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Abstract 

 

Decompression stops upon ascent of a dive help to decrease the likelihood of developing 

decompression sickness in divers. The purpose of this study was to compare the actual versus the 

recommended dive profiles of compressor fishermen in the Dominican Republic to explore the 

occupational risk associated with decompression sickness that these fishermen endure. For this 

study, 10 male diver fishermen from Monte Cristi, Dominican Republic self-reported their diving 

profiles including the dive depth, the time spent at that specific depth, the duration of ascent, and 

the surface interval between repeat dives, for each dive conducted in a single workday. The 

depth and duration of each dive was then entered into V-Planner dive decompression planning 

software to calculate the decompression needed for safe diving profiles. Each dive was graphed 

using depth and time, and the area under the curve for the actual and recommended diving 

profiles was calculated. The total dive time (294.3 ± 101.9 min actual and 524.7 ± 170.57 min 

recommended), total decompression time (10.4 ± 3.75 min actual and 244.4 ± 153.36 min 

recommended), and the area under the curve (16204.7 ± 5609.6 depth*time actual and 21368.1 ± 

9030.8 depth*time recommended) between the actual and recommended diving profiles were 

significantly different (p=0.001). Analysis of the effect size for these differences showed a large 

effect size for the diving time (d=1.556) and for the decompression time (d=2.046), and medium 

effect size for area under the curve (d=0.676). The results of this study indicate that there is a 

significant reduction in decompression time in the actual diving profiles of fishermen compared 

to a safe diving profile, putting the divers at a risk of developing decompression sickness.  

  



 

 v 

Acknowledgments  

 

I would like to thank the faculty of the Kinesiology department at Western Washington 

University for their support, encouragement, and guidance throughout this process. A huge thank 

you to my committee members, Dr. Lorrie Brilla, Dr. Harsh Buddhadev, and Dr. Dave Suprak, 

whom have helped to shape me into a curious, ambitious, and driven researcher and academic. 

Thank you to my sister, Dr. Kyrstin Mallon Andrews, who inspired this project and provided 

endless advice and thesis edits throughout my graduate degree. I would not be the researcher I 

am today without the brilliant and curious minds of my entire cohort. Thank you to my peers 

who made academia exciting and research so much fun. I am immensely grateful for all the 

academics in my life and the impact that they will have on my future endeavors. 

  I would not have accomplished all that I have at Western Washington University without 

the support of my family and friends. Thank you to my parents for encouraging me to go back to 

school for a Master’s degree and providing endless love and support throughout the entire 

process. Thank you to all my friends and significant other who read my thesis without a Master’s 

degree in Kinesiology, who problem solved with me in difficult times, and who continued to 

provide support and encouragement in every aspect of my life. I am so lucy to have such a loyal 

and compassionate community behind me. I am so grateful for my incredible support system 

who constantly push me beyond what I believe I am capable of.  

   



 

 vi 

Table of Contents  

 

Abstract...........................................................................................................................................iv 

Acknowledgements..........................................................................................................................v 

List of Tables and Figures............................................................................................................viii 

Introduction......................................................................................................................................1 

Methods............................................................................................................................................4 

Participants...........................................................................................................................4 

Experimental Procedure ......................................................................................................5 

Statistical Analysis...............................................................................................................6 

Results..............................................................................................................................................6 

Discussion........................................................................................................................................8 

References......................................................................................................................................19 

Review of Pertinent Literature.......................................................................................................24 

Introduction........................................................................................................................24 

Diving Methods..................................................................................................................26 

Injuries...............................................................................................................................29 

Decompression Illness.......................................................................................................32 

Socio-economic and Environmental Pressures.................................................................35 

Risk Factors.......................................................................................................................37 

Prevention..........................................................................................................................39 

Treatment...........................................................................................................................41  

Rationale for Return to work.............................................................................................44 

Summary............................................................................................................................44  



 

 vii 

References .....................................................................................................................................46 

Appendices.....................................................................................................................................51 

  



 

 viii 

List of Tables and Figures 

 

Table 1. Participant demographics………………………………………………...……………...6 

Figure 1. Total dive time for actual and recommended diving profiles……………………..……8 

Table 2. Average depth, bottom time, decompression, surface interval, and number of dives…..8  

Figure 2. Total decompression time for actual and recommended diving profiles...………..……9 

Figure 3. Case dive one actual diving profile………..………………………………….………10 

Figure 4. Case dive one recommended diving profile………..…………………………………10 

Figure 5. Case dive two actual diving profile………..………………………….………………10 

Figure 6. Case dive two recommended diving profile…………………………………..………11 

 

 

 

 

 

 



 

Introduction 

Diver fishermen in the Dominican Republic are at an increasing risk for diving related 

injuries because of the changing environments in which they work. For example, fishermen used 

to find fish easily in the shallows of Monte Cristi, a small fishing town located in the Northwest 

region of the Dominican Republic. As fish populations have migrated into deeper waters in the 

Caribbean, diver fishermen were forced to adopt more dangerous forms of fishing. The transition 

from freediving to compressor fishing has allowed fishermen to spend more time at greater ocean 

depths, significantly increasing their risk of decompression sickness (Mallon Andrews, 2020). 

Exposure to the high pressures under the surface of the ocean can have negative effects on body 

physiology, and depending on diving conditions, this exposure may result in injuries from high 

pressure and inert gas supersaturation (Bove, 2014).  

The most dangerous aspect and greatest threat to the health of diver fishermen is the 

development of decompression sickness. Decompression sickness, also known as the bends, is 

caused by intravascular and extravascular bubbles that form when a diver moves between the 

high- and low-pressure environments. At thirty feet under the surface of water, the pressure put 

on a body doubles and nitrogen, a gas at sea level, becomes water soluble, dissolving into the 

body’s blood and tissues (Wilmshurst, 1998). As the body moves to a lower atmospheric 

pressure, dissolved nitrogen will return to its gaseous form within the body tissues, expanding 

into air bubbles. These free nitrogen bubbles can form in different organs and tissues in the body, 

negatively affecting joint, nerve, ear, and other bodily physiological functions. Negative 

outcomes caused by these nitrogen bubbles is widespread and it may manifest as a skin rash, 

joint pain, permanent nerve damage, and even death (Vann et al., 2011).  
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The occupational risk of decompression sickness to diver fisherman is higher in small 

fishing communities because of their limited access to expensive diving equipment and 

technology (Winkler, 2016). Diver fishermen in developing countries are exposed to over thirty 

times higher risk of decompression sickness when compared to recreational divers in developed 

countries (Westin et al., 2005). Unlike recreational diving with SCUBA tanks, these divers use 

surfaced supply systems where air compressors on a boat pump air to a diver through a rubber 

tube. As shown in several survey studies of artisanal fishermen, 82 – 100% of occupational diver 

fishermen report experiencing at least one incident of the decompression sickness (Cha et al., 

2019; Mallon Andrews, 2020; Winkler, 2016).  

Diving depth and duration are important factors that can increase the risk of 

decompression sickness in diver fishermen. The transition from breath-hold fishing to 

compressor fishing has allowed fishermen to spend more time at greater ocean depths, however, 

this has significantly increased their risk of decompression sickness (Mallon Andrews, 2020). 

The deeper a diver descends into ocean depths, the increased exposure they have to greater 

partial pressures of gases. This exposure leads to an increase in bubble formation in the diver’s 

tissues and the longer that a diver remains at depth, the more bubbles that will accumulate in 

their tissues. The ability of these bubbles to become resorbed depends on the number of bubbles 

that accumulated, making time and depth important factors during a dive (Hall, 2014). 

Decompression stops are performed during deep or long dives to allow the gas to be released 

through respiration to avoid formation of bubbles in vulnerable tissues (Wilmshurst, 1998).  

The frequent exposure to such extreme environments that diver fishermen endure has 

both chronic and acute adverse effects on the body. Common acute symptoms that these 

fishermen experience after a dive include muscle and joint pain, rashes, headaches, and stomach 
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pain (Gold et al., 2000b; Kusnanto et al., 2020; Westin et al., 2005). Although research is limited 

on long-term effects of frequent exposure to these environments, lifelong diver fishermen report 

chronic symptoms of excessive tiredness, hearing loss, persistent headaches, and chronic joint 

pain (Westin et al., 2005). Mortality rates are significantly higher in commercial divers compared 

to recreational divers. Recreational divers have a mortality rate of less than one death per 

100,000 dives whereas commercial divers have a mortality rate of 300 deaths per 100,000 dives 

(Buzzacott et al., 2015; Gold et al., 2000b). Despite the high risks and dangers that their 

occupation comprises, diver fishermen in the Dominican Republic continue to enter deep waters 

because there are few job opportunities outside of fishing.  

Fisherman divers in developing countries are at much greater risk of adverse health 

outcomes and mortality than recreational divers from developed countries (Buzzacott et al., 

2015; Gold et al., 2000b). Furthermore, it is evident that much of these adverse outcomes are 

associated with decompression sickness. Modern software are used to help divers better plan 

their dives to reduce the risk of decompression sickness. These software use a decompression 

algorithm to quantify the manner in which inert gases leave and enter body with changes in 

ambient pressure with respect to different depth and duration of the dive. This algorithm can help 

provide insights into the risk of developing decompression sickness based on differences in 

diving profile, helping plan safer dives. However, it is unknown to what extent diver fishermen 

comply with these recommendations. A contrast of the recommended versus their actual diving 

profile may provide valuable data regarding the compliance to recommendations and it may also 

help elucidate health risks associated with decompression sickness in this population. A 

decompression algorithm can be used to quantify the manner in which inert gases leave and enter 

body with changes in ambient pressure. This algorithm can help provide insights into the risk of 
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developing decompression sickness based on differences in diving profiles. This project explores 

the level of occupational risk taken by diver fishermen in the Dominican Republic, based on their 

reported diving profiles.  

The purpose of this study is to compare the actual versus the recommended dive profiles 

of compressor fishermen in the Dominican Republic to explore the occupational risk associated 

with decompression sickness that these fishermen endure. By comparing the diving profiles of 

Dominican fishermen to the recommended profile for the duration, decompression, and depth of 

each dive, this study was aimed toward a better understanding of the circumstances and practices 

that lead to chronic cases of decompression sickness. This information is crucial for 

understanding the broader health implications of diving with a compressor in the Dominican 

Republic and in other fisheries of the global south. 

 

Materials and Methods 

Participants 

Ten male diver fishermen from the Dominican Republic were recruited for this study. 

Data collection was approved by the University of California Irvine Institutional Review Board 

and the Western Washington University Institutional Review Board accepted their review for use 

of the coded data from this study. Informed consent was obtained from all participants prior to 

testing. All participants were occupational fishermen from the Dominican Republic and over the 

age of 18 years. Study participants were contacted through social networks established within 

Monte Cristi and the northern border region from previous research projects (Mallon Andrews, 

2020). The participants that the lead researcher has worked with on previous studies and 
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consented to be contacted for future research were recruited through calls and e-mails of 

previously obtained contacts for participants.  

Experimental Procedure 

Prior to data collection, participants were asked if they would be willing to record their 

dive schedules for a day’s work. Divers who agreed were asked to record their diving profiles 

which included the depth of their dive, the time that they spent at that specific depth, the duration 

of their ascent, and the surface interval between repeat dives, for each dive they conducted 

during a single workday (Buzzacott, 2012; Cha et al., 2019; Gold et al., 2000b, 2000a; Huchim-

Lara et al., 2015; Wahab et al., 2008). The divers self-reported their height, weight, age, and 

years of fishing experience. After the divers returned from the sea, each fisherman was contacted 

via Whatsapp call to verbally report their diving profiles. The diving profiles were record in 

writing and coded to not include the names of study participants. Study participants were asked 

to self-report their dive schedules up to three times on different workdays. Each self-report 

interview took no more than 10 minutes and were audio recorded with the participant’s 

permission. Short follow-up interviews occurred when clarification was needed.  

The identity of each participant was not reported in the analysis as identification codes 

were used to identify each diving profile. The individual diving profiles were entered into V-

Planner (V-Planner 3.100.5), a dive decompression planning software. Dive depth, time, and 

surface interval, the measures that were self-reported from each diver fisherman, were entered 

into V-planner. Using the Varying Permeability Model (VPM-B) for decompression profiles, V-

planner produced the recommendations for safe decompression for each individual dive (Gutvik 

et al., 2011). The recommended decompression times for each dive from V-Planner were 

compared to the actual diving profiles that the diver fishermen self-reported. The longer that a 
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diver remains at depth, the more nitrogen that will accumulate in their tissues, turning to gas as 

they surface. One way to capture the cumulative effects of the depth of dive and duration a diver 

stays at that depth is by examining the area under the curve of the diving depth versus time 

graph. To calculate the accumulative effects of the depth and duration of a dive, the data for each 

dive schedule was graphed using depth (m) over time (min) and the area under the curve was 

calculated for both the actual and V-Planner dives via a custom-written Matlab program 

(MATLAB R2020, The MathWorks, Inc., Natick, Massachusetts, USA). Dive depth, 

decompression time, and total dive time were self-reported by the fishermen in this study. 

Statistical Analysis 

All data analyses were completed using Microsoft Excel (Microsoft Corporation, 

Redmond, WA, USA). This study involved a two-tailed t-test to assess the difference between 

two independent means. The area under the curve, decompression time, and the total dive time 

from the reported dive profiles were compared to the area under the curve, decompression time, 

and total dive time from the V-Planner recommended dives. Values are presented in mean  

standard deviation. Statistical significance was accepted if p-value was 0.05. Effect size was 

calculated as Cohen’s d and interpreted from the values stated in Cohen (1988), none being <0.2, 

small as ≥0.2 – 0.49, medium as ≥0.5 – 0.79, and large as ≥0.8.  

 

Results 

Ten male diver fishermen from the Dominican Republic participated in this study. All 

participants were occupation fishermen over the age of 18 years. The average age of the 

fishermen was 30.8 years with an average experience of 11.83 years (Table 1). The fishermen 

had an average height of 1.53 m and average weight of 57.82 kg (Table 1).  
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Table 1. Participant demographics including age (yrs), height (m), weight (kg), and fishing 

experience (yrs). 

 

Age (yr) Height (m) Weight (kg) Experience (yr) 

30.80 ± 5.88 1.53 ± 0.52 57.82 ± 21.35 11.83 ± 9.17 

Note. Data presented as Mean  Standard deviation.  

 

Each self-reported case dive was graphed and compared with the V-Planner 

recommended dives. On average the diver fishermen dove to depths of 20.08 meters, stayed at 

that depth for 67.88 minutes, spent 3.06 minutes on decompression, waited 21.88 minutes before 

diving again, and completed 3.4 dives a day (Table 2). There was a significant difference 

between the total dive times of the actual and recommended diving profiles (p=0.001) with the 

recommended total time being much longer, and there was a large effect size of the mean 

difference between the total time of the actual and recommended dive profiles (d=1.556). A 

significant difference in the decompression time of the actual and recommended diving profiles 

(p=0.001) with the recommended decompression time being much longer, and a large effect size 

between the means of the two variables (d=2.046) was observed. There was also a significant 

difference in the area under the curve of the actual and recommended diving profiles (p=0.001) 

with the area under the curve of the recommended diving profiles being much greater, and a 

medium effect size between the means of the two variables (d=0.676) was observed. 

Only one out of 10 of the reported diving profiles completed the decompression time 

recommended by V-Planner (Figure 1). Case dive three, which met the recommended 

decompression, was a profile of seven consecutive dives of short durations and shallow depths, 

requiring little time spent on decompression. The greatest depth reported for this profile was the 

first dive of 12.19 meters, but the following dives were much shallower, ranging from 4.57 
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meters to 6.10 meters. Because of the lack of depth, V-Planner required no decompression for 

the dives in this profile.  

 

Figure 1. The actual and V-Planner recommended total dive time for each case dive. 

 

In the reported dives, decompression time ranged from 0 to 5 minutes, with an average of 

3.06 minutes (Table 2). Calculated by V-planner, the longest decompression time should have 

been 248 minutes according to the depth and duration of the dive. The average total 

decompression time from the actual diving profiles was 10.4 minutes while the average total 

decompression time from the V-Planner diving profiles was 244.4 minutes. The recommended 

decompression time exceeded the actual decompression time reported from the fishermen for all 

but one case dive (Figure 2). Because case dive three included seven dives that were short in 

duration and shallow in depth, zero decompression was required but the fishermen reported 

performing several one-minute decompression stops.  

Table 2. The average depth (m), bottom time (min), decompression (min), surface interval 

between dives (min), and number of dives in each case dive for the reported diving profiles.  

 

 

Depth (m) 20.08 ± 8.59 

Bottom Time (min) 67.88 ± 40.17 

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

T
Im

e 
(m

in
)

Case Dive

Actual vs Recommended Total Dive Time

Actual Time (min)

Recommended Time (min)



 

 9 

Decompression (min) 3.06 ± 1.76 

Time Interval (min) 21.88 ± 12.87 

Number of dives 3.4 ± 1.56 

Figure 2. The actual and V-Planner recommended total decompression time for each case dive. 

 

The average ascent rate from the self-reported dives was 8.18 m/min while the average 

ascent rate from the safe diving profile calculated in V-Planner was 2.83 m/min. Most fishermen 

from the current study completely omitted any length of decompression, increasing the risk of 

developing decompression sickness. The shorter total dive time as compared to the total 

recommended dive time from V-Planner is demonstrated for all case dives in Figure 1. 

Examples of the diving profiles that were self-reported by the fishermen are shown below 

in a graph of depth over time. Case dive one and two demonstrate a typical dive day for 

fishermen in Monte Cristi. The multiple immersions, rapid ascents, and short surface intervals 

are common characteristics of fishermen who fish with a compressor. Case dive one shows a 

diver that increased the time and depth of their dive as the day continued (Figure 3). The V-

Planner recommended profile of this dive demonstrates a safe profile based on the reported dive 

depth and time, with accumulating decompression time for each dive (Figure 4). 
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Figure 3. The actual diving profile of Case Dive 1 with the depth (m), duration (min), 

decompression, and surface interval of each dive in one fishing session.  

 

 

Figure 4. The V-Planner recommended diving profile for Case Dive 1 with the depth (m), 

duration (min), decompression, and surface interval of each dive in one fishing session. 

 

Case dive two shows a diver that completed short and long dives throughout their diving 

day (Figure 5). The V-Planner recommended profile of this dive demonstrates a safe profile 

based on the reported dive depth and time, with accumulating decompression time for each dive 

and no decompression for the short dives (Figure 6). 

 
 

Figure 5. The actual diving profile of Case Dive 1 with the depth (m), duration (min), 

decompression, and surface interval of each dive in one fishing session.  
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Figure 6. The V-Planner recommended diving profile for Case Dive 2 with the depth (m), 

duration (min), decompression, and surface interval of each dive in one fishing session. 

 

 

Discussion 

The primary purpose of this study was to compare the actual versus the recommended 

dive profiles of the fishermen in the Dominican Republic. The total dive time and area under the 

curve of graphed diving profiles were used to compare the actual and recommended diving 

profiles. The results of the present study indicate a significant difference between the actual 

reported diving profiles and recommended diving profile for total time of dive and area under the 

curve. The effect size was large for total dive time and medium for the area under the curve 

indicating that the difference between the actual and recommended dive profiles is meaningful.   

Dangers of Diving with a Compressor 

The introduction of the compressor allowed for an increase in productivity for diver 

fishermen but increased the risk of decompression sickness. As more fishermen report that 

finding fish close to shore has become increasingly difficult, the use of compressors among small 

coastal communities has become more common (Huchim-Lara et al., 2016; Mallon Andrews, 

2020). The transition from freediving to compressor diving has allowed sustenance divers to 

become more successful as they utilize their access to deeper waters. In a study analyzing fishing 

techniques in Caribbean coral reefs, the compressor divers who participated in the study 

encountered more fish and obtained higher catch rates than the freedivers (Barbosa-Filho et al., 
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2020; Pavlowich and Kapuscinski, 2017). With the ability to fish continuously without going to 

the surface for air, the compressor fishermen captured 69% of the fish that they targeted, which 

was 28% more than the freedivers (Pavlowich and Kapuscinski, 2017). Compared to freediving 

techniques, compressor diving has allowed fishermen to maximize their time and range 

underwater, encountering more fish in deeper waters, but this efficiency has come at a cost. 

The deeper a diver descends into ocean depths, the greater the exposure to higher partial 

pressures of gases. This exposure leads to an increase in bubble formation in the diver’s tissues 

as they surface. The longer that a diver remains at depth, the more nitrogen that will accumulate 

in their tissues, turning to gas as they surface. The ability of these bubbles to become resorbed 

into solution depends on the number of bubbles that accumulated, making duration and depth 

important factors during a dive (Hall, 2014). Decompression stops are essential to allow gas to 

be released through respiration, avoiding the formation of bubbles in vulnerable tissues 

(Wilmshurst, 1998).  

In the current study, larger total dive time recommended by V-Planner was primarily the 

result of the lack of decompression made among the diver fishermen. Figure 3 shows the diving 

profile from one case dive in the current study. In this dive the participant completed four dives 

in 247 minutes. Their decompression varied between the dives, starting at two minutes for the 

first and shallowest and shortest dive (18.29 meters of depth and 40 minutes in duration) and 

progressing to five minutes of decompression for the three subsequent dives. The last dive in this 

profile was the deepest and longest (32.92 meters of depth and 60 minutes in duration) but only 5 

minutes of decompression was reported. Figure 4 shows the same diving profile as Figure 3 but 

with the recommended decompression for the depth and duration of the dives. According to V-

planner, only two minutes of decompression was needed after the first dive, 97 minutes after the 
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second dive, 152 minutes after the third, and 235 minutes after the fourth dive. The total time of 

the recommended dive with safe diving decompression was 716 minutes, almost three times 

longer than what was reported by the participant.  

Decompression 

A lack of decompression is common among the fishermen in the Global South. Out of 

196 fishermen from South Korean fisheries, only 12.2% performed underwater decompression in 

accordance with their decompression tables and 93.9% of the divers experienced a rapid ascent 

(Cha et al., 2019). In a study on diver fishermen in Thailand, during dives lasting 30 minutes or 

longer and at depths deeper than 40.54 meters, only 53.8% of divers made at least 

one decompression stop and the rest do not make a stop at all (Gold et al., 2000a). In fishermen 

from the Galapagos with extremely long average bottom times of 175 minutes, no 

decompression stops were made upon ascent (Westin et al., 2005). Fishermen understand the 

risks that they take by diving deep and rapidly ascending to the surface of the water. Although 

some will decrease their ascent rate and complete their stops closer to the surface rather than 

halfway up, as recommended by the U.S. Navy Standard Air Decompression Tables, 

decompression stop protocol remains inconsistent and often inadequate among small fisheries 

(Blatteau et al., 2015).  

Omitting decompression saves the fishermen time, allowing them to perform more dives 

in a day and catch more fish. In the current study, the average total time of a reported diving 

session was 294.3 minutes while the average recommended time from V-Planner was 524.7 

minutes (Table 2). Safe diving protocols can cost fishermen financially because of extra time that 

they must spend on the water. The cost of fuel is a major constraint for small fishing 

communities and is subtracted from the daily earnings of each fishermen (Huchim-Lara et al., 
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2016; Winkler, 2016). The longer that the fishermen stay on the water, the more fuel that they 

must use for the boat and the compressor. By omitting decompression, fishermen can spend more 

time looking for fish and less time doing unproductive decompression stops. Aware of the 

dangers of this kind of diving, fishermen consider the risks worth the reward (Winkler, 2016). 

The considerable risk of decompression sickness that these diver fishermen face by 

omitting staged decompression is not always seen in their daily dives. In the current study, no 

participants experienced any symptoms of the bends during their reported dives but 20 out of the 

34 dives performed exceeded the no-stop limit in U.S. Navy dive tables (Navy Department, 

2016). The no-stop limit refers to the maximal amount of bottom time that should be allowed for 

any single dive. With an average depth of 20.08 ± 8.59 meters, the no stop limit from U.S. Navy 

Dive tables is 48 minutes but the average bottom time of the fishermen was 67.88 ± 40.17 

minutes (Table 2). Similarly in a study of Galapagos diver fishermen, the observed rate of DCS 

was 3.3% over the 150 dives recorded but 82% of all immersions had ascent rates that were 

faster than what was recommended according to the depth and duration of each dive (Westin et 

al., 2005).  

Although no participants in the study experienced the bends during the recorded dives, 

100% have experienced DCS symptoms at least once in their diving careers (Mallon Andrews, 

2020). Several studies indicate a higher rate of injury for lifelong fishermen. In a study that 

recorded similar diving profiles for South Korean fisheries (average diving depth of 23.59 meters 

and average bottom time of 74.7 minutes), 84.7% of the participants experienced DCS symptoms 

in the last year and in a diving study on the Yucatan Peninsula, 100% of fishermen reported 

experiencing the bends at least once during their fishing careers (Cha et al., 2019; Huchim-Lara 

et al., 2015).  
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Occupational fishermen accumulate a substantial number of dives through their daily 

work. During a nine day observational period of 12 diver fishermen in the Galapagos, 380 

immersions were recorded (Westin et al., 2005). Depending on the time and year and weather, 

fishermen from the current study spend four to six days a week on the water, completing 

multiple dives a day (Mallon Andrews, 2020). The constant exposure to the extreme 

environments under the surface has caused many fishermen to accumulate chronic DCS 

symptoms. Lifelong fishermen in the Dominican Republic report experiencing consistent joint 

pain, trouble walking, chronic headaches, and extremity numbness of which they attribute to 

their frequent diving.  

Socio-economic and Environmental Pressures  

Socio-economic and environmental pressures have increased the risk of diving for small 

scale fisheries. The changes to the Caribbean marine ecosystems have been affecting fishing 

communities for decades. Fishermen in Grenada report changes in water quality, climate, and 

coastal development of which they believe are the reasons for the decreasing fish populations 

that they observe underwater (Winkler, 2016). In Monte Cristi, fishermen state that they 

transitioned from freediving to compressor diving to start fishing in deeper, riskier water because 

they were no longer finding fish close to shore (Mallon Andrews, 2020). 

Increasing ocean surface temperatures have already resulted in widespread coral 

bleaching and mortality as many reef-building corals live close to their upper thermal tolerances. 

Because the organisms that have the highest heat-tolerance are often the ones that live closest to 

their thermal tolerances, marine life in the Caribbean, and other low-latitude climates, are 

especially at risk with warming ocean temperatures (Harley et al., 2006). These changes in ocean 
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ecosystems will continue to affect the livelihood of those who depend on the sea for their food 

and income.   

The fishing market plays an important role in fishing activity and changes in marine 

ecosystems. Prices of fish are defined by the buyer according to demand, and Asian markets 

have increased the demand and payment for specific species (Bassett, 2019; Huchim-Lara et al., 

2016). The high price of lobster, sea cucumber, and red grouper, from these Asian markets, 

creates the incentive for fishermen to target these species (Huchim-Lara et al., 2016). Tourism 

and export industries in the Dominican Republic have also increased the demand for seafood, 

requiring targeted fishing for lobster, octopus, conch, and other fish species which are sent 

exclusively to the hotels and restaurants that feed American and European visitors. An increase 

in seafood demands has put diver fishermen at physical risk as they continue to fish in 

dangerously deep waters (Mallon Andrews, 2020). 

Fisheries in the Dominican Republic, and other parts of the Caribbean, are being targeted 

by many conservation campaigns led by American and European biologists and fisheries 

scientists. In Monte Cristi, these scientists started leading educational interventions about reef 

and ocean health and pressuring the government to create laws banning the sustenance fishermen 

from targeting certain species. In 2017, catching parrotfish was made illegal, criminalizing a 

catch that had previously provided 50% of the fishermen’s daily income and limited the use of a 

fish that the fishermen regularly brought home to feed families (Mallon Andrews, 2020). Fishery 

conservation and management regulations inadvertently push small scale fishermen into more 

dangerous waters. Fishermen in Yucatan, Mexico report that they were forced to dive further 

from the coast to catch bigger fish and lobster to comply with management regulations (Huchim-

Lara et al., 2016). These interventions place blame on fishermen who use compressors for the 
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depletion of marine resources, ignoring tourism, export industries, and chemical runoff of 

industrial agriculture (Mallon Andrews, 2020). 

A lack of employment opportunities outside of fishing in small coastal communities, 

force artisanal fishermen to continue entering the ocean, despite knowledge of the inherent 

dangers of diving (Barratt and Van Meter, 2004). It has become economically impossible for 

fishermen to dive safely in the waters of Monte Cristi. Financially, fishermen must adapt to the 

changing underwater environments. Compressor fishing is now widely used across Central and 

South America because of its cost effectiveness. In Monte Cristi, a freediver fisherman might 

make 1,000–2,000 pesos (US $20–$40) a day in calm seas, but a fisherman using a compressor 

can make 2,000–5,000 pesos (US $40–$100) in a day (Mallon Andrews, 2020). The risk of DCS 

is often worth the reward of fish for these financially constrained fisheries (Winkler, 2016). The 

physiological consequences that these divers face are severe. Despite the risks of injury and high 

rate of mortality among these diver fishermen, they continue to enter dangerously deep waters.   

Resilience to Decompression Sickness 

 The dangerous diving profiles of the diver fishermen from the current study indicate that 

they are resilient against DCS. These fishermen spend upwards of six hours a day at sea and 

underwater, using an air compressor to reach depths ranging from 9.14 to 45.72 meters, and 

conduct an average of three to six dives per day (Mallon Andrews, 2020). The physical demand 

of this kind of diving is extreme and the physical fitness required by these occupational 

fishermen may be one of the factors that decrease the frequency that they get the bends. Physical 

fitness and percent body fat can affect the probability of a diver getting the bends. Because 

nitrogen is five times more soluble in fat than in water and five times more soluble than oxygen 

in fat, more time is required for the elimination of the excess inert gases while ascending from 
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ocean depths for those with more body fat (Mahon and Regis, 2014; Navy Department, 2016). 

Similarly, U.S. Navy divers with higher skin fold measurements were five to six times more at 

risk of DCS then the general U.S. Navy diver population (Mahon and Regis, 2014). Physical 

fitness, measured by VO2max, is considered a protective measure against DCS. Regular exercise 

may impact the risk of DCS as it is involved in the generation of micronuclei, nitric acid 

generation, and nitrogen uptake and elimination (Mahon and Regis, 2014).  

Diver fishermen must be constantly aware of their environmental surroundings. Without 

access to expensive diving equipment, diver fishermen use their experience and their crew mates 

to dive as safely as possible. In the current study, the diver fishermen reported their time and 

depth without instrumentation. The measurement of depth was reported by the fishermen in 

“brazas” which is 2 meters and considered an arm’s span distance. The fishermen also indicate 

the measurement of their catch in relation to their own arms, pointing to a spot from their 

fingertips to their proximal arm that match the size of their catch. The use of their bodies in 

measurement and within their environments show a bodily intelligence that these divers might be 

using for safe diving.  

 

Summary 

Results from this study indicate that there is a significant difference between the actual 

diving profiles, decompression time, and the recommended diving profiles for dive time and area 

under the curve of the graphed case dives. The main difference between the actual and 

recommended diving profiles was the amount of decompression conducted by the diver 

fishermen. The lack of decompression from the diver fishermen in the current study has been 

observed among many small diver fishermen communities around the world (Cha et al., 2019; 
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Gold et al., 2000a; Huchim-Lara et al., 2016; Westin et al., 2005; Winkler, 2016). Safe diving 

protocols can cost fishermen financially because of extra time that they must spend on the water. 

The cost of fuel is a major constraint for small fishing communities because it is subtracted from 

the daily earnings of each fishermen (Huchim-Lara et al., 2016; Winkler, 2016). The longer that 

the fishermen stay on the water, the more fuel that they must use for the boat and the compressor. 

By omitting decompression, fishermen can spend more time looking for fish and less time 

waiting underwater completing their recommended decompression stops.  

The fishing industry is one of the most dangerous occupations in the primary sector 

(Huchim-Lara et al., 2018). Small coastal fisheries around the world face the highest 

occupational risk because of their limited access to expensive diving equipment and technology 

(Winkler, 2016). Diver fishermen continue to work in increasingly risky environments because 

marine ecosystems are rapidly changing as a result of river runoff, tourism, coastal pollution, and 

overfishing from targeted export markets. As a result of their working conditions and the 

environmental factors that have driven fish populations into deeper water, occupational divers in 

the Dominican Republic who engage in compressor fishing are at risk of acute and chronic 

decompression sickness.  
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Review of Pertinent Literature 

Introduction 

Fishermen in the Global South, the low-income regions of Latin America, Asia, Africa, 

and Oceania, that are politically and culturally marginalized, have long relied on the ocean for 

their survival. These small coastal communities of artisanal fishermen utilize two distinct forms 

of fishing which include freediving and compressor fishing. Freedivers use only a mask, fins, 

snorkel, speargun, and a single breath to dive for fish (Pavlowich and Kapuscinski, 2017). 

Although some fishermen can dive to depths up to 30.48 meters, this form of fishing is usually 

used in the shallows and coral reefs, close to shore (Ilardo et al., 2018). Compressor fishing is a 

far more dangerous method of fishing that uses air compressors on a small fiberglass boat that 

pump unfiltered surface air to the underwater diver along a small-bore tube, extending up to 

91.44 meters long (Huchim-Lara et al., 2015; Winkler, 2016). Because the use of a compressor 

eliminates the need to surface between breaths and allows fishermen to explore deeper waters, 

fishermen have more successful and effective dives while compressor fishing (Pavlowich and 

Kapuscinski, 2017). As more fishermen report that finding fish close to shore has become 

increasingly difficult, a widespread use of compressors among small coastal communities has 

emerged (Huchim-Lara et al., 2016; Mallon Andrews, 2020). The transition from freediving to 

compressor fishing has allowed fishermen to spend more time at greater ocean depths, 

significantly increasing their risk of decompression sickness (Mallon Andrews, 2020). Exposure 

to the immense pressures under the surface of the ocean can have extreme effects on human 

physiology, and depending on diving conditions, this exposure may result in injuries from 

pressure and inert gas supersaturation (Bove, 2014). 



 

 26 

The most dangerous aspect and greatest threat to the health of diver fishermen is the 

development of decompression sickness. Decompression sickness, also known as the bends, is 

caused by intravascular and extravascular bubbles that form when a diver moves between the 

high- and low-pressure environments. At thirty feet under the surface of water, the pressure put 

on a body doubles and nitrogen, a gas at sea level, becomes water soluble, dissolving into the 

body’s blood and tissues (Wilmshurst, 1998). As the body moves to a lower pressure, dissolved 

nitrogen will return to its gaseous form within the body tissues, expanding into air bubbles. 

These free nitrogen bubbles can form in different organs and tissues in the body, negatively 

affecting joints, nerves, ears, and other bodily functions. Negative outcomes caused by these 

nitrogen bubbles is widespread and it may manifest as a skin rash, joint pain, permanent nerve 

damage, and even death (Vann et al., 2011). 

The frequent exposure to the extreme environments that diver fishermen endure has both 

acute and chronic effects on the body. Common acute symptoms that these fishermen experience 

after a dive include muscle and joint pain, rashes, headaches, and stomach pain (Gold et al., 

2000b; Kusnanto et al., 2020; Westin et al., 2005). Although research is limited on long-term 

effects of frequent exposure to these environments, lifelong diver fishermen report chronic 

symptoms of excessive tiredness, hearing loss, persistent headaches, and chronic joint pain 

(Westin et al., 2005). 

Occupational risk is higher in these small fishing communities because of their limited 

access to expensive diving equipment and technology (Winkler, 2016). Diver fishermen in 

developing countries are exposed to over thirty times higher risk of decompression sickness 

when compared to recreational dives (Westin et al., 2005). As shown in several survey studies of 

artisanal fishermen, 82 – 100% of occupational diver fishermen report experiencing at least one 
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incident of the bends (Cha et al., 2019; Mallon Andrews, 2020; Winkler, 2016). Mortality rates 

are significantly higher in commercial divers compared to recreational divers as well. 

Recreational divers have a mortality rate of less than one death per 100,000 dives but 

commercial divers have a mortality rate of 300 deaths per 100,000 dives (Buzzacott et al., 2015; 

Gold et al., 2000b). 

Despite the high risk and danger that their occupation comprises, diver fishermen in the 

Dominican Republic continue to enter deep waters because there are few job opportunities 

outside of fishing. This project explores the level of occupational risk taken by diver fishermen 

in the Dominican Republic, based on their reported diving profiles. By comparing the 

fishermen’s diving profile to the recommended profile for safe decompression, this study will 

expose the great risk that fishermen endure everyday as they labor in underwater environments 

for extended periods of time. This study will also highlight the effect of climate change and 

social-economic factors and on small fishing communities and the behavior of diver fishermen. 

The depletion of marine resources from tourism, targeted markets, export industries, global 

warming, and overfishing, have forced fishermen to seek fish in deeper and more dangerous 

water. The transition from freediving to compressor diving has significantly increased the 

occupational risk among small fishing communities, putting them at a greater risk of developing 

decompression sickness.  

Diving Methods  

There are two distinct types of fishing utilized by occupational fishermen from small 

coastal communities. These techniques are freediving and compressor diving. Freediving, also 

known as breath-hold diving or apnea diving, is a form of diving that requires fishmen to use a 

single breath of air to hunt in ocean depths. In Southeast Asia, a population of fishermen known 
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as the Sea Nomads, exclusively use breath-hold diving to fish and hunt for their food. This 

requires them to dive to depths of over 30.48 meters for periods of several minutes at a time 

(Ilardo et al., 2018). Sustenance diving populations like the Bajau in South-East Asia and the 

Ama from Japan, spend 50 to 60% of their daily working time underwater (Lodin-Sundström, 

2015). In the Caribbean, diver fishermen wear lycra to protect their skin from the sun during long 

days on the water. Freedivers use only a mask, fins, snorkel, and speargun during their dives 

(Pavlowich and Kapuscinski, 2017). Spearfishing is the most common form in artisanal fisheries 

and both freedivers and compressor divers use the same types of spearguns. This method allows 

the fishermen to individually select the fish that they want to capture in a second-by-second 

decision making act (Pavlowich and Kapuscinski, 2017). 

Unlike recreational diving, which more often utilizes Self Contained Underwater 

Breather Apparatuses (SCUBA), occupational divers in the Global South use surfaced supply 

systems. Surfaced supplied systems, also known as compressor or hookah diving, use air 

compressors on a small fiberglass boat that pump unfiltered surface air to an underwater diver 

along a small-bore tube, extending up to 91.44 meters long (Huchim-Lara et al., 2015; Winkler, 

2016). A 5 to 6-horsepower gas-powered engine powers the pump that compresses 100-120 

pounds per square inch gauge of ambient air into a 1 to 2-cubic-foot volume tank. This air is 

delivered through a plastic hose, to the fishermen beneath the surface (Huchim-Lara et al., 2015). 

These fishermen use only a mask, fins, speargun, and a regulator supplied with the compressed 

air from the boat (Pavlowich and Kapuscinski, 2017). Hookah systems are more cost-effective 

compared to SCUBA dive systems because they have an unlimited supply of air, making them 

the most commonly utilized diving system in commercial fisheries of the Global South (Huchim-

Lara et al., 2015).  
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As more fishermen report that finding fish close to shore has become increasingly 

difficult, a widespread use of compressors among small coastal communities has emerged 

(Huchim-Lara et al., 2016; Mallon Andrews, 2020). The transition from freediving to 

compressor diving has allowed sustenance divers to become more successful due to the ability to 

effectively dive in deeper waters. In a study analyzing fishing techniques in Caribbean coral 

reefs, the compressor divers that participated in the study encountered more fish and obtained 

higher catch rates than the freedivers (Barbosa-Filho et al., 2020; Pavlowich and Kapuscinski, 

2017). The compressor fishermen also captured 69% of the fish that they targeted, which was 

28% more than the freedivers. Because the compressor fishermen were able to fish continuously 

without going to the surface for air, they were far more successful and effective in deeper waters 

(Pavlowich and Kapuscinski, 2017). Compared to freediving techniques, compressor diving has 

allowed fishermen to maximize their time and range underwater and encounter more fish beneath 

the surface. 

Although compressor fishing has increased the fishermen’s success, risk is incredibly 

high for this type of diving. Diver fishermen, practicing compressor fishing, perform dives at a 

thirty times higher risk of decompression sickness when compared to recreational divers and are 

at an increased risk compared to fishermen utilizing SCUBA dive systems (Huchim-Lara et al., 

2015; Westin et al., 2005). Other dangers that divers face using surface-supplied compressed air 

can occur if their air supply is disconnected, the compressor fails or runs out of fuel, or if the air 

supply is contaminated with engine exhaust (Bassett, 2019; Winkler, 2016). Occupational risk is 

made higher in small fishing communities because of their limited access to expensive diving 

equipment and technology, like pressure gauges and oxygen tanks (Winkler, 2016). 
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Injuries 

There are many life-threatening injuries that come from exposure to pressures 

underwater. To understand the injuries that occur to freedivers and compressor divers, the 

physical properties of gases need to be understood. According to Boyle’s Law, the volume of gas 

varies inversely with pressure, while the density of gas varies directly with pressure. This gas 

law is written as PV = k. In this equation the “P” represents pressure, the “V” represents volume, 

and the “k” represents a constant. Gas volume is inversely related to pressure so when pressure 

increases, gas volume will decrease. This equation only remains true when temperatures remain 

constant. At sea level, atmospheric pressure is 100 kPa or one bar absolute. As a diver descends 

under the surface of water, the pressure on a diver increases by 100 kPa for every 10 meters of 

decent. Because gas volume is inversely related to pressure, as pressure increases from 100 kPa 

at sea level to 200 kPa, at 10 meters below the water’s surface, gas volume is halved 

(Wilmshurst, 1998).  

Barotraumas are injuries directly related to Boyle’s law. They occur due to the forces 

generated from pressure differences between body cavities and ambient pressure. These types of 

injuries can occur during both freediving and compressor diving. With increased pressure under 

the surface of the water, the gas volume in air-containing body cavities, like the lungs, middle 

ear, paranasal sinuses, and gastrointestinal tract, is diminished and if the pressure in these spaces 

does not equalize with the ambient pressure, tissue damage may occur (Bove, 2014). The most 

common type of barotrauma experienced by diver fishermen is of the middle ear, but they can 

occur in the air spaces of the mask, sinuses, eyes, teeth, and gastrointestinal tract. The most 

serious form is a pulmonary barotrauma (Bove, 2014; Winkler, 2016).  
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Another important gas law in diving is Dalton’s law of partial pressures. This law is 

written as PTotal = Pp1 + Pp2 + Ppn where “PTotal” represents the total pressure of the gases, “Pp1” 

represents the partial pressure of one gas component, “Pp2” represents the partial pressure of the 

second gas component, and “Ppn” represents the partial pressure of the other gas components. 

According to Dalton’s Law, partial pressures of each gas will increase proportionally to the total 

absolute pressure. Dry air is a composition of gases at sea level that is 78% nitrogen and 21% 

oxygen, and 1% carbon dioxide, argon, helium, hydrogen, and many other gases. Dalton’s law 

states that if dry air is made up of 21% oxygen, the partial pressure of oxygen at any depth will 

remain 21% of the total pressure of the gases. This law is important to understand when 

discussing oxygen and nitrogen toxicity (Wilmshurst, 1998).  

At sea level, humans have several liters of nitrogen dissolved in their bodies. When a 

diver breaths air at 10 meters under the water’s surface, the partial pressure of Nitrogen doubles 

as the absolute pressure changes from 100 kPa to 200 kPa. When breathing for a long enough 

time that the body reaches equilibrium at these higher pressure, twice as many Nitrogen 

molecules are dissolved in the human body at 10 meters, compared to at sea level (Wilmshurst, 

1998). Nitrogen narcosis is a potentially dangerous side effect in compression diving that is 

caused by high concentrations of nitrogen in the bloodstream. At depths over 30 meters, some 

divers experience neurological dysfunction along with impaired motor coordination, cognitive 

skills, and an altered emotional state that can cause poor decision making and dangerous dive 

behavior (Bassett, 2019; Bove, 2014). The deeper the depths and longer the durations that a diver 

fisherman is exposed to underwater, the greater the risk of injury.  

Another gas law for understanding dive related injuries is Henry’s law which states that 

the partial pressure of a gas is directly proportional to the concentration of a gas dissolved in a 
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liquid (Bove, 2014). This law is written as P = KC where “P” represents the partial pressure of 

the gas solute, “C” represents the concentration of the gas, and “K” is the Law’s constant. 

According to Henry’s law, dissolved gases in the blood will increase proportionally with 

increasing hydrostatic pressure. During an apneic dive, a diver may experience an excess of 

oxygen as they descend. As the pressure increases underwater, oxygen will diffuse from a high 

concentration in the lungs to a lower concentration in the blood. During the ascent, pressure 

decreases in the lungs and oxygen diffuses from a high concentration in the blood, back to the 

lungs (Lodin-Sundström, 2015). As the concentration of oxygen in the lungs decreases and the 

partial pressure of oxygen decreases, a diver may lose consciousness as they can no longer utilize 

the low levels of oxygen.  

All three gas laws are important for understanding the most common injuries in 

freediving and compressor diving. In freediving, when a diver holds their breath underwater, 

Boyle’s law describes the way that air filled cavities in the body will change inversely with 

changes of pressure. During the descent, the increased pressure causes the airspaces in the body 

to compress. The partial pressures of oxygen and nitrogen increase according to the total 

pressure put on the body, as described in Dalton’s law, producing an increase in arterial and 

tissue gas partial pressures (Wilmshurst, 1998). When a diver starts their ascent, the hydrostatic 

pressure is reduced with a corresponding decrease in oxygen partial pressures in alveolar gas, 

arterial blood, and other body tissues. According to Henry’s law, the gasses that were dissolved 

in the body tissues under high pressure, will decrease in concentration upon descent (Lodin-

Sundström, 2015). A rapid fall of cerebral oxygen pressure caused by this change of pressure can 

become dangerous, causing the diver to lose consciousness underwater (Wilmshurst, 1998).  
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Drowning during breath-hold diving is normally a result of a loss of consciousness when 

a diver ascends too quickly. Most frequently experienced in breath-hold diving, shallow water 

blackouts are caused by the reduction in the arterial partial pressure of oxygen, a result of the 

consumption of oxygen and a decreasing ambient pressure during ascent (Bove, 2014). During a 

breath-hold dive, the oxygen in the tissues decreases as it is metabolized by the body. When the 

carbon dioxide levels increase within the body, receptors in the medulla react to the increasing 

levels, sending electrical impulses to the frontal cortex, creating an overpowering urge for a 

breath-hold diver to surface for oxygen. This mechanism protects the body, signaling that 

oxygen is needed before the falling oxygen levels cause unconsciousness (Pearn et al., 2015; 

Wilmshurst, 1998). A breath-hold can be extended with hyperventilation immediately before a 

dive. Hyperventilation does not affect the rate of oxygen consumption, but it lowers the arterial 

partial pressure of carbon dioxide, delaying the natural stimulus to breathe. This puts a diver in 

danger because they do not feel the need to breath before their oxygen levels are too low, putting 

them at risk for going unconscious underwater (Bove, 2014; Eichhorn and Leyk, 2015). Deep 

water blackouts typically occur upon ascent and in last few meters below the surface of a breath-

hold dive. In the ascent phase of deep-water dives, the partial pressure and of oxygen is lowered 

by the decreasing ambient pressure. As lung volume increases and the concentration of oxygen 

in the lungs decreases, a diver is susceptible for a loss of consciousness from lack of oxygen 

(Eichhorn and Leyk, 2015).  

Decompression Illness 

The greatest risk that fishermen face in underwater environments is decompression 

illness. Decompression illness is caused by intravascular and extravascular bubbles that form in 

the blood and body tissue as a result of exposure to a reduction in environmental pressure. 
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Decompression illness includes two different pathophysiological syndromes, atrial gas embolism 

(AGE) and the more common decompression sickness (DCS) (Bove, 2014; Vann et al., 2011). 

Both barotraumas and DCS can result in an atrial gas embolism. AGE occurs when expanding 

gas stretches and ruptures alveolar capillaries, allowing gas bubbles to escape to the arteries and 

block blood passage (Bassett, 2019). This syndrome can affect a diver in ascent from a depth as 

shallow as 1.5 meters if their starting lung volume was close to capacity. It may also be caused 

by gas becoming trapped as a result of airway obstructions in diseases like asthma or 

abnormalities like pulmonary blebs or cysts (Vann et al., 2011).  

DCS is commonly known as the bends, a term that originated from the contorted posture 

of caisson workers after they emerged from underwater depths, that resembled the stooped 

posture of a dance move called the “Grecian Bend” (Neuman, 2002). The occurrence of DCS in 

diving is a result of the physical properties of gases. Nitrogen is highly soluble and dissolves in 

great concentrations in the body tissues at ocean depths. According to Dalton’s law, the partial 

pressures of gases increase proportionally to the total absolute pressure and dry air is made up of 

78% nitrogen. As a compressor diver descends into the ocean, the partial pressure of nitrogen 

increases and so does the concentration of nitrogen in the body tissues (Wilmshurst, 1998). 

During ascent, the nitrogen molecules that dissolved in the tissues at depth, need to be liberated. 

If the rate of decompression is too rapid for the nitrogen to escape through respiration, dissolved 

nitrogen molecules can transform into free gas, forming bubbles in supersaturated tissues 

throughout the body (Bove, 2014; Wilmshurst, 1998). Decompression stops are performed 

during deep or long dives to allow the gas to be released through respiration to avoid formation 

of bubbles in vulnerable tissues (Wilmshurst, 1998).  
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Depending on the severity of symptoms, DCS can be classified as Type I or Type II. 

Type I DCS affects the musculoskeletal system and can include symptoms like joint pain, pain in 

the upper and lower limbs, itchy skin, or cutaneous rash. Type II DCS usually involves the 

neurologic system but it can include symptoms like generalized weakness, paralysis or 

numbness, chest or respiratory pain, dizziness or vomiting, auditory disturbance, and urinary 

disturbances (Bove, 2014; Cha et al., 2019). Common clinical manifestations of the bends 

include the musculoskeletal system, skin, inner ear, brain, and spinal cord (Bove, 2014). 

Musculoskeletal symptoms are the most common manifestation of DSC, causing joint pain 

throughout the body. Osteonecrosis may occur with lifelong exposure to deep and prolonged 

diving and is especially common in those that report chronic musculoskeletal symptoms of the 

bends. Cutaneous DCS is associated with skin rashes that usually resolves within 24 hours. 

Acute neurologic hearing loss or vestibular disfunction are less common but they can occur after 

prolonged underwater exposure and high pressure. These injuries are classified as type II DCS as 

they can lead to permanent deafness. Pulmonary vascular obstruction occurs when large amounts 

of free gas appear in the venous system and it can result in chest pain, dyspnea, or a cough. 

Spinal cord injuries normally occur in the lumbar spine, causing paresthesia, weakness, partial 

paralysis of the lower extremities, and bowl or bladder incontinence (Bove, 2014).  

The frequent exposure to extreme environments that diver fishermen endure has both 

acute and chronic effects on the body. Common acute symptoms that these fishermen experience 

after a dive include muscle and joint pain, rashes, headaches, and stomach pain (Gold et al., 

2000a; Kusnanto et al., 2020; Westin et al., 2005). Although the long-term effects of frequent 

exposure to these environments is less researched, lifelong diver fishermen report chronic 
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symptoms of excessive tiredness, hearing loss, persistent headaches, and chronic joint pain 

(Westin et al., 2005). 

Socio-economic and Environmental Pressures 

Compressor diving is a dangerous method for commercial fishermen but it is still widely 

used in small-scale fisheries all over the world (Huchim-Lara et al., 2015; Winkler, 2016). The 

transition from breath-hold diving to compressor diving is a common trend among small scale 

fisheries. When asked why they started to fish in deeper, riskier water, fishermen from a 

northwestern region of the Dominican Republic, a small fishing town called Monte Cristi, stated 

that they were forced to make the switch from freediving to compressor diving because they 

were no longer finding fish close to shore. Those who started their careers freediving, moved to 

compressor fishing to reach the fish that could no longer withstand the increasing temperatures in 

the shallows (Mallon Andrews, 2020).  

The fishing market plays an important role in fishing activity and changes in marine 

ecosystems. Prices of fish are defined by the buyer according to demand, and Asian markets 

have increased the demand and payment for specific species (Bassett, 2019; Huchim-Lara et al., 

2016). The high price of lobster, sea cucumber, and red grouper, from these Asian markets, 

creates the incentive for fishermen to target these species (Huchim-Lara et al., 2016). Tourism in 

the Dominican Republic has also increased the demand for seafood, requiring targeted fishing for 

lobster, octopus, conch, and other fish species which are sent exclusively to the hotels and 

restaurants that feed American and European visitors. An increase in seafood demands do not 

just provide more work and income for the local fishermen but it puts them at physical risk as 

they continue to fish in dangerously deep waters (Mallon Andrews, 2020).  
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The success of fishermen using compressor fishing techniques in deeper waters has 

generated the unwanted attention of conservation campaigns in many small coastal fisheries. 

Fisheries in the Dominican Republic, and other parts of the Caribbean, have been targeted by 

many conservation campaigns led by American and European biologists and fisheries scientists. 

These scientists started leading educational interventions about reef and ocean health in 2015 in 

small communities like Monte Cristi. First recommending that the sustenance fishermen refrain 

from targeting certain species, laws were soon put into place. By making catching parrotfish 

illegal in 2017, conservationists criminalized a catch that provided 50% of the fishermen’s daily 

income and limited the use of a fish that the fishermen regularly brought home to feed families 

(Mallon Andrews, 2020). Fishery conservation and management regulations inadvertently push 

small scale fishermen into more dangerous waters. Fishermen in Yucatan, Mexico report that 

they were forced to dive further from the coast to catch bigger fish and lobster to comply with 

management regulations (Huchim-Lara et al., 2016). These interventions place blame on 

compressor fishermen for the depletion of marine resources, ignoring tourism, export industries, 

and chemical runoff of industrial agriculture (Mallon Andrews, 2020). 

The changes to the Caribbean marine ecosystems have been affecting fishing 

communities for decades. Fishermen in Grenada report changes in water quality, climate, and 

coastal development of which they believe are the reasons for the decreasing fish populations 

that they observe underwater (Winkler, 2016). Anthropogenic climate change is a major concern 

for ocean health in coastal communities. The increasing greenhouse gas concentrations have 

already contributed to the rising temperatures of global air and sea surfaces. The increasing 

temperatures also cause pressure changes that result in stronger wind fields and more extreme 

wind events that occur over the ocean (Harley et al., 2006). 
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Increasing ocean surface temperatures have already resulted in widespread coral 

bleaching and mortality as many reef-building corals live close to their upper thermal tolerances. 

Because the organisms that have the highest heat-tolerance are often the ones that live closest to 

their thermal tolerances, marine life in the Caribbean, and other low-latitude climates, are 

especially at risk with warming ocean temperatures (Harley et al., 2006). Caribbean corals reefs 

take over eight years to recover from storm damage and an increasing frequency of ocean storms 

from climate change will reduce the odds of recovery between wind events (Harley et al., 2006). 

Increasing ocean temperatures and damage to the Caribbean coral reefs will continue to 

negatively affect marine ecosystems and may be the force that is causing fish to relocate into 

deeper and safer waters. This change in ocean ecosystems will continue to affect the livelihood 

of those who depend on the sea for their food and income.  

Risk Factors  

The risk of DCS can be affected by many factors related to dive and diver attributes. Dive 

related factors including dive depth, dive duration, water temperature, and ascent protocol all are 

important attributes for preventing DCS (Louge and Blatteau, 2012). The deeper a diver 

descends into ocean depths, the increased exposure to greater partial pressures of gases. This 

exposure leads to an increase in bubble formation in the diver’s tissues. The longer that a diver 

remains at depth, the more bubbles that will accumulate in their tissues. The ability of these 

bubbles to become resorbed into solution depends on the number of bubbles that accumulated, 

making time and depth important factors during a dive (Hall, 2014). To prevent bubbles from 

forming in the blood and tissues, decompression stops are performed during ascent, to allow time 

for off-gassing to occur. 
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Diver attributes, including increased age, lack of physical fitness, physical injury, 

dehydration, high body fat percentage, and presence of a patent foramen ovale, may predispose a 

diver to developing DCS but the extent to which these factors increase the probability of the 

bends is unknown (Hall, 2014; Louge and Blatteau, 2012). Divers with a persistent patent 

foramen ovale (PFO) and other right-to-left shunts have an increased risk of decompression 

sickness with the predicted risks paralleling the size of the PFO (Bove, 2014; Eichhorn and 

Leyk, 2015). A PFO is a hole between the left and right atria that exists in everyone before birth 

but it is common abnormality that can persist into adulthood (Cartoni et al., 2004; Neuman, 

2002). Persistent PFOs allow the venous bubbles formed during the decompression of a dive to 

circumvent the lung filter, passing through the right-to-left shunt (Wilmshurst, 2019). If nitrogen 

gas bubbles are shunted from the peripheral to systemic circulation, they are less likely to be 

expelled through respiration (Cartoni et al., 2004). Although PFOs persist in around 30% of the 

population, the low incidence of DCS suggests that not all divers with a PFO are at increased risk 

of developing the bends but those who are susceptible tend to get more serious neurological 

symptoms (Cartoni et al., 2004; Neuman, 2002; Sykes and Clark, 2013). Divers with large PFOs 

can benefit from a PFO closure procedure but safe diving practices is normally the 

recommendation (Sykes and Clark, 2013). The procedure is more frequently recommended for 

commercial divers with large PFOs and repeated instances of the bends (Bove, 2014). 

Preventative pre-dive and post-dive oral hydration is particularly important, especially 

when divers are performing repeated dives. In a study involving military divers, pre-dive oral 

hydration significantly decreased circulatory venous gas emboli present after the dive (Gempp 

and Blatteau, 2010). It is hypothesized that pre-dive oral hydration dive may prevent decreased 
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cardiac preload at the end of a dive, resulting in an increased elimination of inert gas during 

decompression (Germonpré and Balestra, 2017). 

The physical fitness and percent body fat of each diver can affect the probability of them 

getting the bends. Nitrogen is five times more soluble in fat than in water and five times more 

soluble than oxygen in fat (Mahon and Regis, 2014; Navy Department, 2016). Because fatty 

tissue holds significantly more gas compared to the watery tissues in the body, more time is 

required for the elimination of the excess inert gases while ascending from ocean depths for 

those with more body fat (Navy Department, 2016). In early diving research, larger caisson 

workers were noted to be more predisposed for developing DCS symptoms and U.S. Navy divers 

with higher skin fold measurements were five to six times more at risk of DCS then the general 

U.S. Navy diver population (Mahon and Regis, 2014). Physical fitness, measured by VO2max, is 

considered a protective measure against DCS. Regular exercise may impact the risk of DCS as it 

is involved in the  generation of micronuclei, nitric acid generation, and nitrogen uptake and 

elimination (Mahon and Regis, 2014). Disorders that lower exercise capacity and 

cardiopulmonary function can increase dive related injuries, making physical fitness an 

important variable for safe diving (Bove, 2014). Although there are many different risk factors 

associated with diving, sufficiently hydrated and physically fit individuals that practice safe 

diving protocols, usually have the best diving outcomes (Hall, 2014). 

Prevention 

In the early 1900s, an English physiologist name J. S. Haldane composed a set of diving 

tables that established a method for decompressing in stages while working with Royal Navy 

divers (Navy Department, 2016). Haldane’s work helped create methods for preventing the 

occurrence of DCS based on the speed of ascent and duration of decompression stops, depending 
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on the depth and time of a dive (Blatteau et al., 2015). Though these tables have been improved 

and restudied, Haldanean decompression models are the widely accepted methods for safe diving 

(Buzzacott et al., 2015; Navy Department, 2016). Diving computers can also be used for safe 

diving practices. Modern diving computers have algorithms to estimate nitrogen saturation and 

desaturation during a dive. The algorisms take into account the depth, time, water temperature, 

physical exertion, heart rate, and minute ventilation, to create an individualized ascent plan for 

every dive (Eichhorn and Leyk, 2015). Decompression programs like V-Planner can also be used 

for calculating decompression profiles. V-Planner uses the Varying Permeability Model (VPM-

B), originally developed in 1986, creates a diving plan based on research of the changes in 

nuclear radius, caused by increases and decreases in ambient pressure. The VPM-B uses its 

algorithm in a Windows dive decompression program to design individualized safe diving plans 

(Yount and Baker, 2012). Although diving tables, diving computers, and decompression 

algorithms increase the safety of a dive, DCI can occur even if a diver follows the depths and 

time limits prescribed and after a diver has completed hundreds of dives without an incident 

(Sykes and Clark, 2013).  

Decompression practices vary in artisanal fisheries all over the globe. Across six different 

fisheries on the Caribbean island of Grenada, 76% of the fishermen surveyed consider their 

occupation to be dangerous or very dangerous and 82% report experiencing DCS one or more 

times. Although divers on Grenada were very aware of the risks of diving, they continued to dive 

with unsafe diving profiles (Winkler, 2016). In a study on diver fishermen in Thailand, during 

dives lasting 30 minutes or longer and at depths deeper than 40 meters, only 53.8% of divers 

made at least one decompression stop and the rest do not make a stop at all (Gold et al., 2000a). 

In compressor fishermen in the Galapagos with extremely long average bottom times of 175 
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minutes, no decompression stops were made upon ascent (Westin et al., 2005). Fishermen 

understand the risks that they take by diving deep and rapidly ascending to the surface of the 

water. Although some will decrease their ascent rate and complete their stops closer to the 

surface rather than halfway up, as recommended by the U.S. Navy Standard Air Decompression 

Tables, decompression stop protocol remains inconsistent and often inadequate among these 

small fisheries (Blatteau et al., 2015). Omitting decompression saves the fishermen time, 

allowing them to perform more dives in a day and catch more fish. Well aware of the dangers of 

this kind of diving, fishermen consider the risks worth the reward (Winkler, 2016).  

Treatment 

There are multiple methods for treatment of the bends, some more accessible and 

affordable than others. The best and most common aid for divers who develop DCS is to 

immediately administer 100% oxygen for several hours, even if manifestations resolve (Eichhorn 

and Leyk, 2015; Vann et al., 2011). Pure oxygen establishes the largest possible inert gas 

gradient from tissue to alveolar gas, resulting in rapid removal of inert gas from tissues to lungs 

by perfusion and from bubble to tissue by diffusion. Pure oxygen also decreases tissue hypoxia 

caused by bubble-induced ischemia, mechanical injury, or biochemical damage. Immediately 

administering oxygen to a bent diver may decrease the number of hyperbaric recompressions that 

they must endure. During an observational study, divers with DCS who received oxygen 

immediately after a dive had symptom resolution after fewer hyperbaric recompressions 

compared to those who did not receive post-dive oxygen (Vann et al., 2011). Although oxygen is 

a portable option for DCS first aid, access to pure oxygen is limited in small occupational 

fisheries. 
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 Hydration is essential before and after a dive, especially in warmer climates. Intravenous 

fluid replacement can be beneficial especially in severe cases of DCS (Bove, 2014; Vann et al., 

2011). Oral rehydration can be used for stable and conscious patients, but in severe cases oral 

rehydration may be unreliable (Vann et al., 2011). An intervention that is less commonly used is 

the administration of vitamin B complex. In the Dominican Republic, a shot of vitamin B 

complex is often administered as a first aid ritual for fishermen experiencing symptoms of DCS 

(Mallon Andrews, 2020). Intravenous drip infusion of vitamin B complex has been used as a 

conservative therapy for inner ear barotrauma but little research has been conducted for its 

effectiveness for treating DCS (Kozuka et al., 1992).  

 The best and most effective treatment for DCS is recompression in a hyperbaric chamber. 

Hyperbaric chamber treatment is advised even if DCS manifestations resolve after a diver is 

given oxygen and other first aid because untreated DCS symptoms can recur days after the initial 

exposure. Mild initial manifestation of the bends can come more serious a few hours after 

surfacing and sometimes even a few days after the dive. Immediate treatment in a hyperbaric 

chamber should occur to avoid a late reoccurrence of symptoms or an increased severity that can 

occur over time (Vann et al., 2011). The most common hyperbaric therapy for DCS cases 

includes compressing patients to 2·8 bar (60 fsw) for about six hours, equivalent to pressures 

under 18 meters of sea water depth, while breathing 100% oxygen. If treatment pressures are 

greater than 2·8 bar, enriched nitrogen-oxygen or helium-oxygen may be used to reduce the risk 

of oxygen-associated toxic effects (Bove, 2014; Vann et al., 2011). If DCS symptoms do not 

resolve after the first treatment, recompression should be repeated every day until patient is 

symptom free or no further improvements are observed. Patients with neurological DCS 

manifestations usually need two or three recompression treatments but in severe cases, some 
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patients do not see symptom resolution until after 15 to 20 repetitive treatments (Vann et al., 

2011). Although hyperbaric treatment is most effective for resolving symptoms of the bends, 

many artisanal fisheries do not have access to these decompression chambers. 

There are very few hyperbaric facilities available in tropical coastal regions, forcing 

artisanal fishermen to use alternative avenues for treatment (Blatteau et al., 2015). In remote 

regions where resources are limited, in-water recompression can be used for divers who develop 

severe DCS symptoms (Hall, 2014). In-water recompression is a technique that reproduces the 

effect of a hyperbaric chamber by resubmerging a bent diver and slowly bringing them back to 

the surface (Blatteau et al., 2015). After a saturating dive, the submersion of a diver to six meters 

for 30 minutes with supplemental oxygen, is proven to be more effective at eliminating bubbles 

compared to just administering 100% oxygen for 30 minutes at the surface. These findings 

indicate that in-water recompression could be useful in situations where a diver experiences 

interrupted, rushed, or omitted decompression (Blatteau and Pontier, 2009). Although this 

method is most effective when a diver is administered pure oxygen to breathe while 

recompressing, many compressor divers do not have access to pure oxygen or the equipment to 

administer it underwater (Blatteau et al., 2015).  

In emergency situations, some diver fishermen attempt to do in-water recompression with 

compressed air but it is usually unsuccessful unless specific recompression guidelines and safety 

protocols are followed (Barratt and Van Meter, 2004; Westin et al., 2005). Structured in-water 

recompression protocols have been successful after educational interventions for small fisheries 

in Vietnam. Trainings to recognize and treat DCS with first aid and in-water recompression, 

helped to decrease DSC related mortality in these occupational fishermen. After the trainings, in-

water recompression treatments with compressed air relieved pain in all cases of DCS in the 
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joints and improved the symptoms in those experiencing neurological DCS (Blatteau et al., 

2015). This recompression method can be incredibly risky with dangers including drowning, 

hypothermia, hyperoxia, and dehydration (Blatteau et al., 2015; Winkler, 2016). In-water 

decompression can be performed effectively if additional divers accompany the symptomatic 

diver underwater, environmental sea conditions remain safe for the diver and their crew, the 

systematic diver is stable and can use their extremities, and enough air and gas is available for 

the additional time on the water (Hall, 2014).  

Rationale for Return to work 

A lack of employment opportunities outside of fishing in small coastal communities, 

force artisanal fishermen to continue entering the ocean, despite knowledge of the inherent 

dangers of diving (Barratt and Van Meter, 2004). It has become economically impossible for 

fishermen to dive safely in the waters of Monte Cristi. Financially, fishermen must adapt to the 

changing underwater environments. Compressor fishing is now widely used across Central and 

South America because of its cost effectiveness. In Monte Cristi, a freediver fisherman might 

make 1,000–2,000 pesos (US $20–$40) a day in calm seas, but a compressor fisherman can make 

2,000–5,000 pesos (US $40–$100) in a day (Mallon Andrews, 2020). The risk of DCS is often 

worth the reward of fish for these financially constrained fisheries (Winkler, 2016). The 

physiological consequences that these divers face are severe. Despite the risks of injury and high 

rate of mortality among these diver fishermen, they continue to enter dangerously deep waters.  

Summary  

The fishing industry is one of the most dangerous occupations in the primary sector 

(Huchim-Lara et al., 2018). Small coastal fisheries around the world face the highest 

occupational risk because of their limited access to expensive diving equipment and technology 
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(Winkler, 2016). Diver fishermen continue to work in increasingly risky environments because 

marine ecosystems are rapidly changing as a result of river runoff, tourism, coastal pollution, and 

overfishing from targeted export markets. These fishermen spend upwards of six hours a day at 

sea and underwater, using an air compressor to reach depths ranging from 9.14 to 45.72 meters, 

conducting an average of three to six dives per day (Mallon Andrews, 2020). As a result of their 

working conditions and the environmental factors that have driven fish populations into deeper 

water, occupational divers in the Dominican Republic are at risk of acute and chronic 

decompression sickness. 

This project explores decompression risk as a chronic condition among diver fishermen 

in the Dominican Republic. By comparing the diving profiles of Dominican fishermen to the 

recommended profile for the duration and depth of each dive, this study will help to understand 

the circumstances and practices that lead to chronic cases of decompression sickness. This 

information is crucial for understanding the broader health implications of compressor diving in 

the Dominican Republic and in other fisheries of the global south.  
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