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Abstract 

Plastics are a group of materials that are mass produced for their unique properties including 

durability. This has led to plastics becoming a global contaminant as a bulk material and as micro 

and nano sized particles termed microplastics and nanoplastics (MP/NPs), respectively. As 

awareness to MP/NPs has grown, these contaminants are found to be ubiquitous yet the risk to 

environmental systems remained unclear. Toxicity studies have been performed but the transport, 

fate, and behavior of these contaminants remains limited by the selectivity and sensitivity of the 

commonly used analytical techniques. To address this deficiency, MP/NP tracers have been 

developed using isotopic, fluorescent, and metallic labels to enable particle detection in 

environmental and biological environments. Herein, I describe the application of polystyrene (PS) 

tracers containing internalized gold nanoparticles to investigate the transport, fate, and behavior of 

colloidal plastics in an estuarine system. The performed experiments investigated the PS tracers’ 

ability to remain suspended as a function of water chemistry and upon equilibration with sediment. 

Water chemistry was evaluated through varied salinity and dissolved organic carbon (DOC) 

concentrations while sediment was collected around Bellingham Bay and paired with synthetic 

fresh and marine water. Evaluation of the PS tracers was performed on an individual basis using 

single particle inductively coupled plasma-mass spectrometry (spICP-MS) to determine the 

quantity of suspended particles. The results from aqueous settling experiments found that salinity 

quickly increased PS tracer aggregation while DOC was a stabilizing agent at higher 

concentrations, as statistically evaluated using ANOVA and Tukey’s HSD. Likewise, water type 

and sediment interactions were both significant factors (Welch’s ANOVA and ANOVA) in PS 

tracer capture and deposition resulting in a near total PS tracer capture (approximately 99.5 – 

87.0%). This study demonstrated the versatility of MP/NP metallic tracers coupled with spICP-

MS for evaluating the transport, fate, and behavior of MP/NPs in complex environments. 
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Chapter 1: Introduction 

1.1 Plastic Production and Waste 

The emergence of synthetic polymers began with the pursuit of materials that could be 

molded and their shape retained1,2. Bakelite, the first synthetic polymer created in 1907, was 

quickly followed by the development of other synthetic polymers sparking a technological 

revolution1,2. Plastics are inexpensive, versatile, lightweight, and durable, displacing many 

conventional materials for use in packaging (35.9% or 146 Mt), building and construction (16.0%; 

65 Mt), and textiles (14.5%; 59 Mt) annually as of 20153-5. The growth in plastic production has 

paralleled global demand while future projections predict a continual increase in production and 

waste following current trends5,6.  

 Plastics soft materials are formed from the linkage of organic monomers produce a polymer 

chain. For the vast majority of plastic materials, the polymer chains contain a carbon backbone 

with two associated pendant groups7,8. These polymer chains can be expansive affording thousands 

of linked monomers, while the pendant groups and intermolecular forces between chains give rise 

to unique chemical properties8. From an economic standpoint, the main commercially produced 

plastics are polyethylene (PE; 38.2% of global plastic production as of 2016), polypropylene (PP; 

22.4%), polyvinylchloride (PVC; 12.5%), polyethylene terephthalate (PET; 10.9%), polyurethane 

(PUR; 8.9%), polystyrene (PS; 4.6%), and polyamide (PA; 2.6%)3,7,9. In addition to the plastic, 

chemical additives can be introduced to plastics that alter the materials’ properties to ward off 

degradative processes. Common additives include plasticizers, antioxidants, heat stabilizers, slip 

agents, colorants, fillers, metals, and reinforcements that can leach from the plastic3,10. From the 

possible combinations of polymer types and additives, plastics are a complex material suited for a 

variety of applications and can act as a complex contaminant upon being discarded. 
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The majority of plastic products are designed for single-use or have a short shelf-life 

generating considerable strain on maintaining adequate methods for plastic disposal3,9,11. The 

current disposal routes of plastic vary from being recycled, incinerated, stored, or dumped. 

Recycling is regarded as the most environmentally-conscious method of disposal but for most 

plastics, this method is not viable. As only certain thermoplastics are economically feasible to be 

repurposed, it is estimated that less than 10% of plastics could even be considered for recycling12,13. 

The incineration of plastics is another method that accounts for approximately 12% of plastic 

disposal14. With sufficiently high temperatures, plastics may be reduced to mostly carbon dioxide 

and water, but this requires complete combustion and toxic halogenated compounds that could still 

be released often as airborne contaminants3,14. If incomplete combustion occurs, soot and solid 

residue ash are produced that are comprised of volatile organic and black carbon compounds that 

lead to a host of environmental and human health issues3,14. As recycling and incineration account 

for a minority of plastic waste, the majority has amassed in landfills, which have rapidly filled, 

leading to more plastic waste finding entrance into the environment3,14. To address the buildup of 

plastic waste, several key countries have previously opted for large-scale exportation of plastic 

waste, often to Asia; but as of 2018, China, the largest acceptor, began rejecting foreign waste15,16. 

All of this amounts to plastic being one of the largest forms of waste and its continual buildup has 

led to more plastic waste and waste derivatives finding entrance into the environment14,15. 

1.2 Global Plastic Pollution 

Plastic waste is a global pollutant that has largely plagued terrestrial and aquatic 

environments and has been detected in the air, soil, and polar regions3,6,17,18. The majority of this 

mismanaged plastic debris is derived from terrestrial sources and it traverses the environment 

through our waterways4,18. This transport accounts for the emergence of plastic debris into 
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freshwater and marine environments with an estimated contribution of 80-94% of the total plastic 

load being ferried by rivers18. This has resulted in some the most polluted environments to be 

coastlines, estuaries, and gyres with increased pollution brought on by urbanization, 

socioeconomics, and the lack of waste disposal methods3,9,10,19. This has led to plastics being 

continuously produced and disposed, resulting in ecosystems that are saturated in plastic debris 

that is highly resilient to degradation10,12,20.  

Plastics are a physical blight on ecosystems that impact wildlife through digestive blocking, 

entanglement, and suffocation3,6,9,21. Coupling these actions with the abundance of plastics in 

marine environments has sparked a social outcry as plastic debris has congregated in masses sized 

at over 1.6 million km2 and more than 660 marine species have been placed at risk globally9,22. 

The less visible environmental and biological impacts of bulk plastic debris can occur with the 

gradual release of chemical additives and continual degradation of the polymers10,19,23,24. Migration 

of additives and monomers from the plastic to the surroundings is dependent on the additive in 

question, the polymer‘s physical and chemical integrity, and the surrounding environmental 

conditions3,10. Upon release into the environment, additives and monomers are further transformed 

by biotic and abiotic processes, impacting chemical stability, toxicity, and transport. Likewise, 

chemicals in the environment can sorb to the polymer’s surface and this sorption capacity is often 

increased by polymer degradation10,20,23,24. These actions illustrate plastics as more than a physical 

pollutant as they serve as a chemical vehicle and, when associated with aquatic systems, organisms 

in these environments are likely exposed to these chemicals 10,18,20,23,24. 

1.3 The Emergence and Impact of Micro and Nanoplastics 

 Plastics are highly resilient to degradation as complete mineralization is estimated to take 

anywhere from decades to centuries3,6,12,21. Over this course of time, plastics are subjected to 
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multiple stressors that contribute to material fragmentation releasing microplastics (MPs) and 

nanoplastics (NPs)9,10. MPs have been classified as polymers with size dimensions below 5mm; 

while NPs pertain to plastics with nanometer-sized dimensions (< 1 µm), however, no universal 

definition has been agreed upon for either MPs or NPs9,10,20,23. Further classification of MPs and 

NPs (MP/NPs) distinguishes the particles as being either primary or secondary in origin. The 

importance of this distinction is between MPs that were intentionally manufactured (primary) or 

those generated from abrasive processes or environmental weathering (secondary)9,10,20,25. 

Furthermore, distinctions in MP/NP shape, surface chemistry, and spatial and temporal distribution 

can be assigned that enable a refined approach to address their transport, fate, and behavior. 

As pollutants, MP/NPs are initially chemically identical to bulk plastic material, but the 

physical characteristics play a significant role in their behavior9. In tandem with their reduced 

dimensions, MP/NPs exhibit higher surface area-to-size ratios enabling greater reactivity as it 

pertains to intermolecular interactions10,26-28. The variable surface charge of MP/NPs influences 

processes such as aggregation, dispersion, and sorption; complicating our understanding of particle 

transport and ecological impacts9,10,23.  

The global cycling of MP/NPs remains unclear owed to the enhanced mobility of these 

particles10,18,23,29. Environmental concentrations of MP/NPs are highly variable in relation to their 

various sources and sinks. Wastewater treatment plants (WWTPs) plants have been identified as 

being a key foci for plastic pollution where the vast majority (95-99%) of MP/NPs that enter a 

WWTP are retained in biosolids, while the remaining plastics are released with the effluent10,30,31. 

Effluent from WWTPs contribute an estimated 8 trillion plastic particles per day while the vast 

majority of MP/NPs make their way into biosolids, where they are primarily disposed through 

agricultural use (51%), landfilling (22%), or incineration (16%) in the United States10,32. 
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When biosolids are applied as fertilizer, MP/NPs can gain reentrance into the environment 

with soil concentrations that rival that of marine environments31. Although transport is more 

inhibited, MP/NPs can still be transported through water to secondary sites via agricultural 

runoff30,33. These processes are further complicated by the dynamic behavior of MP/NPs and 

provides a mechanism for human and livestock exposure18,20,33. This increases the pressure to 

understand MP/NP toxicity and the associated health risks that come from their exposure through 

food, water, and air10,29,34. 

In terms of ecosystem dynamics, aquatic species the greatest exposure to MP/NPs10,24,35. 

MP/NPs have been found to accumulate and induce adverse effects in algae and microorganisms 

up to apex predators with trophic transfer enabling the potential to impact all manner of marine 

species10,20,23,36. For algal species, MP/NPs can act as a stressor that decreases the population and 

disrupts symbiotic relationships further escalating issues throughout the ecosystem, however, these 

studies used MP/NP concentrations that exceeded typical environmental relevance9,23,36. To 

invertebrates and vertebrates, MP/NP exposure is often associated with particle adsorption to the 

gills and accumulation in the gastrointestinal tract where these particles may cause blockage, 

irritation, and inflammation to the surrounding tissues9,37,38. Furthermore, MP/NPs have the 

potential to cross biological membranes and impact cell signaling disrupting normal biological 

functions, provoking the immune system, and altering behavior6,9,25,37. Ultimately, recurring 

exposure of MP/NPs have adverse effects on aquatic species that equate to reduced fitness and a 

cascade of ecological impacts all of which are dependent on polymer concentration34,36,37,39. 

1.4 Transport, Fate, and Behavior of MP/NPs in Aquatic Environments 

The spatial and temporal distribution of MP/NPs in aquatic environments is a function of 

major mechanical forces, particle attributes, environmental factors, and biological 
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influences10,18,25,40. These factors do not exist in isolation; therefore, their interactions and 

compounding effects all contribute to the unique transport, fate, and behavior of MP/NPs. In regard 

to their global distribution, advective and turbulent forces greatly aid MP/NP transport leading 

particles to diffuse, settle, become resuspended, and be deposited in sediments and along 

shorelines10,18,41. Likewise, Brownian motion remains in constant effect for suspended particles 

and influences localized particle interactions and diffusion. Following these motions, the physical 

attributes of each particle are of particular importance as these shape the transport, fate, and 

behavior. 

Defining attributes for MP/NPs are their size, shape, density, and topography10,17,25,38. As 

the variability between MP/NPs can be extreme, each of the aforementioned traits adds to 

uncertainty in particle distribution and behavior10,18,42. Of these traits, the role of density is the 

most apparent in its influence on the vertical distribution of MP/NPs throughout the water 

column18,35. Lighter polymers will reside at the water’s surface while heavier polymers are spaced 

throughout the water column and may ultimately settle in the sediment18,35. Likewise, differences 

in the shape and size of MP/NPs have been found to affect particle distribution where fibers 

displayed lower settling velocities, compared to spherical particles, and smaller sized particles 

were more affected by turbulent motions18. 

 As water is the predominant media for particle transport, water chemistry is a crucial 

parameter in relation to MP/NP dispersion and fate. Due to the complexity of natural water 

systems, the current state-of-knowledge is limited as it pertains to MP/NPs. That said, the role of 

pH, ionic strength, sediment particles, nanomaterials, dissolved metals, and dissolved organic 

matter (DOM) have been identified as critical factors in facilitating MP/NP transport, fate, and 

behavior10,23,25,26,43. These factors can influence the transport and fate of MP/NPs through 
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electrostatic and steric interactions, adsorption, and heteroaggregation that can either reduce or 

enhance stability26. Following the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory for 

colloid suspension, pH and ionic strength impact colloidal plastics by compressing the electric 

double layer thus favoring particle aggregation and deposition10,26,44,45. As MP/NPs are largely 

associated with a negative surface charge, an increased presence of positive counterions associated 

with higher salinity and more acidic conditions dampens this repulsive force25,26,43. As such, a 

change in environmental conditions such as the transition from freshwater to marine environments, 

areas afflicted by acid mine drainage, or gastric acid associated with ingestion would alter particle 

stability and thus the behavior, transport, and fate26,45. In each of these situations, particle 

aggregation and deposition are anticipated based on ion presence causing the compression of the 

electric double layer leading25,26,45. The anticipated result of this would be MP/NPs partitioning 

with the sediment thus saturating the aquatic environment they are in. 

 In natural water systems there are a plethora of geogenic particulates and colloids 

(minerals, carbonates, and oxides) that continually interact and exert electrostatic and steric forces 

on their surroundings. These particulates largely stem from natural sources but can derive from 

commercial products and can exhibit profound effects on MP/NPs often associated with 

adsorption, coagulation, and deposition10,25,26,43. The formation of MP/NP heteroaggregates 

impacts the transport and fate of the colloidal polymers through an increase in size and a 

measurable disruption to zeta potential10,30,43. This will often destabilize the combined particles 

leading to further aggregation, settling, and deposition46. Alternatively, if particle suspension is 

retained during heteroaggregation, MP/NPs can act as vectors in the transport of secondary 

particulates particularly iron oxides43. In addition to particulates, dissolved metals and organic 

matter immediately interact with MP/NPs that enter aquatic environments10,17,23,25. The attraction 
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of soluble metals to a particle’s surface is influenced by surface chemistry and electrostatic forces, 

and the capacity for metal adsorption is a function of MP/NP size23,25,26,47. Consequently, these 

colloidal MP/NPs vectors become more complex pollutants with newly altered transport, behavior, 

and fate. 

Alternatively, small organic compounds, such as fulvic and humic substances, are thought 

to stabilize colloidal plastics with the rational supporting DOM adsorption to the polymer’s surface 

and steric repulsion between the plastics and DOM10,25,26,35. The accumulation of DOM to MP/NPs 

is hypothesized to operate on hydrophobicity and π-π interactions resulting in the formation of a 

corona, thus retaining particle stability through repulsive forces25,27. Likewise, steric repulsion 

between colloidal plastics and DOM is also possible and has been experimentally supported26. On 

its own, DOM acts as a stabilizer for colloidal plastics that favors continued contaminant transport, 

however, this effect may be countered by divalent cations (Ca2+, Mg2+) that can facilitate bridging 

between negatively charged end groups26,27. Ultimately, the concentration of DOM is critical when 

evaluating colloidal plastics as steric and electrostatic stabilization have been observed in 

laboratory studies which could lead to enhanced transport in aquatic environments. 

The final influence mentioned here is the role of biological factors on MP/NPs as it pertains 

to the transport, fate, and behavior of these contaminants. Bacteria and other simple organisms are 

thought to immediately interact with MP/NPs in an effort to colonize the new environment35,46. 

This has led to a buildup of microorganisms upon the polymer’s surface that alter surface chemistry 

and particle buoyancy10,17,40,48.  This behavior results in a variation of vertical transport pathways 

where lighter polymers and smaller particles can decrease in buoyancy, while heavier polymers 

become more buoyant resulting in upward transport. A multitude of factors can lead to the loss 

and reemergence of microbial colonies further complicating vertical transport cycles40,48. In 
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contrast to particulates or dissolved substances, attachment of microorganisms increase MP/NP 

heteroaggregation due to the release of extracellular polymeric substances that form a sticky 

media26,40. The impact of a microorganism assemblage on to MP/NP’s surface can lead to altered 

physical properties, changes in vertical transport and chemical release, and can lead to 

bioaccumulation and trophic transfer40. All of this alters the fate and transport of MP/NPs in 

aquatic systems. 

In addition to microorganisms, the trophic transfer and accidental ingestion of MP/NPs has 

been widely observed10,20,29,35. The retention rate for MP/NPs within an organism is a function of 

size where smaller particles are retained for an extended period and can penetrate deeper within 

the body36,38,49. This raises concerns about MP/NP toxicity as it relates to chronic exposure, 

bioaccumulation and biomagnification, and the partitioning of secondary contaminants (i.e. 

additives, metals, and other persistent organic pollutants)6,10,23,25. As MP/NPs traverse the trophic 

levels, the contaminant load also rises thus subjecting higher-level organisms to greater MP/NP 

burdens20,23,50. This creates further pressure on these organisms and offers another pathway to 

human exposure through seafood consumption19,23,35,51.  

1.5 Analytical Detection of MP/NPs 

 The complexity in MP/NP transport, fate, and behavior is influenced by a variety of 

physical, environmental, and biological factors as detailed above. The extent to which these factors 

interact with each other and with MP/NPs is not fully understood and require new techniques and 

instruments capable of investigating these behaviors in complex environments. To address these 

uncertainties, numerous studies have emerged that have focused on the abundance, persistence, 

mobility, and interactions of these pollutants. A significant hurdle in the assessment of MP/NPs 

concerns the small size of these particles and the ability to distinguish them from complex 
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environmental and biological media. Standard protocols are still being developed and have mostly 

focused on larger sized microplastics, while analytical methods fall short in addressing both 

MP/NPs9,20,21,52.  

 Many MP/NPs analyses are focused on particle size, behavior, and their association with 

the environmental and biological matrices. Most studies have focused on larger sized particles and 

tend to underreport morphological and chemical information21,42,52. This lack of information stems 

from current sampling protocols and analytical techniques that are largely incapable of addressing 

NPs and are not suited to provide physical and chemical information. Particle identification and 

distinction is further complicated with a reduction in size causing most analytical methods to be 

insufficient21,53. Fully characterizing MP/NPs requires multiple analytical instruments to 

contribute a more complete understanding of these contaminants52,53.  

A common approach to assess MP/NP morphology is via particle visualization through 

light and electron microscopy. Both of these methods provide different aspects for particle 

detection and topographic analysis but largely fail at distinguishing natural and synthetic particles 

or confirming chemical identity. For optical microscopy, a significant limitation is with particle 

size detection and resolution20,21,52. Analyses that use light microscopy were found to have a high 

rate of misidentified particles and this type of visualization was limited to larger MPs20,21,52. 

Electron microscopy provides a means to visualize particles on the nanoscale, however, chemical 

identification is limited, and the sample preparation results in a wealth of analytical artifacts21,52. 

 For the chemical analysis and confirmation of MPs, Fourier-Transform Infrared (FTIR) 

and Raman spectroscopy are two nondestructive techniques often coupled with optical 

microscopy17,21. In this coupled approach, the physical and chemical aspects of MPs are obtained 

enabling a more complete analysis of the contaminant. In FTIR, the sample is irradiated by infrared 
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radiation leading to an increase in energy expressed as unique molecular vibrations. Likewise, 

Raman spectroscopy involves the use of a laser to produce scattered photons that provide a 

molecular fingerprint. These instruments enable the detection and analysis of a bulk sample to 

single particles with detection limits of 10 µm and 1 µm for FTIR and Raman respectively21,52,54. 

Aside from size limitations, FTIR and Raman are afflicted by polymer surface modifications that 

can complicate chemical identification, sample preparation can be strenuous, and these instruments 

can fail to provide information on additives or adsorbed chemicals17,21,52,54. All things considered, 

the use of FTIR and Raman spectroscopy are excellent for the chemical analysis of MPs from 

biological or environmental matrices but are incapable of assessing individual NPs21.  

 In the analysis of either MPs or NPs, spectrometric techniques offer a mechanism for 

chemical analysis and quantification but often fall short of providing morphological information. 

Mass spectrometric instruments such as pyrolysis gas chromatography-mass spectrometry (Py-

GC-MS), thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS), 

and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF 

MS) are capable of MP/NP analysis and quantification but they are destructive techniques with 

limitations in terms of reproducibility17,21,53,54. Alongside established analytical methodologies and 

instruments, several novel techniques have been, and continue to be, developed or repurposed with 

the aim to improve the identification and quantification of MP/NPs. Direct analysis in real time-

high resolution mass spectrometry (DART-MS), operates at ambient temperatures using chemi-

ionization and an orbitrap mass analyzer thus providing a more rapid and accurate chemical 

analysis although it remains a destructive analysis55,56. Owing to their potential, these instrumental 

techniques are relatively new in addressing MP/NPs and remain to be further explored and 

perfected.  
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In parallel with instrumental advancements, the extraction of MP/NPs from complex media 

at environmentally relevant concentrations is still a significant research need. Most conventional 

extraction methods have relied on polymer density for isolation, and other techniques, such as the 

one described by Zhou et al., utilize surfactants to perform cloud-point extraction (CPE) of PS and 

polymethyl methacrylate (PMMA) NPs54. CPE uses surfactants that effectively isolate and 

concentrate NPs from aqueous environment allowing for analysis by mass spectrometry. The 

viability of this method was further demonstrated with its applicability to a complex media, 

WWTP effluent, while being reproducible with a high rate of recovery54. Extending the application 

of CPE, future studies should be able to use this cost-effective strategy to effectively isolate and 

detect previously unobtainable plastics from complex environmental samples at relevant 

concentrations. 

To overcome some of these challenges, the development of tracer polymers has provided 

a mechanism to access particle transport, fate, and behavior by providing a distinguishable 

signature to the MP/NP. In the development of these MP/NP tracers, unique artifacts are 

incorporated into the particle such as fluorescent tags, isotopic elements, or trace metals. 

Fluorescent tags are the most commonly used artifact to trace MPs, with Nile Red as a popular 

choice as it adsorbs to most polymers based on hydrophobicity while fluorescence is quenched in 

most polar environments. In addition to Nile Red dye, Karakolis et al. 2019 identified alternative, 

commercially available dyes for various MP polymers that offered a wider fluorescent spectrum, 

higher fluorescent stability, are more robust to digestive procedures, and are cost-effective57. The 

use of fluorescent dyes with MP/NPs has enabled polymer identification and rapid screening of 

environmental and biological samples but may be limited in these applications due to low light 

emission per molecule, the photostability of the dye, and sample complexity21,58,59. This has limited 
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fluorescent tracer studies to specific size or concentration regimes that often exceed environmental 

relevance60. The drawback to using fluorescence labels is that polymer size and concentration 

control detection making the method not viable for addressing smaller MP/NPs at environmental 

relevant concentrations36,61. 

Isotopic labelling of plastics is another method to trace MP/NPs with the advantage of 

being able to address contaminant transport and transformations62-64. Often with the incorporation 

of 13C-enriched monomers, MP/NPs with isotopic signatures that can be isolated and quantified 

with minimal interference using ionization-based instruments65,66. This provides a mechanism to 

accurately trace the cycling of anthropogenic carbon in the environment as it relates to the 

degradation of polymers and carbon cycling64,65. In addition, the use of stable isotopic labeling 

potentially reduces the physical and chemical discrepancies between the tracers and their 

corresponding MP/NPs relative to other polymer proxies. As it currently stands, isotopic tracing 

of synthetic MP/NPs is a viable approach that has been minimally explored in the literature, is 

expensive, and instrumentational analysis is yet to be perfected and widely adopted for this 

purpose.  

As an alternative tagging strategy to fluorescence and isotopic labels, trace metals have 

been explored as a means to trace and detect MP/NPs in complex media. Metal-doped plastics 

typically require a shelling process to provide the desired polymer surface and encapsulate the 

metal particles embedded within the polymer matrix. Following the work of Keller et al. 2020, PS 

NP and PET microfiber proxies were synthesized with palladium and indium oxide respectively30. 

These proxy NPs and microfibers were deployed in laboratory studies that simulated polymer 

transport in sewage sludge, followed by detection using inductively coupled plasma mass 

spectrometry (ICP-MS). As the trace metal are used to distinguish MP/NPs from the environment, 
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ICP-MS provides a fast and reliable mechanism to quantify trace metal concentrations that serve 

as a proxy for MP detection30. Expanding upon the metal-doped NP approach, research performed 

by Jiménez-Lamana et al., Curtis et al., and Rauschendorfer et al. demonstrated the ability to 

distinguish individual polymers via single particle ICP-MS (spICP-MS) using PS shelled NPs with 

Au nanoparticle tags67-69. The advantage of a discrete approach in addressing NPs is that the 

individual dynamics of a polymer suspension can be determined through an intractable, 

quantitative assessment30,58. This would allow for data collection that reflects the complexity of 

NP transport, fate, and behavior at environmentally relevant concentrations.  

The current shortcomings with metal-doped polymers are limited polymer selection, 

applicable metal tags, and development of a proxy that is an accurate representation of the 

corresponding MP/NPs. Regarding physical representation, metal-doped proxies are synthesized 

with a defined shape and a density that may not reflect that of a pure plastic material. The inability 

to align the proxy’s physical parameters with that of environmentally relevant plastic particles 

would limit comparability. A further limitation of this approach is that particle stability and 

degradation over extended periods have been minimally studied or reported. However, though still 

in its infancy, metal-doped MP/NPs offer an approach to quantitatively assess the fate, transport, 

and behavior of elusive contaminants without the concern of high background interference; and 

future developments are likely to increase proxy applicability and popularity in addressing 

MP/NPs30,58,70. 

1.6 Project Design and Significance 

 The purpose of this study was to investigate the dynamics of NPs within estuarine 

environments using Au-doped PS proxies through spICP-MS detection. Using this approach, 

particle aggregation and partitioning between media were evaluated based on environmental 
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factors associated with the collected sediment and water type. Experimental results obtained from 

this study were used to better understand the behavior, transport, and potential fate of PS NPs in 

aquatic environments. 

 The justification for using PS-based proxies is that PS is a high-use consumer plastic that 

is environmentally relevant in aquatic and coastal zones10,19,70. In addition, PS materials are prone 

to photodegradation resulting in potential toxicological impacts at various particle size 

regimes9,12,37,39. This study aimed to assess the behavior of these proxies in an estuarine 

environment, a likely sink for these materials as they traverse from terrestrial use, to riparian 

systems, and ultimately into marine environments. 

The Nooksack River Estuary was viewed as an optimal aquatic environment for its role as 

the intersection between freshwater, marine, and recreational influences71,72. Like many Pacific 

Northwest estuarine systems, this region is a host to a diverse ecological system yet remains 

continuously pressured by anthropogenic factors including plastic debris19,71. As such, it is critical 

to understand the environmental mechanisms that influence the transport and retention of plastic 

particles and the related stress MP/NPs entail on these systems. 

 Bellingham Bay is situated to the north of Puget Sound and is comprised of more than 64 

km2 of sub and intertidal habitat72. The bay itself is a mix of urban and undeveloped regions with 

the eastern shore containing the major port, industrial, and commercial structures while the 

northern-most shorelines remain relatively undeveloped. The Nooksack River is the most 

prominent freshwater input to the Bay affecting salinity, suspended solids, and sediment 

deposition. Along with this, adsorption to sediment can favor the deposition and retention of 

MP/NPs in aquatics systems based on sediment parameters (grain size, metal content, and carbon 

species and content). The combination of these factors, in tandem with weak marine currents, 
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would favor the estuary as a high depositional region for MP/NPs72. To investigate the role of 

sediment and how it can influence the transport and fate of MP/NPs, sediment samples were 

collected with the goal of capturing the variability in physical and chemical attributes. The key 

attributes highlighted in this study were sediment grain size, metal content and speciation, and 

carbon content and speciation.  

As a central focus of this project pertains to NP suspension and stability, the role of salinity 

and dissolved organic carbon (DOC) on PS tracer stability was investigated. This test followed an 

increasing gradient in salt and DOC concentration followed by spICP-MS detection. The question 

here was how PS tracer stability and suspension would be affected by increasing DOC and salinity. 

It was hypothesized that, based on colloidal stability, an increase in salinity would favor PS tracer 

aggregation and deposition due to the electrical double layer compression. This would imply that 

the transition from a freshwater environment to a marine environment would cause MP/NPs to 

aggregate and deposit within estuarine systems. Conversely, it was hypothesized that DOC would 

adsorb to the PS tracers leading to stabilization due to steric and electrostatic repulsion between 

colloidal particles. This would imply that the DOC would generate a sufficient negative surface 

charge across the PS tracer and would coat the PS tracers leading to repulsive forces associated 

with steric stabilization. As the concentration of DOC increases, MP/NPs are anticipated to be 

more stable in aquatic environments leading to enhanced transport, however, the concentration of 

divalent cations could complicate this through cation bridging.  

To address NP partitioning between the water and sediment, an experiment based on NP 

proxy-sediment equilibration was performed. Sediment from each site along with two distinct 

water types were used to develop slurries that were spiked with the PS tracers. Analysis of the PS 

tracers was performed through spICP-MS where the PS tracers were defined by fractions: 
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suspended, loosely bound, and sediment bound. It was hypothesized that, upon equilibration, the 

PS tracers will primarily partition to the sediment and that the strength of this association will be 

reflected in the sediment and water attributes. With this, smaller sediment particles and higher 

concentrations of metals are expected to play a role in tracer deposition while the water parameters 

will hold the same effect previously hypothesized in the aggregation and equilibration 

experiments. Additionally, sediment carbon content is anticipated to have a profound effect on PS 

tracer retention with higher total carbon concentrations and higher black carbon concentrations are 

expected to play a role in PS tracer deposition. The experimental design to examine the partitioning 

behavior of the PS tracers between water and sediment is depicted in Figure 1. 

 

Figure 1. Experimental design for the PS tracer partitioning experiments between water and sediment. The sediment 

collected from each  sample site was paired with either EPA moderately hard water (EPA MHW) or Instant Ocean 

(IO), spiked with PS tracers, and thoroughly mixed to reach equilibration. The suspended and loosely bound PS tracers 

were analyzed for each sample by spICP-MS. 

Chapter 2: Methods 

2.1 Study Region/Sediment Collection 

 Northern Bellingham Bay is defined by the estuary formed from where the Nooksack River 

outlet meets the marine water of the Salish Sea. A popular access point to this area is Locust Beach 

(48.77, -122.53) where the flood plains extend to the Nooksack River outlet and the floodplain is 

readily accessible during low tide. In this study, sediment samples were collected on August 19, 
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2020 at low tide following a path preset using the smartphone app “GPS Fields Area Measure” 

developed by Farmis that offered the global position and coordinates. Four sites were evaluated 

that encompassed an area of 1km2 and the top 10cm of sediment was collected in triplicate using 

a sediment core sampler, a stainless-steel trowel, and a plastic container at each site. The collected 

sediment was transported back to the laboratory and stored in a refrigerator at 4°C. The study site 

is depicted in Figure 1A. and each site is assigned a label (A-D). The coordinates for each site 

following the lettered labelling scheme are presented in Table 1.  

Table 1. Global coordinates of the Bellingham Bay study region designated by each sediment sample site (A-D). 

Site Longitude Latitude 

A 48.767 -122.560 

B 48.776 -122.564 

C 48.776 -122.544 

D 48.769 -122.548 

 

2.2 Sediment Preparation 

 The sediment samples were thoroughly mixed to achieve homogenization. For this 

purpose, the sediment samples were individually transferred to a large stainless-steel bowl and the 

sediment was mixed with gloved hands. Large, unrepresentative artifacts were removed during 

this process, and the mixed sediment was returned to its original container then stored in the 

refrigerator. For experiments that required dried sediment, sediment samples were placed on 

aluminum trays and set in an oven at 60°C for 48 hours.  

2.3 Characterization of Sediment 

2.3.1 Physical Characterization of Sediment 

The sediment samples were characterized by their particle grain sizes. Dried sediment was 

disrupted with a pestle to ensure reduce particle agglomeration and then the mass was obtained 
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using an analytical balance (VWR-124B2). The sediment was then passed through a stainless-steel 

sieve with mesh sizes of 2000, 500, 250, 125, and 63 µm. A top and bottom cover were placed on 

the sieve stack and the entire apparatus was manually shaken for a summed total of 15 min. The 

mass of each fraction was obtained, and the grain size percentage was calculated from the total 

mass. 

2.3.2 Chemical Characterization of Sediment 

 The collected sediment samples were characterized by their chemical composition with an 

emphasis on carbon speciation and environmentally available metals. The instrumental techniques 

used to determine chemical composition were ICP-MS, flame atomic absorption spectrometer 

(FAAS), and elemental analysis (EA). These instrumental techniques enabled the detection of trace 

metals, major metals, and carbon content respectively. 

To determine the concentration of environmentally available metals, the sediment samples 

were dried then digested following EPA Method 3050B where the trace metals were analyzed via 

ICP-MS following EPA Method 200.8 and the major metals were analyzed by FAAS following 

EPA Method 7000B. Au was the exception to these methods and was prepared following EPA 

Method 3050B with the exception of using an aqua regia solution (4:1 HCl/HNO3) to favor Au 

dissolution. The distinction in metal analysis was based on abundance where the trace metals were 

analyzed using ICP-MS and FAAS was reserved for the more abundant metals. 

For trace metal analysis, two calibration standards were used with ICP-MS-6020-CAL-R-

1 (AccuStandard®) used for the analysis of Al, V, Mn, Co, Ni, Co, Ni, Cu, Zn, and Cd while an 

Au standard (SPEX CertiPrep® Claritas PPT®)  was used in the analysis of Au analytes. A 

quadrupole ICP-MS (Agilent 7500ce), with a MicroMist glass concentric nebulizer and a Quartz 
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Scott-type spray chamber, was used for the detection of metal analytes following instrument 

operating conditions described in the Appendix (Table 1A). Likewise, metal analysis by FAAS 

was performed by Western Washington University’s Scientific Technical Services using a Varian 

SpectrAA 220 FS Atomic Absorption Spectrometer. 

Carbon content and speciation followed a chemo-thermal oxidation (CTO) method that 

differentiated total carbon (TC) into labile carbon (LC), black carbon (BC), and inorganic carbon 

(IC) fractions. The carbon speciation method performed was an adaptation of the CTO methods 

described by Caria et al. (2011), Elmquist et al. (2004), and Gustafsson et al. (2001)73-75. The 

sediment samples were dried at 60°C for over 24 hrs while empty aluminum trays were placed in 

a muffle furnace at 550°C for 8 hrs. A portion of the dried sediment was saved for TC analysis. 

The dried sediment was transferred to the aluminum trays and the mass was obtained before being 

placed in the muffle furnace at 375°C for over 18 hrs. The mass loss for each sample was attributed 

to the LC fraction and a portion of the sample was saved for BC and IC analysis. Finally, the 

sediment was transferred to ceramic dishes and acidified with enough 1M HCl to fully saturate 

each sample. These samples were covered with a ceramic lid and left to acidify overnight to 

remove all IC sources. Ultrapure water (herein referred to as MilliQ water) was added to the 

acidified samples and where then filtered through Whatman #2 filter paper (8 µm pore size) and 

washed by two additional aliquots of milliQ water. This step was performed to prevent an 

additional mass increase from HCl residue when the sediment was dried. The sediment was 

returned to the ceramic dishes using milliQ water for the transfer, and the sediment was dried at 

80°C for 24 hrs. 

 Carbon content analysis was performed using a Thermo Fisher Scientific Flash EA 1112 

NC Soil Analyzer that operated through the combustion of dried sediment. An atropine standard 



21 
 

was used to quantify carbon content based on the ratio of carbon to nitrogen.  All samples were 

packed and sealed in aluminum capsules and the mass was obtained before analysis. 

2.4 PS Tracer Synthesis and Characterization 

2.4.1 PS Tracer Synthesis 

The PS tracers were procured from Dr. David Rider’s research group; part of the 

Department of Chemistry, Western Washington University. These PS tracers are comprised of a 

core, polymer shell, and internalized AuNPs and the methods used for synthesis are described in 

Curtis et al. and Rauschendorfer et al. Briefly, PS tracer synthesis starts with the styrene (20%) 

and 2-vinylpyridine (80%) to form a polystyrene-poly(2-vinylpyridine) co-polymer (PS-co-P2VP) 

core67,68. The core was then covered by a selected polymer shell and for this study PS was selected 

as the shelling polymer. Formation of internalized metallic nanoparticles has been performed 

through the electrostatic binding of metallic ions with the protonated pyridine group followed by 

photoreduction to yield nanoparticles. This technique has been demonstrated with Au, preformed 

Ag, Pd, and Pt, all of which offer a trace metallic signature in most environments67. The PS tracers 

deployed in this study for environmental assessment utilized AuNPs for ICP-MS detection. The 

synthesis scheme is illustrated in Figure 2. 
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Figure 2. PS Tracer synthesis scheme starting from the PS-co-P2VP core and ending with the addition of the AuNPs. 

The diagram of the PS tracer provides the particle’s diameter (480 nm) along with the approximate diameter (~5 nm) 

of the AuNPs. 

2.4.2 PS Tracer Physical Characterization 

The PS tracers were physically evaluated on the basis of particle size distribution, metallic 

nanoparticle content and distribution, density, and zeta potential. The evaluation of particle size 

and metallic nanoparticle distribution was performed by Dr.Rider’s research group using Dynamic 

Light Scattering (DLS) (Delsa Nano HC, Beckman Coulter), tapping-mode Atomic Force 

Microscopy (AFM) (Bioscope Catalyst, Bruker), and scanning transmission electron microscopy 

(STEM; JSM-7200F field emission microscope, JEOL)67.  

To determine the metallic nanoparticle content for the PS tracers, spICP-MS was 

employed, and the corresponding signal intensity distribution reflected metallic nanoparticle 

content. The standard operating conditions for the ICP-MS in single particle mode is provided in 
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the Appendix (Table 1A). For the analysis of AuNPs, an AuNP standard (60 nm Gold 

Nanospheres, Bare (citrate) nanoComposix®) and an Au solution standard (SPEX CertiPrep® 

Claritas PPT®) were used.  

Assessment of PS tracer density was performed by Postnova Analytics Inc. using 

Sedimentation Field Flow Fractionation (Sed-FFF) with a UV detector and a 512 nm diameter PS 

standard. The standard operating conditions for the Sed-FFF  are available in the Appendix (Table 

2A). 

To assess PS tracer charge, zeta potential measurements were collected in aquatic media at 

varying salinity and DOC concentrations. Zeta potential measurements were determined through 

the use of a Malvern Zetasizer (Malvern Panalytics) and were performed by Professor James 

Ranville at the Colorado School of Mines. 

2.4.3 PS Tracer Chemical Characterization 

 The chemical characterization of the PS tracers was performed by Dr. Rider’s group who 

compared PS-co-P2VP cores, PS-shelled cores, PS tracers, and virgin PS using FTIR (Nicolet iS10 

FT-IR spectrometer), Raman spectroscopy (Renishaw inVia Qontor Raman microscope), and 

thermogravimetric analysis (TGA) (TA Instruments Q500). FTIR and Raman spectroscopy were 

used to confirm the core identity and the attachment of PS shell to the cores. The acquisition 

parameters for the Raman microscope are detailed in the Appendix (Table 3A). The use of TGA 

to assess all particles through combustion was done to find evidence of metallic nanoparticles 

associated with the tracers. In conjunction with TGA, this study used spICP-MS to provide further 

evidence of metallic nanoparticles associated with PS tracers as described in section 2.4.2.  
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2.5 PS Tracer Stock Concentration 

 The concentration of the PS tracer stock solution was determined via spICP-MS with five 

replicate samples. The solution was sonicated for a minimum of 30 minutes before being diluted 

by a factor of 2, 5, and 10 million. The samples continued to be sonicated up until analysis by ICP-

MS. To analyze the Au labelled PS tracers, an AuNP standard (60 nm Gold Nanospheres, Bare 

(citrate) nanoComposix®) and an Au solution standard (SPEX CertiPrep® Claritas PPT®) were 

used to determine the transport efficiency (equation 1A) and enable PS tracer quantification 

(equation 2A). In addition to determining the PS tracer stock concentration, the total Au mass 

(equation 3A) and the number of AuNPs per PS tracer (equation 4A) were determined following 

the assumptions of total sample ionization (100% ionization efficiency), a standard AuNP diameter 

of 5 nm, and that all particles can be accurately described as spheres76. All equations are located 

in the Appendix. Operational conditions for spICP-MS are presented in the Appendix (Table 1A). 

2.6 PS Tracer Ruggedness 

 The ruggedness of the PS tracers was assessed on the basis of changes in AuNP detection 

in MilliQ, EPA moderately hard water (EPA MHW), and Instant Ocean (IO) at different times. 

The EPA MHW and the IO were used as synthetic substitutes for fresh and marine water 

respectively; with the goal of representing the extreme aquatic differences experienced in estuarine 

systems. For this, two treatments of each water type were prepared where one treatment was spiked 

with PS tracers (10.6 mg/L) and all samples were mixed for 48hrs using a shaker table. After the 

mixing period, the samples without PS tracers were spiked at a concentration of 10.6 mg/L and all 

samples were sonicated for a minimum of 30 min. All samples were filtered through a 

FisherbrandTM 0.22 µm mixed cellulose ester syringe filter aimed at separating PS tracers from 

loose AuNPs. A portion of the filtered solutions (9 ml) was acidified with a 1:4 HNO3/HCl solution 



25 
 

(1 ml) for at least 24hrs. The final samples were brought to a final 50x dilution using MilliQ water 

before analysis by ICP-MS. An Au solution standard (SPEX CertiPrep® Claritas PPT®) was used 

for calibration while the operational conditions for the ICP-MS are presented in the Appendix 

(Table 1A). 

2.7 PS Tracer Stability and Suspension 

The colloidal stability of the PS tracers was assessed using aqueous solutions at varying 

NaCl (0, 1, 5, 15, 30 g/L) and DOC (0, 1.5, 3 mg/L) concentrations. The aqueous solutions were 

made using MilliQ water, sodium chloride (purity 99%; Fisher Chemical), and Suwannee River 

humic acid (SRHA). The use of NaCl to represent salinity followed that NaCl is a monovalent salt 

that is usually the most abundant salt in aquatic systems. Five salinity treatments and three DOC 

treatments were used in this experiment and the PS tracers were sonicated then spiked into each 

sample at a final concentration of 10.6 mg/L. The pH of each solution was recorded using a 

calibrated HQ411d pH-meter and the probe was rinsed after each read using MilliQ water. Each 

solution was secured to the shaker table with the vials arranged in a similar orientation and light 

exposure was minimized. The samples were left to shake for approximately 48 hrs at 330 RPM to 

establish equilibrium. After mixing was achieved, the samples were stood upright, and the particles 

were allowed to settle for 45 min. The top portion (1 cm depth) of the solution was extracted and 

this was used to prepare diluted samples for spICP-MS. A standard MilliQ sample and controls 

(same water chemistry without PS tracers) were made the same day spICP-MS analysis was 

performed. All samples were continuously sonicated right before uptake by the autosampler 

connected to the ICP-MS. For calibration, an AuNP standard (60 nm Gold Nanospheres, Bare 

(citrate) nanoComposix®) and an Au solution standard (SPEX CertiPrep® Claritas PPT®) were 

used while instrument operating conditions are presented in the Appendix (Table 1A). 
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2.8 PS Tracer Partitioning 

 The partitioning behavior of the PS tracers was evaluated using the sediment collected from 

sample sites (A-D) paired with either synthetic fresh or marine water. The sediment (25g) was 

loaded into the sample chambers using a centrifuge (Thermo Scientific™ Sorvall™ Legend™ 

XFR Centrifuge) at 3000 RPM and -4 °C for 1hr. None of the samples displayed excess water to 

be removed so 35 ml of EPA MHW or IO with the PS tracer solution (10.6 mg/L) was added. The 

concentration of the PS tracers spiked into each sample was based on the concentration of the PS 

tracer stock solution. These samples were subject to 48 hr mixing period using a shaker table with 

minimal light exposure. Control samples of PS tracer spiked EPA MHW and IO without sediment 

were ran with each site and were subject to the same mixing conditions. Additionally, PS tracer 

spiked MilliQ samples were prepared the same day sample analysis by spICP-MS was performed.  

After mixing was achieved, all samples were allowed a settling period of 1 hr before 

preparing diluted suspend PS tracer samples for spICP-MS analysis. The suspended PS tracer 

samples were prepared by collecting a 100 µL aliquot from the top portion (2 cm depth) followed 

by dilution. After the suspended PS tracer samples were prepared, the mixed samples were 

sonicated for at least 30 min before loosely bound PS tracer samples were prepared for spICP-MS 

analysis following the same procedure used for the suspended PS tracer samples. All samples 

required a two-step dilution process to be viable for spICP-MS analysis. All intermediate dilution 

samples and controls were sonicated for at least 30 min before the final dilution was prepared. The 

final diluted samples and controls remained sonicated right up until sample analysis by the ICP-

MS. For calibration and particle quantification, an AuNP standard (60 nm Gold Nanospheres, Bare 

(citrate) nanoComposix®) and an Au solution standard (SPEX CertiPrep® Claritas PPT®) were 

used while instrument operating conditions are presented in the Appendix (Table 1A). 
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An acid digestion of the water and sediment using an aqua regia solution (4:1 HCl/HNO3) 

was used to determine the concentration of Au partitioned to each fraction. This test was performed 

to evaluate sediment partitioning of the PS tracers based a calculated mass balance. For this, 1g of 

dried sediment from each sample was digested using 5 mL of aqua regia and following EPA 

method 3050B then analysis by ICP-MS following EPA method 200.8. For the water samples, 2 

mL of aqua regia was added to 25 mL of the sample water followed by analysis using ICP-MS 

following EPA method 200.8. 

2.9 Statistical Analyses 

The statistical analyses performed in this study were used to distinguish the sampled sites 

as well as the PS tracer spiked samples for the various experiments performed. For all statistical 

analyses, a significance level was set to α = 0.05 while normality and homogeneity of variance 

were evaluated using the Shapiro-Wilk test and Levene’s test respectively. Multivariate and 

univariate statistical analyses were performed followed by post hoc analyses for each experiment. 

For the measured sediment variables, linear correlations were investigated. All statistical 

evaluations were performed using RStudio and packages used for statistical analyses are provided 

in the Appendix (R Packages). 

The statistical analyses for sediment the sample sites were compared based on sediment 

grain size, carbon content and speciation, and metal content and speciation. The types of statistical 

tests performed were MANOVA, ANOVA, and Tukey’s Honest Significant Difference (HSD) 

tests as a post hoc analysis. Statistically different variables for each sample site were identified 

using Tukey’s HSD tests and assigned a group based on this difference. All variables were assessed 

for linear correlation to determine variable dependence and reduce redundancies in modelling. 
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The ruggedness of the PS tracers as well as their stability and suspension in the presence 

of NaCl and DOC was evaluated through ANOVA with Tukey’s HSD post hoc tests. The 

ruggedness of the PS tracers was statistically compared across water types and before and after 48 

hr mixing. For the PS tracer stability and suspension experiment, statistical analyses were made 

for either varying salinity at a constant DOC concentration or for varying DOC at a constant 

salinity.  

 For the PS tracer partitioning experiments, several statical comparisons were performed 

that included a water type comparison, water versus sediment comparison, and a sediment sample 

site comparison. ANOVA with Fisher’s Least Significant Difference (LSD) post hoc tests were 

performed for the comparisons between water types and the comparison between sample site 

sediment. To compare suspended and suspended and loosely bound treatments, a pairwise t-test 

was performed. To statistical evaluate the comparison of water samples versus sediment samples, 

a Welch’s ANOVA with a post hoc Games-Howell pairwise comparison tests were performed. 

These analyses were used as the data was not found to have equal variance while departures in 

normality were observed but anticipated to have a minimal impact on the corresponding F-test.  

Chapter 3: Results 

3.1 Sediment Site Characterization 

 To examine the impact of aquatic systems on the transport of MP/NPs, sediment was 

collected from sample sites and categorized by sediment grain size, metal content, and carbon 

content to build a sediment profile for each site. In the analysis of sediment grain size, each site 

was characterized by five size regimes that spanned from coarse sand (2000-500 µm) to silts and 

clays (<63 µm). The average grain size by percent mass was determined for each sediment class 
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to build a grain size profile for each site and significance was indicated through grouped letter 

assignment for each sediment class (Table 2 and Figure 3).  

Table 2. Sediment grain size percentage by mass for the sample sites (A-D). There were five sediment classes ranging 

from coarse sand to silts and clays. These sediment classes created a sediment profile for each sample site (Mean ± 

SD; n=3). 

Site 

Percent 

Coarse Sand 

(2000-500 µm) 

Percent 

Medium Sand 

(500-250 µm) 

Percent 

Fine Sand 

(250-125 µm) 

Percent 

Very Fine Sand 

(125-63 µm) 

Percent 

Silt & Clay 

(<63 µm) 

A 0.5 ± 0.07 13.8 ± 2.0 72.5 ± 1.3 11.4 ± 2.4 1.8 ± 0.8 

B 2.5 ± 1.2 26.0 ± 4.4 51.2 ± 12.4 15.9 ± 9.1 4.4 ± 3.4 

C 0.8 ± 0.3 1.0 ± 0.4 1.8 ± 0.3 16.8 ± 1.6 79.5 ± 1.0 

D 0.4 ± 0.02 6.0 ± 0.4 34.8 ± 1.0 48.5 ± 1.0 10.2 ± 0.4 

 

 

Figure 3. Sediment grain size percentage by mass for the sample sites (A-D). The sediment grains were categorized 

into five size classes: Coarse Sand (2000-500 µm), Medium Sand (500-250 µm), Fine Sand (250-125 µm), Very Fine 

Sand (125-63 µm), and Silts & Clays (<63 µm). Post hoc tests were performed between sites on all sediment classes 

with a significance level of .05. Sites with classes that were significantly different were designated a group letter (a-
c) where classes sharing similar letters were not significantly different (Mean ± SD; n=3). This figure was generated 

using R software. 
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3.1.1 Sediment Grain Size 

 Comparing the sample sites by grain size classes indicated that significant differences were 

present using MANOVA (F3,8 = 24.84, P < 0.001) and ANOVA tests was found to be significant 

for coarse sand (F3,8 = 5.19, P < 0.05), medium sand (F3,8 = 40.91, P < 0.001), fine sand (F3,8 = 

45.41, P < 0.001), very fine sand (F3,8  = 25.32, P < 0.001), and silts and clays (F3,8 = 834.05, P < 

0.001) (Table 4A). Further analysis using Tukey’s HSD provided individual site comparisons by 

a single grain size class (Table 5A). For coarse sand, site B (2.5 ± 1.2%; group a) had the highest 

mass percentage and could be distinguished from sites A (0.5 ± 0.07%; group b)  and D (0.4 ± 

0.02%; group b) while site C (0.8 ± 0.3%; group ab) was indistinguishable from any site. For 

medium sand, site B (26.0 ± 4.4%; group a) had the highest mass percentage followed by site A 

(13.8 ± 2.0%; group b) then sites C (1.0 ± 0.4%; group c) and D (6.0 ± 0.4%; group c). Distinctions 

between sites for fine sand indicated that site A (72.5 ± 1.3%; group a) had the highest mass 

percentage followed by sites B (51.2 ± 12.4%; group b) and D (34.8 ± 1.0%; group b) and then 

site C (1.8 ± 0.3%; group c) with the lowest fine sand content. Very fine sand content was the 

highest with site D (48.5 ± 1.0%; group a) while sites A, B, and C (group b) were indistinguishable 

from each other. With the last category of silts and clays, site C (79.5 ± 1.0%; group a) had the 

highest percentage followed by site D (10.2 ± 0.4%; group b), then site B (4.4 ± 3.4%; group bc), 

and lastly site A (1.8 ± 0.8%; group c). The amount of  silt and clay associated with Site B was 

indistinguishable from sites A and D. 

3.1.2 Sediment Carbon Speciation 

 Comparisons between sites based on carbon content were evaluated on the basis of TC as 

well as speciation between LC, BC, and IC. The distinction in carbon species provide the 

categories for characterizing each site by a carbon profile where LC comprised the majority of the 
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TC content at all sites, BC was minimal, and IC was found to be negligible (Table 3 and Figure 

4). In addition, all sites were compared by carbon species and species found to be significantly 

different were alphabetically grouped. Site C had a significantly higher TC, LC, and BC from all 

other sites while sites A, B, and C were indistinguishable by all carbon species. 

Table 3. Sediment carbon concentrations (g/kg) for each sample site (A-D). The total carbon concentration and the 

concentrations of the labile, black, and inorganic carbon species were reported (Mean ± SD; n = 3). 

Site 
Total Carbon 

(g/kg) 

Labile Carbon 

(g/kg) 

Black Carbon 

(g/kg) 

Inorganic Carbon 

(g/kg) 

A 1.44 ± 0.05 1.38 ± 0.06 0.04 ± 0.01 0.01± 0.01 

B 1.61 ± 0.18 1.54 ± 0.17 0.07 ± 0.03 0.00 ± 0.04 

C 6.47 ± 0.50 6.18 ± 0.48 0.22 ± 0.02 0.07 ± 0.03 

D 2.21 ± 0.09 2.10 ± 0.10 0.09 ± 0.02 0.03 ± 0.03 

 

 

Figure 4. Sediment carbon concentration for each sample site (A-D). The concentration of TC, LC, and BC were 
reported along with a site comparison and grouping determined by a post hoc analysis. The letter designation compares 

specific carbon species between sample sites (Mean ± SD; n=3). This figure was generated using R software. 
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Sediment carbon species content was analyzed using MANOVA and ANOVA tests. The 

analyses were significant for MANOVA (F3,8  = 2.54, P < 0.05) and the ANOVA tests for TC (F3,8 

= 158.1, P < 0.001), LC (F3,8 = 150.2, P < 0.001), and BC (F3,8 = 30.29, P < 0.001) (Table 6A). 

The performed Post Hoc tests established that site C had significantly more TC, LC, and BC than 

all other sites while sites A, B, and C were indistinguishable from each other (Table 7A).  

3.1.3 Sediment Metal Speciation 

 To further develop a sediment profile for each site, the concentration of metals was 

determined through FAAS (Al, Ca, Fe, K, Mg, and Na) and ICP-MS (Co, Cr, Cu, Mn, Ni, V, and 

Zn) analysis. The FAAS metals present at higher concentrations than the trace metals analyzed 

with ICP-MS, however, only Al and Na were significantly different between sample sites (Table 

8A and Figure 2A). A post hoc analysis was performed on Al and Na at a significance level set to 

α = 0.05. The analysis indicated a significant difference in Al concentration between sites C (29.76 

± 2.10 g/kg; group a) and A (21.65 ± 1.92 g/kg; group b) while sites B (21.74 ± 2.51 g/kg, group 

ab) and D (23.35 ± 3.29 g/kg; group ab) could not be distinguished from any other sample. For 

Na, site C (7.61 ± 0.77 g/kg; group a) had a significantly higher concentration while sites A (5.28 

± 0.32 g/kg; group b), B (5.18 ± 0.64; group b), and D (5.56 ± 0.28 g/kg; group b) were 

indistinguishable from each other. More information on the statistical analyses that included 

MANOVA, ANOVA, and Tukey’s HSD are provided in the Appendix section (Table 9A and 

Table 10A). 

 Trace metal concentrations were determined for each site along with statistical 

comparisons between sites (Table 4 and Figure 3A). Through post hoc analyses, the sample sites 

were found to be statistically different based on Cr, Cu, Mn, and Zn concentrations. For Cr, site C 

(group a) could be differentiated from sites A (group b) and B (group b) but not site D (group ab) 
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which was indistinguishable from all other sites. The concentration of Cu was statistically higher 

in site C (group a) while sites A, B, and D were indistinguishable (group b). Mn was the most 

abundant trace metal detected and was statistically different for all sites being highest at site A 

(group a) followed by site D (group b), site C (group c), and finally site B (group d). For Zn, site 

C (group a) had the highest concentration followed by sites D (group b) and A (group bc), and 

finally site B (group c). For site A, the concentration of Zn was statistically comparable with sites 

B and D. Further statistical analyses that include MANOVA, ANOVA, and Tukey’s HSD is 

available in the Appendix (Table 11A and Table 12A). 

Table 4. Sediment trace metal concentration(g/kg) for each site (A-D) (Mean ± SD; n = 3). 

 

3.1.4 Sediment Variable correlation 

 To investigate the role of sediment variables in relation to each other, a correlation table 

and figure provided variable comparisons (Table 13A and Figure 4A). Comparing all the variables 

to each other revealed correlations between grain size and the concentration of carbon and metal 

species. These correlations indicate that these variables are not independent from each other 

indicating a possible relationship. Additionally, variables such as Mn did not display a simple 

correlation with sediment grain size or carbon content allowing for sample sites to be discernable 

by this variable.  

 

Site V (mg/kg) Cr (mg/kg) Mn (mg/kg) Co (mg/kg) Ni (mg/kg) Cu (mg/kg) Zn (g/kg) 

A 38.59 ± 1.73 35.23 ± 0.98 451.33 ± 5.89 13.49 ± 0.78 128.58 ± 14.82 25.72 ± 1.35 43.69 ± 1.64 

B 42.34 ± 1.03 36.16 ± 2.11 267.19 ± 11.36 11.54 ± 1.08 120.59 ± 18.37 24.00 ± 2.45 41.61 ± 1.94 

C 40.57 ± 1.46 54.99 ± 10.70 319.38 ± 10.46 12.61 ± 0.17 98.54 ± 0.69 40.11 ± 3.32 58.11 ± 1.00 

D 40.42 ± 2.66 40.79 ± 0.96 350.41 ± 5.04 12.94 ± 0.21 117.64 ± 3.49 26.93 ± 3.66 48.04 ± 0.88 
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3.2 PS Tracer Characterization 

3.2.1 PS Tracer Physical Characterization 

 The physical attributes characterized for the PS tracers were particle size, density, and zeta 

potential. For size evaluation, DLS, AFM, and STEM visual confirmation was employed that 

revealed a PS tracer diameter of 480 ± 26 nm (Table 5 and Figure 5). Likewise, an increase in 

particle diameter was observed with the addition of a PS shell to the PS-co-P2VP core while no 

diameter increase was observed with the formation of AuNPs using STEM. PS tracer visualization 

using STEM did provide information on AuNP formation including confirmation of that the 

majority of the AuNPs residing below the PS shell. 

Table 5. Particle diameter size for the PS-co-P2VP cores, PS-shelled cores, and the PS tracers as determined by SEM, 

DLS, and AFM.  

Sample 
SEM size 

(nm) 

DLS size 

(nm) 

AFM size 

(nm) 

MP Conc. 

(MP/mL) 

PS-co-P2VP Core 325 ± 11 367 ± 28 269 ± 15 --- 

PS-Shelled Core 457 ± 13 441 ± 47 442 ± 51 --- 

AuNP-PS Tracers 477 ± 25 446 ± 195 480 ± 26 (2.65 ± 0.28)*1011 
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Figure 5. Physical characterization of the PS tracers by (A) STEM, (B) Tapping-Mode AFM, and (C) DLS detailing 
the size distribution in the PS-co-P2VP core (top), the PS-shelled cores (middle), and the fully synthesized PS tracers 

(bottom). This figure was adapted from Rauschendorfer et al, 2021. 

 The density of the PS tracers was assessed using Sed-FFF. Comparing the PS tracers with 

a PS standard revealed a notable difference in density where the PS tracers eluted later than the PS 

standard (Figure 5A).  The calculated density of the PS tracers was 1160 ± 182 kg/m3 based on the 

Sed-FFF  data which was slightly higher than a standard PS particle density (1045 kg/m3) (Table 

6). The data and density calculations were generated by PostNova Analytics Inc. following 

procedures described by Tadjiki et al77. 
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Table 6. Calculated density of the PS tracers using Sed-FFF and a 512 ± 7 nm PS standard. 

Sample 
Particle Density 

(kg/m3) 

PS Standard 1045 ± 43 

PS Tracer 1160 ± 182 

  

 The zeta potential of the PS tracers was evaluated at varying salinity (0-30 g/L) and DOC 

concentrations (0-3 mg/L) in MilliQ water (Table 7). In pure MilliQ water, the zeta potential of 

the PS tracers was 28.6 ± 0.5 mV. As salinity was increased, the zeta potential of the PS tracers 

approached zero and became slightly negative at 30 g/L NaCl (-0.7 ± 1.2 mV). The addition of 

DOC to the MilliQ water resulted in a decrease of positive zeta potential going from 28.6 ± 0.5 

mV at 0 mg/L DOC to 7.9 ± 0.1 mV at 3 mg/L DOC. When DOC was coupled with salinity, 

negative zeta potentials were recorded with salinity at 5 g/L resulting in -4.76 mV (DOC = 1.5 

mg/L) and -2.14 mV (DOC = 3 mg/L) and salinity at 30 g/L resulting in zeta potentials of -1.06 

mV (DOC = 1.5 mg/L) and -2.8 mV (DOC = 3 mg/L). 

Table 7. Zeta potential measurements of the PS tracers in various aquatic media comprised of MilliQ water, NaCl, 

and humic acid (Mean and SD; n = 2). All zeta potential measurements were reported in mV. The asterisk (*) indicates 

a single measurement was collected. This data was collected by Professor James Ranville of the Colorado School of 

Mines. This table was provided by Rauschendorfer et al, 2021. 

Salinity 

(g/L) 

DOC  Conc. (mg/L) 

0 1.5 3.0 

0 28.6 ± 0.5 16.4 ± 0.7 7.9 ± 0.1 

1 19.5 ± 0.4 --- --- 

5 6.8 ± 2.3 -4.76* -2.14* 

30 -0.7 ± 1.2 -1.06* -2.8* 

 

3.2.2 PS Tracer Chemical Characterization 

 As the synthesis of the PS tracers required the formation of a PS-co-P2VP cores, a PS shell 

to cover the core, and the coordination of Au ions to form AuNPs, the tracers were chemically 

characterized throughout this process. With the use of FTIR and Raman spectroscopy, the PS-co-
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P2VP cores, the PS shelled cores, and the fully synthesized PS tracers were compared to a PS 

standard to reveal successful PS tracer shelling (Figure 6). The assignment of Raman bands to 

atomic movements is made available in the Appendix (Table 14A). 

 

Figure 6. Chemical characterization of the PS-co-P2VP cores (Red), the PS-shelled cores (Blue), and the PS tracers 

(Pink) through (A) FTIR and (B) Raman spectroscopy. This figure was adapted from Rauschendorfer et al, 2021.  

 Additional confirmation of AuNPs associated with the PS tracers was performed through 

TGA, spICP-MS, and STEM. Using TGA, the PS-co-P2VP cores and the PS shelled cores 

displayed total combustion as the temperature approached 500°C while PS tracers retained a mass 

well above 600°C (Figure 6A). With spICP-MS, PS tracer detection relied on the abundance of 

AuNP that were associated with the PS tracer. This enabled the detection and distinction of PS 

tracers from unbound AuNPs based on the distribution in signal intensity (Figure 7A). With this, 

a conservative approach was taken to define the PS tracers in regard to signal intensity.  
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3.2.3 PS Tracer Stock Concentration 

 The concentration of the working PS tracer stock solution was determined using spICP-

MS on highly diluted PS tracer solutions. Particle events were based on signal intensity and a 

particle number concentration was calculated based on the frequency of signal events, particle 

transport efficiency, sample flow rate, and analysis time (equation 1A). The average PS tracer 

concentration was estimated to be (2.65 ± 0.28)*1011 MP/mL (Table 8). The comparison of PS 

tracer stock concentrations at varying dilutions is available in the Appendix (Figure 8A). 

Table 8. PS tracer concentration of the stock batch using spICP-MS. The concentration was determined by calculating 
the number of particles per volume (MP/mL). The calculations involved dividing the signal frequency by the transport 

efficiency, analysis time, and flow rate to yield a particle count per volume (MP count/mL). Accounting for the dilution 

factor, the stock concentration was determined (Mean ± SD; n=5). 

Replicate 

Number 

Signal 

Frequency 

MP 

Count/mL 

Dilution 

Factor 

Stock Conc. 

(MP/mL) 

Average Conc. 

(MP/mL) 

01 159 2.34*104 1*107 2.34*1011 

(2.65 ± 0.28)*1011 

02 193 2.84*104 1*107 2.84*1011 

03 210 3.09*104 1*107 3.09*1011 

04 175 2.58*104 1*107 2.58*1011 

05 163 2.40*104 1*107 2.40*1011 

 

3.2.4 PS Tracer Ruggedness 

 Due to concerns over potential leaching of gold nanoparticles from the tracers, the 

ruggedness of the PS tracers was evaluated in MilliQ, EPA MHW, and IO water after 48 hrs to 

evaluate the potential leachability of gold that would be indicated by a loss of mass over time. 

Comparing the three water types, there is a significant difference in the concentration of Au 

detected in the EPA MHW (group b) treatments compared to the MilliQ (group a) and IO (group 

a) treatments (Table 15A and Figure 7). Comparing the concentration of Au over time revealed no 

statistical difference between freshly prepared and 48 hr mixed treatments for all water types. 
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Figure 7. Evaluation of PS tracer ruggedness in varying aquatic media. The tracers’ ruggedness was evaluated over 

time with initial media exposure (Fresh) and after 48 hr equilibration (Equilibrated). The Au concentration was 

reported along with a designated group based upon a post hoc analysis (Mean ± SD; n = 3). This figure was generated 

using R software. 

3.3 PS Tracer Stability and Suspension 

 The impact of water chemistry on PS tracer colloidal stability and suspension was 

evaluated using varying concentrations of NaCl and humic acid to represent changes in salinity 

and DOC respectively. By coupling salinity with DOC, the influence of both factors was observed 

where a decrease in suspended PS tracers with increasing salinity at similar DOC concentrations. 

Likewise, a higher percent of PS tracers was detected at the highest DOC concentration used 

compared to samples without DOC at the same salinity (Table 9 and Figure 8). 

 

 



40 
 

Table 9. PS tracer stability and suspension at varying NaCl and SRHA concentrations. The percent of PS tracers was 

based on the number of PS tracers detected through spICP-MS divided by the calculated number of PS tracers spiked 

into each sample. An increase in NaCl concentrations, at constant SRHA concentrations, coincided with a decrease in 

the percent of suspended PS tracers. The concentration of SRHA, compared across similar NaCl concentrations, 

coincided with an initial decrease then an increase in the percent of suspended PS tracers (Mean ± SD; n=3). 

NaCl 

(g/L) 

SRHA 

(mg/L) 

PS Tracer Conc. 

(MP/mL) 

Percent PS Tracer 

Detection (%) 

0 0 (1.11 ± 0.15)*108 72.44 ± 9.96 

0 1.5 (8.03 ± 0.39)*107 52.06 ± 2.53 

0 3 (1.35 ± 0.12)*108 87.66 ± 7.83 

1 0 (4.84 ± 0.57)*107 31.37 ± 3.72 

1 1.5 (4.44 ± 0.24)*107 28.75 ± 1.54 

1 3 (8.52 ± 0.82)*107 55.24 ± 5.34 

5 0 (3.73 ± 0.11)*107 24.21 ± 7.39 

5 1.5 (3.10 ± 0.70)*107 20.12 ± 4.55 

5 3 (1.03 ± 0.14)*108 66.80 ± 8.87 

15 0 (2.48 ± 0.28)*107 16.08 ± 1.80 

15 1.5 (3.16 ± 0.27)*107 20.47 ± 1.75 

15 3 (9.36 ± 0.62)*107 60.66 ± 3.99 

30 0 (1.82 ± 0.57)*107 11.81 ± 3.68 

30 1.5 (2.04 ± 0.31)*107 13.24 ± 1.98 

30 3 (8.14 ± 0.10)*107 52.77 ± 6.79 

 

 

Figure 8. PS tracer stability and suspension in aqueous media of varying salinity and DOC concentrations. The percent 

of suspended PS tracers was reported along with an alphabetic group designation based on post hoc analysis (Mean ± 

SD; n=3). The group designation in red represents comparisons made based on the concentration of DOC while the 

group designation in black represents comparisons made based on salinity. This figure was generated using R software. 
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Comparisons between treatments of the same DOC concentrations and varying salinity 

were all found to be statistically different by ANOVA tests and samples were grouped using 

Tukey’s HSD (Table 16A and Table 17A respectively). At DOC = 0 mg/L, the 0 g/L NaCl (72.44 

± 9.96%; group a) treatment was statistically different from the 1 (31.37 ± 3.72%; group b), 5 

(24.21 ± 7.39%; group b), 15 (16.08 ± 1.80%; group b), and 30 g/L (11.81 ± 3.68%; group b) 

treatments. At DOC = 1.5 mg/L, the 0 g/L NaCl (52.06 ± 2.53%; group a) treatment had the highest 

PS tracer detection and was distinguishable from 1 (28.75 ± 1.54%; group b), 5 (20.12 ± 4.55%; 

group bc), 15 (20.47 ± 1.75%; group bc), and 30 g/L (13.24 ± 1.98%; group c) treatments. Finally, 

treatment comparisons at DOC = 3 mg/L found that the 0 g/L (87.66 ± 7.83%; group a) was 

statistically different from the 1 (55.24 ± 5.34%; group b), 15 (60.66 ± 3.99%; group b), and 30 

g/L (52.77 ± 6.79%; group b) treatments, while the 5 g/L (66.80 ± 8.87%; group ab) treatment was 

indistinguishable from all other treatments.  

 Comparisons between treatments varying in DOC concentrations at constant salinity were 

statistically evaluated using ANOVA tests and Tukey’s HSD tests to identify differences between 

treatments (Table 16A and Table 17A). For the treatments where salinity was 0 g/L, the 3 mg/L 

DOC (87.66 ± 7.83%; group a) treatment was distinguishable from the 1.5 mg/L (52.06 ± 2.53%; 

group b) treatment, while the 0 mg/L (72.44 ± 9.96%; group ab) treatment was indistinguishable 

from either treatment. As salinity was increased to 1, 5, 15, and 30 g/L, the 3 mg/L (group a) 

treatment had a significantly higher detection of suspended PS tracers while the 0 (group b) and 

1.5 mg/L (group b) treatments were indistinguishable. 

3.4 PS Tracer Partitioning 

The partitioning behavior of the PS tracers in aquatic media was investigated through the 

pairing of sample site sediment with EPA MHW or IO. PS tracer detection was distinguished 
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between suspended and suspended and loosely bound particles for all samples. Statistical analyses 

were used to address the differences in water chemistry, compare the percent of suspended to 

suspended and loosely bound PS tracers, and  compare the sample site sediments by the percent of 

PS tracer capture. 

3.4.1 Suspended Vs. Suspended and Loosely Bound PS Tracers 

 A focus of this research was discerning between the PS tracers that remained suspended 

from the PS tracers that were loosely bound to the sediment and experimental chamber. Addressed 

through sample sonication, water and sediment/water treatments were compared based on water 

type using a pairwise t-test (Table 18A). All comparisons were only made between the same 

treatment (water vs. sediment/water) and water type (EPA MHW vs. IO). No statistical difference 

was found between the suspended PS tracers and the suspended and loosely bound PS tracers (P 

> 0.05). 

3.4.2 PS Tracer Partitioning: Water 

 The impact of water chemistry on PS tracer stability was compared using EPA MHW and 

IO treatments equilibrated for 48 hrs followed by spICP-MS analysis. The percent of PS tracers 

that remained suspended in EPA MHW was 20.52 ± 9.55% and 7.21 ± 2.90% in IO. Likewise, the 

percent of suspended and loosely bound PS tracers was 24.77 ± 11.67% in EPA MHW and 10.78 

± 3.47% in IO (Table 10 and Figure 9). Statistical comparisons between the water types were 

performed using a pairwise t-test where a statistical difference was reported for the suspended 

treatment (F1,6  = 6.68; P = 0.041) and the loosely bound and suspended treatment (F1,6 = 5.99; P 

= 0.05) (Table 19A). 
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Table 10. Detection of suspended and loosely bound PS tracers after 48hr equilibration in EPA MHW and IO. Samples 

that were not sonicated treated as only suspended PS tracers while sonicated samples were treated as suspended and 

loosely bound PS tracers (Mean and SD; n=12). 

Water Type Sonicated MP/mL MP (%) 

EPA MHW No 3.17*107 20.52 ± 9.55 

IO No 1.11*107 7.21 ± 2.90 

EPA MHW Yes 3.83*107 24.77 ± 11.67 

IO Yes 1.67*107 10.78 ± 3.47 

 

Figure 9. Comparing the percent of PS tracers detected as suspended particles and as loosely bound and suspended 

particles in EPA MHW and IO (Mean ± SD; n = 12). An alphabetic group assignment was performed based on a post 

hoc analysis. This figure was generated using R software. 

3.4.3 PS Tracer Partitioning: Water and Sediment 

To investigate the extent of PS tracer partitioning between water and sediment, 

comparisons between treatments of sediment/water were compared with water treatments. 

Sediment partitioning was compared with EPA MHW and IO for suspended PS tracers and loosely 

bound and suspended PS tracers where a profound effect was observed (Figure 10). For suspended 

PS tracers, the sediment paired with EPA MHW had a percent PS tracer suspension of 4.95 ± 
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3.75% and 5.62 ± 3.07% for sediment paired with IO (Table 11). For loosely bound and suspended 

PS tracers, sediment paired with EPA MHW had a percent PS detection of 5.62 ± 3.07% and 

sediment paired with IO had 2.06 ± 1.11% PS tracer detection (Table 11). Statistical evaluation of 

the suspended PS treatments found a significant difference (P < 0.05) for all samples except for 

the comparison of IO with sediment paired with EPA MHW (P = 0.41). For loosely bound and 

suspended PS tracers, all treatment comparisons were statistically different (P = 0.05) (Table 20A 

- Table 22A). 

Table 11. Percent of suspended PS tracers detected after 48hr equilibration with environmental media. The 

environmental media was either water or sediment and water while the water type was either EPA MHW or IO. 

Samples were sonicated to account for the suspended and loosely bound PS tracers (Mean and SD; n=12). 

Environmental 

Media 

Water 

Type 
Sonication 

Suspended MP 

Percent (%) 

Water EPA No 20.52 ± 9.55 

Sediment/Water EPA No 4.95 ± 3.75 

Water EPA Yes 24.77 ± 11.67 

Sediment/Water EPA Yes 5.62 ± 3.07 

Water IO No 7.21 ± 2.90 

Sediment/Water IO No 2.06 ± 1.11 

Water IO Yes 10.78 ± 3.47 

Sediment/Water IO Yes 5.62 ± 3.07 
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Figure 10. Comparing the percent of suspended PS tracers between samples containing water and samples containing 

water and sediment for both the suspended and suspended and loosely bound PS tracers (Mean ± SD; n = 12). These 

comparisons were made using EPA MHW and IO as the aqueous media and sediment from each of the sample sites 

(A-D). A post hoc comparison was used to alphabetically assign a group to compare with the black colored grouping 

comparing the percent of PS tracer detected in the suspended and loosely bound fraction. Likewise, a similar post hoc 

comparison was used to assign the red colored grouping that compared the percent of PS tracers in the suspended 

fraction. This figure was generated using R software. 

3.4.4 PS Tracer Partitioning: Sediment Sites 

 As the impact of sediment was investigated with the comparison to water treatments, 

comparisons between each sample site sediment on PS tracer retention were performed. 

Comparisons were drawn between sediments in the same water type for suspended PS tracers and 

suspended and loosely bound PS tracers (Table 23A and Figure 11). Statistical comparisons for 

the percent of suspended PS tracers between sample site sediments were not found to be significant 

in EPA MHW (P = 0.44) or IO (P = 0.28) (Table 24A). For suspended and loosely bound PS 
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tracers, sample site sediments in IO were not significant (P = 0.26) while sample site sediments in 

EPA MHW initially indicated a difference, but a post hoc analysis revealed no significant 

difference (P = 0.12) (Table 24A and 25A). 

 

Figure 11. Comparing the percent of suspended PS tracers between sediment from the sample sites (A-D) (Mean ± 

SD; n = 3). These comparisons were made in EPA MHW and IO for the suspended and the suspended and loosely 

bound fractions. This figure was generated using R software. 

3.4.5 PS Tracer Partitioning: Au Mass Association 

 The mass of Au associated with the water and the sediment portions were determined using 

ICP-MS. The total sum of Au exceeded the calculated Au value which was based on PS tracer 

concentration (10.6 mg/L). The mass of Au in each fraction is presented in Table 26A. 
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Chapter 4: Discussion and Conclusion 

4.1 Sediment Profile  

 Classifying the sample sites by their physical and chemical characteristics revealed that 

sediment grain size, carbon content and speciation, and metal abundance were able to produce four 

distinct sites.  

4.1.1 Sediment Grain Size 

Comparisons by sediment grain size found that each site was primarily comprised of 

various sands, silts, and clays. This distinction is important as sediment particle size is tied to 

surface area, surface charge, cation exchange capacity, and particle settling velocity all of which 

influence the sediment’s interactions with MP/NPs and transport in aquatic systems. In addition, 

sediment grain size correlated (Table 13A) with the metals Al, Cr, Cu, and Zn which were all 

statistically significant (Table 9A and Table 11A). The correlation of sediment grain size and Al 

was attributed to the presence of clay that has a size range below silt. As a result, sample sites 

recorded to have a higher concentration of particles below 63 µm are expected to have more clay 

particles and therefore a higher Al concentration. Sediment grain size correlation with Cr, Cu, and 

Zn is attributed to the intermolecular interactions between particles where smaller sediment grain 

sizes were observed to concentrate trace metals78.  

4.1.2 Sediment Carbon Analysis 

Analysis of the sediment carbon content revealed that site C had the highest concentration 

of TC, LC, and BC compared to all other sites. Likewise, site D had the second highest LC 

concentration, but was not found to be statistically different from sites A and B.  Comparing carbon 

content to sediment grain size revealed a strong positive correlation was observed with silt that 
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waned to a strong negative correlation with fine and medium sand (Table 13A). This trend has 

been observed in other studies where sediment grain size could be used as a key predictor for 

carbon content in estuaries with exceptions to areas with high sediment deposition, organic 

pollution, low-oxygen columns, or high seagrass-based carbon input79-81.  

The correlation of organic carbon with smaller grain sizes may be influenced by physical, 

chemical, and biological factors. The physical contributions to this correlation are associated with 

the fluid dynamics of the system and surface adsorption79. The transport and deposition of finer 

grain sediment and stable allochthonous carbon could both be influenced by the Nooksack River 

discharge and tidal actions resulting in a similar distribution80. Likewise, sediment surface area 

influences the adsorption of organic matter through electrostatic interactions with the mineral 

grain’s surface81. In terms of chemical interactions, a ligand exchange/dehydration reaction may 

occur between hydroxyl groups associated with organic carbon compounds and the sediment 

surface. This would allow for the reversible, coordinated adsorption of organic carbon to the 

mineral surface that is directly influenced by sediment grain size82. The influence of biological 

factors for each sample site are expected to be minimal as the sites were mostly absent of seagrass 

and other major aquatic fauna79. As TC, LC, and BC had a strong correlation with sediment grain 

size, it was not possible to distinguish between these variables based on their interactions with the 

PS tracers. As such, this study focused on the role of sediment grain size as grain size appears to 

integrate most factors that include electrostatic forces and geochemical substrate concentrations78. 

4.1.3 Sediment Metal Analysis 

Examining the sample sites by metal content, it was found that the statistically different 

metals were Cr, Cu, Mn, and Zn (Table 4), as well as Al and Na (Table 8A). Al, Cr, Cu, and Zn 

concentrations all showed a decrease in sediment grain size in line with previous studies78. The 
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higher concentrations of Na observed with site C was attributed to site location given its greater 

distance from a freshwater source. As the sediment was dried for analysis, an increase in Na 

concentration was expected. The concentration of Mn did not have an apparent correlation with 

sediment grain sizes but was significantly different at all sites (Table 13A). The differences in Mn 

concentrations are attributed to mineralogical differences within the study region. The difference 

in Mn concentrations was intriguing as this metal is often present as Mn oxides that usually exhibit 

negative surface charges. This has enabled Mn oxides to have a high sorption capacity for metal 

ions while it is expected to repel MP/NPs that hold a similar negative charge83,84. 

4.2 PS Tracer Characterization 

4.2.1 PS Tracer Physical Characterization 

The size of the PS tracer at all stages of synthesis were determined by DLS, AFM, and 

STEM where the addition of the PS shell was noted by a sizable increase in particle diameter from 

the core particles. Conversely, the addition of AuNPs to the PS-shelled cores did not significantly 

increase particle diameter. This provided evidence that the PS tracers were properly intercalated 

within the PS around the core and that the addition of AuNPs did not disrupt this process. The 

distribution in PS tracer size was reassuring as it was indicative of a reliable synthetic process that 

yields monodisperse PS tracers. From this, the size of the tracers used throughout this study was 

established. 

The density of the PS traces was assessed through Sed-FFF with UV detection. The density 

of the PS tracers slightly exceeded that of pristine PS (1045-1100 kg/m3) and thus shows an area 

where these tracers deviate from PS MP/NPs. Lowering the density of the PS tracers is a priority 

of ongoing research, but as it stands this is a weakness in the development of these tracers. Applied 



50 
 

as a PS MP/NP proxy, these PS tracers were viable as this study served as a proof-of-concept for 

the environmental application of labeled MP/NP tracers. 

The associated charge of the PS tracers was investigated through the determination of the 

particle’s zeta potential. In MilliQ water, the PS tracers held a positive charge with a zeta potential 

of  28.6 ± 0.5 mV which coincides with weak electrostatic colloidal stability85. The positive charge 

associated with the PS tracers could be attributed to excess pyridine groups of the PS-co-P2VP 

cores. Compared to the literature, the zeta potential for PS has been variable with size and 

associated functional groups, however, the zeta potential was recorded  by Hwang et al. as close 

to 0 mV for 460 nm PS particles labelled with fluorescein isothiocyanate86,87. From this, the PS 

tracers did deviate in expressed surface charge, and aligning particle zeta potentials is a goal for 

future tracer development. 

 The addition of salinity and DOC on PS tracer zeta potential was also investigated and the 

results were similar to other scientific studies26,88,89. The addition of salinity was found to reduce 

PS tracer zeta potential and this effect was attributed to an increase in ionic strength compressing 

the electric double layer. The interaction of DOC with the PS tracers shifted the zeta potential more 

negative. This shift in zeta potential was attributed to the adsorption of DOC, a negatively charged 

molecule, that contributed to charge neutralization. Unlike salinity which suppressed coulombic 

forces, DOC contributes to the formation of a negative surface charge and can contribute to 

colloidal stability of neutral and negatively charged MP/NPs, however, this is not expected for the 

PS tracers due to their positive zeta potential10,26. 

 

 



51 
 

4.2.2 PS Tracer Chemical Characterization 

The chemical identity of the PS tracers was evaluated through FTIR and Raman 

spectroscopy and provided evidence that the tracers exhibited an exterior PS chemistry. This 

confirmed that the shelling approach for the PS tracers was correctly performed and provided 

confidence that the PS tracers would have similar chemical behavior to pristine PS MP/NPs. The 

addition of the AuNPs to the PS-shelled cores was confirmed through STEM, TGA, and spICP-

MS. This provided the evidence that the AuNPs were internalized in the PS tracers and the 

dispersion in the number of AuNPs associated with a single tracer. 

The chemical analysis of the PS tracers displayed a reliable synthesis approach where the 

PS tracers had an outward appearance of PS with an AuNP loading distribution of (2.75 ± 

0.12)*103  to 344 ± 15 AuNP per PS tracer assuming a constant AuNP diameter of 5 to 10 nm 

(Table 8). Serving as a proxy, the PS tracers are chemically aligned with pure PS MP/NPs based 

on their outward appearance while the AuNPs enable precise analytical detection of the PS tracers. 

4.2.3 PS Tracer Ruggedness 

The ruggedness of the PS tracers was evaluated using varying water types to investigate 

AuNP retention. With these results, the PS tracers were concluded to be stable over time and in 

each of the water types. The discrepancies in Au concentrations between the water types were 

attributed to salinity causing PS tracer aggregation and adsorption to the sample chamber. This 

would explain the lower Au detection observed with the EPA MHW samples. The justification as 

to why this effect was not observed with the IO samples was based on sample-specific matrix 

effects affecting the ICP-MS internal standard recovery even after a 50x dilution factor was applied 

to all samples90. 
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 Comparing ruggedness over time indicated that the PS tracers did not leach gold as no 

statistical difference was observed. Additionally, all Au concentrations were lower in the 

equilibrated treatments compared to their freshly prepared counterparts. This indicated that any 

difference in the detected Au concentrations was the result of the immediate interactions between 

the PS tracers and water type and not degradation over time. For the sake of this study, the PS 

tracers were regarded as functionally stable as the Au concentration did not increase over time, 

spICP-MS does not rely on an internal standard for quantification, and all samples were heavily 

diluted (>1000x) for spICP-MS analysis.  

4.3 PS Tracer Stability and Suspension 

 The stability of the PS tracers was evaluated using SRHA as the DOC and NaCl for salinity 

with concentrations reflecting a range recorded for Bellingham Bay91. The observed trend for 

increasing salinity in the absence of DOC was a significant decrease in the number of suspended 

PS tracers (Figure 8). The loss to colloidal stability is attributed to the increased ion presence 

compressing the electric double layer. This would suppress the electrostatic forces between 

particles leading to PS tracer aggregation and deposition. The decrease in colloidal stability of the 

PS tracers due to salinity parallels research into MP/NP stability in aquatic systems26,88,89. 

 The impact of DOC on the PS tracers’ colloidal stability was more complex than the impact 

of salinity as stability trends varied with increasing humic acid concentrations. The 3 mg/L DOC 

treatments displayed a stabilizing effect with the highest suspended PS tracer percentage compared 

to the 0 and 1.5 mg/L treatments. The observed stabilizing effect for the 3 mg/L DOC treatments 

was attributed to steric repulsion between DOC coated polymers while electrostatic forces are 

thought to have a minimal impact based on measured zeta potential. 
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 For the 1.5 mg/L DOC treatments, a stabilizing effect was not observed with an initial 

decrease in the percent of suspended PS tracers compared to the 0 mg/L DOC treatments. This 

observation was attributed to incomplete polymer coating with DOC leading to hydrophobic 

aggregation and weakened electrostatic forces. As a complex organic molecule, humic acid is 

comprised of hydrophobic (aromatic and aliphatic carbons) and hydrophilic (hydroxyl groups and 

carboxylates) moieties that enable interactions with the polymers while remaining dissolved in 

aqueous media. The interaction of DOC with the PS tracers and the experimental chamber would 

adhere to the hydrophobic effect to create a more energetically stable system favoring 

indiscriminate adsorption to the PE, PP, or PS surfaces. At lower concentrations, it is theorized 

that the DOC would cause incomplete coating of the polymer surfaces encouraging a bridging 

effect between the PS tracers and the chamber. Additionally, the attachment of DOC to the PS 

tracers was found to contribute to a more negatively charged particle. As the PS tracers were found 

to have a positive surface charge, the addition of DOC would weaken these electric forces thus 

promoting aggregation and deposition. 

Comparing the findings of this experiment to other studies, a similar effect was observed 

where salinity favored the aggregation and deposition of MP/NPs while DOC had a more 

stabilizing role by causing steric repulsion between PS tracers26. Extending these observations of 

salinity and DOC to natural systems, the role of salinity is expected to cause MP/NP aggregation 

while DOC would have a more complicated behavior. With salinity, the suppression of the 

coulombic forces is anticipated favoring MP/NP aggregation and deposition, however, in a natural 

system this effect would be added by the presence of divalent cations. The impact of DOC on 

MP/NP stability is expected to diverge from the observations made in this study as the system 

would be immensely larger and the sheer quantity of DOC would be orders of magnitude higher 
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than that of the MP/NPs. As such, DOC is expected to readily adsorb to the MP/NPs forming stable 

colloidal complexes. In addition, natural systems would have divalent cations that could lead to 

aggregation through cation bridging and the presence of natural particles can have a variety of 

effects on MP/NPs not explored in this experiment. With this, the stability and suspension of the 

PS tracers was comparable to other MP/NP studies that used a simplistic aquatic system but the 

behavior of the tracers in a natural system remains to be explored. 

4.4 PS Tracer Partitioning 

4.4.1 PS Tracer Partitioning: Water 

 The role of EPA MHW and IO on PS tracer suspension after equilibration was found to 

have a profound influence on PS tracer stability. The percent of suspended PS tracers associated 

with EPA MHW was 20.52 ± 9.55% and IO was 7.21 ± 2.90% indicating a clear distinction 

between the two water types (Table 10 and Figure 9). This distinction was attributed to the 

increased salinity associated with IO and is in accordance with the findings from the Stability and 

Suspension experiments. Comparing the percent of suspended particles to that of suspended and 

loosely bound particles did show an increase in the average percent of detected PS tracers but it 

was not statistically significant (Figure 9). As such, the portion of loosely bound PS tracers was 

considered negligible in this experiment. 

4.4.2 PS Tracer Partitioning: Water and Sediment 

 Comparing the percent of suspended PS tracers between treatments that contained water 

versus water and sediment revealed that sediment had a significant impact on decreasing PS tracer 

suspension (Figure 10). Compared to their water counterparts, sediment with EPA MHW had a 

suspended PS tracer percentage of 4.95 ± 3.75 % (EPA MHW only: 20.52 ± 9.55%) and sediment 
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with IO water had a PS tracer percentage of 1.36 ± 1.01% (IO only: 7.21 ± 2.90%) (Table 11). 

This indicated that sediment had a meaningful impact on PS tracer suspension leading to a near 

total capture. These results parallel what has been reported in the literature where the majority of 

MP/NPs were found to adsorb to sediments and biosolids. The implications of these findings are 

that MP/NPs are highly retained to environmental particulates due to adsorption and 

Heteroaggregation thus limiting transport and often favoring deposition. 

4.4.3 PS Tracer Partitioning: Sediment Sites 

 Comparing the different sediment from the sample sites indicated that there was no 

statistical difference in the percent of suspended or suspended and loosely bound PS tracers 

between sites in either EPA MHW or IO water (Table 23A and Figure 11). This inability to 

distinguish between the different sediments was due to the near total partitioning of the PS tracers 

to the sediment. As a result, differences in grain size, carbon content, and metal content could not 

be properly compared in this study and thus no conclusion can be drawn at this time.  

Visual observation indicated that treatments containing sediment from sites C and D did 

have a slower settling velocity compared to sites A and B in EPA MHW. This factor likely 

contributed to the increasing trend in percent of suspended PS tracers observed in Figure 11. This 

trend was not observed in the IO water treatments likely due to the higher salinity. Extending this 

observation to natural systems, the heteroaggregation of MP/NPs with sediment is expected to 

impact contaminant transport where larger sediment grain sizes have faster settling velocities. This 

would impact MP/NP transport allowing for greater dispersion in aquatic environments. 
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4.5 PS Tracer Partitioning: Au Mass Association 

 The mass of Au associated with the sediment portion exceeded 95% for all samples when 

compared with the corresponding water fraction. The mass of Au detected did exceed the 

theoretically determined Au mass and this was attributed to excess Au not associated with the PS 

tracers but still present in the PS tracer stock solution. Although a similar trend in partitioning was 

observed, the advantage of single particle analysis becomes apparent as PS tracer events were able 

to be distinguished from other Au artifacts. 

4.6 Conclusion and Future Applications 

 Coupling metallically-labeled MP/NP tracers with spICP-MS has provided an analytical 

mechanism to investigate the transport, fate, and behavior of MP/NPs in environmental systems. 

As a major analytical challenge is often in discerning MP/NPs from complex carbonaceous 

matrices, ICP-MS quantification of a trace metal transcends this issue. Further to this, single 

particle analysis allows for a rapid, individualized approach to analysis that can discern between 

labelled plastics and free Au NP events. This rapid quantification has allowed for the application 

of the PS tracers viable for use in environmental studies that probe MP/NP transport, fate, and 

behavior. As this study only addressed an initial application and the similarities to MP/NPs being 

mimicked, expansion in the application of PS tracers for environmental and toxicological is 

warranted with further study.   

 A major advantage to the synthetic approach used for the PS tracers was independence of 

the PS-co-P2V cores from the PS-shell and AuNPs. This has allowed for substitutions of the 

polymer shell and of the metallic nanoparticles which has been demonstrated67,68. Alterations to 

the synthetic approach would improve versatility allowing for a broader spectrum of polymers to 
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be explored. Substitutions to the metallic nanoparticles has been explored that would allow for a 

closer density match and it has been proposed that the use of magnetic nanoparticles could favor 

MP/NP recapture after deployment. Adaptations to tracer synthesis has allowed for a variety of 

metallically-labelled MP/NP tracers to be developed that can address complex questions related to 

MP/NPs, however, each of these tracers would need to be robust. 

 The ruggedness of the PS tracers was addressed to meet the needs of this study and was 

not tested beyond this extent. In this pursuit, the PS tracers did not leach AuNPs over time or in 

varying water types, however for studies with harsher environmental conditions (heat, UV, pH, 

etc.), a full sweep of ruggedness should be performed to determine applicability. To this purpose, 

determining the range of pH, temperature, time, and UV exposure is critical while exposure to 

different media should be explored. These benchmark tests would set the stage in guiding future 

environmental and biological studies. 

Building upon the findings in this study, experiments could be tailored to address specific 

environmental factors without interference. As no significant differences were found between the 

sediment samples, studies that reevaluate the experimental design and more detailed individual 

comparison of carbon content, sediment grain sizes, and metal species would provide insight into 

role these factors have on MP/NPs. Taken further, the settling rate of the tracers, the partitioning 

coefficient, and tracer resuspension could be explored to a greater extent. Expanding on the 

applications of using metallically-labeled MP/NP tracers to investigate MP/NP transport, fate, and 

behavior, future studies can be tailored for specific environmental and toxicological purposes. 

These applications could include scenarios that mimic landfills, WWTPs, and applied sludge 

allowing for contaminant transport, fate, and behavior to be investigated. For toxicological 

purposes, the use of these traces could expand our understanding of MP/NP accumulation and 
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concentration to specific tissues. This would prove useful for studies that are investigating MP/NP 

interactions with flora or fauna and could employ analytical techniques that exploit the tracer’s 

trace metal signature. 

This study set the foundation for the use of our metallically-labeled MP/NP tracers in 

environmental applications and displayed the versatility of single particle analysis for this 

purpose. Evaluation of the PS tracers used in this study found that the tracers chemically 

resembled pure PS but did deviate in material density. Although future work aims to address this, 

the PS tracers displayed similar behavior and partitioning that has been recorded with other 

studies. In terms of detection, these tracers can be rapidly quantified and distinguished at low 

concentrations using ICP-MS. When the tracers are analyzed on a single particle basis, spICP-

MS provides a higher degree of certainty in particle events providing confidence in the detection 

of the tracers from impurities and background events. Further development of these tracers is 

expected to increase their versatility with alterations to the polymer shell and trace metal 

nanoparticles and in the use of these tracers for more complex environmental and toxicological 

studies. 
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Appendix 

Appendix: Figures 

 

Figure 1A. Bellingham Bay study region where sediment was collected from four sample sites (A-D). Map 

generated using Geo JSON. 
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Figure 2A. Sediment major metal concentration for each sample site (A-D) as determined by FAAS analysis. Sites 

were compared and grouped based on a post hoc analysis and the assigned letters compare specific metals across 

sample sites. Metals without a designated letter group indicate that no statistical difference was determined (Mean ± 

SD; n = 3). This figure was generated using R software. 



68 
 

 

Figure 3A. The concentration of trace metals associated with the sediment for each sample site (A-D) as determined 
by ICP-MS. Sites were compared and grouped based on a post hoc analysis and the assigned letters compare specific 

metals across sample sites. Metals without a designated letter group indicate that no statistical difference was 

determined (Mean ± SD; n = 3). This figure was generated using R software. 
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Figure 4A. Sediment variable correlation based on each sample site (A-D). The sediment grain sizes medium sand 

(M.Sand), fine sand (F.Sand), very fine sand (V. Sand), and silts and clays (Silt) were compared to the concentration 

of Mn, FE, and total carbon (TC) associated with each sample site. This figure was generated using R software. 
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Figure 5A. Sed-FFF distribution and comparison of the PS tracers with a 512nm diameter PS standard. This figure 

was generated using R software. 
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Figure 6A. Thermal degradation of the PS-co-P2V cores, PS shelled cores, and the PS tracers by TGA. Complete 

material combustion of the polymers was achieved by switching the purge gas from N2 to air at a temperature of 

650°C. The remaining mass after combustion of the organic material is representative of the AuNPs. This figure was 

redacted from Rauschendorfer et al 2021. 
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Figure 7A. Histogram distribution of the PS tracers showing relative monodispersity of the AuNP loading. The Au 

signal distribution is related to the mass of Au associated with a single PS tracer,  free AuNP, or Au contaminant. A 

signal intensity cutoff of 70 was applied to ensure that Au background events were separated from PS tracer detection. 

The tailing effect for Au signal intensity is likely due to PS tracer aggregation and the detection of multiple particle 

events. This figure was generated using R software. 
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Figure 8A. spICP-MS measurements for PS tracer concentrations at stock dilutions of (A)107, (B) 5*106, and (C) 

2*106 (n = 3). At a higher stock concentration, a lower particle  count is observed, and this is attributed to coincidence 

events where multiple particles are detected at the same time causing an overlapped signal. This figure was generated 

using R software. 
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Appendix: Tables 

Table 1A. Instrumental conditions for the Agilent 7500ce ICP-MS. The operational parameters for spICP-MS are 

provided which accounted for the analysis of nanoparticles and PS tracers. 

Agilent 7500ce ICP-MS 
Instrument 

Parameters 
Value 

Nebulizer Gas 

Flow Rate 
0.81 ml/min 

Sample Flow Rate 0.34 ml/min 
Spray Chamber Scott Double Pass 
ICP RF Power 1500 W 

spICP-MS Operation 

Dwell time 10 ms 
Transport efficiency 4-6% 

Analyte 197Au 
Analysis Time 30 s 

 

Table 2A. Instrumental conditions for Sedimentation Field Flow Fractionation (Sed-FFF). The analysis was 

performed by Postnova Analytics Inc, using a Sed-FFF model CF2000 with a UV detector attachment. This table was 

provided by Rauschendorfer et al, 2021. 

Sedimentation Field Flow Fractionation (Sed-FFF) 

Postnova Analytics Model: CF2000 

Instrument Parameter Value 

Field 1000 RPM 

Channel Flow Rate 2 mL min-1 

Relaxation Time 5 min 

Channel Thickness 131 μm 

Injection Volume 50 μL 

Carrier Solution 0.05% (v/v) FL-70 + 3 mM NaN3 
 

Table 3A. Operational conditions for the Renishaw inVia Qontor Raman Microscope. 

Renishaw inVia Qontor Raman Microscope 

Parameter Setting 

Objective 
Leica N Plan 50×L, 

NA = 0.50 

Laser & Excitation Wavelength HeNe, 632.8 nm 

Spot Size on Sample 1.3 μm 

Laser Power at Sample 5.0 mW 

Power Density 3.8 mW/μm2 

Integration Time 10 sec 

Spectra Averaged per Sample 12 
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Table 4A. Results for a MANOVA and one-way ANOVA tests used to determine if the sample sites were 

statistically different based on sediment grain size. The alpha value was set as α = 0.05. The MANOVA test was 

significant (F3,8 = 24.843, P < 0.001) and each of the ANOVA tests were significant (P < 0.05 for all). 

MANOVA F3,8 value p value  
24.84 5.4*10-9 

ANOVA F3,8 value p value 

Coarse Sand 5.19 2.8*10-2 

Medium Sand 40.91 3.4*10-5 

Fine Sand 45.41 2.3*10-5 

Very Fine Sand 25.32 2.0*10-4 

Silt 834.05 2.5*10-10 

 

Table 5A. Results for Tukey’s HSD test with α = 0.05 based on sediment grain size. Tukey’s HSD is a post hoc 

analysis that was used to compare each sample site by a specific grain size. Statistical differences between sites are 

indicated by grouping denoted alphabetically where group a represents the largest average mass percentage. Groups 

that share any of the same letter designations cannot be distinguished from each other. 

Grain Type Site 
Average Mass 
Percentage (%) 

SD Grouping 

Coarse Sand A 0.52 0.089 b 

Coarse Sand B 2.55 1.45 a 

Coarse Sand C 0.82 0.42 ab 

Coarse Sand D 0.41 0.020 b 

Medium Sand A 13.77 2.41 b 

Medium Sand B 25.95 5.33 a 

Medium Sand C 0.96 0.48 c 

Medium Sand D 6.02 0.46 c 

Fine Sand A 72.46 1.65 a 

Fine Sand B 51.19 15.18 b 

Fine Sand C 1.80 0.31 c 

Fine Sand D 34.85 1.24 b 

Very Fine Sand A 11.43 2.88 b 

Very Fine Sand B 15.87 11.17 b 

Very Fine Sand C 16.84 1.91 b 

Very Fine Sand D 48.55 1.22 a 

Silts and Clays A 1.83 0.93 c 

Silts and Clays B 4.40 4.15 bc 

Silts and Clays C 79.54 1.28 a 

Silts and Clays D 10.18 0.44 b 
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Table 6A. Results for a MANOVA and one-way ANOVA tests used to determine if the sample sites were 

statistically different based on carbon concentration. The alpha value was set as α = 0.05. The MANOVA test was 

significant (F3,8 = 2.54, P < 0.01) along with the ANOVA tests for Total Carbon (TC) (F3,8 = 158.1, P < 0.001), 

Labile Carbon (LC) (F3,8 = 150.2, P < 0.001), and Black Carbon (BC) (F3,8 = 30.29, P < 0.001). The Inorganic 

Carbon (IC) concentration was not significant (P = 0.18). 

MANOVA F3,8 value P value 

 2.54 3.3*10-2 

ANOVA F3,8 value P value 

TC 158.1 1.9*10-7 

LC 150.2 2.3*10-7 

BC 30.29 1.0*10-4 

IC 2.06 0.18 

 

Table 7A. Results for Tukey’s HSD test based on carbon content with α = 0.05. Tukey’s HSD is a post hoc analysis 
that was used to compare each sample site by carbon species and concentration. Statistical differences between sites 

are indicated through grouping denoted alphabetically where group a represents the largest average concentration. 

Groups that share any of the same letter designations cannot be distinguished from each other. Site C was the only 

site that was significantly different from all other sites based on Total Carbon (TC), Labile Carbon (LC), and Black 

Carbon (BC). 

Carbon 
Type 

Site 
Average 

Conc. (g/kg) 
SD Grouping 

TC A 1.44 6.1*10-2 b 

TC B 1.61 0.22 b 

TC C 6.47 0.61 a 

TC D 2.21 0.11 b 

LC A 1.38 6.7*10-2 b 

LC B 1.54 0.21 b 

LC C 6.18 0.59 a 

LC D 2.10 0.12 b 

BC A 3.7*10-2 9.1*10-3 b 

BC B 6.9*10-2 4.0*10-2 b 

BC C 0.22 2.2*10-2 a 

BC D 8.5*10-2 2.1*10-2 b 

 

Table 8A. Sediment metal concentrations (g/kg) for sample sites (A-D) as determined by FAAS (Mean ± SD; n = 

3). 

Site Al Conc. 
(g/kg) 

Mg Conc. 
(g/kg) 

Fe Conc. 
(g/kg) 

K Conc. 
(g/kg) 

Na Conc. 
(g/kg) 

Ca Conc. 
(g/kg) 

A 21.65 ± 1.92 55.68 ± 4.91 60.76 ± 5.52 2.77 ± 0.39 5.28 ± 0.32 15.02 ± 1.47 
B 21.74 ± 2.51 55.36 ± 6.10 61.93 ± 4.20 2.94 ± 0.47 5.18 ± 0.64 16.60 ± 1.29 
C 29.76 ± 2.10 47.92 ± 0.35 69.15 ± 0.55 3.99 ± 0.86 7.61 ± 0.77 17.14 ± 1.94 
D 23.35 ± 3.29 52.74 ± 2.65 61.63 ± 5.08 3.19 ± 0.29 5.56 ± 0.28 17.20 ± 0.24 
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Table 9A. Results for a MANOVA and ANOVA tests used to determine if the sample sites were statistically 

different based on sediment metal concentrations. The MANOVA test was not significant (P < 0.49) while the 

ANOVA tests were significant for Al (F3,8 = 4.67, P < 0.05) and Na (F3,8 = 8.85, P < 0.01). The metals Ca (P = 

0.41), Fe (P = 0.26), K (P = 0.20), and Mg (P = 0.29) were not statistically significant by ANOVA. 

MANOVA F3,8 value P value  
1.02 0.49 

ANOVA F3,8 value P value 

Al 4.67 0.036 

Ca 1.08 0.41 

Fe 1.63 0.26 

K 1.98 0.20 

Mg 1.50 0.29 

Na 8.85 6.4*10-3 

 

Table 10A. Results for Tukey’s HSD test based on sediment metal content with set to α = 0.05. Tukey’s HSD is a 

post hoc analysis that was used to compare each sample site by sediment metal concentration. Statistical differences 
between sites are indicated through grouping denoted alphabetically where group a represents the largest average 

concentration. Groups that share any of the same letter designations cannot be distinguished from each other. 

Metal 
Species 

Site 
Average 

Conc. (g/kg) 
SD Grouping 

Al A 21.65 2.35 b 

Al B 21.74 3.08 ab 

Al C 29.76  2.57 a 

Al D 23.35  4.03 ab 

Na A 5.28  0.39 b 

Na B 5.18  0.79 b 

Na C 7.61  0.95 a 

Na D 5.56  0.34 b 
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Table 11A. Results for a MANOVA and ANOVA tests used to determine if the sample sites were statistically 

different based on sediment trace metal concentrations. The MANOVA test was significant (F3,8 = 3.95, P < 0.001) 

while the ANOVA tests were significant for Cr (F3,8 = 5.51, P < 0.05), Cu (F3,8 = 13.51, p<0.01), and Mn (F3,8 = 

161.1, P < 0.001). The metals Co (P = 0.10), Ni (P = 0.16), and V (P = 0.31). 

MANOVA F3,8 value P value  
3.9532 8.8*10-3 

ANOVA F3,8 value P value 

Co 2.96  9.8*10-2 

Cr 5.51  2.4*10-2 

Cu 13.51  1.7*10-3 

Mn 161.1  1.7*10-7 

Ni 2.28  0.16 

V 1.42   0.31 

Zn 52.55  1.3*10-5 

 

Table 12A. Results from Tukey’s HSD tests comparing sediment trace metal concentrations at each site (A-D). Site 

comparisons were made with set to α = 0.05 which determined site grouping. Groups were assigned alphabetically 

with higher metal concentrations associated with site a. Sites with a common letter designation cannot be 

distinguished from each other based on that specific trace metal concentration. 

Metal 
Species 

Site 
Average 

Conc. (g/kg) 
SD Grouping 

Cr A 3.5*10-2 1.2*10-3 b 

Cr B 3.6*10-2 2.6*10-3 b 

Cr C 5.5*10-2 1.3*10-2 a 

Cr D 4.1*10-2 1.2*10-3 ab 

Cu A 2.6*10-2 1.7*10-3 b 

Cu B 2.4*10-2 3.0*10-3 b 

Cu C 4.0*10-2 4.1*10-3 a 

Cu D 2.7*10-2 4.5*10-3 b 

Mn A 0.45 7.2*10-3 a 

Mn B 0.27  1.4*10-2 d 

Mn C 0.32  1.3*10-2 c 

Mn D 0.35  6.2*10-3 b 

Zn A 4.4*10-2 2.0*10-3 bc 

Zn B 4.2*10-2 2.4*10-3 c 

Zn C 5.8*10-2 1.2*10-3 a 

Zn D 4.8*10-2 1.1*10-3 b 
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Table 13A. Sediment predictor variable correlation. A value of 1.00 indicates a strong positive correlation, 0.00 indicates no correlation, and -1.00 indicates a 

strong negative correlation between variables. Sediment grain sizes were abbreviated as coarse sand (CS), medium sand (MS), fine sand (FS), very fine sand 

(VFS), and silts and clays (Silt). The correlation of carbon and metal species with sediment grain size were of particular interest as a high correlation would 

indicate that the individual influence of these species was indiscernible from grain size. 

 V Cr Mn Co Ni Cu Zn TC LC Al Mg Fe K Na Ca BC IC CS MS FS VFS 
V 1.00 - - - - - - - - - - - - - - - - - - - - 
Cr 0.07 1.00 - - - - - - - - - - - - - - - - - - - 
Mn -0.98 -0.28 1.00 - - - - - - - - - - - - - - - - - - 
Co -0.97 0.00 0.93 1.00 - - - - - - - - - - - - - - - - - 
Ni -0.29 -0.98 0.48 0.21 1.00 - - - - - - - - - - - - - - - - 
Cu -0.06 0.98 -0.15 0.10 -0.93 1.00 - - -- - - - - - - - - - - - - 
Zn -0.09 0.98 -0.13 0.17 -0.93 0.97 1.00 - - - - - - - - - - - - - - 
TC 0.06 0.99 -0.27 -0.02 -0.97 0.99 0.97 1.00 - - - - - - - - - - - - - 
LC 0.06 0.99 -0.27 -0.02 -0.96 0.99 0.97 1.00 1.00 - - - - - - - - - - - -- 
Al 0.04 1.00 -0.25 0.01 -0.97 0.99 0.98 1.00 1.00 1.00 - - - - - - - - - - - 
Mg -0.07 -0.99 0.28 -0.03 0.97 -0.96 -0.99 -0.97 -0.97 -0.99 1.00 - - - - - - - - - - 
Fe 0.16 0.97 -0.36 -0.14 -0.96 0.97 0.92 0.99 0.99 0.98 -0.94 1.00 - - - - - - - - - 
K 0.16 1.00 -0.37 -0.08 -1.00 0.96 0.97 0.98 0.98 0.99 -0.99 0.97 1.00 - - - - - - - - 
Na 0.00 0.99 -0.21 0.04 -0.95 1.00 0.97 1.00 1.00 1.00 -0.97 0.98 0.97 1.00 - - - - - - - 
Ca 0.64 0.61 -0.75 -0.47 -0.73 0.45 0.55 0.53 0.53 0.55 -0.65 0.52 0.67 0.49 1.00 - - - - - - 
BC 0.19 0.98 -0.39 -0.14 -0.99 0.97 0.95 0.99 0.99 0.99 -0.98 0.99 0.99 0.98 0.63 1.00 - - - - - 
IC -0.17 0.97 -0.04 0.25 -0.89 0.97 1.00 0.95 0.95 0.97 -0.97 0.90 0.94 0.97 0.47 0.92 1.00 - - - - 
CS 0.83 -0.27 -0.74 -0.93 0.08 -0.31 -0.44 -0.21 -0.21 -0.26 0.32 -0.08 -0.20 0.11 -0.13 -0.50 0.79 1.00 - - - 
MS 0.44 -0.77 -0.25 -0.57 0.65 -0.77 -0.87 -0.71 -0.71 -0.76 0.81 -0.62 -0.74 -0.38 -0.67 -0.89 0.36 0.81 1.00 - - 
FS -0.32 -0.95 0.51 0.20 0.98 -0.87 -0.91 -0.91 -0.91 -0.93 0.96 -0.90 -0.97 -0.82 -0.96 -0.87 -0.40 0.13 0.68 1.00 - 
VFS 0.08 0.02 -0.10 0.14 -0.04 -0.13 0.09 -0.11 -0.11 -0.05 -0.13 -0.20 0.06 0.58 -0.04 0.06 0.10 -0.38 -0.37 -0.23 1.00 
Silt 0.06 0.98 -0.27 -0.03 -0.96 0.99 0.95 1.00 1.00 1.00 -0.96 0.99 0.97 0.50 0.99 0.94 0.14 -0.19 -0.69 -0.90 -0.16 
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Table 14A. Raman band assignments for the PS-co-P2VP cores and the PS-shelled cores. This table was adapted by 

Rauschendorfer et al, 2021. 

PS-co-P2VP Core  PS-Shelled Core  

Raman Shift (cm-1) Assignment Raman Shift (cm-1) Assignment 

1601 (shoulder) (m)  PS ring stretch   1601 (s)  PS ring stretch  

1590 (s)  P2VP ring stretch   1590 (m)  P2VP ring stretch  

1567 (m)  PS ring stretch   -----  -----  

-----  -----  1568 (m)  PS ring stretch  

1447 (m)  P2VP ring stretch   1447 (m)  P2VP ring stretch  

1330 (w)  PS/P2VP CH2 twist       

-----  -----  1328 (w)  PS/P2VP CH2 twist  

1210 (m)  
PS C=C of 

ring & backbone   
-----  -----  

-----  -----  1202 (m)  
PS C=C of 

ring & backbone  

-----  -----  1153 (m)  P2VP CH in plane bend  

1149 (m)  P2VP CH in plane bend  -----  -----  

1087 (w)  P2VP CH in plane bend   -----  -----  

  -----  1051 (s)  PS CH in plane bend  

1050 (s)  PS CH in plane bend   -----  -----  

1030 (w)  PS CH in plane bend   1030 (m)  PS CH in plane bend  

1000 (shoulder) (s)  PS/P2VP ring breathing   1000 (s)  PS/P2VP ring breathing  

992 (s)  P2VP ring breathing   992 (shoulder) (s)  P2VP ring breathing  

914 (w)  P2VP C-C vibrating   -----  -----  

812 (w)  
P2VP C=C of 

ring & backbone   
-----  -----  

-----  -----  794 (m)  
PS C=C of 

ring & backbone  

 

Table 15A. Evaluation of PS tracer ruggedness in various aquatic media. The concentration of free Au was 

compared in MilliQ, EPA MHW, and IO for freshly prepared and 48 hr equilibrated treatments (Mean and SD; n = 

3). Each treatment was assigned to a lettered group based on a post hoc analysis. 

Water Type 
Equilibration 

Status 

Au Concentration 

(µg/L) 
Grouping 

MilliQ Freshly Prepared 34.42 ± 7.62 a 

MilliQ Equilibrated 34.43 ± 3.85 a 

EPA MHW Freshly Prepared 18.63 ± 1.83 b 

EPA MHW Equilibrated 12.86 ± 2.29 b 

IO Freshly Prepared 45.22 ± 1.87 a 

IO Equilibrated 40.81 ± 1.45 a 
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Table 16A. Results for ANOVA tests comparing (A) percent of suspended PS tracers with varying salinity at 

constant DOC concentrations and (B) percent of suspended PS tracers with varying DOC at constant salinity. The F 

and P values are provided. For A and B, all ANOVA comparisons indicated significant differences between 

treatments (P = 0.01). 

(A) ANOVA: Salinity Comparison 

DOC Conc. 

(mg/L) 
F4,10 value P value 

0 31.93 1.1*10-5 

1.5 62.36 4.9*10-7 

3 8.45 3.0*10-3 

(B) ANOVA: DOC Comparison 

Salinity 

(g/L) 
F2,6 value P value 

0 11.47 8.9*10-3 

1 28.60 8.6*10-4 

5 26.03 1.1*10-3 

15 163.20 5.9*10-6 

30 50.93 1.7*10-4 
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Table 17A. Results from Tukey's HSD tests comparing treatments at varying salinity and DOC concentrations. 

Treatment groups were alphabetically assigned with a representing the largest percent of PS tracers detected (n = 3). 

Salinity 

(g/L) 

DOC 

(mg/L) 

Total MP 

Percent (%) 
SD Grouping 

0 0 72.44 12.19 a 

1 0 31.37  4.56 b 

5 0 24.21   9.04 b 

15 0 16.08 2.20 b 

30 0 11.81  4.51 b 

0 1.5 52.06  3.10 a 

1 1.5 28.75  1.88 b 

5 1.5 20.12 5.58 bc 

15 1.5 20.47  2.14 bc 

30 1.5 13.24 2.43 c 

0 3 87.66   9.59 a 

1 3 55.24  6.54 b 

5 3 66.80 10.87 ab 

15 3 60.66  4.89 b 

30 3 52.77  8.32 b 

0 0 72.44 12.19 ab 

0 1.5 52.06  3.10 b 

0 3 87.66  9.59 a 

1 0 31.37 4.56 b 

1 1.5 28.75  1.88 b 

1 3 55.24  6.54 a 

5 0 24.21   9.04 b 

5 1.5 20.12 5.58 b 

5 3 66.80 10.87 a 

15 0 16.08 2.20 b 

15 1.5 20.47  2.14 b 

15 3 60.66  4.89 a 

30 0 11.81  4.51 b 

30 1.5 13.24  2.43 b 

30 3 52.77  8.32 a 
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Table 18A. Results from a pairwise t-test comparing the percent of PS tracers detected before and after sonication. 

This comparison represents the portion of suspended PS tracers (before sonication) and the portion of suspended and 
loosely bound PS tracers (sonicated). A Bonferroni adjusted p value was used for all comparisons, however, no 

statistical difference (P > 0.05) was found for the water samples (A) or the water samples with sediment (B). The 

asterisk (*) denoted analyses that would not be appropriate for statistical comparisons by a pairwise t-test. 

A. Water EPA MHW IO 

EPA MHW Sonicated 1.00 * 

IO Sonicated * 0.095 

B. Sediment EPA MHW IO 

EPA MHW Sonicated 1.00 * 

IO Sonicated * 0.77 

 

Table 19A. Pairwise comparisons of suspended PS tracers in EPA MHW and IO. Water type comparisons were 

made based on the suspended and suspended and loosely bound fractions with the F and P values provided. 

Water Type Comparisons 

Pairwise t-test F1,6 Value P Value 

Suspended 6.68 0.042 

Loosely Bound 5.99 0.05 

 

Table 20A. Results from Welch’s ANOVA tests that compared the percent of suspended PS tracers detected after 

equilibration with water or water with sediment. The statistical tests were separated based on samples that contained 
suspended PS tracers and samples with suspended and loosely bound PS tracers. Both the suspended (F3,20.52  = 

27.15, P < 0.001) and suspended and loosely bound (F3,20.52  = 34.21, P < 0.001) treatments were found to be 

significant. 

Welch’s ANOVA F3,20.52 value P value 

Suspended 27.15 2.6*10-7 

Suspended & 

Loosely Bound 
34.21 3.6*10-8 
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Table 21A. Results of the Games-Howell pairwise comparison tests using a Bonferroni p value adjustment to 

compare (A) suspended PS tracers and (B) suspended and loosely bound PS tracers after equilibration in 
environmental media. All comparisons for the suspended PS tracers were significant (P < 0.05) with the exception 

of IO compared with Sediment and EPA MHW (P = 0.41). All the comparisons between the suspended and loosely 

bound PS tracer treatments were significant (P < 0.05). 

A.  Sediment/EPA MHW EPA MHW IO 

EPA MHW 8.7*10-4 - - 

IO 0.41 3.4*10-3 - 

Sediment/IO 4.1*10-2 1.7*10-4 1.1*10-4 

B.  Sediment/EPA MHW EPA MHW IO 

EPA MHW 8.7*10-4 - - 

IO 6.5*10-3 1.0*10-2 - 

Sediment/IO 1.3*10-2 2.3*10-4 1.2*10-5 

 

Table 22A. Games-Howell pairwise comparison tests using a Bonferroni p value adjustment grouping results for 

(A) percent suspended PS tracers and (B) percent of suspended and loosely bound PS tracers after equilibration in 

environmental media. Groups were designated letters alphabetically with group a indicating the highest percent of 

PS tracers detected. 

A. Average PS Tracer 

Percentage (%) 

Group 

EPA MHW 20.52 ± 9.97 a 

Sediment/EPA MHW 4.95 ± 3.92 b 

IO 7.21 ± 3.03 b 

Sediment/IO 1.36 ± 1.05 c 

B. Average PS Tracer 

Percentage (%) 

Group 

EPA MHW 24.77 ± 12.19 a 

Sediment/EPA MHW 5.62 ± 3.21 c 

IO 10.78 ± 3.62 b 

Sediment/IO 2.06 ± 1.12 d 
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Table 23A. Detection of suspended and loosely bound PS tracer detection after equilibration with site sediment and 

water. Sediment collected from the sample sites (A-D) was paired with either EPA MHW or IO and detected for 
suspended PS tracers using spICP-MS. These samples were also sonicated to determine the amount of suspended 

and loosely bound PS tracers associated with each treatment (Mean and SD; n = 3). 

Site Water Type Sonicated 
spICP-MS MP 

Average Count 

PS Tracer 

Conc. (MP/ml) 

Percent Suspended 

PS Tracers (%) 

A EPA MHW No 34.67 3.1*106 2.02 ± 1.09 

A EPA MHW Yes 52.00 2.6*106 1.69 ± 0.86 

A IO No 14.00 3.6*106 2.36 ± 1.56 

A IO Yes 23.33 2.6*106 1.69 ± 1.33 

B EPA MHW No 29.67 6.8*106 4.41 ± 2.05 

B EPA MHW Yes 30.67 8.6*106 5.60 ± 1.66 

B IO No 8.67 1.8*106 1.19 ± 0.24 

B IO Yes 17.00 3.4*106 2.20 ± 0.86 

C EPA MHW No 61.67 1.1*107 7.26 ± 5.72 

C EPA MHW Yes 69.33 1.0*107 6.50 ± 2.21 

C IO No 18.00 1.8*106 1.15 ± 0.00 

C IO Yes 25.33 4.7*106 3.06 ± 0.54 

D EPA MHW No 25.33 9.4*106 6.11 ± 1.64 

D EPA MHW Yes 31.33 1.3*107 8.70 ± 1.89 

D IO No 12.67 1.1*106 0.74 ± 0.26 

D IO Yes 14.67 2.0*106 1.30 ± 0.26 

 

Table 24A. Results for the ANOVA tests comparing sediment collected from the sample sites (A-D) paired with 

either EPA MHW or IO. Analysis (A) compared each site by the percent of suspended PS tracers where either the 

EPA MHW (P = 0.44) or IO (P = 0.28) treatment were significant. Analysis (B) compared each site by the percent 

of PS tracers classified as suspended and loosely bound where the EPA MHW (F3,8 = 5.74, P < 0.05) treatment was 

significant while the IO (P = 0.26) treatment was not significant. 

A.  
Water Type F3,8 value P value 
EPA MHW 1.02 0.44 

IO 1.52 0.28 
B. 
Water Type F3,8 value P value 
EPA MHW  5.74 0.022 

IO 1.62 0.26 
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Table 25A. Results from Fisher’s LSD with a Bonferroni adjusted P value that compared the sediment from each 

site by the percent of suspended and loosely bound PS tracers. All site comparisons were found to not be significant 

(P > 0.05). 

Site A B C 

B 0.36 - - 

C 0.46 1.00 - 

D 0.12 0.94 1.00 

 

Table 26A. The mass of Au associated with the water and the sediment portions from the PS tracer partitioning 

experiments. Each portion was distinguished by sample site and the water paired with that sample (Mean and SD; 

n=3). 

Site 
Mass of Au (mg) 

EPA MHW IO 
Water Portion Sediment Portion Water Portion Sediment Portion 

A 2.13 ± 0.47 136.77 ± 57.75 1.20 ± 0.10 120.68 ± 40.72 
B 1.13 ± 0.17 124.16 ± 23.66 1.00 ± 0.13 94.95 ± 17.33 
C 0.82 ± 0.10 137.54 ± 51.38 0.75 ± 0.06 85.65 ± 5.96 
D 0.76 ± 0.08 112.81 ± 19.82 0.82 ± 0.11 103.88 ± 13.58 
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Appendix: Equations 

equation 1A. 

TE =

STDI
STDM

NPI
NPM

⁄  

TE: transport efficiency  

STDI: Standard solution signal 

NPI: Nanoparticle signal 

NPM: Nanoparticle mass 

equation 2A. 

Np =
f(Ip)

qliq ∗ TE ∗ t
 

Np: Particle number concentration (particles/ml) 

f(Ip): Frequency of signal events (particles) 

qliq: Sample flow rate (ml/s) 

t: Sample analysis time (s) 

equation 3A. 

mAu = fa
−1 ∗ [

Ip − Ibgd

m ∗ IE
] 

mau: Total gold mass 

fa: mass fraction 

Ip: Pulse intensity 

Ibgd: Background intensity 

m: Intensity per mass 

IE: Ionization efficiency 

equation 4A. 

NPAu =
mAu

π
6 ∗

(DAuNP)3 ∗ ρ
 

NPAu: Au nanoparticle concentration (particles/MP)  

DAuNP: Diameter of Au nanoparticle (cm) 

ρ: Au Density (g/cm3) 
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Appendix: R Packages 

Function Package Citation 

Tukey’s HSD agricolae 

Felipe de Mendiburu (2020). agricolae: Statistical Procedures 

for Agricultural Research. R package version 1.3-2. 

https://CRAN.R-project.org/package=agricolae 

Levene’s Test for 

Equality of 

Variances 

car 

John Fox and Sanford Weisberg (2019). An {R} Companion to 

Applied Regression, Third Edition. Thousand Oaks CA: Sage. 

URL: 

https://socialsciences.mcmaster.ca/jfox/Books/Companion/ 

Games-Howell 

Pairwise 

Comparison 

PMCMRplus 

Thorsten Pohlert (2021). PMCMRplus: Calculate Pairwise 

Multiple Comparisons of Mean Rank Sums Extended. R 

package version 1.9.0. https://CRAN.R-

project.org/package=PMCMRplus 
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