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Abstract 

Background: The shoulder is injury prone and subacromial impingement syndrome (SAIS) is 

one of the most diagnosed causes of pain in the region. 

Objective: The purpose of this study was to investigate muscle activity between healthy and 

SAIS shoulders on the same subject and to understand the effectiveness of EMG biofeedback 

(EBFB) on bilateral overhead movements. 

Design: Ten participants (7 male), that tested positive for 2/3 SAIS clinical tests, volunteered for 

the study. Bilateral muscle activity was measured via electrodes on the Upper Trapezius (UT), 

Lower Trapezius (LT), Serratus Anterior (SA), and Lumbar Paraspinals (LP). Kinematic testing 

involved 3 continuous bilateral scapular plane overhead movements before and after EBFB. 

EBFB consisted of 10 bilateral repetitions of I, W, Y, and T exercises focused on reducing UT 

and increasing LT and SA activity.  

Results: Prior to EBFB, no significant difference in muscle activity was present between sides. A 

significant main effect of time indicated that after EBFB both sides exhibited reduced UT 

activity at 60° (p = 0.003) and 90° (p = 0.036), LT activity was increased at all measured 

humeral angles (p < 0.0005), and SA muscle activity was increased at 110° (p = 0.001). 

Conclusion: EBFB in conjunction with scapular based exercise effectively alters muscle activity 

of healthy and impaired scapular musculature. 

 

Keywords: Scapula, Electromyography, Kinematics, Biofeedback, Impingement 
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Manuscript  

Formatted for the Journal of Electromyography and Kinesiology 

1. Introduction 

  The upper extremity is one of the most injured locations in the general population with 

shoulder injuries making up one-third of primary care visits (Wofford et al., 2005). Moreover, up 

to two-thirds of individuals may experience some form of shoulder pain over their lifetime 

(Luime et al., 2004). Research on upper extremity pain and injury rates has been conducted 

frequently over time and the rate of disorder in this body segment may be increasing 

(Engebretsen et al., 2015).  

 The upper extremity is used for a variety of tasks in the workplace, at home, and during 

leisure activities. In these tasks, there may be a repetitive load placed on the upper extremity 

while, at times, in mechanically poor positions increasing the risk of a shoulder injury. SAIS is 

one of the leading diagnosed disorders in this region making up around half of the diagnosed 

shoulder injuries (Dhillon, 2019; Michener et al., 2003). SAIS is defined as the mechanical 

compression of the subacromial bursa, long head of biceps tendon, and supraspinatus tendon that 

may occur with humeral elevation. However, shoulder injuries are complex, and the etiology of 

SAIS is still not entirely understood (Dhillon, 2019; Karduna et al., 2005; Michener et al., 2003; 

Ravichandran et al., 2020). 

Overhead movement of the upper extremity is accomplished through the coordinated 

relationship of the scapula and humerus. During overhead movements the scapula dynamically 

rotates during humeral elevation to prevent compression of tissue as the humerus elevates 

(Lawrence et al., 2019; Ludewig & Reynolds, 2009; Michener et al., 2003). Changes in scapular 

kinematics have been reported in many types of shoulder disorders (Keshavarz et al., 2017; 
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Kijima et al., 2015; Leong et al., 2017; Lopes et al., 2015; Lukasiewicz et al., 1999; Ratcliffe et 

al., 2014). 

During overhead activities in a healthy population, the shoulder movement depends on 

proper activation of scapular stabilizers to ensure proper scapulohumeral coordination. 

Alterations to muscle activation patterns of scapular stabilizers have been found in injured 

general populations (Diederichsen et al., 2009; Lopes et al., 2015; Michener et al., 2016), 

athletes with a shoulder injury or SAIS (Cools et al., 2004, 2007), and in an occupational 

population (Ludewig & Cook, 2000). The altered muscular activation patterns indicative of 

shoulder pathology include increased UT (Chester et al., 2010; Cools et al., 2007; Lopes et al., 

2015; Ludewig & Cook, 2000; Michener et al., 2016), decreased LT (Cools et al., 2004), and 

decreased SA activation (Diederichsen et al., 2009; Ludewig & Cook, 2000).  

 Rehabilitation from SAIS may be treated best with conservative exercise therapy 

(Gebremariam et al., 2011). Scapular stabilizer based exercise programs have also proven to be 

an effective strategy to reduce pain by targeting specific musculature and movement patterns 

(Ravichandran et al., 2020; Saito et al., 2018) and placing the scapula in a more biomechanically 

favorable position (Hotta et al., 2018). EMG biofeedback training has successfully demonstrated 

short term improvements through increased motor control of the trapezius through a reduction in 

UT activation and increased selective activation of the LT (Du et al., 2020; Larsen et al., 2014), 

increased external rotation of the scapula (San Juan et al., 2016) and posterior tilt (Huang et al., 

2013); however, EMG biofeedback may not have a superior long term benefit on altering 

kinematics and muscle activity as research has provided contradictory results (Juul-Kristensen et 

al., 2019; Ma et al., 2011) indicating a need for more longitudinal studies. 



 3 

To the author’s knowledge, there has been no study that has assessed the bilateral effects 

of EMG biofeedback training on scapular muscle activation of SAIS and healthy shoulders of 

individuals with shoulder impingement. This area needs attention to understand potential 

bilateral effects a unilateral upper extremity injury may induce. The primary purpose of this 

study was to investigate the effectiveness of EMG biofeedback training on altering muscle 

activation of the scapular stabilizers between healthy and SAIS shoulders. The secondary 

purpose was to investigate the muscle activation of scapular stabilizers in healthy and SAIS 

shoulders prior to the intervention. 

The first experimental hypothesis (1) is that EMG biofeedback training would 

significantly decrease the EMG amplitude of the UT, increase SA and LT, and have no effect on 

the LP of the SAIS shoulder and Healthy shoulder. The second experimental hypothesis (2) is 

that there would be significantly increased UT activity, decreased SA and LT activity, and no 

difference in Lumbar Paraspinal activity in the SAIS shoulder compared to the Healthy shoulder.  

2. Methods 

2.1. Participants 

A total of 10 participants were included in this study (7 male and 3 female). The 

participants had a mean age of 30.60 years ± 15.20 years, mean height 1.72 m ± 0.7 m, and mean 

mass of 75.65 kg ± 8.69 kg. All the participants were right hand dominant, and 6/10 participants 

were injured on the right side. A statistical power analysis was conducted using GPower 3.1 

(Universitat, Kiel, Germany) to determine the sample size using the data from San Juan et al, 

(2016). A sample size of 8 participants was needed to detect an effect size (Cohen’s f) of 0.5 at a 

power of 0.8 and alpha of p < 0.05. Male and female individuals with a chief complaint of 

shoulder pain within the prior year between the age of 18-60 years were recruited for 
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participation. Participants were excluded if they had surgical or neurological history that may 

have affected the upper extremity. Inclusion criteria required a clinical assessment by a certified 

athletic trainer where the shoulder pain was confirmed through positive tests on two out of three 

physical examination tests for signs of impingement (Neer’s, Hawkins Kennedy, Empty Can). 

Before data collection, each participant gave written informed consent. The study was approved 

by the Western Washington University Institutional Review Board.  

2.2. Data Collection 

 All participants completed a single 90-minute testing session. Prior to arrival participants 

were asked to refrain from high intensity exercise and upper extremity specific exercise 24 hours 

prior to data collection. All participants were also asked to arrive wearing athletic clothing and 

females were requested to wear a sports bra. An overview of the study protocol was given, and 

questions were answered by the researcher. Anthropometric characteristics of body height and 

mass were collected. Additionally, self-reported age and upper extremity limb dominance were 

recorded. Limb dominance was determined to be the writing hand of the subject. Participants 

completed a warm up protocol of 10 clockwise and counterclockwise pendulums with a 2.27 kg 

weight (San Juan et al., 2016). In preparation for motion analysis digitization and data collection, 

the skin was cleaned with alcohol wipes and shaved when necessary to ensure sensor adhesion 

and to reduce noise. The following bony landmarks were then palpated and marked with a 

permanent pen: C7, T8, T12, jugular notch, xiphoid process, and sternum. Additionally, the 

following landmarks were palpated and marked on the left and right side: scapular root, 

acromion angle, inferior angle, lateral epicondyle of the humerus, medial epicondyle of the 

humerus, deltoid tuberosity of the humerus, and spine of the scapula. A total of 8 (per subject) 

Noraxon dual EMG disposable, self-adhesive, Ag/AgCl snap electrodes with an interelectrode 
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distance of 2 cm (Noraxon, Scottsdale, AZ, USA) were placed bilaterally and in parallel with the 

muscle fibers of the UT, LT, SA, and LP. The UT electrode was placed at the midway between 

the posterior lateral aspect of the acromion process and the spinous process of C7 (Ebaugh & 

Spinelli, 2010). The LT electrode was placed midway between the spinous process of the seventh 

thoracic vertebrae and the vertebral border of the scapula at the junction of the scapula spine 

(Ebaugh & Spinelli, 2010). The SA electrode was placed at the midaxillary line at the level of 

the seventh rib (Ebaugh & Spinelli, 2010). The LP electrodes were placed at the greatest 

convexity of the LP muscles at the L4/L5 level (Humphrey et al., 2005). Electromyography data 

were collected to assess muscle activation using the Noraxon EMG desktop direct transmission 

system (DTS) (Noraxon, Scottsdale, AZ, USA) and Noraxon MR 3.14 myoMuscle software. 

Raw EMG data were collected at 1500 Hz and preamplified with a gain of 500, CMRR of 100 

dB, and input impedance >100 Mohm. The muscle activation signals in these muscles were 

verified by the investigator prior to data collection. The protocol for maximal voluntary isometric 

contraction (MVIC) was adapted from (San Juan et al., 2016) and bilaterally modified for the 

following muscles UT, LT, SA, and LP (Table 1). MVIC’s were performed once for each muscle 

group and lasted 5 seconds. The middle second of the MVIC was averaged and used for 

normalization of EMG data. Participants were given time to practice each MVIC and were given 

adequate rest between muscle groups. 
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Table 1. Subject positioning for MVIC capture. 

Muscle Subject Position Subject Motion Resisted 

Upper 

Trapezius 

Seated. Bilateral 90º elbow flexion and 90º 

shoulder abduction 

Arm adduction with 

resistance applied at elbow. 

Lower 

Trapezius 

Seated. Bilateral 90º elbow flexion and 90º 

abduction 90º external rotation of shoulder 

Forceful abduction applied 

at the elbow. 

Serratus 

Anterior 

Seated. Bilateral shoulder flexion to 90º. 

Maximum elbow extension. Hands in a fist. 

Scapular retraction applied 

at the fist. 

Lumbar 

Paraspinals 

Prone. Hips over edge of table. Trunk flexed 

toward the floor. 

Forceful trunk flexion. 

Force applied bilaterally at 

shoulder. 

 

Humeral elevation was measured using the Polhemus Liberty (Polhemus Inc., Colchester, 

VT, USA) electromagnetic tracking system collecting at 240 Hz. Data were collected and stored 

with Motion Monitor (Innovative Sports Training Inc, Chicago, Ill, USA) software (version 

9.32). The Liberty is equipped with 8 Sensors, a transmitter, and digitizing stylus. The 

transmitter was fixed to a custom plastic column 1.23 meters off the ground. The world axis of 

the transmitter (Global Coordinate System) was set following the right-hand rule with the subject 

facing +Y, +Z being vertical, and +X orthogonal to those planes. Participants were asked to 

stand on a taped predetermined location that was within the +X and +Y region. Data collection 

utilized 5 sensors that were adhered on the right and left deltoid tuberosity, sternum (2.5 cm 

inferior to the jugular notch), and at the mid portion of the right and left scapular spine using a 

customized scapular jig (McClure et al., 2001) (Figure 1). 

 Next, the subject was digitized through a series of steps in Motion Monitor using the 

marked bony landmarks that are in accordance with the International Society of Biomechanics 

(ISB) protocol (Wu et al., 2005). The joint center of each glenohumeral joints was found using 
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the rotational method by passive movement in flexion, extension, adduction, abduction, internal 

rotation, and external rotation. The local coordinate systems of both humerus, trunk, and scapula 

were defined in line with the recommendations of the ISB (Wu et al., 2005). Electromagnetic 

systems are reliable with same day trial to trial correlation coefficient values between 0.88 and 

0.97 and errors of 1.35º to 1.74º (Thigpen et al., 2005).  

 After digitization two custom guide poles were placed such that humeral elevation with 

elbows extended in contact with the pole resulted in the humeral plane of elevation 35º anterior 

to the frontal plane measured by goniometer. Guide poles were placed in a manner that the 

subject could maintain contact with them as they elevated their arms (Figure 1). Prior to data 

collection, participants were asked to practice elevating and lowering their arms in the scapular 

plane using the guide poles. Participants were asked to keep their elbows straight and thumbs 

pointed up throughout the movement. Next, the subject was asked to raise their arms until they 

were close to their ears which were timed at 3 seconds of elevation and then 3 seconds of 

lowering (San Juan et al., 2016). Once the participant felt comfortable with the movement and 

pace, data were recorded of the participant completing three humeral elevations where the right 

and left arms elevated simultaneously in the scapular plane. 

After the first set of elevation trials, participants were asked to complete a sequence of 

shoulder rehabilitation exercises that focused on the scapula stabilizers muscles (San Juan et al., 

2016). These exercises were composed of the I, W, T, and Y as described in Table 2. A 

visualization of the exercises may be seen in Figure 3. A screen was placed in front of the 

participants that displayed the EMG biofeedback program using the Noraxon MR 3.14 

myoMuscle software (Noraxon, Scottsdale, AZ, USA). An explanation of the biofeedback 

training protocol was given to ensure participants could identify each muscle and how each one 
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was affected by upper extremity movement. During all of the exercises participants were asked 

to keep the EMG activity of the UT low and for the activity of the LT to be at least twice that of 

the UT (San Juan et al., 2016). The ‘I’ exercise was completed first and once the subject was 

comfortable with the exercise and utilizing the correct muscle groups, they then completed 10 

repetitions and progressed through to ‘W’, then ‘T’, and culminated with the ‘Y’ exercise (Table 

2) (Figure 3). No tactile cueing was used.  

After completion of the exercise protocol participants completed another trial of the 

humeral elevation task. Participants were asked to utilize what they learned about decreasing UT 

and increasing LT activity from the biofeedback training and transfer that to the elevation trials.  

 
Figure 1. Anterior view of humeral elevation trials with guide poles placed 35° in the scapular 

plane. 

Kinematic 
Tracker 

EMG 
Sensor 
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Figure 2. Posterior view of humeral elevation trials with kinematic and EMG sensors attached. 

 

 

Figure 3. Compilation of EMG biofeedback exercises. Exercises were completed in the 

following order: Top left is ‘I’, top right is ‘W’, bottom left is ‘T’, and bottom right is ‘Y’. 

Kinematic 
Trackers 

EMG 
Sensors 
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2.3. Data Analysis 

 Raw kinematic data were processed in Motion Monitor software. EMG data were 

smoothed and full wave rectified using root mean square (30 ms window). All EMG data were 

aligned to kinematic data through innate functions in Motion Monitor. Data were exported and 

converted to an Excel (Microsoft, Redmond, WA) file format. EMG and kinematic data were run 

through a custom MatLab script (MATLAB 9.4 and Statistics Toolbox 8.1, The MathWorks, 

Inc., Natick, Massachusetts, USA) that extracted data at 30º, 60º, 90º and 110º of humeral 

elevation. The concentric phase of movement was kept for analysis.   

Table 2. EMG Biofeedback scapular stabilization exercises (San Juan et al., 2016). 

Exercise Placement of upper extremity Scapular Motion Performed 

I Arms at sides, fully extended with palms facing 

forward 

Retraction and depression 

W Arms abducted 90°, elbows flexed 90° with 

palms facing forward 

Retraction and depression 

T Arms abducted 90°, forearms extended with 

palms facing up 

Retraction and depression 

Y Hands start crossed in front of body with palms 

facing back and elbow fully extended. Subject 

externally rotates arm and elevates arms in the 

scapular plane to about 135° with forearms 

completely extended and thumbs pointing back 

Retraction and depression 

 

2.4. Statistical Analysis 

 Statistical analysis was conducted using SPSS (IBM SPSS Statistics 26, Armonk, NY, 

USA). Descriptive statistics were calculated for all variables (mean and standard deviation). A 

two-way ANOVA was used to assess pretest differences between sides at each angle interval. A 

total of four two-way repeated measures ANOVA was used to assess the effect of side (SAIS and 

healthy) x time (30º, 60º, 90º, 110º of humeral elevation) of each EMG measure (The alpha was 

set to 0.05). In total 16 two-way repeated measures were conducted. Levene’s test and 
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Mauchly’s test of sphericity were used to assessing homogeneity and differences in variances. 

The independent variables were the sides (SAIS and healthy), time (before and after EBFB). 

Dependent variables were muscle activation of the UT, LT, SA, and LP of the SAIS and healthy 

shoulders. 

3. Results 

3.1. Pretest Comparison (Pre-EBFB) 

Tabulated values of means and standard deviations are located in Table 3. 

 Upper Trapezius. There was no statistically significant interaction between sides for UT 

muscle activation at 30º (F [1, 18] = 1.274, p = 0.274, η2 = 0.066), 60º (F [1, 18] = 0.424, p = 

0.523, η2 = 0.023), 90º (F [1, 18] = 0.022, p = 0.883, partial η2 = 0.001), and 110º (F [1, 17] = 

0.149, p = 0.705, partial η2 = 0.009). 

 Lower Trapezius. There was no statistically significant interaction between sides for LT 

muscle activation at 30º (F [1, 18] = 0.064, p = 0.802, η2 = 0.004), 60º (F [1, 18] = 0.146, p = 

0.706, η2 = 0.008), 90º (F [1, 18] = 0.005, p = 0.945, partial η2 < 0.0005), and 110º (F [1, 17] = 

0.139, p = 0.714, partial η2 = 0.008). 

 Serratus Anterior. There was no statistically significant interaction between sides for SA 

muscle activation at 30º (F [1, 18] = 0.034, p = 0.856, partial η2 = 0.002), 60º (F [1, 18] = 

0.009, p = 0.927, η2 < 0.0005), 90º (F [1, 18] = 0.055, p = 0.818, partial η2 = 0.003), and 110º (F 

[1, 17] < 0.0005, p = 0.997, partial η2 < 0.0005). 

 Lumbar Paraspinals. There was no statistically significant interaction between the side 

and time on LP muscle activation at 30º (F [1, 18] = 0.027, p = 0.872, partial η2 = 0.001), 60º (F 

[1, 18] = 0.011, p = 0.918, η2 = 0.001), 90º (F [1, 18] = 0.134, p = 0.719, partial η2 = 0.007), and 

110º (F [1, 17] = 0.032, p = 0.860, partial η2 = 0.002). 
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3.2. Intervention 

Tabulated values of means, standard deviations, and significance values may be seen in 

Table 3. Additionally, the means for each muscle (UT, LT, SA, and LP) are visualized, 

respectively, in Figure 4, Figure 5, Figure 6, and Figure 7. There was homogeneity of variances 

for all muscles studied, as assessed by Levene's test of homogeneity of variance (p > 0.05). 

Mauchly's test of sphericity indicated that the assumption of sphericity was met for the two-way 

interaction for all muscles measured.  

3.2.1. 30 Degrees 

Upper Trapezius. There was no statistically significant interaction between the side and 

time on UT muscle activation (F [1, 18] = 1.218, p = 0.284, partial η2 = 0.063, Observed power = 

0.182). The main effect of time did not show a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 0.950, p = 0.343, partial η2 = 0.050, Observed 

power = 0.152). The main effect of side did not show a statistically significant difference in 

mean UT muscle activation between intervention sides (F [1, 18] = 49.758, p = 0.865, partial 

η2 = 0.002, Observed power = 0.530). 

Lower Trapezius. There was no statistically significant interaction between the side and 

time on LT muscle activation (F [1, 18] = 0.051, p = 0.824, partial η2 = 0.003. observed power = 

0.055). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 38.636, p < 0.0005, partial η2 = 0.682, Observed 

power = 1.000). The EMG activity in LT increased after EBFB compared to prior to it. The main 

effect of side did not show a statistically significant difference in mean LT muscle activation 

between intervention sides (F [1, 18] = 0.019, p = 0.892, partial η2 = 0.001, Observed power = 

0.52). 
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Serratus Anterior. There was no statistically significant interaction between the side and 

time on SA muscle activation (F [1, 18] = 0.143, p = 0.710, partial η2 = 0.008. Observed power 

0.065). The main effect of time showed no statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 2.495, p = 0.132, partial η2 = 0.122, Observed 

power 0.321). The main effect of side did not show a statistically significant difference in mean 

SA muscle activation between intervention sides (F [1, 18] = 0.156, p = 0.698, partial η2 = 0.009, 

Observed power = 0.066). 

Lumbar Paraspinals. There was no statistically significant interaction between the side 

and time on Lumbar Paraspinal muscle activation (F [1, 18] = 0.017, p = 0.896, partial η2 = 

0.001, Observed power = 0.052). The main effect of time showed no statistically significant 

difference in mean muscle activity at the different time points (F [1, 18] = 0.602, p = 0.448, 

partial η2 = 0.032, Observed power = 0.114). The main effect of side did not show a statistically 

significant difference in mean Lumbar Paraspinal muscle activation between intervention 

sides (F [1, 18] = 0.003, p = 0 .954, partial η2 < 0.0005, Observed power = 0.050). 

3.2.2. 60 Degrees 

Upper Trapezius. There was no statistically significant interaction between the side and 

time on UT muscle activation (F [1, 18] = 0.088, p = 0.771, partial η2 = 0.005, Observed power = 

0.059). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 11.457, p = 0.003, partial η2 = 0.389, Observed 

power = 0.892). The EMG activity in UT decreased after EBFB compared to prior to it. The 

main effect of side did not show a statistically significant difference in mean UT muscle 

activation between intervention sides (F [1, 18] = 0.891, p = 0.358, partial η2 = 0.047, Observed 

power = 0.145). 



 14 

Lower Trapezius. There was no statistically significant interaction between the side and 

time on LT muscle activation (F [1, 18] = 0.030, p = 0.864, partial η2 = 0.002, Observed power = 

0.053). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 35.355, p < 0.0005, partial η2 = 0.663, Observed 

power = 1.000). The EMG activity in LT increased after EBFB compared to prior to it. The main 

effect of side did not show a statistically significant difference in mean LT muscle activation 

between intervention sides (F [1, 18] = 0.103, p = 0.752, partial η2 = 0.006, Observed power = 

0.061). 

Serratus Anterior. There was no statistically significant interaction between the side and 

time on SA muscle activation, (F [1, 18] = 0.066, p = 0.800, partial η2 = 0.004, Observed power 

= 0.057). The main effect of time did not show a statistically significant difference in mean 

muscle activity at the different time points (F [1, 18] = 1.602, p = 0.222, partial η2 = 0.082, 

observed power 0.224). The main effect of side did not show a statistically significant difference 

in mean SA muscle activation between intervention sides (F [1, 18] = 0.002, p = 0.967, partial 

η2 < 0.0005, Observed power = 0.050). 

Lumbar Paraspinals. There was no statistically significant interaction between the side 

and time on Lumbar Paraspinal muscle activation (F [1, 18] = 0.065, p = 0.802, partial η2 = 

0.004, Observed power = 0.057). The main effect of time did not show a statistically significant 

difference in mean muscle activity at the different time points (F [1, 18] = 0.145, p = 0.707, 

partial η2 = 0.008, Observed power = 0.065). The main effect of side did not show a statistically 

significant difference in mean Lumbar Paraspinal muscle activation between intervention 

sides (F [1, 18] = 0.051, p = 0.824, partial η2 = 0.003, Observed power = 0.055). 
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3.2.3. 90 Degrees 

Upper Trapezius. There was no statistically significant interaction between the side and 

time on UT muscle activation (F [1, 18] = 0.596, p = 0.450, partial η2 = 0.032, Observed power = 

0.113). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 5.136, p = 0.036, partial η2 = 0.222, Observed 

power = 0.573). The EMG activity in UT decreased after EBFB compared to prior to it. The 

main effect of side did not show a statistically significant difference in mean UT muscle 

activation between intervention sides (F [1, 18] = 0.493, p = 0.492, partial η2 = 0.027, Observed 

power = 0.102). 

Lower Trapezius. There was no statistically significant interaction between the side and 

time on LT muscle activation (F [1, 18] = 0.058, p = 0.812, partial η2 = 0.003, Observed power = 

0.056. The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 27.747, p < 0.0005, partial η2 = 0.607, Observed 

power = 0.999). The EMG activity in LT increased after EBFB compared to prior to it. The main 

effect of side did not show a statistically significant difference in mean LT muscle activation 

between intervention sides (F [1, 18] = .041, p = 0.842, partial η2 = 0.002, Observed power = 

0.054). 

Serratus Anterior. There was no statistically significant interaction between the side and 

time on SA muscle activation (F [1, 18] = 0.109, p = 0.745, partial η2 = 0.006, Observed power = 

0.061). The main effect of time did not show a statistically significant difference in mean muscle 

activity at the different time points (F [1, 18] = 4.036, p = 0.060, partial η2 = 0.183, Observed 

power = 0.477). The main effect of side did not show a statistically significant difference in 
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mean SA muscle activation between intervention sides (F [1, 18] = 0.102, p = 0.754, partial η2 = 

0.006, Observed power = 0.061). 

Lumbar Paraspinals. There was no statistically significant interaction between the side 

and time on Lumbar Paraspinal muscle activation (F [1, 18] = 0.221, p = 0.644, partial η2 = 

0.012, Observed power = 0.073. The main effect of time did not show a statistically significant 

difference in mean muscle activity at the different time points (F [1, 18] = 0.807, p = 0.381, 

partial η2 = 0.043, Observed power = 0.136). The main effect of side did not show a statistically 

significant difference in mean Lumbar Paraspinal muscle activation between intervention 

sides (F [1, 18] = 0.279, p = 0.604, partial η2 = 0.015, Observed power = 0.079). 

3.2.4. 110 Degrees 

Upper Trapezius. There was no statistically significant interaction between the side and 

time on UT muscle activation (F [1, 17] = 0.255, p = 0.620, partial η2 = 0.015, Observed power = 

0.076). The main effect of time did not show a statistically significant difference in mean muscle 

activity at the different time points (F [1, 17] = 3.295, p = 0.087, partial η2 = 0.162, Observed 

power = 0.402). The main effect of side did not show a statistically significant difference in 

mean UT muscle activation between intervention sides (F [1, 17] = 0.027, p = 0.872, partial η2 = 

0.002, Observed power = 0.053). 

Lower Trapezius. There was no statistically significant interaction between the side and 

time on LT muscle activation (F [1, 17] = 0.098, p = 0.758, partial η2 = 0.006, Observed power = 

0.060). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 17] = 46.366, p < 0.0005, partial η2 = 0.732, Observed 

power = 1.000). The EMG activity in LT increased after EBFB compared to prior to it.  The 

main effect of side did not show a statistically significant difference in mean LT muscle 
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activation between intervention sides (F [1, 17] = 0.025, p = 0.877, partial η2 = 0.001, Observed 

power = 0.053). 

Serratus Anterior. There was no statistically significant interaction between the side and 

time on SA muscle activation (F [1, 17] = 0.005, p = 0.943, partial η2 < 0.0005, Observed power 

= 0.051). The main effect of time showed a statistically significant difference in mean muscle 

activity at the different time points (F [1, 17] = 15.251, p = 0.001, partial η2 = 0.432, Observed 

power = 0.957). The EMG activity in SA increased after EBFB compared to prior to it. The main 

effect of side did not show a statistically significant difference in mean SA muscle activation 

between intervention sides (F [1, 17] = 0.001, p = 0.970, partial η2 <0.0005, Observed power = 

0.050). 

Lumbar Paraspinals. There was no statistically significant interaction between the side 

and time on Lumbar Paraspinal muscle activation (F [1, 17] = 0.677, p = 0.422, partial η2 = 

0.038, Observed power = 0.122). The main effect of time did not show a statistically significant 

difference in mean muscle activity at the different time points (F [1, 17] = 1.958, p = 0.180, 

partial η2 = 0.103, Observed power = 0.262). The main effect of side did not show a statistically 

significant difference in mean Lumbar Paraspinal muscle activation between intervention 

sides (F [1, 17] = 0.677, p = 0.422, partial η2 = 0.038, Observed power = 0.122).
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Table 3. Acute effects of EMG biofeedback training on muscle activation 

    Impingement Healthy       

  

Pretest Posttest Pretest Posttest Interaction 

Time                

Main 

Effect 

Side                

Main 

Effect 

  

Humeral      

Elevation 
(%) (%) (%) (%) (p) (p) (p) 

Upper Trapezius   
    

   

 30° 13.76 (5.22) 14.10 (15.09) 17.30 (8.42) 11.95 (11.59) 0.284 0.343 0.865 

 60° 35.07 (11.83) 21.30 (14.45 39.42 (17.55) 27.87 (17.11) 0.771 0.003* 0.358 

 90° 38.71 (22.42) 24.39 (14.61) 39.98 (14.84) 32.94 (22.00) 0.450 0.036* 0.492 

 110° ^ 44.17 (33.90) 28.75 (15.62) 39.54 (12.61) 30.84 (19.67 0.620 0.087 0.872 

Lower Trapezius  
    

   

 30° 9.70 (6.44) 65.38 (36.52) 10.47 (7.18) 62.26 (38.99) 0.824 <0.0005* 0.892 

 60° 24.22 (18.32) 87.70 (55.95) 21.10 (18.11) 80.97 (55.29) 0.864 <0.0005* 0.752 

 90° 29.43 (33.93) 76.82 (40.72) 30.20 (24.72) 82.13 (58.45) 0.812 <0.0005* 0.842 

 110° ^ 33.93 (7.72) 91.18 (42.56) 39.01 (32.21) 91.23 (52.65) 0.758 <0.0005* 0.877 

Serratus Anterior  
    

   

 30° 19.40 (12.01) 25.98 (19.77) 18.48 (10.13) 22.52 (14.12) 0.710 0.132 0.698 

 60° 35.41 (18.41) 41.84 (23.05) 36.15 (17.63) 40.41 (22.51) 0.800 0.222 0.967 

 90° 62.34 (26.88) 73.18 (40.90) 59.52 (27.04) 67.29 (32.15) 0.745 0.060 0.754 

 110° ^ 81.85 (31.52) 111.03 (51.60) 81.80 (28.82) 109.91 (28.60) 0.943 0.001* 0.970 

Lumbar Paraspinals  
    

   

 30° 7.78 (4.50) 8.63 (5.19) 7.48 (3.61) 8.68 (7.93) 0.896 0.448 0.954 

 60° 9.26 (4.99) 10.03 (6.83) 9.05 (4.14) 9.20 (6.86) 0.802 0.707 0.824 

 90° 9.56 (5.46) 11.12 (7.37) 8.81 (3.60) 9.30 (6.97) 0.644 0.381 0.604 

  110° ^ 8.64 (4.03) 11.24 (7.64) 8.33 (3.23) 9.01 (5.67) 0.422 0.180 0.422 

Pretest and Posttest table values are presented as Mean (SD); * Statistically significant finding; ^ Statistical analysis was conducted 

with 9 participants instead of 10.
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4. Discussion 

 The purpose of this study was to investigate the bilateral muscle activation of injured and 

healthy shoulders within an impingement (SAIS) population. The experimental hypotheses were 

(1) that prior to EMG biofeedback there would be significantly increased UT, decreased SA, 

decreased LT, and no difference in lumbar paraspinal muscle activity in the SAIS shoulder 

compared to the healthy side. The second hypothesis (2) was that EMG biofeedback training 

would have an effect on both shoulders (SAIS and uninjured side) of the participant thereby 

significantly decreasing the activity of the UT, increasing the EMG amplitude of the LT and SA, 

and inducing no change in lumbar paraspinal muscle activity. The results of the study do not 

support the first hypothesis; however, the data partially support the second hypothesis. 

The present study used the right and left shoulders from 10 participants and each 

individual had one shoulder that was diagnosed with SAIS and the other was healthy.  

Comparison of the pretest EMG data between the SAIS and healthy shoulder revealed no 

significant difference in activation level of the scapular stabilizers and Lumbar Paraspinals at any 

humeral elevation angle (p > 0.05). There was no difference between lumbar paraspinal muscle 

activity in the present study indicating that lumbar specific compensatory movements were not 

present. In the present study prior to EBFB that the healthy UT, SA, and LT muscle activity was 

not significantly different than the SAIS side at each humeral angle (ex 90° SAIS: SA had a 

mean EMG amplitude of 62.34 ± 26.88; 90° Healthy: SA had a mean EMG amplitude of 59.52 ± 

27.04). The findings of this study are in contrast with some of the research on the relationship 

between SAIS and scapula stabilizer muscle activity. Michener and colleagues (2016) indicated a 

dysfunction in the EMG activity of the scapular stabilizers in the SAIS shoulder. Larsen and 

colleagues (2014) found that the SAIS shoulders showed motor control deficits. Previous 
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research has reported increased muscle activity amplitude of the UT in the SAIS shoulder of the 

general population (Lopes et al., 2015; Michener et al., 2016; V. Phadke et al., 2009; Wadsworth 

& Bullock-Saxton, 1997) and in athletes (Cools et al., 2007). Diederichsen et al. (2009) found 

decreased SA activity levels in those with SAIS which is in contrast to the present study. 

Conclusive remarks on the effects SAIS has on muscle activity are ongoing (Chester et al., 2010) 

and the present study indicates that the EMG profile between SAIS and healthy shoulders are not 

different thereby calling for additional study in this area. The contrast between the present study 

and previous research may be related to the sample selected as the present study used the injured 

and uninjured side of the same individual while the other studies used two sets of participants. 

The data demonstrated that the EMG biofeedback training with the scapular-based 

exercise protocol was effective in eliciting muscle activity amplitude changes in both the healthy 

and SAIS shoulders of an individual through increases in activity of upward rotators (LT and 

SA) and a decrease in UT activity. No statistically significant differences were present between 

lumbar paraspinal activity in the present study after EMG biofeedback training indicating that 

compensatory movements in order to achieve a greater range of motion were not present. The 

findings of the present study are in accordance with previous research on the acute effects of 

biofeedback training (Du et al., 2020; Huang et al., 2013; Larsen et al., 2014). Huang et al. 

(2013) found increased muscle amplitude changes of increased LT and decreased UT activation 

after using EMG biofeedback with a different set of exercises than the present study. The present 

study aligns with another aspect of Larsen and colleagues’ (2014) findings as the implementation 

of EMG biofeedback improved muscle activity amplitude of both SAIS and healthy shoulders. In 

the present study, the LT muscle activity was significantly increased at all humeral elevation 

angles reported (30º, 60º, 90º, and 110º). This finding is in accordance with previous research as 
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Du et al. (2020) found increased LT activation of 4.2% - 18% whereas the present study found a 

mean difference increase of 6% - 12.5% in the LT of both sides. Comparison of these values is 

cautioned as protocol and sample population differences are present. EMG biofeedback 

effectively educated the participants on creating a stable base through increased activation of the 

LT at humeral angles 60º and lower.  

The other upward rotator studied, the SA, had significantly increased muscle activity at 

110º of humeral elevation. Ensuring that the SA is active is important as this muscle plays a role 

in posterior tipping and upward rotation of the scapula (Diederichsen et al., 2009). It is 

speculated that increasing the recruitment of these muscles will allow for greater subacromial 

space with humeral elevation. The EMG biofeedback training protocol of the present study was 

successful in significantly decreasing UT muscle activity at 60º and 90º of humeral elevation. 

The significant reduction occurred during the painful arc (60º-120º) of humeral elevation where 

individuals with shoulder pain typically experience pain response and symptoms of SAIS (Kessel 

& Watson, 1977). As the UT plays a role with anterior tilting of the scapula, this reduction in 

activity could be beneficial in alleviating symptoms (Camargo & Neumann, 2019). Additionally, 

in complement, the increased SA activity may induce a corrective posterior tilting thereby also 

adding to the reduction in symptoms (Ludewig & Reynolds, 2009). The use of EMG biofeedback 

training is affecting to change the muscle activation amplitude and may be beneficial to those 

who utilize the UT with overhead movement. Combining the results: the decreased activity of 

the UT along with increased activity of the upward rotators, may effectively alter the coordinated 

recruitment patterns allowing for pain-free movement. 

Interestingly, prior research has called for implementing exercise programs to correct 

muscle imbalances (Michener et al., 2016); however, the present study did not show the 
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purported muscular imbalances as a result of SAIS. The intervention used still has merit in 

reducing the risk of SAIS as a preventative measure to reduce imbalances and to educate on 

effective recruitment of the scapular stabilizers. 

In conclusion, the EMG amplitude profile between SAIS side and uninjured side 

shoulders of an individual is not significantly different. Additionally, EMG biofeedback training 

used in conjunction with scapular-based rehabilitation exercises is effective at altering the EMG 

amplitude of scapular stabilizers in healthy and disordered shoulders. The ability to increase 

activation of scapular upward rotators (SA and LT) and decrease UT activity may establish a 

healthy force couple allowing for pain-free movement and reduced injury risk. 

5. Limitations 

 The limitations of this study should be noted. The design of this study did not include a 

control group which would prevent participants with any relevant background (i.e., shoulder 

rehabilitation exercise knowledge or use of EMG biofeedback) from inducing bias into the 

research. Moreover, the findings only demonstrate potential short-term effects. Additionally, data 

was not analyzed over 110º as a few participants failed to achieve full range of motion making 

comparisons of EMG difficult with other studies as data is conventionally reported at 30º, 60º, 

90º, and 120º. In analyzing the EMG activity this study did not investigate relationships of force 

couples which may allow for further understanding of upper extremity changes with intervention 

protocols. Future studies would benefit from including a control group and comparing EMG 

biofeedback to an exercise only group in order to assess the effectiveness of EMG biofeedback. 

Additional studies may investigate sex differences in bilateral EMG profiles of healthy and 

impingement populations. 
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Literature Review 

Introduction 

 This review will broadly explore the mechanisms of shoulder injury, specifically 

subacromial impingement syndrome (SAIS), in the general population, scapular kinematics in 

healthy and injured populations, and the complexities of scapula stabilizer muscle activity. The 

function of scapular kinematics, including scapulohumeral rhythm (SHR), and muscle activation 

are crucial for identifying injury risk. This review will encompass pertinent background 

information on injury prevalence and incidence among adults, the role of the scapula, and the 

effects kinematics and muscle activation have on shoulder pathology in order to support the 

methodology and procedures used in this study. 

General Population Shoulder Pain 

The shoulder is one of the most complex joints in the human body because of its large 

range of motion (ROM) and 6 degrees of freedom that are contingent on both precise scapular 

rotation and the intricate balance of muscular tension to maintain congruency between the 

humeral head and glenoid fossa (Hurov, 2009; Michener et al., 2003). The anatomical 

complexities paired with the individuality of human lives leave an opportunity to use or place the 

shoulder in weak positions and this may lead to injury. In the United States, injury related 

shoulder pain was associated with 33.2% of primary care visits while work related shoulder pain 

made up 21.3% of visits (Wofford et al., 2005). In other parts of the world, males and females 

have similar chronic shoulder pain rates (17.7% and 22.3% respectively) (Andersson et al., 1993) 

while other studies present evidence of increased incidence of upper extremity injury rates in 

females (Bot et al., 2005). Recent analysis indicate that the overall rate of shoulder injury has 

been increasing (Engebretsen et al., 2015). A lack of consensus is clear as a systematic review 



 31 

confirms a wide range of shoulder injury prevalence rates: a point prevalence rate ranging from 

6.9% to 26% while over a lifetime prevalence rate ranges from 6.7% to 66.7% (Luime et al., 

2004). Another study purports that SAIS, which is defined as mechanical compression of tissue 

under the acromion, may account for nearly half or more of all shoulder complaints (Dhillon, 

2019; Michener et al., 2003). The reporting of injury definition, regional grouping of injuries 

(i.e., neck and shoulder vs. shoulder), incidence, and prevalence rates varies throughout the 

literature therefore providing a conclusive remark is difficult. It is clear that the shoulder is a 

common source of pain which needs to be investigated. 

Etiology of Shoulder Injury 

 The etiology of overuse or chronic shoulder injuries in the general population is 

multifactorial. It is known that the coordination of the scapulothoracic and glenohumeral joint is 

essential to produce healthy movement and to optimize biomechanics (Castelein et al., 2016; 

Hurov, 2009; Michener et al., 2003). There are 14 muscles that attach to the scapula and 

influence its movement (Ebaugh & Spinelli, 2010). These muscles can be broken down into 

groups based on their function with movement (Kibler, 1998). The muscles that act to stabilize 

and rotate are the Trapezius, Rhomboids, Levator scapulae, and Serratus Anterior. Intrinsic 

muscles of the rotator cuff are the Subscapularis, Supraspinatus, Infraspinatus, and Teres Minor 

(Kibler, 1998). Extrinsic muscles are the Deltoid, Biceps Brachii, and Triceps Brachii (Kibler, 

1998). The balance of forces between these muscles is crucial to maintain a stable center of 

rotation in the glenohumeral joint while also allowing the scapula to be mobile as it moves 

through upward/downward rotation, internal/external rotation, anterior/posterior tilt, 

depression/elevation, and protraction/retraction (Kibler, 1998). In a healthy population, the three 

dimensional (3D) pattern of scapular kinematics with humeral elevation is upward rotation, 
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external rotation, and posterior tilt (Ludewig et al., 1996; McClure et al., 2001). These 

movements of the scapula are important as they allow for the humerus to elevate while 

maintaining adequate subacromial space (SAS) and reducing the likelihood of compressive 

forces on tissues under the coracoacromial arch (Karduna et al., 2005). The SAS is of main 

concern as the underlying Supraspinatus Tendon, Subacromial Bursa, Long Head of the Biceps 

Brachii Tendon, and shoulder joint capsule (Michener et al., 2003) may be mechanically 

damaged through contact with the acromion and this decrement in space may lead to SAIS and 

pain. Studies that have directly measured SAS using magnetic resonance imaging (MRI) have 

found a decrease in space with protraction compared to retraction (Solem-Bertoft et al., 1993). A 

study of cadavers (n=8) with SAIS found no change in SAS with scapular external rotation and 

posterior tilt in the scapular plane but a decrease in SAS with upward rotation of the scapula 

(Karduna et al., 2005). This surprising finding indicates a potential compensatory mechanism in 

which those with SAIS create SAS through alternative scapular kinematic patterns. The 

application of cadaver study to in vivo tissue is difficult as cadaver studies typically are 

conducted with passive movement; however, understanding compensatory changes as a result of 

SAIS would be beneficial through more cadaver studies and modelling. 

Altered Scapular Kinematics 

 Shoulder Injury. A plethora of research on the effect of injury on scapular kinematics 

have been conducted on populations with SAIS (Lopes et al., 2015; Lukasiewicz et al., 1999; 

Turgut et al., 2016) while some studies have investigated rotator cuff tears (Kijima et al., 2015; 

Leong et al., 2017), frozen shoulder (Rundquist et al., 2003), idiopathic range of motion loss 

(Rundquist, 2007), and instability (Matias & Pascoal, 2006). Research on the role the scapula 

plays in this injury type has been thoroughly examined, however, the relationship of SAIS and 
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scapular orientation is not concrete (Keshavarz et al., 2017; Ratcliffe et al., 2014). A review of 

scapular kinematics and shoulder injuries indicates, that in the scapular plane, participants with 

SAIS and glenohumeral instability may have increased protraction, internal rotation, and 

decreased upward rotation. Those with frozen shoulder may see a decrease in protraction 

(Keshavarz et al., 2017). In the frontal plane SAIS participants had increases in posterior tilt and 

external rotation during humeral elevation (Keshavarz et al., 2017). Additional reviews specific 

to SAIS are conflicting (Ratcliffe et al., 2014; Timmons et al., 2012). Ratcliffe et al. (2014) were 

unable to draw any conclusive findings because of conflicting findings, heterogeneity of studies, 

and methodological difference. In contrast, Timmons et al. (2012) found the SAIS population to 

have decreased scapular upward rotation, external rotation, and no difference in posterior tilt. 

The plane of motion also affected scapular kinematics as SAIS participants showed greater 

posterior tilt and external rotation in the frontal plane and less upward rotation and external 

rotation in the scapular plane (Timmons et al., 2012). 

Sport. The general population is filled with athletes of all skill levels therefore it is 

important to understand the effects an activity may have on upper extremity kinematics. The 

kinematics of overhead athlete populations such as swimmers (Blache et al., 2018; McLaine et 

al., 2018), water polo athletes (Turgut et al., 2018), baseball (Myers et al., 2005; Park et al., 

2020), and volleyball (Leong et al., 2017) players have been studied using two-dimensional and 

three-dimensional motion capture. A study of 21 baseball athletes (n=21) compared to age, 

height, mass, and dominant limb matched controls (n=21) showed a significantly increased 

degree of upward rotation, internal rotation, and retraction (Myers et al., 2005). In this study, 

participants were seated, and the dominant limb’s scapular motion was assessed using an 

electromagnetic motion capture device. The scapular motion was measured through 10 
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continuous overhead humeral elevation/lowering movements in the scapular plane. Participants 

held a mass that was 25% of their normalized torque determined by an isokinetic dynamometer 

(Myers et al., 2005). Swimmers may also have kinematic changes as a sample of adult 

swimmers, when compared to the other groups, had greater internal rotation from 67º to 116º of 

humeral elevation and while lowering from 81º to 54º (Blache et al., 2018). The swimmers 

(n=42) were all male and divided evenly into four groups (including the control group) based on 

age and swimming experience. Bilateral scapular kinematics were recorded via an 

electromagnetic system with the subject standing. Two repetitions of unilateral elevation and 

lowering were completed 30º anterior to the frontal plane and the procedure was repeated for the 

opposite arm (Blache et al., 2018). There were no bilateral differences in upward rotation in the 

three swimmer groups; however, the control group’s scapulae were asymmetrical with the 

dominant side having more upward rotation through 74 to 104º of elevation (Blache et al., 2018). 

No difference in posterior tilt was found (Blache et al., 2018). A study that investigated 14-20 

year old swimmers' scapular upward rotation in the frontal plane found bilateral symmetry even 

when shoulder pain was present (n=85) (McLaine et al., 2018). Bilateral scapular upward 

rotation was measured using a digital inclinometer at 90º and 140º of humeral elevation in the 

frontal plane while subjects were standing (McLaine et al., 2018). A study on the bilateral 

scapular kinematics of water polo athletes was measured with a 3D electromagnetic device and 

tasked participants with elevation and lowering at 40º in the scapular plane for 3 trials while 

standing (Turgut et al., 2018). Each trial took 6 s total split evenly between elevation and 

lowering while paced at a tempo of 60 beats per minute (BPM). These data were averaged of 

across the three repetitions and reported at 30, 60, 90, and 120 (Turgut et al., 2018). Water polo 
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players (n=14) showed no significant bilateral differences as well as no significant differences 

when compared to age and sex matched healthy controls (n=14) (Turgut et al., 2018).  

A couple studies have investigated kinematic changes in sports in conjunction with 

injury. One investigated the dominant arm of baseball players with upper extremity injury 

(n=319) that presented significantly greater upward rotation, internal rotation, but less anterior 

tilt at 150º of sagittal plane flexion (Park et al., 2020). However, group differences were not 

apparent based on pathology (Park et al., 2020). These findings were measured via 3D computed 

tomography (CT) scan at rest and 150° of flexion. The participants consisted of mainly middle or 

high school aged individuals with some collegiate and professional players. Those included in 

the study had an equally diverse range of injuries thus noted differences may be limited in 

generalizability due this heterogeneity. A 3D analysis of the dominant or symptomatic shoulder 

of healthy male volleyball players (n=17) and players with rotator cuff pathology (n=26) was 

conducted using Vicon motion capture (Leong et al., 2017). Participants were seated and 5 

separate arm elevation trials of abduction were paced at 2 s to reach peak elevation and 2 s to 

lower with data recorded up to 90° of humeral elevation (Leong et al., 2017). There was a 

significant decrease in upward rotation at an elevation less than 30º in the rotator cuff injury 

group (Leong et al., 2017). No significant findings were present in posterior tilt or external 

rotation (Leong et al., 2017). 

 Scapular kinematics in athletes have been described using various 2D and 3D motion 

capture technology. There are methodological differences in the plane of motion, pace of 

elevation, phase of analysis, subject position, as well as a limited number of studies within each 

sport.  More research needs to be conducted in overhead athletes within specific sports to give a 
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better understanding of the demands placed on the upper extremity and if kinematic changes 

associated with these activities may predispose athletes to shoulder injuries. 

Scapulohumeral Rhythm 

 Normal. Scapulohumeral rhythm (SHR) is defined by the coordinated movement of the 

scapulothoracic and the glenohumeral joints to move the arm overhead and is reported as a ratio. 

In classic works, normal rhythm is defined as 2:1 in that for every 2º of humeral elevation the 

scapula upwardly rotates 1º (Inman et al., 1944; Poppen & Walker, 1976). However, SHR has 

been reported between 1.25-7.9:1 (Hosseinimehr et al., 2015). Side-to-side scapulohumeral 

rhythm in healthy populations has reported ratios of 1.8 to 3.4:1 as well as no difference between 

sides (Lee et al., 2013; Matsuki et al., 2011; Yoshizaki et al., 2009). The large variety of SHR 

within a general population is varied due to plane of motion studied, sample population, and 

measurement equipment. 

 Injury. The repetitive actions associated with overhead activity may lead to shoulder 

injury. It is important to outline the effects shoulder disorders have on SHR to understand 

potential changes that may influence injury and rehabilitation. Studies of SHR have been 

conducted on the rotator cuff, SAIS, and frozen shoulder. In a study of shoulder injuries and 

scapular changes participants with glenohumeral instability had a significant increase in GH:ST 

ratio up to 90º of humeral elevation (Paletta et al., 1997). This was due to more movement of the 

humerus at the glenohumeral joint (Paletta et al., 1997). Another rotator cuff pathology found 

difficulty in scapular engagement resulting in higher SHR in those with the most limited range of 

motion while those with more range of motion utilized more scapular movement (Robert-

Lachaine et al., 2016). Similarly, full thickness rotator cuff tears showed greater scapular 

movement with humeral elevation (Mell et al., 2005). A study of athletes with SAIS (n=14) 



 37 

compared to control (n=7) found no significant difference between groups (Lin et al., 2011). 

Shoulder injuries may result in alterations in an individual’s typical shoulder rhythm. 

Sex Differences 

 Anatomical characteristics that distinguish males and females (segment length, mass, 

etc.) may alter scapular kinematics (Schwartz et al., 2016). There are a few studies that have 

investigated scapulothoracic motion between sexes. A study of healthy male (n=11) and females 

(n=11) tested abduction, flexion, and external/internal rotation at 90º arm abduction in the 

dominant limb. (Schwartz et al., 2016). At rest there was no difference in kinematic orientation; 

however, differences appeared with active motion where females had greater humerothoracic 

range of motion as well as a more externally rotated scapula in sagittal and frontal plane 

movements (Schwartz et al., 2016). Another study in support of kinematic differences between 

sexes investigated sagittal plane flexion of healthy males (n=58) and females (n=58) and showed 

that the non-dominant arm of females was found to have more upward rotation and anterior tilt 

while the female dominant arm had more anterior tilt than their male counterpart (Habechian et 

al., 2016).  

 A comprehensive study of scapular kinematics between males and females found the 

scapula to upwardly rotate, externally rotate, and tilt posteriorly in both groups (Picco et al., 

2018). There were sex differences in each plane, elevation angle, and phase of movement with 

the most pronounced difference between sexes occurring in posterior tilt (Picco et al., 2018). 

Females (n=14) had a smaller anterior tilt range of motion of 5.7º and 7.3º for raising and 

lowering, respectively, when compared to males’ (n=15) posterior/anterior tilt range of motion of 

14.4º during raising and lowering (Picco et al., 2018). 
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 One study investigated a gender effect between sexes using movements of flexion, 

abduction, and in glenohumeral external/internal rotation with 90º abduction of the arm 

(Schwartz et al., 2016). No significant differences of scapular positions were reported at rest 

(Schwartz et al., 2016). Males had significantly more posterior tilt in all three motions while 

upward rotation was larger in the sagittal plane and 90 degree abduction movements (Schwartz et 

al., 2016). Females had greater active range of motion for all the movements and increased (6-7 

degree) external rotation than their male counterparts (Schwartz et al., 2016). 

 While these studies may indicate that male and female differences in scapular motion are 

present through multiple planes and motions the generalizability is difficult due to the use of 

different measurement techniques (optoelectrical and electromagnetic), phase analysis (eccentric, 

concentric, and both), and the plane of motion, and small sample sizes. Therefore, more research 

needs to be conducted on scapular kinematic differences between sexes.  

Arm Dominance and Symmetry 

Dominance can be defined as the preferential limb to complete particular tasks 

(Yoshizaki et al., 2009). It is common for researchers and clinicians to compare sides which 

requires the assumption that there is symmetry between sides. There is not a lot of research on 

the bilateral scapular function and the conclusion drawn are contradictory (Lee et al., 2013; 

Matsuki et al., 2011; Schwartz et al., 2014; Turgut et al., 2016; Yoshizaki et al., 2009). 

Yoshizaki et al. (2009) investigated healthy individuals’ (n=18) 3D scapular kinematics 

and integrated electromyography (IEMG) muscle activity during a scapular plane elevation and 

lower task and found no kinematic differences between sides, however, there was a significantly 

different level of muscle activity in the Lower Trapezius between sides. Lee and colleagues 

(2013) used an optical tracking system to assess 3D scapular kinematics in three different planes 
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(sagittal, scapular, coronal) in a subject population of healthy men (n=26). Amongst the three 

planes of motion studied there was no difference in upward rotation or internal rotation only with 

coronal plane abduction was there a significantly decreased posterior tilting in the non-dominant 

shoulder (Lee et al., 2013). While some of the results indicate symmetry between sides the 

change in posterior tilt and SHR inconsistency with the plane of motion is indicative of 

asymmetrical movement patterns in a population of men. A study by Matsuki et al. (2011) 

investigated dominant and nondominant scapular motion in men (n=12) during a scapular plane 

elevation and lowering task using fluoroscopy. The dominant scapulae were downwardly rotated 

by 10° at rest and during dynamic movement, the scapulae were more upwardly rotated 

compared to the nondominant side indicative of symmetry (Matsuki et al., 2011). Matsuki’s 

findings of asymmetry at rest are in contrast to Schwartz and colleagues (2014) study that 

reported the rest position of healthy males and females and found no differences. For abduction 

the females’ dominant arm was more externally rotated than the nondominant arm from 60 

degrees to 120° of humeral elevation. In frontal plane movements the male subject’s dominant 

scapula had larger upward rotation. In sagittal plane movement the male’s dominant scapula was 

more upwardly and internally rotated. Frontal plane movement for females resulted in 

significantly increased externally rotation on the dominant side. Males (n=11) had significantly 

greater upward rotation in the dominant arm from 40º to 120º of elevation in the frontal plane 

(Schwartz et al., 2014). In the sagittal plane, the males' dominant side showed significantly 

greater upward rotation and internal rotation at 120º of elevation and no side-to-side differences 

were present for the 90º abduction internal/external rotation condition in either sex (Schwartz et 

al., 2014). Females (n=11), in the frontal plane, presented significantly greater external rotation 
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on the dominant side from 60º to 120º and the sagittal plane revealed significant differences in 

internal rotation from 20-50º (Schwartz et al., 2014). 

Turgut et al. (2016) used 3D electromagnetic tracking and calculated the symmetry angle 

to assess differences between the dominant arm SAIS and healthy shoulders during an elevation 

and lowering task with healthy (n=37) and injured SAIS population (n=29). Kinematic 

differences were present when comparing side-to-side. Those with SAIS had a more anteriorly 

tilted scapula while the healthy controls scapulae were more internally and downwardly rotated. 

(Turgut et al., 2016). Using the novel symmetry angle calculation, it was found that more 

asymmetry existed in those with SAIS indicating that the disorder may exacerbate existing 

asymmetries (Turgut et al., 2016). Specifically, the SAIS shoulder was more asymmetrical with 

internal/external rotation and at 60° and 90° and upward rotation were more asymmetrical at 60° 

and 90° and 120°. No differences were present with the anterior-posterior tilt. (Turgut et al., 

2016). 

The studies outlined indicate contradictory results in side-to-side differences in 

kinematics and muscle activity. The differences in kinematic measurement and population 

groups studied may have an effect on the results seen in the literature. More research with larger 

sample sizes would benefit the understanding in this area along with a review of the existing 

literature.  

Scapulothoracic Stabilizer Activity 

 The musculature that surrounds the shoulder girdle is important as it stabilizes the 

humeral head into the glenoid fossa giving the upper extremity a solid foundation to move, 

provides the ability for the scapula to rotate, and helps transfer energy (Kibler, 1998). Therefore, 

proper muscular activation is essential for overhead upper extremity movement and any irregular 
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activity may result in injury. A review of the interaction of SAIS and muscle activity is reveals 

conflicting findings (Chester et al., 2010). SAIS may result in increased Upper Trapezius 

activation as a greater magnitude of activation in the Upper Trapezius is found in this population 

however these conclusions are also contrasted by other studies (Chester et al., 2010). A recent 

systematic review highlights that trends of decreased Serratus Anterior activity are present in 

those with SAIS while trapezius muscle changes were not consistent across studies investigated 

thereby indicating EMG’s limitations to capturing the complexities of SAIS (Kinsella & Pizzari, 

2017). Additionally, the studies reviewed by both Kinsella and Pizzari (2017) and Chester et al. 

(2010) were strongly heterogenous thus limiting the conclusions of muscle activity changes due 

to injury. 

 Studies that have investigated individual scapular muscle activation magnitudes and 

latency have been conducted in occupational, healthy, injured, and athletic populations. 

Overhead workers (N=52) showed an increase in Upper Trapezius activity was present 

throughout loaded and unloaded scapular elevation. Additionally, the electromyography (EMG) 

for the Lower Trapezius was increased at humeral angles of 60º-120º of 13% and 17%. Serratus 

Anterior muscle activity showed a main group effect with a 9% reduction in activation. The data 

is indicative of muscle alteration with a tendency of increased upper trap activation through 

increased arm elevation and load. The decreased Serratus Anterior activity may be an important 

factor as the Lower Trapezius attempts to adjust for its dysfunction (Ludewig & Cook, 2000). 

 A study by Diederichsen and colleagues (2009) showed changes in the muscle activation 

pattern during scapular plane abduction and external rotation of eight muscles in a SAIS group 

(n=21) compared to control (n=20) during an isokinetic task. In an abduction task, the SAIS 

group’s symptomatic side had a greater activity of the latissimus dorsi, supraspinatus, but lower 
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Serratus Anterior activity compared to the control group’s dominant side. No difference was 

found between the asymptomatic side and nondominant side of the control group. Muscle 

activity changes were also present during neutral shoulder external rotation (Diederichsen et al., 

2009). 

 A study by Lopes et al. (2015) investigated muscle activity of those with SAIS (n=19) 

and those with dyskinesis (n=19). This study showed a significant group by arm interaction for 

the Upper Trapezius activation during elevation. The dyskinesis group had 12% greater Upper 

Trapezius activation between 30º - 60º. Other muscles and elevation ranges showed no 

differences (Lopes et al., 2015). Muscle action ratios support the finding of increased Upper 

Trapezius activity. In a loaded scapular plane movement of a shoulder pain group (n=28) 

compared to control (n=28) a group main effect of UT/LT ratio and LT/SA ratio occurred that 

indicated a greater activation of the Upper Trapezius and Lower Trapezius respectively 

(Michener et al., 2016). The single maximal voluntary isometric contraction (MVIC) method 

used in this study most likely did not elicit maximal contraction of the muscle measured due to 

the muscle not being at the optimal length-tension relationship (Michener et al., 2016). In 

support of muscle activation pattern changes research indicates that a SAIS population induces 

early activation of the Upper Trapezius when loaded and early Serratus Anterior deactivation 

when lowering (Vandana Phadke & Ludewig, 2013; Wadsworth & Bullock-Saxton, 1997). 

 The timing of muscle activation is important as it may indicate central nervous system 

interruptions. In healthy swimmers, the Upper Trapezius activated first 217 ms before abduction, 

then 53 ms after arm elevation begins the Serratus Anterior activates and the Lower Trapezius 

activates last 349 ms after initiation of abduction (Wadsworth & Bullock-Saxton, 1997). In 

freestyle swimmers with SAIS (n=9), no significant difference was observed in the muscle onset 
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in scapular plane elevation between control (n=9); however, the author notes there may be 

increased variability (Wadsworth & Bullock-Saxton, 1997). Athletes with SAIS (n=30) showed 

increased Upper Trapezius activity compared to other healthy controls (n=30) which is similar to 

other research on SAIS (Cools et al., 2007). There was lower activity in the Lower Trapezius 

during abduction and the middle trapezius was lower during external rotation (Cools et al., 

2007).  Leong et al. (2017) found that in volleyball athletes with rotator cuff tendinopathy the 

Lower Trapezius and Serratus Anterior relative to the Upper Trapezius activated significantly 

slower (Leong et al., 2017). Another study found that at a higher velocity, a decrement in Lower 

Trapezius activity in the injured (SAIS) side was present (n=19) during an isokinetic retraction 

test (Cools et al., 2004).  

 It is clear that within a population that has shoulder injuries such as SAIS the muscle 

activation whether it is reported as a ratio, individual muscle activation, or timing there may be 

an alteration. A systematic review of SAIS compared to control revealed possible increased 

Upper Trapezius activation in studies of high quality, but the heterogeneity of the research is 

limiting. The timing of the activation pattern of these muscles may be a more indicative factor as 

the lower trap was consistently delayed during a scapular plane movement (Chester et al., 2010). 

Analysis of muscle activation is difficult due to discrepancies in methodology such as the 

declaration of onset time, EMG normalization procedure, and the movement assessed.  

SAIS Clinical Test Efficacy 

A clinical physical exam for shoulder injury plays an important role in the treatment 

process. The structures that surround the shoulder and loads exerted on the area may lead to 

many injuries so being able to effectively diagnose the issue is important in an individual’s 

return to health. Common tests for SAIS are Hawkins-Kennedy, Neer, Empty Can (Jobe) while 
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some additional tests painful arc, and external rotation also are effective in diagnosis (Du et al., 

2020; Michener et al., 2009).  

Neer’s impingement test was popularized and is conducted by a clinician with one arm 

inhibiting scapular rotation while the other arm raises the testing arm. This forced mechanical 

compression of the supraspinatus tendon, bursa, and biceps brachii long tendon elicits a pain 

response in those with SAIS (Neer, 1983). Neer did acknowledge that this test is not SAIS 

specific and will induce pain in those with other shoulder disorders. The Hawkins-Kennedy test 

involves humeral elevation to 90 followed by forced internal rotation induced compression of 

tissue into the coracoacromial arch (Hawkins & Kennedy, 1980). The authors anecdotally assert 

this method is less reliable than Neer’s test (Hawkins & Kennedy, 1980). Jobe’s test also 

commonly labeled the empty can test or a supraspinatus test (Gismervik et al., 2017) assesses the 

integrity of the supraspinatus muscle by placing the patient's arm in the scapular plane elevated 

to 90° with full internal rotation. Weakness or pain with the downward force provided by the 

clinician indicates a positive test. (Jobe & Moynes, 1982). The painful arc is defined by pain 

typically present between 60° and 120° of abduction which is indicative of subacromial disorders 

like SAIS (Kessel & Watson, 1977). Pain from 120° up to 180° of humeral elevation is thought 

to be associated with acromial clavicular disorders (Kessel & Watson, 1977). 

The diagnostic utility of these tests has been thoroughly examined through comparison to 

imaging technology or arthroscopic assessments. Michener and colleagues (2009) investigated 

the accuracy of these tests as previous research has found inconsistent results of each test’s 

ability to determine shoulder injury. Furthermore, Michener et al. (2009) sought to determine 

reliability, accuracy, and which cluster of tests to use specifically for SAIS. The study cohort of 

55 participants (47 male and 8 female) were clinically examined and subsequently surgically 
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examined by blinded investigators. The interrater reliability ranged from 69% to 87% for the 5 

tests. It is also noteworthy that the Hawkins-Kennedy test alone may not be able to detect SAIS. 

Combinations of clinical tests may be beneficial as 3 or more positive tests out of 5 can confirm 

SAIS, whereas less than 3 positive of the 5 tests is helpful in decreasing the likelihood of SAIS 

(Michener et al., 2009). The use of multiple tests and a thorough physical exam is important in 

accurately diagnosing shoulder disorder (Hegedus et al., 2012). Another study assessed clinical 

tests of participants (n=34) and compared results to ultrasound imaging of the shoulder capsule. 

The results found limited specificity for diagnosing SAIS among all tests however the Hawkins-

Kennedy test was the most accurate (Kelly et al., 2010). When clinical tests were compared 

against MRI, the Hawkins, Neer, and Jobe had a range of accuracy of 44.8% to 65.5% in 

diagnosing participants (n=30) with SAIS (Silva et al., 2008). Moreover, these tests were found 

to be more sensitive than specific which is in alignment with much of the literature (Silva et al., 

2008). 

A number of systematic reviews and meta-analyses have been conducted. Analyses in 

2008 indicated that Hawkins-Kennedy and Neer tests have limited diagnostic usefulness 

(Hegedus et al., 2008). However, the Hawkins-Kennedy and empty can may serve as a screen 

and confirmation for clinicians (Hegedus et al., 2008). In an update to this study, Hegedus and 

colleagues (2012) report that the Hawkins-Kennedy test may be beneficial in ruling out SAIS 

with a negative finding (Hegedus et al., 2012). Alqunaee and colleagues found that all clinical 

tests (Hawkins-Kennedy, Neer, Empty can, drop arm, and lift-off test) were useful diagnostic 

tools (Alqunaee et al., 2012). The Hawkins-Kennedy, Neer, and empty can positive tests increase 

the likelihood of SAIS; A negative Neer’s test is useful in ruling out SAIS while the drop arm 

test is useful in ruling in SAIS (Alqunaee et al., 2012). Gismervik and colleagues’ (2017) 
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systematic review concludes that the Hawkins-Kennedy test had the highest likelihood for 

diagnosing SAIS (Diagnostic odds ratio 2.86; sensitivity 0.58, specificity 0.67) (Gismervik et al., 

2017). 

The outlook for the effectiveness of these clinical tests as a diagnostic tool is not clear 

although there have been many systematic reviews and meta-analyses conducted. The multitude 

of clinical tests available to clinicians indicates a need to further understand elucidate ethe 

Clinicians and researchers would be prudent to utilize multiple clinical tests are many tests 

available and clinicians are best to use a combination of tests. Therefore, until technological 

advances exist to noninvasively image the shoulder capsule use of clinical tests is needed and 

should continuously be researched with more thorough studies.  

Treatment and Rehabilitation of SAIS 

Treatment of SAIS can be accomplished through non-operative measures or surgical 

interventions. Most cases of SAIS are treated conservatively for a period of time, and if 

necessary, surgical options are available with arthroscopic subacromial decompression having 

the potential for the most positive results (Dong et al., 2015). In contrast, Gebremariam et al. 

(2011) found that no surgical option is superior to one another and that there is no evidence for 

surgical being superior to conservative treatment indicating a need to further evaluate surgical 

interventions compared to conservative treatment in terms of outcome measures (Gebremariam 

et al., 2011). Conservative treatment options should revolve around exercise therapy and other 

modalities may be used in conjunction for optimal results in rehabilitation (Dong et al., 2015). 

Scapula Based Exercise Therapy. Teaching proper muscle activation of the scapular 

stabilizers is a common foundation technique in the rehabilitation process as it provides proximal 

stability of the upper extremity kinetic chain  (Ellenbecker & Cools, 2010; Kibler et al., 2013) 
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There are a number of scapular focused exercises available however understanding the muscle 

excitation induced from particular weighted or unweighted movement patterns should be 

considered (Castelein et al., 2016). There have been a few systematic reviews on scapular based 

exercise rehabilitation. One of the most recent reviews found a decreased pain index and reduced 

disability in those with SAIS completing scapular focused exercise training (Ravichandran et al., 

2020). This positive finding is shared by a systematic review of scapular based treatment 

programs in population groups with SAIS that have shown beneficial short term changes in 

overall shoulder function, abduction ROM, and reduced pain with activities (Saito et al., 2018). 

A systematic review on rotator cuff shoulder pain found scapular training to be beneficial up to 

6-weeks although not clinically significant (Bury et al., 2016). On the contrary, the quality 

among exercise specific studies is lacking thus making concise exercise recommendations not 

possible (Shire et al., 2017). Additionally, a study assessed biomechanical changes as a result of 

scapular based interventions and a control group found that after an 8-week program scapular 

resting position was more externally rotated and kinematics changes were present in the frontal, 

sagittal, and scapular plane (Hotta et al., 2018). 

Biofeedback Training. EMG Biofeedback training is a conservative treatment method 

that uses a visual representation of muscle activity to give individuals an additional form of a 

feedback on how they are using their muscles with motion. Biofeedback in rehabilitation has 

existed for some time and is one of the most widely used and reported forms of feedback 

(Giggins et al., 2013). EMG biofeedback training has been successful in training upper extremity 

muscle activation in an impinged population. A study by Larsen and colleagues (Larsen et al., 

2014) investigated motor control effects of SAIS through selective activation of the trapezius 

musculature. Participants were prone during biofeedback while they completed six three-minute 
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selective activation tasks. A comparison between the healthy (n=15) and SAIS (n=15) groups 

found that with the aid of EMG biofeedback SAIS participants had better success at selectively 

activating the Lower Trapezius musculature. Moreover, both groups had higher activation ratios 

when using EMG biofeedback implicated as a benefit of the training modality to both groups 

(Larsen et al., 2014). 

A study comparing EMG biofeedback (n=20) to video feedback (n=21) in overhead 

athletes found positive effects in decreasing muscle activation and altering kinematics (Du et al., 

2020). The groups were presented with different goals based on their form of feedback with 

kinematics and muscle activation measured during arm elevation at 30°, 60°, 90°, and 120°. The 

plane of elevation was not recorded. Each feedback system used in the study had its own benefit. 

The video feedback allowed for a greater control change in upward rotation (2.3°) while the 

EMG biofeedback improved Lower Trapezius activation and decreased muscle activation ratios 

(Du et al., 2020). Both feedback groups produced positive effects in altering kinematics and 

muscle activity. 

Additionally, research has demonstrated an EMG biofeedback training may aid in 

altering scapular kinematics through scapular based exercises. San Juan and colleagues (2016) 

found that after completing four scapular based exercises (I, W, T, Y) with EMG biofeedback 

healthy individuals were able to complete an overhead scapular plane (35°) movement with a 

6.5° more externally rotated scapula across elevation angles of 30°, 60°, 90°, and 110°. 

Huang et al. (2013) found different kinematic changes compared to San Juan et al. (2016) 

while also measuring EMG activity during 3 exercises (forward flexion, side-lying external 

rotation, and a knee push up plus) in healthy adults (n=12) and adults with SAIS (n=13). This 

study found a significant increase in posterior tilt for those with SAIS (mean difference 1.38°) 
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(Huang et al., 2013). Muscle activity ratios were analyzed, and positive significant changes were 

found in the forward flexion and side lying external rotation exercises. This study presents that 

EMG biofeedback may have an effect on teaching proper muscle activation and positively 

affecting scapular kinematics (Huang et al., 2013). Side-lying exercises may be the most 

beneficial to the rehabilitation of SAIS through reduced Upper Trapezius activation (Huang et 

al., 2013). 

The acute effects of EMG biofeedback training are positive however the long-term 

effects are not as clear. A randomized controlled trial (RCT) investigated 8 weeks of EMG 

biofeedback on scapular stabilizer muscles (UT, LT, SA) in 49 participants with SAIS (Juul-

Kristensen et al., 2019). EMG biofeedback was used with rehabilitative exercises that focused on 

decreasing Upper Trapezius activation and increasing Lower Trapezius and Serratus Anterior 

and subsequently compared to control over 8-weeks (Juul-Kristensen et al., 2019). There was no 

superior benefit in outcome measures of pain and muscle activity amplitude throughout the 

painful arc (60-120) when using EMG biofeedback compared to no EMG biofeedback (Juul-

Kristensen et al., 2019). This is the only longitudinal EMG biofeedback study specific to SAIS 

and indicates that more research needs to be done to investigate other exercise protocols  (Juul-

Kristensen et al., 2019).  

One 6-week RCT biofeedback intervention found that EMG biofeedback presents more 

favorable outcomes in terms of pain reduction and EMG activity reduction (Ma et al., 2011). 

Fifteen participants were split between four groups (biofeedback, active treatment, passive 

treatment, and control) where EMG amplitude during typing and pain were recorded. After 6-

weeks, all three treatments improved patient outcome measures significantly compared to 

control. This finding persisted at the 6 months follow up even with increased dropout. Ma and 
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colleagues (2011) found that the most effective treatment was the biofeedback training as it 

allowed for lower pain scores and significantly decreased UT and neck musculature EMG 

compared to active and passive treatment (Ma et al., 2011). 

 Ma and colleagues were able to find a reduction in Upper Trapezius activation through 

educating participants in reducing UT activation in conjunction with EMG biofeedback; 

however, Juul-Kristensen and colleagues found that their shoulder exercise protocol was 

effective regardless of using EMG biofeedback.  Additional research on scapular focused 

exercise with longer treatment times will help elicit an understanding of the effects of EMG 

biofeedback as there may be some benefits but conclusive remarks are limited as there are few 

randomized controlled trials, systematic reviews, and heterogeneous methodologies (Giggins et 

al., 2013). 

Summary 

 Shoulder injuries are common in the general population and are affecting an individual’s 

ability to complete activities of daily living. The mobility and stability of the scapula play a 

critical role in overhead arm movements. Changes in the scapular kinematics, scapulohumeral 

rhythm, and muscle activation patterns may lead to injury as the subacromial space is decreased 

with humeral elevation causing mechanical damage to surrounding tissue resulting in pain 

response. Research does make it clear that injured population groups may show altered 

kinematics, and this may be associated with muscle activation changes. Those with SAIS may 

have increased Upper Trapezius activation and decreased Serratus Anterior and Lower Trapezius 

activation. Furthermore, the timing of muscle activation is more variable in injured shoulders. 

When deciding the route to regain normal function and decrease pain conservative or operative 

treatment may be pursued however the positive results of the former may outweigh the 
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comparably poor outcomes of the latter. Biofeedback training in conjunction with scapular based 

treatment may be a worthwhile treatment as it has effectively trained muscle activation and 

kinematic changes thus require increased research attention. This review has uncovered gaps in 

the research of scapular kinematics and muscle activation in those with SAIS and rehabilitation 

techniques and provided justification for the methodology used in this study. 
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Appendix B: WWU IRB 
 

Western Washington University 

Consent to Take Part in a Research Study 

Acute effects of EMG biofeedback training on muscle activity and scapular kinematics 

 
You are invited to participate in a research study conducted by Jun San Juan, PhD, ATC, from the department of 

Health and Human Development at the Western Washington University.  The purpose of this investigation is to 

examine the effects of electromyography biofeedback training on how your muscles activate and how your shoulder 

blades move when you lift your arm.   

 

If you decide to participate, you understand that the following things will be done to you.  You will be asked to fill 

out a brief form to provide basic information such as age, height and weight and which arm is your dominant arm.  

Non-invasive measurements will be made throughout the experiment.  To perform motion measurements, small 

sensors will be attached by straps or tape to your wrist, elbow, and shoulder.  To measure muscle activation, small 

electrodes will be attached to your skin over several sites surrounding your shoulder. You will be asked to move 

both arms up and down. In addition, you will be asked to perform 4 shoulder exercises. The entire testing process 

should take about 90 minutes. 

 

There is no direct benefit to you by participating in this study.  However, you understand that information gained in 

this study may help in understanding the function of the shoulder and may guide decisions made in prescribing 

strengthening and injury rehabilitation exercise.   

 

Participation in any research study carries with it possible risks.  Because multiple trials will be performed, there is a 
risk of muscle fatigue and muscle soreness from performing the exercises and strength testing. For individuals 

experiencing shoulder pain, an acute increase of pain may be experience during the first 24-48 hours after the 

testing. However, precautions will be taken to minimize this risk. You may discontinue participation at any time 

during testing. 

 

Any information that is obtained in connection with this study and that can be identified with you will remain 

confidential and will be disclosed only with your permission. Subject identities will be kept confidential by coding the 

data with subject numbers, rather than names.   

 

Your participation is voluntary. Your decision whether to participate will not affect your relationship with Western 

Washington University.  If you decide to participate, you are free to withdraw your consent and discontinue participation 

at any time without penalty.  

 

If you have any questions, please feel free to contact Jun San Juan, (360) 650-2336, Department of Health and Human 

Development, Western Washington University, Bellingham, WA, 98225.  If you have any questions about your rights 

as a research participant, you can contact the WWU Office of Research and Sponsored Programs (RSP) at 360-650-2146 

or by email at compliance@wwu.edu. If you feel that you have been harmed by your participation in this study, please 

contact the researchers listed above or the RSP. 

 

By signing below, you are saying that you have read this form, understand the tasks involved, 

and volunteer to take part in this research. 
 

Full Name_______________________________________________ Date____________________ 

 

 

Signature_________________________________________________ 

 

Note: Please sign both copies of the form and retain the copy circled “Participant Copy” 

  

mailto:compliance@wwu.edu
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Appendix C: Researcher Training Procedures 

Prior to involvement with the study, researchers and research assistants were required to 

provide proof of CITI training to ensure proper handling of human subjects. 
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Appendix D: Graphs 

 
Figure 4. Muscle activity of the Upper Trapezius. * Statistically significant finding. 

 
Figure 5. Muscle activity of the Lower Trapezius. * Statistically significant finding. 
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Figure 6. Muscle activity of the Serratus Anterior. * Statistically significant finding. 

 

 
Figure 7. Muscle activity of the Lumbar Paraspinals. No statistically significant findings. 
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