (m, 2H), 2.32 
(s, 3H), 1.75 (br, 4H), 1.22 (d, 6H), 0.99 (d, 6H).  

 

 

Figure S6   13C NMR (125 MHz, CD2Cl2, δ): 215.26 (C=O), 156.41 (C1=N1), 155.86 
(C2=N2), 150.21, 146.05, 144.93, 140.72, 126.51, 123.85, 121.26, 120.50, 117.66, 
60.48, 58.65, 54.77, 27.67, 24.80, 24.45, 24.01, 16.75, 14.52.  
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Figure S7   Zero-field Mӧssbauer spectrum. Isomershift, δ = -0.089(3) mm/s; 
quadrupole splitting, ΔEQ = 1.197(3) mm/s; line width, Γ = 0.326(7) mm/s.  
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Preparation of [H7Fe(CO)2][BPh4] 

A mixture containing 7Fe(CO)2 (0.1250 g, 0.2356 mmol) and 2 equiv. [NH4][BPh4] (0.1589 g, 

0.4711 mmol) in 3:1 THF:MeOH was stirred overnight. The solvent was removed in vacuo. The 

resulting material was re-dissolved in DCM and filtered through Celite. The filtered solution was 

layered with Et2O to afford crystals of [H7Fe(CO)2][BPh4] (0.1602 g, 80%).  
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Figure S8   FT-IR (ATR): 3126 cm-1 (N-H); 1952, 1888 cm-1 (C=O); 733, 704 cm-1 ([-

BPh4]).  
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Figure S9   1H NMR (500 MHz, CD2Cl2, δ): 8.11 (d, 2H), 7.59 (t, 1H), 7.52 (br, 8H), 7.30 
– 7.20 (m, 3H), 7.10 (br, 8H), 6.92 (br, 4H), 3.96 (m, 2H), 2.74 (m, 2H), 2.54 (s, 3H), 
2.53 (br, 4H), 2.42 (m, 2H), 2.36 (s, 3H), 1.72 (br, 4H), 1.21 (d, 6H), 0.99 (d, 6H).  

 

 

Figure S10   13C NMR (125 MHz, CD2Cl2, δ): 215.28 (C=O), 165.19, 164.80, 164.40, 
164.01, 158.68 (C1=N1), 156.15(C2=N2), 149.61, 146.01, 145.39, 140.42, 136.42, 
128.70, 126.94, 126.64, 124.04, 122.76, 121.98, 119.22, 56.36, 27.76, 24.78, 24.44, 
23.14, 16.99, 15.15.  
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Figure S11   Zero-field Mӧssbauer Spectrum. Isomershift, δ = -0.084(2) mm/s; 
quadrupole splitting, ΔEQ = 1.142(4) mm/s; line width, Γ = 0.246(5) mm/s.  
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Determination of pKa in CD3CN. The pKa of [H7Fe(CO)2][BPh4] was measured by previously 

described procedures using Et3N and pyrrolidine.50 In acetonitrile, the pKa of [HEt3N]+ is 18.82, 

and [Hpyrrolidinium]+ is 19.56, according to literature.95  

 

Figure S12   1H NMR in CD3CN (500 MHz).  
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Nitrosyl Iron Complexes 

Preparation of [7FeNO][BPh4].  

To a suspension of 7Fe(CO)2 (0.1575 g, 0.2970 mmol) in THF/MeOH (approximately 1:4 by 

volume), a MeOH solution of NaNO2 (2.46 mL, 0.2970 mmol) was added. The mixture was allowed 

to equilibrate for about 5 minutes. While stirring, [HEt3N][BPh4] (0.50 g, 1.2 mmol) was added to 

the reaction mixture, which shortly led to the disappearance of the dark green color and 

eventually the formation of a blue precipitate. The solvent was then decanted into a Celite filter 

to isolate the precipitate, followed by treating the dried Celite mixture with DCM to re-dissolve 

the blue product. After filtering through a fresh Celite plug, the blue DCM solution was layered 

with an equal volume of Et2O and left undisturbed for 3 days to afford blue crystals of 

[7FeNO][BPh4] that were suitable for X-ray diffraction (0.1728 g, 71%); Anal calcd for 

C51H58BFeN5O: C, 74.37; H, 7.10; B, 1.31; Fe, 6.78; N, 8.50; O, 1.94; Found: C, 73.92; H, 6.96; N, 

8.40. Crystals of [7Fe15NO][BPh4] were prepared similarly using Na15NO2. 
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Figure S13   FT-IR (ATR, crystals) of [7FeNO][BPh4] (black) vs. [7Fe15NO][BPh4] (red): 

1667 cm-1 (14N=O); 729, 702 cm-1 ([-BPh4]). ν(15NO) = 1635 cm-1; Δν(14NO-15NO) = 32 

cm-1.   
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Figure S14   1H NMR (500 MHz, CD2Cl2, δ): 7.80 (d, 1H), 7.79 (d, 1H), 7.69 (t, 1H), 7.40 
– 7.26 (m, 3H), 7.31 (br, 8H), 6.99 (t, 8H), 6.83 (t, 4H), 3.45 – 3.32 (m, 2H), 2.91 (dd, 
1H), 2.84 – 2.81 (m, 2H), 2.55 – 2.46 (m, 2H), 2.42 (s, 3H), 2.39 (s, 3H), 2.13 (dd, 1H), 
1.86 – 1.71 (m, 2H), 1.60 (br, 1H), 1.43 (d, 3H), 1.38 (br, 1H), 1.18 (d, 3H), 1.12 (d, 3H), 
0.91 (d, 3H).  

 

Figure S15   13C NMR (125 MHz, CD2Cl2, δ): 170.99 (C1=N1), 165.03, 164.64, 164.25, 
163.86, 163.00 (C2=N2), 153.21, 152.60, 143.23, 141.19, 139.87, 136.33, 128.76, 
126.79, 126.31, 126.02, 125.79, 125.13, 124.80, 122.14, 63.03, 60.27, 51.50, 29.21, 
27.83, 25.76, 24.75, 24.67, 22.99, 22.61, 22.17, 18.72, 15.56.  
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Figure S16   Zero-field Mӧssbauer Spectrum  of [7FeNO][BPh4]. Isomershift, δ = 
0.094(3) mm/s; quadrupole splitting, ΔEQ = 0.489(5) mm/s; line width, Γ = 0.254(7) 
mm/s.  
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Preparation of [7Fe(NO)2][BPh4]. 

To a stirring solution of 7Fe(CO)2 (0.172 g, 0.325 mmol) in THF, NaNO2 (0.0454 g, 0.65 mmol) 

pre-dissolved in minimal MeOH was added. The mixture was left to equilibrate for about 5 

minutes before adding [HEt3N][BPh4] (0.55 g, 1.3 mmol). A slow color change from green to 

brown was observed within a few hours. The reaction mixture was evacuated via a Schlenk line 

until all the vapor and solvents were removed. The dried-out material was then saturated with 1 

– 2 mL of CHCl3 (with stabilizer), causing a layer of [-BPh4] salts to accumulate on the solution 

surface, which could be removed by gravity through a Celite plug.  Vapor diffusion of Et2O into 

the brown CHCl3 solution resulted in crystalline needles of [7Fe(NO)2][BPh4] (0.204 g, 76%). 

 

Figure S17   FT-IR (ATR) of [7Fe(NO)2][BPh4] (black) overlaid with [7Fe(15NO)2][BPh4] 
(red): 1785, 1716 cm-1 (14N=O); 732, 702 cm-1 ([-BPh4]). ν(15NO) = 1752, 1682 cm-1; 
Δν(14NO-15NO) = 32 cm-1

.  
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Figure S18   Zero-field Mӧssbauer Spectrum of [7Fe(NO)2][BPh4]. Isomershift, δ = 
0.32(3) mm/s; quadrupole splitting, ΔEQ = 0.82(9) mm/s; line width, Γ = 0.92(5) mm/s. 

MNIC to DNIC. To a suspension of [7FeNO][BPh4] (0.2031 g, 0.38 mmol) in THF, a MeOH 

solution containing an excess of NaNO2 (0.0528 g, 0.77 mmol) was added. A color change to 

reddish brown was observed within a few hours of stirring. The solvent was removed via the 

Schlenk line. The resulting material was triturated with MeOH, followed by filtration via Celite to 

separate into a reddish brown solid and a brown MeOH filtrate. The solid was re-dissolved in THF 

and filtered again through Celite. Dark red crystals were obtained by re-crystallization in a THF 

solution layered with Et2O (1:3 by volume THF/Et2O). This method yielded 0.05 g of the said 

crystals (15%). More products could be obtained by combining the decanted solution. As 

revealed by X-ray diffraction, the dark red crystals had a structure identical to [7Fe(NO)2][BPh4] 

generated from 7Fe(CO)2 as described above. However, other spectroscopic data showed 

questionable results. 
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Figure S19   1H NMR (500 MHz) spectrum of [7Fe(NO)2][BPh4] in CD3CN. 

 

Figure S20   1H NMR (500 MHz) spectrum of [7Fe(NO)2][BPh4] in CD2Cl2. 
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Figure S21   UV-Vis absorption. The bright red color of [7Fe(NO)2][BPh4] was 
attributed to the absorbance bands at 409 and 482 mn, which were not seen in 
[7Fe(NO)2][BPh4].prepared directly from Fe(CO)2. The difference in electronic spectra 
may be evidential to a high spin DNIC intermediate.   
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Preparation of [6FeNO][BPh4] 

The procedure described for [7FeNO][BPh4] was used with the following materials: 

6Fe(CO)2 (0.1425 g, 0.26 mmol), NaNO2 (2.16 mL, 0.26 mmol). and [NH4][BPh4] (0.3518 g, 1.04 

mmol). The work up in DCM/Et2O resulted in the co-crystallization of MNIC, DNIC and some 

unidentified purple solid. The purple solid was presumably [H6FeBr2]+, which could be removed 

by washing with MeOH until the MeOH became colorless. The remaining mixture was re-

dissolved in CHCl3, upon which the DNIC ([6Fe(NO)2][BPh4]) could be removed in the brown 

filtrate through a Celite plug. The remaining blue green solid of [6FeNO][BPh4] was collected and 

re-crystallized (0.0759 g, 35%). Crystals suitable for X-ray diffraction was grown by THF/Et2O 

vapor diffusion. Anal calcd for C51H58BFeN5O2: C, 72.95; H, 6.96; B, 1.29; Fe, 6.65; N, 8.34; O, 3.81; 

Found: C, 72.95; H, 6.93; N, 8.24. 

 

Figure S22   FT-IR (ATR) of [6FeNO][BPh4] (black): 1686 (14N=O); 734, 705 cm-1 (-BPh4). 
[6Fe15NO][BPh4] (red): ν(15NO) = 1654 cm-1. Δν(14NO-15NO) = 32 cm-1

.  



 

58 

 

 

 

Figure S23   1H N MR of [6FeNO][BPh4] (500 MHz, CD2Cl2, δ): 7.82 (t, 2H), 7.72 (t, 1H), 
7.46 – 7.37 (m, 3H), 7.31 (br, 8H), 6.99 (t, 8H), 6.83 (t, 4H), 3.68 (q, 2H), 3.64 – 3.60 
(m, 1H), 3.42 – 3.25 (m, 2H), 3.33 (dd, 1H), 3.21 (dd, 1H), 3.08 (td, 1H), 2.78 (d, 1H), 
2.57 (d, 1H), 2.57 – 2.46 (m, 2H), 2.41 (s, 3H), 2.40 (s, 3H), 2.34 (dd, 2H), 1.55 (br, 2H), 
1.40 (d, 3H), 1.32 (d, 3H), 1.13 (d, 3H), 0.99 (d, 3H).  

 

 

Figure S24   13C NMR of [6FeNO][BPh4] 13C NMR (125 MHz, CD2Cl2, δ): 171.65, 165.07, 
164.68, 164.28, 163.89, 163.48, 153.12, 152.73, 143.15, 141.42, 139.92, 136.35, 
129.04, 126.98, 126.53, 126.07, 125.93, 125.28, 122.18, 61.26, 60.43, 59.63, 50.42, 
29.27, 27.81, 25.84, 24.92, 24.79, 22.97, 18.83, 15.69.  
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Figure S25   Zero-field Mӧssbauer Spectrum of [6FeNO][BPh4]. Isomershift, δ = 
0.095(5) mm/s; quadrupole splitting, ΔEQ = 0.415(9) mm/s; line width, Γ = 0.32(1) 
mm/s.  

  



 

60 

 

Preparation of [6Fe(NO)2][BPh4] 

The procedure described for the synthesis of [7FeNO][BPh4] was used and replaced 

6Fe(CO)2 with 7Fe(CO)2. The product was obtained by combining the brown CHCl3 solution 

separated from the MNIC, followed by precipitation with Et2O (yielded 32%).  

 

Figure S26   FT-IR (ATR) of [6Fe(NO)2][BPh4] and [6Fe(15NO)2][BPh4] (black and red, 

respectively). FTIR (ATR): 1783, 1709 cm-1 (14N=O/15N=O); 734, 705 cm-1 (-BPh4). 

ν(15N=O) = 1749, 1677 cm-1 . Δν(14NO-15NO) = 32 cm-1
.    
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Figure S27   1H NMR (500 MHz) spectrum of [6Fe(NO)2][BPh4] in CD3CN. 

  

Figure S28   1H NMR (500 MHz) spectrum of [6Fe(NO)2][BPh4] in CD2Cl2. 
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Electrochemistry.   

All electrochemical experiments were performed under N2 at room temperature in a unless 

otherwise noted. Data were collected using a Pine WaveNow potentiostat connected to a 

standard three-electrode cell consisted of a glassy carbon working electrode (A = 0.071 cm2), a 

platinum auxiliary electrode and a pseudoreference electrode. The pseudo-reference electrode 

consisted of a Vycor tip attached to the Ag+/0 compartment filled with a fresh 10 mM 

AgNO3/MeCN solution. A typical sample solution consisted of 1 mM analyte and 0.1 M TBAPF6. 

After the collection of survey voltammogram in each experiment, crystalline ferrocene (1 equiv. 

to analyte) was added for reference (. All voltammograms were plotted as measured current vs. 

applied potentials. All reported potentials were referenced to the E1/2 of Fc+/0 measured at 100 

mV/s, typically without iR compensation.  
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Figure S29   Scan rate dependence reversibility of 7Fe(CO)2. Top:  reversibility of 
ligand oxidation (E1/2 = -0.5245 V; reversibility of this couple is only observed at fast 
scan rates, indicative of an ErCi mechanism, where the reversible electron transfer 
from the ligand is followed by an immediate chemical step that is irreversible.) 
Bottom: reversibility of metal-based reduction (E1/2 = -2.3132V).  
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Figure S30   Cyclic voltammograms of [7FeNO][BPh4]; 1 mM sample with 0.1 M 
TBAPF6 in DCM measured at 50, 100, 150, 200 and 250 mV/s; linear fit of a Randle-
Sevcik plot (cathodic and anodic peak current (A) vs scan rate (V1/2s-1/2). E1/2 = -0.055 
V was approximated from the measurement at 100 mV/s.  
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Figure S31   Cyclic voltammograms of [7Fe(NO)2][BPh4]; 1 mM with 0.1 M TBAPF6 in 
DCM measured at 50, 100, 150, 200 and 250 mV/s; linear fit of a Randle-Sevcik plot 
(cathodic and anodic peak current (A) vs scan rate (V1/2s-1/2). E1/2 = -1.00 V.  
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Figure S32   Survey voltammograms of [7FeNO][BPh4] and  [7Fe(NO)2][BPh4], labeled 
as MNIC (black trace) and DNIC (red trace), respectively. The dotted black and dotted 
red traces show MNIC and DNIC scanned oxidatively up to 0 V. All were recorded 
under the same conditions (1 mM analyte and 0.1 M TBAPF6 in MeCN). The event at 
E1/2 = -0.917 V vs Fc+/0

, observable in DNIC only, was assigned the one-electron 
reduction of {Fe(NO)2}9 to {Fe(NO)2}10.  
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