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Abstract 

 

 

 Hemophilia A is an X-linked disorder that results in uncontrolled bleeding, which is 

caused by a lack of activity for blood coagulation factor VIII, an essential protein cofactor in the 

clotting cascade. Factor VIII consists of multiple domains, and binding disruptions between 

factor VIII and its circulatory partner, von Willebrand Factor, may cause von Willebrand disease. 

Von Willebrand Disease type 2N is an autosomal recessive disease, and it is caused by binding 

disruptions between the D’ domain (also known as TIL’E’) of von Willebrand Factor and a3 

domain of factor VIII. A 2.9Å Cryoelectron microscopy structure of the FVIII:vWF complex 

was recently published, and this crystal structure further described the interactions between 

FVIII and vWF. To further understand the most severe types of von Willebrand Disease type 2N, 

site-directed mutagenesis of vWF was employed to enhance the understanding of binding 

disruptions between vWF and FVIII. The designed mutants were transformed, expressed, and 

purified for further experimental studies. Binding assays were conducted between the mutants 

against our bioengineered chimeric structure factor VIII, ET3i, via pull-down assays, 

sedimentation assays, as well as quantitative studies via biolayer interferometry. The results of 

this present study included the investigation of binding studies between the D’ domain of von 

Willebrand factor and the a3 domain of factor VIII. The results obtained in this study were 

interpreted, compared, and concluded to be consistent with the newest cryo-EM structure.  

 

 

 

 

 



v 
 

Acknowledgements 

 

The work conducted in this study was undertaken in the Spiegel lab at Western 

Washington University from Fall of 2019 to Summer of 2021. I wish to first and foremost thank 

Dr. P. Clint Spiegel for accepting me into his research group and the opportunity that he’s given 

me to work on this project, as well as his time, and guidance throughout the duration of my 

study. I also wish to offer my sincerest gratitude to Dr. Kenneth. C. Childers for his time, 

patience, kindness, and leadership that he has provided and exemplified in the Spiegel Lab. I 

would like to also acknowledgement previous graduate students who worked on various aspects 

of the blood project, specifically Michelle E. Wuerth and Joey Gish, who have paved the way for 

my study here. Lastly, I wish to thank my cohort; Shaun Peters, Micah Nakao, Haley Wofford, 

and Erin Rosenkranz, for their unwavering support these past two years.  

 The D’ plasmid and sequence were provided by Dr. Flemming Hansen at the University 

of College London. The ET3i construct was provided by Expression Therapeutics, LLC and I 

would like to thank Dr. Christopher Doering and Dr. Gabriela Denning for providing an 

abundance in the ET3i construct for all research conducted within the blood project. I wish to 

offer my gratitude to my thesis committee, Dr. P. Clint Spiegel, Dr. Jeanine Amacher, and Dr. 

Serge Smirnov for their assistance and commentary on the final drafts of this manuscript. My 

thanks to all faculty to Western Washington University, for supporting and understanding all 

students during the pandemic.  

Finally, my utmost thanks to Marie Lenac for her patience, sacrifice, and continued 

support (with more tears than sweat and blood) during my graduate studies.   

 

 

 

 



vi 
 

Table of Contents 

Abstract……………………………………………………………………………….…..iv 

Acknowledgements……………………………………………………………………….v 

Abbreviations…………………………………………....................................................viii 

List of Figures and Tables …………………………………………………………...……x 

Introduction …………………………………………………………………………...…..1 

Chapter 1 ………………………………………………………………………………….3 

Introduction to Blood Coagulation………………………………………………...3 

  Phase 1: Initiation…………………………………………………………..6 

  Phase 2: Amplification……………………………………………………..7 

  Phase 3: Propagation…………………………………………………….…8 

Introduction to Blood Coagulation Factor VIII………………………………………….11 

  Hemophilia A…………………………………………………………………….14 

  Hemophilia A Therapeutic Treatments…………………………………………..15 

  Hemophilia A Treatment Complications………………………………………...17 

  FVIII and Inhibitory Antibodies: G99 …………………………………………..19 

Chapter 2…………………………………………………………………………………………23 

 Introduction to von Willebrand Disease………………………………………………....23 

 Introduction to von Willebrand Factor……………………………………………..........25 

Chapter 3………………………………………………………………………………………....35 

 TIL’E’ Mutant Design ……………………………………………………………..........35 

 Research Aims…………………………………………………………………………...40 



vii 
 

Chapter 4…………………………………………………………………………………………41 

Material and Methods…………………………………………………………….……...41 

  DNA Plasmid Transformation of TIL’E’ and Mutants………………….……….41 

  Large Scale Growth and Expression……………………………………..………42 

  Affinity Chromatography Purification…………………………………..……….43 

  TEV Cleavage………………………………….…………………………...........44 

  Size Exclusion Chromatography…………….……………………………...........45 

  Affinity Pull-Down Assays (Ni-NTA Agarose Resin) …………………..……...45 

  Affinity Pull-Down Assays (TALON Magnetic Beads) ………………….……..46 

  Liposome binding: Sedimentation Assays………………………………….........46 

  Biolayer Interferometry ……………….………………………………………...47 

  X-Ray Crystallography …………………………………………………….........48 

Chapter 5…………………………………………………………………………………………50 

Results and Discussion…………………………….…………………………….50 

 Mutant Purification…………………………………………………………........50 

 Biolayer Interferometry………………………………………………………….56 

 Affinity Pull-Down Assay……………………………………………………….62 

 X-Ray Crystallography…………………………………………………………..65 

Chapter 6…………………………………………………………………………………………69 

Conclusion and Future Work…………………………………………………………….69 

Works Cited……………………………………………………….……………………………..73 

Appendix………………………………………………………………………………….……...81 

 



viii 
 

Abbreviations 

Ab- Antibody 

AMC- Anti-Mouse IgG Fc capture  

Amp- Ampicillin 

BLI- biolayer interferometry 

BME- β-mercaptoethanol 

CV- column volume 

Cryo-EM- cryo-electron microscopy  

EM- electron microscopy  

ET3i- (bioengineered chimeric structure, fVIII)  

DOPC- dioleoyl phosphatidylcholine 

DOPS- dioleoyl phosphatidylserine 

FAB- antigen binding fragment 

FC- constant fragment 

GP- glycoprotein 

HBS- HEPES buffered saline  

HEPES- 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

IgG- immunoglobin G 

IMAC- Immobilized metal affinity chromatography  

IPTG- Isopropyl β-D-1-thiogalactopyranoside 

ITI- Immune tolerance therapy 

LB- Luria-Bertani 

MW- molecular weight 

NEB- New England Biosciences 



ix 
 

NTA- nitrilotriacetic acid 

OD- optical density 

PEG- polyethylene glycol 

PMSF- phenylmethanesulfonylfluoride 

PS- Phosphatidylserine 

RPM- rotations per minute 

SDS- sodium dodecyl sulfate 

SDS-PAGE- sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

SEC- size exclusion chromatography  

TEV- tobacco etch virus 

TIL- trypsin-inhibitor-like 

Tris- 2-amino-2-hydroxymethyl-1,3-propanediol  

Tris-HCl- 2-amino-2-hydroxymethyl-1,3-propanediol-hydrochloride 

TRX- thioredoxin  

vWD- von Willebrand Disease 

vWF- von Willebrand Factor 

v/v- volume by volume 

w/v- weight by volume 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures and Tables 

Figure 1. Flow Schematic of the Blood Coagulation Cascade.………..………………………….5 

Figure 2. Flow Schematic of Phase of secondary hemostasis: Initiation………………………….7 

Figure 3. Schematic of Phase two of the secondary hemostasis: Amplification………………...……8 

Figure 4. The Final Phase of Secondary Hemostasis: Propagation…………………………..…10 

Figure 5. Schematic Review of the Construct of FVIII ……….…………………………..………12 

Figure 6. X-Ray Crystal Structure of bioengineered chimeric FVIII, ET3i. …...…………..………13 

Figure 7. Schematic of Antibody Structure ………………………………………………..……20 

Figure 8. X-ray Crystal Structure of ET3i bound to G99.………………………..……………..…22 

Figure 9. Figure of VWF Schematic………………………………………………………..……26 

Figure 10. Solution Structure of the D’ (TIL’E’) Domain of vWF………………………………...28 

Figure 11. Cartoon Representation of the Recently Published FVIII:D’D3…………....…….…..…30 

Figure 12. Figure of the Interaction of Y1680 and R816 of vWF…………………………….…31 

Figure 13. Figure of Mutations of Hemophilia A and vWD…..…………………………………32 

Figure 14. Electrostatic Surface Map of Full Length FVIII:vWF ………………………………33 

Figure 15. Figure of Small Pocket Insertion of vWF TIL’ Into the A3 Domain.……..….…...…34 

Figure 16. Stick Representation of Arginine Mutation to Glutamine at R816...…………………....37 

Figure 17. Stick Representation of Glutamic Acid 787 to Mutation to Lysine…….……….........…38 

Figure 18. Stick Representation of Arginine 782 Mutation to Tryptophan……...………………39 

Figure 19. Stick Representation of R854 Mutation to Glutamine…...…..………………………39 

Figure 20. Schematic of Successful Expression of TIL’E’ from TIL’E’ plasmid…..………………42 

Figure 21. SDS-PAGE Analysis and Verification of WT TIL’E’ protein Purity…..………………51 

Figure 22. SDS-PAGE Analysis Post TEV Cleavage of TIL’E’..…………………………………52 



xi 
 

Figure 23. SEC Chromatogram for Cleaved TIL’E’….…………………………………………...52 

Figure 24. SDS-PAGE Analysis of WT TIL’E’ Post Size Exclusion Chromatography……………53 

Figure 25. SDS-PAGE Purification of E787 and R854Q….………………………………………54 

Figure 26. SDS-PAGE Verification of E787K Secondary IMAC…………………………………54 

Figure 27. SDS-PAGE Verification of R854Q Secondary IMAC Purification ……………………55 

Figure 28. SDS-PAGE Verification of Tagged R782W and R816Q …………………...…………56 

Figure 29. Schematic of the G99:ET3i Complex Utilized in BLI Experiments……………………58 

Figure 30. Non-linear Regression Curves for WT TIL’E’ and TIL’E’ Mutants …………...………59 

Figure 31. Overlay of Crystal Structure of G99:ET3i Complex and FVIII:vWF……..…………61 

Figure 32. SDS-PAGE Verification of TIL’E’:ET3i Pull-Down Assay…………………………64 

Figure 33. SDS-PAGE Verification of R816Q and R782W against ET3i Pull-Down Assay…….…65 

Figure 34. Figure of TIL’E’:ET3i Crystal Growth………………………………………………67 

Figure 35. Figure of Sulfated Tyr 1680 Interacting with TIL’ Domain R816…………………...70 

Appendix A………………………………………………………………………………………81 

 

 

Table 1. List of TIL’E’ Mutations.….…………………………………………………………….36 

Table 2. Quantitative Data of WT TIL’E and TIL’E’ Mutants ……….………………………...60 

Table 3. Crystal Trials and Well Conditions of TIL’E:ET3i Complex……………………………..66 

 

 



 

Introduction 

 

 The layout of this thesis will be presented in five Chapters. Chapter one discusses the 

overall physiological context of this research project. First, it will detail the blood coagulation 

cascade in the traditional cascade as well as the improved cell-based model. This will include the 

intrinsic pathway, extrinsic pathway, along with how disruptions of these pathways may cause 

hemophilia. The primary hemophilia of interest, hemophilia A, along with von Willebrand 

Disease will be presented. Lastly, the therapeutic treatments for these diseases will be presented.   

 Chapter two details the project’s protein of interest: first, factor VIII and von Willebrand 

Factor (vWF) along with previous structural findings. Second, domains of von Willebrand factor 

will be discussed, specifically, the D’ (TIL’E’) region. The binding mechanism and dissociation 

from activated factor VIII of the D’ domain will be reviewed. Lastly, an anti-factor VIII antibody 

will be introduced in this chapter, and their respective significance to factor VIII will be 

described in the following chapters.  

 Chapter three describes the specific regions of factor VIII, C1, C2, and the A3 domain. 

Structural studies will be presented along with their significance to the protein of interest; D’ 

domain of vWF. Next, mutations in vWF will be introduced along with the reason why these 

mutants were chosen for study.  

 Chapter four details the progress towards the D’ domain of von Willebrand Factor along 

with the mutants of this selected domain. Progress achieved in the lab include transformation, 

protein expression via E.coli bacterial expression system, chromatographic purification methods, 

as well as SDS-PAGE verification method. Additionally, binding studies will be detailed



2 
 

between constructs of factor VIII and vWF. Lastly, the utilization of X-ray crystallography and 

how it was applied in this study.   

 Chapter five tackles the results obtained via a series of various binding assays along with 

X-ray crystallography. This final chapter will also detail the reaffirmation and discussion of the 

current binding mechanism between vWF and factor VIII.  

 

 



3 
 

Chapter 1 

 

Introduction to Blood Coagulation 

 

Upon vascular injury, there is a two-phased response termed “hemostasis” that is initiated to 

prevent excessive blood loss and to preserve vital blood supply in the body. The first phase is 

primary hemostasis, where the body initiates reduction of blood flow to the trauma site. Platelets 

then aggregate at the vessel near the trauma site and form a “soft-plug”; this involves platelet 

adhesion and platelet aggregation.1 This platelet rich “soft-plug” provides a surface for the 

assembly of coagulation proteins during secondary hemostasis, where the “soft-plug” is 

reinforced with a tough fibrin clot.  

Secondary hemostasis deploys an activated thrombin in which it proteolytically attacks the 

fibrinogen to form fibrin. The cross-linked fibrin will then form a clot across the trauma site to 

prevent excessive bleeding.1 In order for secondary hemostasis to occur, it relies on a “waterfall” 

event involving a network of proteins and a multitude of circulatory protein cofactors (factors I-

XIII) to create localized coagulation to the site of injury. This is known as the blood coagulation 

cascade.2  

The initially perceived single “waterfall” course, the blood coagulation cascade was 

described in two pathways with a shared destination: the intrinsic and extrinsic pathways that 

lead to the final common pathway.2 The common pathway leads to thrombin promoted insoluble 

fibrin clot formation. The initially published description of the coagulation cascade was 

perceived as a sequential cascade of protein interactions without consideration of extracellular 

activity (Figure 1).2 During blood vessel injury, the extrinsic pathway is initiated from the 
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exposed tissue factor (TF) protein that is expressed on the subendothelial cells that is 

extravascular. The tissue factor protein activates factor VII (FVIIa), and the TF:FVIIa in the 

presence of calcium activates factor X (FXa). The intrinsic pathway relies on activated Factor 

XII (FXIIa) creating activated Factor XI (FXIa), which then activates factor IX (FIXa). On the 

other hand, thrombin cleaves factor VIII (FVIII) which is circulating in the bloodstream in 

complex with its carrier protein, von Willebrand Factor (vWF) to yield activated factor VIII 

(FVIIIa). FVIIIa in complex with FIXa is known as the intrinsic tenase complex.2 The tenase 

complex in the common pathway is composed of FXa:FVa which cleaves factor II (FII, also 

known as prothrombin) to yield activated factor II (FIIa, also known as thrombin). In turn, 

thrombin cleaves factor I (fibrinogen) into fibrin (FIa). Fibrin is cross-linked by activated factor 

XIII (FXIIIa) to form stable fibrin clots (Figure 1).2  

Unfortunately, this “waterfall” or cascade model described has been noted to be insufficient 

in explaining the entire blood coagulation process, as the intrinsic and extrinsic pathway cannot 

function independently to form a stable blood clot. Therefore, an improved cell-based model is 

utilized to explain the coagulation cascade in detail. This model describes the cascade in three 

distinct but intersecting phases: initiation, amplification, and propagation.3  
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Figure 1. Flow schematic of the blood coagulation cascade (adapted from Davie and Ratnoff 

1964).2 The traditional coagulation cascade portrays the intrinsic pathway and extrinsic 

pathway converging to the final common pathway. The intrinsic pathway is initiated upon 

blood vessel injury, which activates FVII. FXIIa then activates FXI to form the intrinsic 

tenase complex (FXIIa:FXIa). The extrinsic pathway is stimulated by trauma, which activates 

FVII. The TF:FVIIa complex along with the intrinsic tenase complex together activate FX. 

This leads to the final common pathway, FXa forms the prothrombinase complex with FVa 

(FXa:FVa) in the presence of calcium to generate large amounts of thrombin (FII). Fibrin is 

then generated from fibrinogen to form a stable blood clot which is then deployed to the site 

of injury to control excessive blood loss.   

 

 

 

 

 

 

 



6 
 

 

Phase one: Initiation 

 

Initiation- This is the first phase of hemostasis, traditionally known as the extrinsic pathway 

of the coagulation cascade. This phase is stimulated by tissue damage, which results in the 

expression of tissue factor protein on the surface of endothelial cells. Given this, the initiation 

step is localized on tissue factor-presenting cells (e.g. fibroblast cells), which are extravascular. 

Upon tissue damage, tissue factor along with circulatory proteases activate factor VII. FVII is 

then exposed to the bloodstream. Then, FVIIa associates itself with its transmembrane receptor, 

TF, forming the TF:FVIIa complex to activate factor IX in the presence of calcium (Figure 2). 

Additionally, tissue damage causes platelet adhesion to other extracellular components which 

increases the secretion of partially activated factor V.3 The activation of factor V can also be 

achieved by thrombin, or activated factor X to form the extrinsic tenase complex (factor X:factor 

V). The Tenase complex serves to convert prothrombin into thrombin, which functions as the 

signal for platelet activation in this phase.  
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Figure 2. Flow schematic of phase one of secondary hemostasis: initiation, also traditionally 

known as the extrinsic pathway of the blood coagulation cascade (adapted from Davie and 

Ratnoff 1964).2 In this phase, factor VII is activated via tissue damage. Tissue factor that’s 

exposed on the cell surface binds to activated factor VII which then activates small amounts of 

factor IX and factor X. Simultaneously, activated platelets bind to collagen along with other 

extracellular matrixes to activate factor V. This leads to the factor X: factor V: tissue factor 

complex known as prothrombinase. This complex produces small amounts of thrombin for the 

next phase of hemostasis: amplification.  

 

 

 

Phase Two: Amplification 

 

Amplification- This is the second phase of hemostasis, which results in an increase level of 

activated coagulation factors (Figure 3). The thrombin produced during the initiation phase then 

activates factor V, factor VIII, and factor XI on platelet surfaces during this phase (resulting in 
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factor Va, factor VIIIa, and factor XIa). The amplification phase sets the stage for the upcoming 

large-scale production of thrombin in the propagation phase.3 

 

 

 

Figure 3. Schematic of Phase two of the secondary hemostasis: Amplification (adapted from 

Davie and Ratnoff 1964).2 In this phase, the levels of FVa, FXIa, FVIIIa, and activated platelets 

are elevated from the small amounts of thrombin generated in the initiation phase. Elevated 

levels of these factors are utilized in the third phase, propagation.  
 

 

 

 

Phase Three: Propagation  

 

 Propagation- This is the final phase of hemostasis, contrary to the initiation phase, this is 

traditionally known as the intrinsic pathway of the coagulation cascade. This phase is stimulated 

by blood vessel damage and takes place on the surface of the activated platelets. In this stage, a 

large influx of thrombin is produced to convert soluble fibrinogen into insoluble fibrin clots. In 

order to do so, FVIIa activates FXIa which in turns activates FIXa allowing formation of the 
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intrinsic tenase complex (FVIIIa:FIXa). The intrinsic complex then activates prothrombinase 

complex (FXa:FVa) generated in the initiation phase to produce an increased amount of 

thrombin to proteolytically convert soluble fibrinogen into insoluble fibrin. These insoluble 

fibrils are then gathered at the site of injury to form a stable, hard clot (Figure 4). The importance 

of the improved cell-based model is to explain hemostasis in vivo, where the extrinsic FVIIa:TF 

activated FX can’t compensate for the missing FVIII/FIX activity in hemophiliacs.3  

The complete hemostasis process is complex and involves multivariable components, and 

all components in secondary hemostasis play a crucial role in the success of a stable blood clot 

formation. Any discrepancies within the complete hemostasis would result in coagulation 

complication. However, the focus of this study will be on blood coagulation factor VIII. Factor 

VIII plays a central role in the formation of the intrinsic tenase complex in the propagation 

phase.  
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Figure 4. The final phase of secondary hemostasis: propagation (adapted from Davie and Ratnoff 

1964).2 This is also traditionally known as the intrinsic pathway of the blood coagulation 

cascade. Propagation is initiated by blood vessel damage, or, vascular damage which activates 

factor XII. Activated factor XII then activates factor IX which then forms the intrinsic tenase 

complex, composing of activated factor XI, factor VIII, and platelets. The tenase complex then 

activates factor X which is then utilized in forming the prothrombinase complex composing of 

activated factor X, factor V, and activates platelets. The prothrombinase complex then generates 

large scale thrombin production which then proteolytically converts soluble fibrinogen into 

insoluble fibrin. The insoluble fibrin then accumulates into long fibrils and gather at the trauma 

site to form a stable blood clot.  
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Introduction to Blood Coagulation Factor VIII 

 

 Factor VIII is a glycoprotein that plays a critical role in the formation of a stable and 

proper blood clot. FVIII is mostly synthesized in the hepatic sinusoidal cells.4 Mature FVIII is 

initially synthesized as a multi-domain single polypeptide that consists of 2332 residues. 

Domains of FVIII upon expression are as follows: A1-a1-A2-a2-B-a3-A3-C1-C2.5 The A 

domains include short spacers (a1, a2, and a3), containing acidic regions with groups of 

negatively charged amino acids: aspartic and glutamic acid. Additionally, the three A domains 

have been found to have sequence homology to one another. Similarly, the two C domains have 

significant homology to each other as well. Lastly, the B domain does not observe any homology 

to other proteins. Previous studies have also indicated that the absence of B domain does not 

affect FVIII functionality, and therefore undergoes proteolytic cleavage early in FVIII life cycle 

at residues Arg1313 and Arg1648.5 This cleavage forms a noncovalent heterodimer consisting 

two sectors: the heavy chain (A1-A2-B) and light chain (A3-C1-C2) (Figure5).5  
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Figure 5. Schematic review of the construct of FVIII (adapated from Kauffman, 1988).6 FVIII is 

initially synthesized in a single polypeptide consisting of 2332 residues (A1-a1-A2-a2-B-a3-A3-

C1-C2). The lower-case domains (a1, a2, and a3) are acidic linker regions to their respective 

domains. FVIII cleavage occurs at residues Arg1313 and Arg1648 resulting in secretion out of 

the cell as an inactive heterodimer. (A1-a1-A2-a2-B/ a3-A3-C1-C2). FVIII is then activated by 

thrombin cleavage at Arg372, Arg740, and Arg1689. 

 

 

 

FVIII circulates the bloodstream in its inactive form, noncovalently bound to its circulatory 

partner, von Willebrand Factor. This interaction between the two glycoprotein prevents the 

premature dissociation of FVIII in circulation as it is not stable if not in complex with vWF.  

Additionally, this interaction is also thought to prevent premature binding of FVIII to FIXa along 

with activated platelet surfaces.7,8  

 Previous studies show that two specific regions of the FVIII light chain is involved in 

vWF binding: the acidic region of the A3 domain (residues 1649-1689) as well as the carboxy 

terminus of the C2 domain (Figure 6).9 FVIII is only proteolytically activated into a heterodimer 

upon activation. FVIIIa then dissociates from its circulatory partner, vWF, along with removal of 

the acidic a3 region of FVIII.8–10 FVIIIa then binds to the activated platelet surfaces, and in the 

presence of calcium ions, serves as a cofactor for serine protease FIXa. This complex is also 

known as the intrinsic tenase complex and is responsible for large scale activation of FX.  
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Figure 6. X-Ray Crystal Structure of bioengineered chimeric FVIII, ET3i. This is a B domain 

deleted FVIII heterodimer composed of heavy chain (porcineA1- humanA2) and light chain 

(porcine A3-C1-C2). C1 observes similar homology with C2, and the C domains have been 

proposed to be involved in vWF binding (PDB ID 6MF2).11 
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Hemophilia A 

 

Hemophilia is a disorder that affects the body’s ability to maintain homeostasis by 

forming stable blood clots. There are many forms of hemophilia. Briefly, the cause of 

hemophilia A is the decreased activity of FVIII, the cause of hemophilia B is the deficiency of 

functionality of FVIII, and the cause of hemophilia C is the deficiency of Factor XI (FXI) and 

parahemophilia which is a deficiency of Factor V (FV). In this study, hemophilia A is the 

primary disease of interest for discussion.   

There are four DNA mutations that may take place, leading to hemophilia A: deletions, 

insertions, inversions, and substitution. Each of these mutations may affect function, structural 

integrity, or both. More specifically, protein sequence mutations can be classified as null, 

truncation, or point. A null mutation results in complete loss of protein expression, or complete 

absence of the protein of interest that is encoded by the gene. A truncation mutation may result in 

only partial expression of target protein. Finally, a point mutation (substation) is where a specific 

amino acid at a specific location change to another; this can have a significant impact on protein 

function as well as structure. Mutations that take place in the binding domains of FVIII to vWF 

may result in hemophilia A, specifically point mutations.  

Hemophilia A is a blood clotting disorder that is caused by the lack of activity for the 

protein cofactor (FVIII). Hemophilia A is a X-linked blood disorder that prevents proper blood 

clot formation, and this disorder affects approximately one in every 5000 males.12 Hemophilia A 

is characterized by excessive or prolonged bleeding episodes where a blood clot is unable to 

properly form at the site of injury. The severity of this disorder is dependent on the degree of 

dysfunctional FVIII present. Mild hemophilia A is defined with approximately 6-30% normal 
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FVIII activity, moderate is categorized as 1-5% normal FVIII functionality, and severe with less 

than 1% normal activity.13 The 186 kb gene coding of the FVIII protein (F8) is located on the 

long arm of the X-chromosome, position 28.14 There are many different possible mutations 

within the F8 gene that can heavily affect protein activity during coagulation. Acquired 

hemophilia is another form of hemophilia that does not involve a genetic mutation basis. 

Acquired hemophilia occurs when the body produces antibodies against FVIII which results in 

rapid dissociation from its circulatory partner vWF and loss of function.  

 

 

Hemophilia A Therapeutic Treatments 

 

 Replacement therapy is currently the most widely used method for Hemophilia A in the 

United States. Replacement therapy consists of infusion of either direct plasma derived or 

recombinant human FVIII (hFVIII) concentrates.15 These infusions can be utilized as episodic 

infusions or as prophylactic treatments for severe hemophilia A. Episodic infusions refer to 

replacement of hFVIII after each bleeding episode, to replenish FVIII and thereby stabilize the 

bleeding episode. Prophylactic treatment on the other hand, refers to regular infusions (often two 

to three times a week) of FVIII concentrates as hemorrhagic prevention, i.e., reduction in the 

number of bleeding episodes and thereby improving the patient’s quality of life. The 

disadvantage is that the patient will be required to visit their physician to receive these infusions 

two to three times per week, which is a demanding schedule. These replacements aren’t always 

mutually exclusive, i.e., on top of prophylactic replacement therapy, on-demand (plasma 

derived) treatment is often utilized in emergency situations. 
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 Plasma derived hFVIII was first discovered and heavily utilized as the primary method 

for hemophilia A treatment. In this method, FVIII is prepared by extracting along with 

purification of the glycoprotein from cryoprecipitate prepared from human plasma.16 There are 

complications associated with this method upon its initial discovery, and that is transmission of 

viral containments and diseases. However, with improving technology and enhanced testing, 

transmission of viral contamination has been eradicated. Additionally, technology has been 

developed to advance disease detection prior to utilization of replacement therapy.17 

Recombinant FVIII are primarily produced by Chinese Hamster Ovary (CHO) cells or Baby 

Hamster Kidney (BHK) cells transfected with hFVIII gene.18 To ensure safety prior to infusion, 

the concentrated proteins are subjected to viral inactivation methods.  

 Various recombinant FVIII products are available in the states; common recombinant 

FVIII therapeutics include Xyntha by Pfizer, Advate by Baxter, and Kogenate FS by Bayer 

Pharm. Doses of each of these products is based on the patient’s level of FVIII deficiency, 

weight, and amount of bleeding. These products are usually injected intravenously via IV bolus 

upon a bleeding episode to encourage proper homeostasis. In 2015, Adynovate (BAX 855), a 

PEGlyated full length recombinant hFVIII based on Advate, was approved for both episodic and 

prophylactic treatment.19 Adynovate has an extened half-life due to the addition of polyethlene 

glycol on the recombinant hfVIII, and thus serving as a better therapeutic for hemophilia A. 
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Hemophilia A Treatment Complications 

  

 Even with the high efficacy of these infusions, approximately 30% of the patients who 

receive direct transfusion of hFVIII eventually develop inhibitory antibodies, an immune 

response leading to the clearance of FVIII from circulation. This inhibitory response leaves the 

patient with difficulty maintaining homeostasis due to hFVIII being cleared from circulation. 

Although Immune responses have been noted with patients with mild to severe hemophilia A, it 

has been noted that patients with higher quantities of genetic mutations that lead to productions 

of non-endogenous FVIII often suffer from severe immune response. This is likely due to the 

patient’s body not being able to recognize the FVIII as native.20 

 Immune tolerance induction (ITI) is a one treatment utilize to combat the inhibitory 

response by eradicating inhibitors that have been developed by the body and normalizing 

pharmacokinetic parameters. This is done by frequent administration of large doses of hFVIII, 

over long-term to eventually abolish the immune response against recombinant hFVIII. 

Immunosuppressive drugs or proteins are often accommodated in this treatment to ensure 

success and effectiveness. Due to the high levels of hFVIII often required to induce an immune 

tolerance, the treatment option is often extremely costly for patients; and can be physically 

taxing on patients with poor venous access. In addition to the potential financial challenges this 

treatment option poses, it is not successful in approximately 25% of cases. This leads to the 

ongoing need for additional alternative treatment options for hemophiliacs that suffer from 

extensive inhibitory responses.  

 To combat the anti-FVIII inhibitory response in patients, bypassing agents such as 

activated prothrombin complex concentrates (PCC, also known as the factor IX complex) and 
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recombinant activated factor VII replacements are utilized as primary therapies.21 Porcine FVIII 

(pFVIII) is also often utilized as a treatment plan secondary to bypassing agents due to its low 

cross-reactivity to anti-FVIII antibodies. Another reason for pFVIII is considered a worthy 

substitute for FVIII replacement is that pFVIII more stable and more active than FVIII due to its 

A2 domain being in a tighter complex within its active form.  

 One of the main complications of replacement therapy in hemophilia is the formation of 

inhibitors neutralizing FVIII antibodies. This is due to the inhibitors rendering replacement 

treatment essentially ineffective due the half of life recombinant FVIII (rFVIII), and the body 

therefore concludes elimination of the recombinant protein as top priority. There have been 

strategies employed to produce less immunogenic hFVIII that maintains a longer half-life in 

circulation. Protein engineering has made this possible in the form of PEGylation. Addition of 

polyethylene glycol polymers to the targeted proteins have been shown to increase circulation 

time by masking the molecule that its attached to from the immune system and reducing 

clearance by the kidneys.22 One of the recombinant hFVIII mentioned earlier, Adynovate, is a 

PEGylated form of recombinant hFVIII which provides it with an extended half-life to serve as a 

therapeutic. Furthermore, a recombinant factor VIII-Fc fusion protein (rFVIIIFc) has been 

constructed to potentially reduce the frequency of FVIII dosing with its extended half-life. 

RFVIIIFc is a recombinant fusion protein composed of recombinant FVIII and covalently bound 

to the Fc domain of immunoglobulin F1 Fc region (IgG1). Studies have shown that the Fc region 

of IgG1 has the potential to interact with immune cells expressing Fc receptor and thereby 

affecting the immune response to rFVIII.23–25 

Lastly, bispecific antibody studies have also been utilized as therapeutic treatment for 

hemophiliacs. A bispecific monoclonal antibody is usually an artificial protein that combines two 
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or more antigen-recognizing elements into one construct, allowing it to simultaneously bind to 

two different antigens. A recent bispecific antibody, Emicizumad (ACE910), also known in the 

United States as HEMLIBRA®, has proven to be successful in Phase I clinical trials and well 

tolerated by healthy subjects. Emicizumad is noted to bind, and bridge activated factor IX and 

factor X, thereby acting as a factor VIII-mimetic agent.26–28 Due to its unique structure, 

Emicizumab has not been subjected to recognition by FVIII inhibitors. More importantly, 

Emicizumab has a much longer half-life (approximately 4-5 weeks in healthy subjects) than 

recombinant FVIII. The bispecific antibody and its FVIII mimetic effects may abate both the 

frequent clinical visits and emergency visits for hemophiliacs.28  

 

FVIII and Inhibitory Antibodies: G99  

 

 Detailed knowledge of the structural interactions between FVIII and its inhibitory 

antibodies are necessary to enhance and improve hemophilia A therapeutics; therefore, a 

thorough understanding of immunoglobulin G (IgG) is vital. Immunoglobulins contain a heavy 

chain and a light chain, which are identical to each other. In this Y-shaped monoclonal antibody 

(MAB), there are two types of fragments: the constant fragment (Fc), and the antigen binding 

fragment (FAB). As the name suggests, the FABs are responsible for binding to the antibody’s 

target whereas the Fc region of the antibody is conserved. Each antibody contains two FABs and 

they are located at the tips of the antibody’s arm (Figure 7).  
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Figure 7. Schematic of antibody structure, the antibody consists of two separate FAB. Light chain 

is noted to have the shorter arm, heavy chain noted on the inner (longer) arm of the “Y” shape, 

complementarity determining regions (CDRs) noted in black dash lines within the antigen 

binding site, and each of the FABs heavy and light chain are connected via disulfide bonds noted 

in red dashes.  

 

 

 

Due to FABs high variability, it is able to bind to its target (antigen) with exceptional specificity. 

Each FAB contains two variable domains, one from the light chain and the other from the heavy 

chain. Within each of these variable domains, it contains three complementarity determining 

regions; and these contain variable loops that are responsible for recognizing specific regions of 

the antigens known as epitopes. This is the reason why FABs can bind to its antigen with such 

high specificity. The two FABs can be proteolytically cleaved from the Fc domain via proteolytic 

enzyme papain (derived from papayas), allowing studies for antibody to antigen interactions by 

utilizing individual FABs bound to their protein of interest.  

 Characterization of immune responses on FVIII has shown that a large majority of 

antibodies against FVIII bind specifically to the A2 or C2 domains.29 There are two categories of 
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antibodies that inhibit FVIII function: the classical antibody and the non-classical antibody. 

Classical antibodies are antibodies that directly block the binding of C2 domain to von 

Willebrand Factor or to phospholipid surfaces.30 On the contrary, non-classical antibodies 

prevent FVIII activation by thrombin or FXa. For this research aim, only the nonclassical 

monoclonal antibody (MAB) G99 was utilized for experimentation. Instead of the isolated C2 

domain of FVIII, the chimeric structure of FVIII (ET3i) was utilized for this study which will be 

discussed later. Structural studies have shown that the epitope face where G99 FAB binds 

contains an electrostatic interaction where G99 has a negatively charged pocket that allowed the 

basic Lys2227 residue in the C2 domain to bind (Figure 8).31  
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Figure 8. X-ray crystal structure of the chimeric FVIII structure, ET3i bound to a non-classical 

anti-C2 domain inhibitory antibody, G99 FAB. C1 and C2 share structural homology, the C 

domains are noted in cyan. G99 FAB is depicted in green, bound to C2 at its basic pocket 

Lys2227. (PDB ID: 7KBT. Adapted from Ronayne et al. 2021).32 
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Chapter 2 

 

Introduction to von Willebrand Disease 

 As discussed in chapter 1, there has been substantial characterization of FVIII and its 

inhibitory antibodies. This has significantly enhanced our understanding of hemophilia A and its 

therapeutic treatments. However, there is an important interaction that is still not well known; 

FVIII and its circulatory partner, von Willebrand Factor (vWF) up until recently; even though it 

is one of the most inherited bleeding disorders in the world.30 A recent high-resolution 

cryoeletron microscopy crystal structure of FVIII:D’D3 complex was published. This 2.9Å 

structure verified the important structural integrity and binding mechanism of D’D3 to FVIII. 

Structural knowledge of the FVIII:D’D3 will be introduced later in this chapter.  

Von Willebrand disease was first discovered in the 1920’s by a Finnish physician named 

Erik von Willebrand, from whom the disease was named. Von Willebrand first characterized this 

disease by studying a young girl’s case whose family had extensive hemorrhagic difficulties.33 

The young girl’s family was in the Finland’s Åland islands during the study. With the island’s 

smaller population, there is a higher percentage of this inherited disease, which is autosomal, 

recessive. Contrary to the X-linked hemophilia A, the autosomal, recessive von Willebrand 

disease can affect both male and female. In vWD, hemostasis cannot be easily achieved due to a 

lack of vWF, or functionality of vWF.34–36 In severe cases of vWD, it can easily be mistaken for 

hemophilia A and therefore mistreated as such. This is especially dangerous as the lack of vWF 

can lead to low levels of FVIII as FVIII is not as stable without its partner and can be rapidly 

degraded by proteases; thus making hemostasis even more difficult.37 Additionally, the 

symptoms of von Willebrand disease is so mild that those who are affected are unaware that they 
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have hemorrhagic difficulties.38 Given that most cases are mild, a large majority of von 

Willebrand disease patients are treated with the on-demand administration of Desmopressin 

which stimulates the release of vWF.39 In more severe cases however, IV infusions of vWF are 

often required.  

There are three types of von Willebrand disease, two of which are quantitative and one of 

them being qualitative. Von Willebrand disease Type 1 and type 3 are quantitative disorders 

where the body does not produce sufficient levels of vWF. Type 1 is where the body produces an 

unusually low amount of vWF. This is the most common form of the disease, approximately 

75% of cases seen are type 1 and they are usually very mild in nature.40 Type 3 vWD is the rarest 

and most severe form of the three disorders where the body fails to produce any viable vWF, 

thus leading to borderline non-existent levels of fVIII.41 Lastly, vWD type 2, is a qualitative 

disease that affects vWF’s ability to associate properly to other proteins of interest. There are 

four subcategories of type 2 vWD: 2A, 2B, 2M, and 2N.42 Each of these subcategories involve a 

gene mutation that affects vWF’s ability to properly bind to its various associated partners, and 

therefore affecting hemostasis. Type 2N, also known as the Normandy type, is the von 

Willebrand disease of interest in this study. Type 2N is caused by the inability of vWF to 

associate to FVIII and thus presenting similarly as hemophilia A and its respective levels of 

FVIII in circulation.43    
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Introduction to von Willebrand Factor 

 

 As mentioned previously in chapter 1, von Willebrand Factor serves as an important part 

to the coagulation cascade to promote hemostasis. In the event of an injury, vWF binds to the 

subendothelial collagen through its A3 domain, followed by binding to the inactive platelets via 

its A1 domain to the platelet glycoprotein (GP) receptor; thereby recruiting additional platelets to 

the site of injury.44 Additionally, vWF also serves the important role as FVIII’s circulatory 

partner to ensure FVIII’s stability in circulation. An estimated amount of 95% of FVIII in 

circulation is partnered with vWF, the partnership between the two proteins prevents proteolytic 

cleavage during circulation. Furthermore, the vWF:FVIII complex prevents premature 

association of FVIII to FXIa or activated platelet.45,46 The importance of the protein-protein 

interaction have proven to be evident in the severity of vWD type 2N and 3; where the body 

produces normal level of FVIII but often rests at hemophiliac’s level due to the body’s inability 

to effectively bind to vWF.  

Von Willebrand factor (vWF) is a 2,050 residue glycoprotein that is mainly produced in 

endothelial cells and megakaryocytes.47,48 This protein is synthesized with 2,813 residues, 

including 22 amino acid signal peptides followed by a 741 residue propeptide (D1 and D2) that 

is later proteolytically cleaved.47 VWF was previously known to be synthesized with the 

arrangement of D1-D2-D’-D3-A1-A2-A3-D4-B1-B2-C1-C2-CTCK (Figure 9).47–51 However, 

further studies of sequence and structure of vWF indicated heightened complexity than initially 

sought with complex assemblies that lack hydrophobic cores but are connected via extensive 

disulfide linkages.52 Given that there are multiple domains, vWF will be briefly discussed by 

their associated domains alphabetically. The three A domains are large and globular in 
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comparison to the D domain. The A domains are also the only domain in vWF that lack an 

abundance of cysteines in comparison to the rest of the domains. The B and C domains have also 

been annotated in certain studies as six tandem von Willebrand C (vWC). The vWC-like 

domains are followed by the C-terminal cysteine knot (CTCK) domain.53 Recent studies have 

shown that the D domains are consists of smaller modules, also known as the vWD domain, 

cysteine-8 (C8) domain, trypsin inhibitor-like (TIL) domains, and E domains.  

 

 
 

Figure 9. VWF Schematic (adapted from Dagil et al. 2019): domain arrangement of full length 

vWF. Propeptide composed of the D1 and D2 assembly followed by a furin cleavage site prior to 

the D’ domain. The D’ domain is also composed of two separate domains, the TIL’ and E’ 

domains, highlighted in light green where FVIII binds (indicated in purple). The D’ domain is 

the opening domain for mature von Willebrand factor.54  

 

 

 The primary FVIII binding site on vWF is located in the D’D3 domains (Figure 9).54,55 

Recent studies have shown that the D’ domain is most involved and responsible for binding to 

FVIII. The D’ domain is composed of two components, the trypsin-inhibitor-like domain (TIL’) 

and the E’ domain (Figure 9).56 Previous studies on epitope mapping utilized anti-vWF 

monoclonal antibodies along with a large percentage (approximately 72%) of missense 

mutations leading to type 2N vWF are located in the TIL’ domain.57 A previous solution 

structure of independent TIL’E’ published in 2014 by Shiltagh et al. provided information 

regarding the D’ domain’s dynamicity and its involvement in FVIII binding (Figure 10).56 The 
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authors proposed a binding mechanism in which the positively charged region in TIL’ along with 

its inflexible scaffold in the E’ region forms an electrostatic attraction with the acidic region of 

the A3 domain of FVIII. Furthermore, the A3 domain of FVIII has been proven to be critical for 

vWF binding, which makes this proposed interaction more feasible and worth studying.56,58 As 

noted, the A3 domain of FVIII is the primary binding site for the D’ region, however, studies 

have shown that full length vWF also involves binding sites in the C2 domain of FVIII.59,60  
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Figure 10. Solution structure of the D’ (TIL’E’) domain of vWF (PDB ID: 2MHP). The TIL’ 

region is labeled blue and the E’ domain is labeled red. Disulfide linkages are noted in yellow, 

and the beta strands are numbered in the order they present themselves in TIL’ and E’ domains 

independent primary sequences. It’s noted that 70% of beta loops reside in the TIL’ domain, and 

that the five conserved cysteines in the TIL’ domain serve as its primary stabilizing force.47 TIL’ 

(blue) is formed of two ß sheets, ß1 and ß2 (residues 772-775 and 806-809, respectively), which 

then forms a scaffold containing a long 30 residue loops, ß1- ß2 loop. The ß1- ß2 loop involves 

an eight-residue gap between the second and third conserved cysteine residues (C776 and C804). 

The conserved cystines in the ß1-ß2 provides the TIL’ domain with its intrinsic dynamic 

character.22,56 
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Crystallography of the isolated D’ domain of vWF has proven to be difficult due to its 

flexibility.56 Therefore, we attempted to co-crystalize the small fragment of vWF, TIL’E’, in 

complex with the chimeric structure of FVIII, ET3i. During the continuous pursuit of the 

TIL’E’:ET3i complex crystal trials, a recent publication revealed a high-resolution structure of 

FVIII:D’D3 complex via cryo-electron microscopy (Cryo-EM) (Figure 11). The 2.9Å structure 

of the FVIII:D’D3 complex was completed with a bioengineered clinical-stage FVIII molecule 

deemed BIVV001. Recombinant FVIII have proven to extend the half-life of FVIII in 

circulation, though most FVIII products are constrained to an 18-19 hour ceiling imposed by 

vWF-mediated clearance.55 The novel BIV001 designed and utilized in the high resolution 

crystal structure consisted of a single-chain human B domain-deleted rFVIII, two IgG1 Fc 

domains, D’D3 domains of vWF, and two XTEN polypeptide linkers. This bioengineered FVIII 

was designed to overcome the vWF-mediated half-life ceiling. In other words, the novel 

BIVV001 resulted in a stabilized rFVIII-D’D3 complex.55 The structure showed sulfated FVIII-

a3 Y1680 interacting directly with the side chain of TIL’, R816, and mutations in either residue 

may cause disease (Figure 12).  Mutations on Y1680 may cause severe hemophilia A, and 

mutations on TIL’ in vWF may cause some of the most severe forms of vWD type 2N (Figure 

13). Thus, supporting the significance of proper binding between the two residues.58 Most 

importantly, the complex structure further confirmed the long proposed binding hypothesis made 

by Smith et al: the TIL’ domain interacts largely with the C1 and A3 domain via Van Der Waals 

interactions (Figure 14, figure 15). Notably, the FVIII a3 acidic peptide region established as a 

critical determinant of FVIII-vWF complex formation which inserts into a basic groove formed 

at the TIL’E’ and rFVIII interface. Lastly, in contrast to previous studies and hypotheses made, 

the TIL’ domain does not make any contacts with the C2 domain of FVIII.55 
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Figure 11. Cartoon representation of recently published crystal structure of FVIII:D’D3 (PDB 

ID: 7KWO). The C domains that observe structural homology are noted in cyan, and the A 

domains are noted in different shades of blue, D’ of vWF is noted in red with direct interaction 

with the acidic a3 peptide (noted in yellow) as well as the C1 domain. The D3 domain of vWF is 

noted in orange; 
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Figure 12. Figure of sulfated Y1680 noted in sticks (yellow), the side chain of TIL’ R816 noted 

in red. The high-affinity electrostatic interaction noted in gray doted lines. Mutations noted to 

either residue would result in deleterious effects and cause severe forms of hemophilia A and 

vWD type 2N (adapted from Fuller et al. 2021).  
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Figure 13. Mutations noted in FVIII (left) causes hemophilia A, specifically the mutations noted 

in the A3 and C1 domain. Mutations noted in vWF (right) causes von Willebrand disease, with a 

large majority in the D’ domain (red) which causes type 2N vWF. 
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Figure 14. Electrostatic surface map of full length FVIII:vWF, colors are labeled depicting each 

domain. The a3 domain of FVIII has been highlighted yellow indicating the acidic binding 

pocket. TIL’E’ is noted to engulf the a3 domain with electrostatic interactions as well as the N-

terminus being docked into the A3 region’s basic pocket.  
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Figure 15. Figure of small pocket insertion of vWF TIL’ into the A3 domain (violet) shown in 

surface rendering with its shape complementarity to the C1 domain, noted in cyan. Insertion of 

vWF TIL’ (red ribbon) N-terminus S764 in a small and shallow pocket of the A3 domain is 

visualized here.  

 

 

 

Lastly, the complex structure further verified the E’ domain of vWF being the connector between 

the TIL’ domain and the D3 domain; as it makes minimal contact with FVIII, and there are not 

many type 2N mutations documented in this region.  
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Chapter 3 

 

TIL’E’ Mutants Designs 

 

 The solution structure of TIL’E’ as well as the recent cryo-EM structure of FVIII:vWF 

have allowed a magnitude of interpretation on type 2N vWD missense mutations. The most 

severe forms of type 2N vWD missense are noted in the TIL’ region that affects binding to 

FVIII. In order to further understand some of the most documented missense mutations that 

cause severe type 2N vWD, detailed structural understanding along with binding mechanism is 

necessary. Site directed mutagenesis was employed in this present study to further understand the 

binding mechanism of TIL’E’ to ET3i in addition to the recent FVIII:vWF structure. Up until the 

recent structure, the proposed binding mechanism has been the electrostatics interaction with the 

A3 domain of ET3i.11,56  The most recent cryo-EM structure confirms the previous studies of 

FVIII/TIL’E’ binding mechanism and its previously proposed docking system.55 The primary 

binding region was noted in the TIL’ domain of vWF, and mutations that cause changes in 

electrophobicity or hydrophobicity may affect binding and/or structural integrity and thereby 

affect its functionality. Therefore, the mutants selected have been previously documented to 

cause the omst severe forms of type 2N vWD. Three out of the four mutants were selected in the 

TIL’ domain and one in the E’ domain for further analyses (Table 1).  
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       Mutation    Position    Hypothesis 

TIL’ R816Q ß3 Loss of conserved positive charge in the 

presumed A3 binding region 

 

 E787K ß1-ß2 Loop Introduces positive charge in region of negative 

charge. Significantly decreases binding 

 

 R782W ß1-ß2 Loop Loss of positive charge, change of polar to 

hydrophobic.  

 

E’ R854Q ß4-ß5 loop Loss of positive charge in FVIII anchor region 

 

Table 1. List of TIL’E’ mutations, position of the mutation in the TIL’E’ structure, and 

hypotheses of effects on binding to ET3i.  

 

 

 

 The mutations selected in the TIL’ domain include R816Q, E787K, and R782W; and 

R854Q in the E’ domain. No cysteines involved in any disulfide bonds were selected in this 

study as previous studies have shown multimerization, poor secretion, and reduced FVIII binding 

when cystine mutations were involved. This is due to TILL’E’ lacking a hydrophobic core, and 

the disulfide bonds involved in the structure serves as its primary stabilizing force. In other 

words, proper disulfide bond formation is necessary to the folding as well as function of vWF.7 

R816Q is located in the TIL’ domain of vWF, the mutation from arginine to glutamine creates a 

loss of conserved positive charged in the A3 binding region of FVIII (Figure 16). Given the 

proposed electrostatic interaction, the hypothesis of this mutant results in a decrease in binding 

affinity to FVIII. E787K and R782W are considered to be some of the more severe forms of type 

2N phenotypes. The E787k mutation creates a positive charge in the binding protrusion, and thus 

likely would generate a significant disruption to binding to FVIII from a structural perspective. 

Furthermore, E787 along with R782 are in close proximity of the ß1-ß2 Loop where it is highly 

flexible, meaning that a missense may potentially involve a conformational change with 
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deleterious effect that significantly reduces binding to FVIII (Figure 17). R782W involves a 

mutation to tryptophan. This causes a change from the part hydrophobic and positively charged 

residue, arginine, to a neutral charge hydrophobic residue, tryptophan. The loss of the positively 

charge along with an increase in hydrophobicity may cause structural perturbation and 

significantly decreases binding to the putative A3 binding pocket (Figure 18). Lastly, the only 

mutation selected in the rigid E’ domain, R854 with a mutation to a glutamine introduces a loss 

of positive charge (Figure 19). Though the E’ domain does not make significant contact with the 

binding pocket of the C1 domain of FVIII, the mutation may affect how TIL’ is connected to the 

E’ domain of D’. The mutation may cause misfolding of the protein and therefore may poorly 

anchor itself to FVIII. The designed mutants were then compared to the binding of wild type 

(WT) TIL’E’.    

 

 
Figure 16. Stick representation of arginine mutation to glutamine at R816 (red). The mutation 

from an arginine to a glutamine introduces a loss of positive charge to the binding region of 

FVIII. This mutation has been documented to be one of the most severe forms of vWD type 2N 
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missense, and it’s proposed to significantly reduce binding to the acidic region of a3, and 

therefore affects the high-affinity interaction with sulfated tyrosine at residue 1680.  

 

 

 
Figure 17. Stick representation of glutamic acid 787 mutation to positively charged Lysine (red). 

This mutation introduces an overall positive charge in a region within TIL’ that is negatively 

charged and is hypothesized to affect proper disulfide formation of TIL’ and thereby affecting its 

binding capabilities to FVIII. Overall charge of the residue is noted to be positive instead of the 

negatively charged wild type glutamic acid.   
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Figure 18. Positively charged Arginine 782 (red) mutation into hydrophobic and neutral 

tryptophan. This mutation may affect the proper folding of TIL’ and therefore affecting its 

functionality.  

 

 
Figure 19. R854 located in the E’ region has been reported to serve as an anchor into C1 domain 

of FVIII. Loss of positive charge from an arginine to a glutamine would affect its ability serve as 

a proper anchor to FVIII.  
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Research Aim 

 

 The goals of this present study include successful expression and purification of all 

mutants designed along with the wild type protein. Following successful purification of TIL’E’ 

and its corresponding mutants, wild type TIL’E’ in complex with our chimeric FVIII, Et3i, were 

formed for X-Ray crystallography attempts via hanging-drop vapor diffusion. Affinity pull-down 

assays were employed to assess binding between mutants and ET3i. Biolayer interferometry 

(BLI) was also employed to further study binding affinities to FVIII of all mutants in comparison 

to wild type. The aim of the BLI is to acquire quantitative data to further support and understand 

binding mechanism via kon, koff, and KD data.  
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Chapter 4 

 

Materials and Methods 

 

 Wild type TIL’E’ and each of the mutants described in chapter 3 were transformed, 

expressed, purified, proteolytically cleaved, and stored for future assays and crystallography 

trials. Binding assays conducted include biolayer interferometry, pull down assays, and 

sedimentation assays. Each portion of methods will be discussed in its corresponding section.  

 

DNA Plasmid Transformation of TIL’E’ and Mutants 

   

 The pET32b(+) vector encoding the TIL’E’ domain of vWF used in this present study 

was obtained from the Hansen Lab located in the University College London. This plasmid also 

encoded the thioredoxin (TRX) fusion protein tag along with the N-terminal internal (His)6-tag. 

The protein and the (His)6-tag are separated by a 31-residue linker protein and tobacco etch virus 

(TEV) protease cleavage site (Figure 20). Additionally, all mutants designed as mentioned in 

chapter 3 have adopted this schematic with single point mutations in its sequence. The TIL’E’ 

mutant sequences were constructed utilizing the pET32b(+) vector with an ampicillin resistance 

site. The TIL’E’ mutant plasmids were acquired from GenScript in lyophilized form and were 

transformed into chemically competent cell lines.  
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Figure 20. Schematic of expression product from TIL’E’ plasmid obtained from Hansen Lab 

(University of College London). Construct depicts arrangement of the TIL’E’-TRX fusion 

protein utilized in this project.   

 

 

 Bioengineered chemically competent SHuffle® T7 B E. coli cells purchased from New 

England Biolabs (NEB) Inc. SHuffle® cell line was transformed with the pET32b(+) plasmids 

encoding the TIL’E’ mutants. The cells were transformed following the optimized protocol 

provided by NEB, resulting in single colonies grown on LB Agar plates. Approximately 100ng 

of selected TIL’E’ or TIL’E’ mutant DNA were utilized and incubated with the T7 competent E. 

coli cells for 30 minutes on ice. The cells were then heat shocked at exactly 42oC for 30 seconds, 

followed by a five-minute incubation on ice. One milliliter of room temperature Super Optimal 

Broth with Catabolite repression (SOC) medium was added, and the mixture was shaken at 

250rpm for 60 minutes at 30oC. The cells were then spread onto LB agar ampicillin50 plates via 

sterile technique and incubated overnight at 30oC. The overnight plate yielded multiple colonies 

of cells, and a single colony was harvested and grown for cell stock as well as large scale growth 

and expression.  

 

 

Large Scale Growth and Expression 

 

 Ten milliliters of Luiria Bertani (LB) broth containing 10% w/v Bactotryptone, 5% w/v 

yeast extract, and 10% w/v sodium chloride were utilized as starter culture. These 10ml LB 

broths were prepared beforehand in bulk. The room temperature 10ml LB broths are then 
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inoculated with the selected colonies from the overnight plate along with amplicillin50 (Amp) 

and are allowed to grow overnight at 200rpm and 30oC. The starter cultures were then utilized to 

inoculate 1L LB and Amp broths for large scale growth. The 1LB/amp broth are grown at 30oC 

until an OD600 reading of at least 0.6 AU was reached, then the broth was induced with 400μl of 

1M Isopropyl β-D-1-thiogalactopyranoside (IPTG). The temperature was then lowered to 15oC 

for overnight expression.  

 

Affinity Chromatography Purification 

 

The cells were harvested within 16-20 hours of expression at 15oC with the F12-6x500 

LEX rotor from Thermo Scientific for 10 minutes at 6371 g-force and 4oC. The cell pellet was 

collected and resuspended in lysis buffer containing 20mM Tris-HCl (pH 7.5), 500mM NaCl, 

and 10mM imidazole along with 350μl of 1M phenylmethylsulfonyl fluoride (PMSF), and 700μl 

of 1M Lysozyme. This was followed by 35 minutes of incubation time on ice with gentle 

intermittent mixing of the resuspension. The resuspended cells were lysed via sonification using 

a Branson Sonifier 450 probe with a power output of five and duty cycle of 50% for one minute. 

In the event a larger cell pallet, a 30 second recovery time was applied between sonification. Cell 

debris was removed by a secondary high-speed centrifuge spin. The lysed cells were centrifuged 

at 17,000rpm in an F20-12x50 LEX Thermo Scientific rotor for 45 minutes at 4oC. The high-

speed supernatant was filtered manually via a syringe with a 5μm filter. In a larger scale (6L-

12L) growth, multiple 5μm filters may be required. In the event of clogging, a secondary 5μm 

filter was utilized for filtration prior to purification.  
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Immobilized metal affinity chromatography (IMAC) was employed for TIL’E’ and 

TIL’E’ mutant purification. 1ml of settled Ni-NTA Agarose resin obtained from Qiagen was 

used for 2L of E. coli cell growth. The resin is initially equilibrated into lysis buffer as 

mentioned above. The lysate was then flowed through it with a 15-minute incubation time along 

with intermittent agitation of the resin. The column was then washed twice with 20 column 

columns (CV) of wash buffers with increasing concentrations of imidazole, first 20mM followed 

by 40mM. The protein was finally eluted with 30 CV of elution buffer containing 20mM Tris-

HCl (pH 7.5), 500mM NaCl, and 200mM imidazole. A gel sample was obtained for each of the 

wash steps and the elution step for sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) verification. The fraction containing the most protein was then dialyzed in a 15 

kDa molecular weight cut-off dialysis tubing by Spectrum Laboratories, Inc. overnight at 4oC in 

dialysis buffer (20mM HEPES, 150mM NaCl, and 1% (v/v) glycerol).  

 

TEV Cleavage 

 

 Tobacco etch virus (TEV) protease was utilized to cleave the TRX-(His)6-tag-linker 

fragment from TIL’E’. A ratio of 1 OD280 TEV to 10 OD280 TIL’E’ was utilized for this cleavage 

reaction. Samples containing the fusion (His)6-tagged TIL’E’ and TEV were incubated at room 

temperature for three hours, then was moved to 4oC overnight for the completion of the cleavage 

reaction. The following day, a second nickel column was set up to capture the cleaved protein. 

Similar to the initial nickel column, the resin was initially equilibrated with lysis buffer followed 

by equilibration with the (His)6-tagged TIL’E’ with TEV to encourage binding of the (His)6 trap 

with the resin. The resin was then washed with two separate 20 CV washes of 20mM and 40mM 
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imidazole, followed by the elution buffer. Once again, gel samples were obtained at each step for 

SDS-PAGE verification and efficacy of the TEV cleavage reaction. The very initial fraction 

(flow-through) was collected, concentrated, and buffer exchanged into HBS (storage buffer) via 

Amicon Ultra-15 Centrifugal filters (Ultracell 10K Millipore membrane). In the event where the 

volume is too much for buffer exchange, secondary dialysis would take place under the same 

conditions as the initial dialysis noted previously.   

 

Size Exclusion Chromatography 

 

Size exclusion chromatography (SEC) served as the final purification step for TIL’E’. 

TIL’E’ was injected to a HiLoadTM 16/60 Superdex 75 (S75) preparatory grade size exclusion 

chromatography column by GE Healthcare. The column was washed with nanopure water prior 

to equilibration with HBS (storage buffer). The peaks on the chromatogram were further 

collected for SDS-PAGE analysis and confirmation.  

 

Affinity Pull-Down Assays (Ni-NTA Agarose Resin) 

 

 Ni-NTA Agarose Resin by Qiagen was utilized for initial binding assays. TRX-(His)6-

tagged TIL’E’ and tagged TIL’E’ mutants were incubated in equilibrated 100µl of Ni-NTA resin 

at room temperature for 15 minutes to encourage binding. Following incubation, tagged TIL’E’ 

was then transferred to a Costar Spin-X® centrifuge tube filters, 0.22µm pore CA, then was 

washed twice with 10 CVs of HBS (storage buffer) with intervals of 800 x g spins. Following the 

washes, an equimolar ratio of ET 3i was added to the resin, and the sample was incubated at 
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room temperature for 5 minutes to encourage binding. The resin was then washed once with 

HBS (storage buffer), then eluted with elution buffer. Gel samples were collected at each flow 

through, wash, and elution step for further analyses via SDS-PAGE.   

 

Affinity Pull-Down Assays (TALON Magnetic Beads) 

 

 TALON Magnetic beads by TaKaRa was employed for affinity pull-down assays, and the 

magnetic beads were first removed out of its ethanol storage into nanopure, followed by 

equilibration into HBS (or whichever the protein was dialyzed and stored into). Following 

similar protocol as an IMAC, a 1:1 ratio of TIL’E’ (TIL’E’ mutants):ET3i was utilized for the 

binding assay. Approximately 15µg-30µg of TIL’E’ was used and only 15µg of ET3i was used. 

Upon equilibration of the magnetic beads TALON resin, TIL’E’ was incubated with ET3i 

without any disturbance of the resin for 15 minutes. The magnetic bead resin was then lifted 

aside of the Eppendorf tube via a strong magnet, and the flow through was extracted. The resin 

was washed twice with low imidazole content followed by a high imidazole elution buffer. Each 

column flow through, wash, and elution were extracted similarly with a strong magnet. Each 

column fraction collected was analyzed via SDS-PAGE. 

 

Liposome binding: Sedimentation Assays 

 

 Anionic dioleoyl phosphatidylserine (DOPS) and zwitterionic dioleoyl 

phosphatidylcholine (DOPC) were utilized in sedimentation assays mimicking platelet binding. 

A 80:20 DOPS:DOPC ratio was utilized in each of the sedimentation assays, and the liposomes 
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were prepared in bulk and the stock liposomes are stored in -20oC in argon gas. Six separate 

Beckman Coulter tubes (PC TK Wall 8x23mm) were made and they are labeled as ET3i:PC, 

ET3i:PSPC, TIL’E’:PC, TIL’E’:PSPC, ET3i:TIL’E’:PC, and ET3i:TIL’E’:PSPC. Each tube 

consists of their corresponding components with a final volume of 300µl (125µl of DOPC, 125µl 

of DOPS (80:20), 1:1 equimolar ratio of TIL’E’ and ET3i, brought to final volume with nano 

pure water). The mixture was para-filmed and incubated at room temperature for one hour prior 

to high-speed centrifugation. The Beckman tubes were then spun at 16000 rpm for 45 minutes 

with Sorvall MX 150 Micro-ultracentrifuge by Thermo Scientific. The supernatant from each 

tube was decanted and cold acetone (-20oC) was added for acetone precipitation, the supernatant 

samples were incubated overnight in acetone at -20oC. Each of the pellets (both visible and 

poorly visualized) were resuspended and agitated in 4x loading dye and stored in -20oC in 

preparation for SDS-PAGE analyses. The incubated supernatant tubes were then spun at 16000 x 

g for 15 minutes the following day. The supernatant of this centrifugation was decanted, and a 

10-minute recovery time was allowed for excess acetone to evaporate. Loading dye was added 

and the sample was agitated on Vortex 2.0 for resuspension in preparation for SDS-PAGE 

analyses.  

 

 

Biolayer Interferometry  

 

 Biolayer interferometry (BLI) was selected as the quantitative evaluation of binding 

between ET3i, wild type TIL’E’ and TIL’E’ mutants. The bioengineered chimeric structure of 

FVIII, ET3i was obtained from our collaborators, Dr. Christopher Doering and Dr. Gabriela 
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Denning. BLI was accomplished with Pall ForteBio® BLITz instrument along with the BLITz 

Pro software. Anti-hC2 monoclonal antibody (MAB) G99, prepared by previous lab members, 

was complexed with ET3i. This complex was incubated on ice for at least 15 minutes to 

encourage binding to each other. Upon initiation of the binding assay, a blank was taken where 

the anti-mouse tip (AMC) is soaked in HBS. Anti-C2 MAB G99:ET3i was then bound to AMC 

tips during the loading step, followed by another blank in which the buffer soaks away excess 

complex that did not bind to the tip. TIL’E’ and each TIL'E' mutant was then associated to the tip 

followed by a dissociation step. The data set was then extracted from the Blitz program and 

processed initially in excel to ensure that the background has been subtracted off. The processed 

data were then further analyzed on GraphPad Prism 8.0 where a nonlinear regression curve was 

applied to the binding data. kon, koff, and KD values were obtained via GraphPad Prism.  

 

 

X-Ray Crystallography  

 

 Hanging drop vapor diffusion was employed to crystalize the ET3i:TIL’E’ complex. 

Suitable conditions were acquired via large scale screens through Hauptman-Woodward Medical 

Research Institute; a select few conditions were further pursued. A total of 400µl were pipetted 

into each of the 24 well plates. Each well was manually greased for proper sealing upon placing 

of the glass slide. One microliter of the protein complex (ET3i:TIL’E’) and 1µl of the well 

condition was pipetted onto the glass slide. The glass slide is then momentarily placed on top and 

over its corresponding well condition, this is repeated for all 24 wells. The crystal trays were left 

undisturbed for at least 24 hours to encourage vapor diffusion. Each tray was evaluated under 
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microscope to check for crystal formation. Multiple trays were made with differing buffer 

concentrations, pH levels, salt levels, precipitants, and polyethylene glycol (PEG) concentrations 

which will be discussed in the results and discussion section.  
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Chapter 5 

 

Results and Discussion 

 

Preparation of pure Wild Type TIL’E’ and TIL’E’ Mutants 

 

Wild type TIL’E’ and its mutants were expressed and purified for further studies as well 

as crystal trials. Bacterial expression was employed in this study, TIL’E’ and TIL’E’ mutant 

plasmids were individually transformed into the New England Biolabs (NEB) bioengineered 

SHuffle E. coli cell line to aid in proper disulfide bond formation. To further encourage proper 

folding of disulfide bonds within D’, the plasmid was designed to contain a N-terminal 

thioredoxin (TRX) tag (Figure 20).  

 Upon successful protein expression and harvest, a three-step affinity chromatography 

with Ni-NTA Agarose was employed to ensure sufficient protein purity.  The first Ni-NTA (1st 

Nickel column) was utilized to separate a large majority of impurities from TIL’E’ post protein 

expression. The column was washed with two low imidazole-containing buffers with a high 

imidazole elution. Upon collection of each of the gravity flow columns, the purity of the 

fractions was analyzed via SDS-PAGE (Figure 21). As seen in the initial nickel column, the 

tagged TIL’E’ fusion protein migrates near 27kD. Some impurities are seen in the higher 

molecular weight region.   
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Figure 21. SDS-PAGE analysis and verification of TIL’E’ protein purity following 1st nickel 

column. Lanes: 1. Molecular weight protein ladder; 2. Molecular weight protein ladder (due to 

lane leakage); 3. Filtered lysate flow through; 4. Column wash; 5. Elution fraction.  

 

 

Following the initial nickel column, the fraction with the highest amount of protein was dialyzed 

out of imidazole and into the HBS buffer. A 2nd Ni-NTA column was employed to remove the 

TRX and (His)6-tag-linker fragment via tobacco etch virus (TEV). All components along with 

tagged TIL’E’ was collected in the 2nd nickel column (Figure 22). It can be visualized that there 

is some tagged TIL’E’ remaining near 27 kD, along with TRX protein near 17kD and cleaved 

TIL’E’ at 11kD. There is one contaminating band noted near 60 kD, and size exclusion 

chromatography was employed to purify TIL’E’ further. SDS-PAGE verified pure and cleaved 

TIL’E’ post SEC (Figure 23 and figure 24).  
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Figure 22. SDS-PAGE analysis post TEV cleavage of TIL’E’. Undigested (incomplete TEV 

digestion) Tagged wild type TIL’E’ eluting at 27kDa, thioredoxin upon digestion eluting at 

17kDa, followed by cleaved TIL’E’ at 11kDa.  

 

 
Figure 23. SEC Chromatogram for cleaved TIL’E elution fractions 4-10, as seen on SDS-PAGE 

verification in figure 24.  

lanes 4-10 
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Figure 24. SDS-PAGE analysis post size exclusion chromatography (SEC). A. Elution profile of 

TIL’E’ with highest peak being collectable fractions. B. Lanes: 1. Molecular weight protein 

ladder; Lanes 2-3: incomplete digestion of tagged TIL’E’; Lanes 4-10: Pure cleaved TIL’E’ 

collectable fractions.  

 

 

 

 

R816Q, R782W, E787K, and R54Q (TIL’E’ Mutants) Purification 

 

 As mentioned previously, each of the mutants were designed adopting the same sequence 

as wild type TIL’E’: TRX fusion protein-(His)6-tag-linker. Each of the mutants contain a point 

mutation in its corresponding amino acid sequence. The same purification and cleavage method, 

immobilized metal affinity chromatography (IMAC) and TEV cleavage, respectively. SDS-

PAGE analyses indicated relatively pure TIL’E’ mutants. There were certain mutants that 

required secondary IMAC purification for contaminant removal, SDS-PAGE verified post 

purification yielded pure mutants (Figure 25-figure 28).  
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Figure 25. SDS-PAGE purification of E787 and R854Q. Lanes: 1. Molecular weight protein 

ladder; 2. E787K Initial lysate flow through; 3. E787K Wash column; 4. E787K Elution column; 

5. Initial R854Q lysate flow through; 6. R854Q wash column; 7. R854Q elution column.  

 

 
Figure 26. SDS-PAGE verification of E787K secondary IMAC. Lanes: 1. Molecular weight 

protein ladder; 2. Tagged E787K initial elution fraction (buffer exchanged into HBS); 3. E787K 

wash; 4. E787K elution fraction.  

1 2 
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Figure 27. SDS-PAGE verification of R854Q secondary IMAC purification. Lanes: 1. 

Molecular weight protein ladder; 2. Intentional space; 3.R854Q lysate flow through; 4. 

Intentional space; 5. R854Q wash #1 (10mM Imidazole); 6. Intentional space; 7. R854Q wash #2 

(40mM imidazole); 8. Intentional space; 9. Tagged R854Q elution fraction. 

 

 

 

35 

25 

15 
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Figure 28. SDS-PAGE verification of tagged R782W and R816Q. Lanes: 1. Molecular weight 

protein ladder; 2. Initial R782W lysate flow through; 3. R782W wash column; 4. R782W elution 

column; 5. Intentional space; 6. Initial R816Q lysate flow through; 7. R816Q wash column; 8. 

R816Q elution column.  

 

 

 

Biolayer interferometry Binding Kinetics 

 

 Previous studies have hypothesized electrostatic interaction between TIL’E’ and FVIII in 

the a3 domain of FVIII and the TIL’ domain of D’. As mentioned previously, during the 

composition of this project, a high-resolution complex cryo-EM crystal structure confirmed the 

Van Der Waals interaction the D’ domain of vWF has on the a3 and A3 domains of FVIII. To 

further study the interaction between FVIII and TIL’E’ in a quantitative manner, biolayer 

interferometry was employed. Serial dilutions of TIL’E’ with HBS was made (2x dilution), 
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triplicate experiments were conducted for wild type along with each of the mutants to gather a 

series of data sets for analyses. To successfully bind TIL’E’ to FVIII, an Anti-Mouse IgG Fc 

capture (AMC) was utilized with monoclonal antibody (MAB) of choice, G99, in complex with 

ET3i. G99 has a reported binding affinity to FVIII of 15.5nM.53 A 1:1 ration was employed for 

the G99:ET3i complex (Figure 29). The mixture was incubated for at least 15 minute to 

encourage binding. Following the protocol provided by Blitz, total of five sets of triplicate data 

was acquired. Each of these raw data sets were processed through excel to normalize the 

background data. Following background normalization, the data sets were processed once again 

with GraphPad Prism 8.0 for kon, koff, and KD quantification (Figure 30 and Table 2). 

Quantification data indicated decrease in binding with decreasing concentrations of TIL’E’ in 

complex with G99:ET3i, which was expected. 
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Figure 29. Schematic of the G99:ET3i complex utilized in BLI experiments. G99 (orange) 

binding to the C2 domain of FVIII (cyan).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

A             B 

 

 

 

 

 

 

 

 

 

 

 

 

C             D 

 

 

 

 

 

 

E 

 

 

 

E. 

 

 

E. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Non-linear regression curves for WT TIL’E’ along with each of its mutants. The 

graph presented is an averaged data set from triplicate experimentations with normalization 

(subtraction of background). A. G99:ETi3i:WT TIL’E’ with an initial TIL’E’ concentration of 

137µM. B. G99:ET3i:R816Q with an initial R816Q concentration of 262.6µM. C. 

G99:ET3i:R854Q with an initial R884Q concentration of 90.7µM. D. G99:ET3i:E787K with an 

initial concentration of E787K of 66.6µM. E. G99:ET3i:R782W with an initial concentration of 
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R782W of 274.1µM. Both WT TIL’E’ along with each of the mutants demonstrated relatively 

more stable binding at its stock (highest) concentration with a higher phase shift.  

 

 

 

Mutants kon koff KD R Squared 

Literature 

Value 

WT TIL'E' (G99) 234983 0.2875 122nM 0.9551 26nM +/- 2nM 

R816Q 243936 0.1315 539nM 0.9879 N/A 

R854Q 1473202 0.2359 160nM 0.9352 N/A 

R782W 284831 0.1089 380nM 0.9576 N/A 

E787K 541763 0.1295 240nM 0.9891 N/A 

 

Table 2. Quantitative data (kon for association, koff for dissociation, and the dissociation constant, 

KD) for WT TIL’E’ as well as each of the mutants.  

 

 

 

 The G99:ET3i:WT TIL’E’ complex bound with a dissociate constant (KD) of 122nM in 

this study, for comparison and consistency purposes, the TIL’E’ mutants will be compared to the 

obtained WT TIL’E’ data at 122nM. It has been noted that the TIL’ domain missense causes the 

most severe form of type 2N vWD, specifically the R816Q mutation. BLI results showed the 

weakest binding affinity (KD) to FVIII which is consistent with the hypothesis. The loss of the 

positive charge in the primary negatively charged a3 binding region would cause significant 

deleterious effects. The significance of R816 electrostatic interaction with FVIII was further 

confirmed by the cryo-EM structure; BLI data was consistent with the complex structure. E787K 

and R782W both were hypothesized to affect binding due to potential conformational change of 

the TIL’ domain secondary to changes in charges. BLI data confirmed the decrease in binding to 

FVIII with 240nM and 380nM, respectively. R782W additionally introduced a more 

hydrophobic residue, and the increase in hydrophobicity affected its ability to bind to FVIII in 

comparison to E787K with a 240nM (KD), which is consistent with the hypothesis. Finally, 

results indicated R854Q had the least amount of effect on binding with the highest binding 
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affinity out of all the mutants, 160nM. R854Q was hypothesized to only have minimal effect as 

R854 does not make significant contact with FVIII, and the BLI results were found to be 

consistent with the cryo-EM structure. All of the mutants, including WT TIL’E’, associates 

quickly on the AMC tip, and dissociates at an incredibly fast rate as well (Figure 31). There were 

clear phase shifts observed, and a large dissociation phase shift as well (Appendix A Figure 1-5).  

 

Figure 31. Figure of G99:ET3i complex noted in cyan overlay with the cryo-EM structure of 

FVIII:vWF complex noted in pale blue. Binding of TIL’E’ to the a3 acidic peptide noted in red 

and yellow, respectively. This is a complex representation utilized in the BLI. Structurally, the 

G99:ET3i complex binds to the AMC tip, followed by D’ of vWF’s association. There are no 

noted binding overlaps, each complex has a different binding motif; with G99 binding at C2, and 

TIL’E’ binding to the a3 and C1 domain of FVIII. (WT TIL’E’ PDB ID: 2MHP) 
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Affinity Pull-Down Assay 

 

 Qualitative analyses of the TIL’E’ mutants against ET3i were conducted via affinity pull 

down assays with TALON magnetic beads. The TIL’E’:ET3i complex served as a control in the 

affinity pull-down assay. The complex was accomplished by binding TIL’E’ to ET3i, to ensure 

that the tagged proteins and magnetic beads were viable for the assay. The initial TIL’E’:ET3i 

complex was incubated at a 1:1.25 ratio at room temperature prior to the initiation of the assay. 

Controls showed successful interaction between TIL’E and ET3i, as two bands were visualized 

in the elution fraction (Figure 24). It was quickly noted that the TIL’E’ mutants are not 

remaining bound to the resin during wash steps. This is evident when comparing the mutants to 

wild type TIL’E’ and D’D3 bound to ET3i (Figure 31). Tagged mutants were bound to the resin, 

followed by the addition ET3i. Upon wash steps, some protein was lost and subsequently, some 

of the already limited amounts of ET3i may have also eluted off the column during wash steps. 

Upon elution, only the bound mutants were visualized on the gel, and no ET3i were detected. 

Multiple trials have indicated that ET3i has become too dilute to be analyzed on SDS-PAGE. 

Higher concentrations of ET3i were utilized for this affinity pull-down without significant 

improvement. The qualitative studies are consistent with the data obtained from the BLI. As 

quantified, the mutants associate quickly onto the AMC tip with a high kon value, remained 

bound to ET3i, followed by an incredibly fast off rate (koff). This is likely the explanation to the 

difficulty seen in this binding study.  

 In figure 32, the most severe type 2N missense (R816Q) along with the mutant that was 

hypothesized to cause structural perturbation the TIL’ domain, R782W, were selected for 

analysis. In lanes 1-4 are the flow through and wash steps of R816Q:ET3i, and ET3i did indeed 
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slowly dissociate from R816Q which was bound to the resin. Lane 5 demonstrated an extremely 

faint line for ET3i (nearly invisible), but R816Q did elute from the column. The lack of ET3i in 

the complex indicated that ET3i quickly dissociated or was unable to remain bound to R816Q 

throughout the wash steps. This is consistent with quantitative findings of the weakest 

dissociation constant (KD) of 539nM when compared to other mutants and wild type (Table 2). 

Lanes 6 and 7 represent the R782W:ET3i complex, flow through and wash step, respectively. 

Lane 8 demonstrated the R782W elution fraction, which showed that R782W successfully eluted 

off the column without the presence of ET3i, as demonstrated by the lack of the ET3i band near 

100kDa (Figure 32). The qualitative finding is again consistent with the BLI data of the second 

weakest binding of 380nM (Table 2). The absence of ET3i on the SDS-PAGE verification has 

proven to be consistent with the low KD and quick dissociation rates indicated in the BLI binding 

kinetics study.  

 

 

 



64 
 

 

Figure 32. SDS-PAGE verification of protein-protein interaction between WT TIL’E’ and ET3i. 

Lanes: 1. Molecular weight ladder; 2. Intended space; 3. Initial nickel column WT TIL’E’ flow 

through; 4. Intended space; 5. Initial nickel column WT TIL’E’ wash fraction; 6. Intended space; 

7. WT TIL’E’:ET3i wash; 8. intended space; 9. WT TIL’E’:ET3i elution fraction.  
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Figure 33. SDS-PAGE verification of R816Q and R782W bound to ET3i. Lanes: 1. Molecular 

weight protein ladder; 2. R816Q:ET3i flow through; 3. R816:ET3i wash; 4. R816Q:ET3i wash 

#2; 5. R816Q:ET3i Elution; 6. R782W:ET3i flow through; 7. R782W:ET3i wash; 8. 

R782W:ET3i elution. SDS-PAGE indicated that tagged TIL’E’ and TIL’E’ mutants could be 

visualized but not ET3i upon elution.  

 

 

 

 

 

X-Ray Crystallography 

 

 X-ray crystal trials were employed to further study vWF D’s structural integrity and its 

interaction with FVIII. TIL’E’:ET3i complexes were complexed for crystallographic trials. 

Multiple hits were identified from previous lab work sent and done by Hauptman-Woodward 

Medical Research Institute. The 24-well via hanging drop vapor diffusion crystal trays were set 

up to further pursue the conditions that contained crystals (Table 3). Initial crystal morphology 
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was observed to be flat and diamond-like in the wells that contained crystal formation, instead of 

a traditional three-dimensional crystal morphology. In addition, some of the initial crystals that 

demonstrated a three-dimensional morphology carried multiple mesh-like layers instead of a 

thick single-layer appearance. However, there were a few wells that contained full-bodied three-

dimensional crystals that were collected for data gathering (Figure 33).  

 

 

Screen Buffer Salts/(other components) Precipitants Manufacturer 

pH 0.1M TAPS Ammonium Sulfate 

PEG 12K 

12% 

Hampton 

Research 

 0.1M TAPS Ammonium Phosphate 

PEG 20K 

12% 

Hampton 

Research 

 0.1M BTP Lithium Bromide  

PEG 20K 

12% 

Hampton 

Research 

 0.1M TAPS Sodium Chloride 

PEG 1K 

40% 

Hampton 

Research 

 0.1M TAPS 

Sodium Chloride, Al's 

Oil 

PEG 1K 

40% 

Hampton 

Research 

     

PEG 0.1M TAPS (pH 9) Ammonium Phosphate PEG 20K 

Hampton 

Research 

 0.1M BTP (pH 7.5) Ammonium Sulfate PEG 4K 

Hampton 

Research 

 0.1M TAPS (pH 9)  Sodium Chloride PEG 1K 

Hampton 

Research 

 

0.1M HEPES (pH 

7.4) Sodium Chloride PEG 4K 

Hampton 

Research 

 0.1M BTP (pH 6.5) Potassium Bromide PEG 20K 

Hampton 

Research 

 0.1M Tris (pH 7.5) Lithium Bromide PEG 20K 

Hampton 

Research 

 

Table 3. crystal trials and well conditions of TIL’E:ET3i complex. The 24 well trays usually 

consists of two varying components, the x-axis of the tray as well as the Y axis of the tray, while 

the rest of the components were kept constant (i.e. PEG screen is varying concentrations of PEG 

on the x-axis, whilst pH screen is varying the pH along the y-axis). All buffers were made from a 

stock concentration of 1M, salts and other components were diluted from various stock 

concentrations.   
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Figure 34. Images of crystals obtained in screens of TIL’E:FVIII complex. Crystal formation 

observed to be single layered, three dimensional, and diamond-like in appearance.  

 

 

 

 The crystals in figure 33 were selected, looped, cryo-protected, and screened remotely at 

THE Advanced Light Source (ALS) at Lawrence Berkeley National Labs, for potential 

diffraction. The looped crystals were cryoprotected in their growing condition, and promptly 



68 
 

frozen upon extraction. While we were able to grow crystals of ET3i in the presence of vWF D’, 

there was no discernible electron density for TIL’E’ in complex with ET3i. However, improved 

crystallographic conditions were obtained in which there were observed crystal growth, which 

led to an improved resolution of ET3i.  
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Chapter 6 

Conclusion and Future Work 

 

 The importance of FVIII’s interaction with other proteins and its circulatory partner is 

demonstrated by the different types of bleeding disorders through its absence or mutations, i.e., 

hemophilia. Similarly, vWF’s interaction with FVIII has been proven to be significant, as 

mutations may substantially affect their interaction and thus causing von Willebrand Disease. 

Both hemophilia A and von Willebrand Disease type 2N presents an infinite number of 

complications, clinical treatments, emergency treatments, and costly financial burdens for its 

patients. Therefore, structural understanding of FVIII and its circulatory partner, vWF, is crucial 

to further understand the formation of these bleeding disorder. Improved understanding of these 

two large glycoproteins is necessary to improve and enhance therapeutic treatments and patient 

care.  

 New publications in the recent years have made significant strides towards structural 

knowledge between FVIII, isolated domains of FVIII, vWF, D’, and D’D3 domains of FVIII. A 

negative-stain electron microscopy and hydrogen-deuterium mass spectroscopy (HDX-MS) 

studies with D’D3 was previously conducted.53 The findings Chiu et al. substantiate those of Yee 

et al. where C1 was established as the major vWF binding site.57,58 With the most recent 

publication of the high-resolution structure paved way for a better understanding for hemophilia 

A as well as von Willebrand Diseases. This 2.9Å structure determined the binding mechanism of 

how FVIII’s circulatory partner, vWF, interacts with it. As discussed earlier, vWF D’ domain has 

been proposed to be the domain that is highly involved in the binding to FVIII. Fuller et al. were 

able to confirm this interaction from their complex structure.47 Furthermore, severe hemophilia A 
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and type 2N von Willebrand disease mutants were identified and discussed structurally. Fuller et 

al. confirmed the significant electrostatic interaction between R816 and sulfated Y1680 in the C1 

domain of FVIII (Figure 34).55 

 

 

Figure 35. sulfated Tyr1680 interacting with the TIL’ domain R816 residue. The electrostatic 

interactions are noted in gray dotted lines and constitutes as stabilizing force for FVIII and vWF.  

  

 

 Contradictory to recent publication of interaction of vWF and C2 domain, the cryo-EM structure 

indicated that D’ does not involve the C2 domain when docked onto FVIII. Instead, D’ makes 

the most significant amount of contact with the a3 and C1 domain of FVIII, and the D3 domain 

of vWF contacts C2 domain of FVIII (Figure 27).52 The binding studies conducted in the Spiegel 

Lab were evaluated and consistent with the most recent structure. The rapid association and 

dissociation of all TIL’E’ mutants indicated certain deleterious effects. Quantitatively, changes 

in binding that are measured 10-fold or greater usually indicates a confirmed binding 

disturbance. However, the mutants’ disruption in binding to FVIII were only measured to be 

five-fold less than wild type TIL’E’ (Table 2). Thus, it may be concluded that even a small 

structural change or a change in electrostatic charges (structural perturbation) is significant 
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enough to affect vWF’s ability to bind to FVIII. In other words, the stability of FVIII:vWF 

binding may be easily disturbed, as evaluated through the BLI. Though the TIL’E’-

Mutants:FVIII complexes were unseen in structure (via crystallography), the binding capabilities 

were quantitatively evaluated via BLI. The instabilities in binding observed in the studies that 

were conducted in the research lab allowed further hypotheses and trajectories of research.  

 All cumulative efforts on the structure of FVIII allowed Fuller’s group to uncover the 

most recent high-resolution structure. The cryo-EM structure verified that neither the C1 domain 

alone nor the acidic peptide region (a3) alone were sufficient to establish stable complexes with 

the vWF domains. The newly published FVIII:D’D3 structure created exciting opportunities for 

the future of the blood community, as it serves as a foundation for all other FVIII or vWF mutant 

studies that cause other types of bleeding disorders. Researchers have often overlooked FVIII’s 

interactions with other proteins in circulation, this new structural finding may serve a great 

purpose in understanding other intricacies of FVIII in circulation. With better understanding of 

FVIII and its other protein interactions, improved therapeutic strategies can subsequently be 

made for patients who are suffering from FVIII or von Willebrand related disorders.  
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Appendix A 

 

 

Figure 1. Biolayer interferometry (BLI) binding signal representation (in triplicate) of G99:ET3i 

complex against wild tyle TIL’E’. It was observed that wild type TIL’E’ did not associate well to 

the AMC tip with a quick observable association and dissociation rate.  

 

Figure 2. Biolayer interferometry (BLI) binding signal representation (in triplicate) of G99:ET3i 

complex against R816Q. It was observed that there was a strong phase shift at stock R854Q 

(highest) concentration in comparison to wild type. This association rate was observed in 

quantitative data analysis.  

 

 

Figure 3. Biolayer interferometry (BLI) binding signal representation (in triplicate) of G99:ET3i 

complex against E787K mutant. Steady decrease in binding with decreasing concentrations of 

mutant.  
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Figure 4. Biolayer interferometry (BLI) binding signal representation (in triplicate) of G99:ET3i 

complex against R854Q mutant. Similar visual representation compared to R816Q mutant.  

 

Figure 5. Biolayer interferometry (BLI) binding signal representation (in triplicate) of G99:ET3i 

complex against R782W mutant. It was observed that there was a strong phase shift at stock 

R782W (highest) concentration like all TIL’E’ mutants with a quick change in poor signaling 

upon lower concentrations of R782W.  
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