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Abstract 

This study analyzed water quality, metals concentrations, and algal taxa richness data from 68 lakes in 
Northwest Washington that have been sampled by Western Washington University’s Institute of 
Watershed Studies. The primary goals of this analysis were to survey unmonitored lakes to gain a better 
understanding of the current conditions and to compare how lakes are characterized using combinations 
of the three data sets. Higher elevation lakes in the North Cascades were expected to have lower 
concentrations of metals and nutrients and more sensitive algae taxa than low elevation lakes in the 
Puget Sound Lowlands. When compared against Washington State benchmarks, some lakes exceeded 
aluminum, iron, copper, temperature, dissolved oxygen, and/or pH values. The most common 
exceedance was for a modified temperature criteria with 49 of the 68 lakes exceeding the least 
protective designated use criteria and 66 of the 68 lakes exceeding the most protective designated use 
criteria. Water quality and metal variables each produced clusters that supported traditional lake trophic 
state classifications. Algae taxa richness informed clusters showed significant differences between 
groups and the number of desmid and euglenoid taxa were used to characterize the clustering results. 
Water quality, metals, and algae richness all produced non-random clusters. Water quality clustering 
produced clustering largely along productivity variables. Metal clustering produced three clusters 
representing lakes with high, low, and variable metal concentrations. Cobalt, iron, chromium, and 
magnesium were significantly different for each cluster and may be useful indicators of total metal 
loading in lakes. Algae clustering produced less informative clusters than the other data sets due to the 
use of 419 variables for this analysis and may indicate that a different classification system or more 
sampling locations could produce a more parsimonious clustering result. Lake groupings between 
clusters were non-random; overlaying the metal clusters with the water quality clusters produced 
informative lake descriptions. Use of all three data sets provides a more complete representation of 
each lake and the groups of lakes as a whole than using only water quality parameters or trophic state. 
This study found no significant differences between lakes in the North Cascades and Puget Lowlands.  
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Introduction 

Northwest Washington Lakes 

While many studies have focused on the relationship between algal communities and water chemistry, 

few studies have encompassed the Puget Sound lowlands in Washington State and the nearby 

mountains in the North Cascades (Figures 1). The Puget Lowland ecoregion contains the area of 

Washington State bounded by the Olympic Mountains and Cascade Range and runs along the entire 

length of the Interstate 5 corridor from Canada to the Oregon Border (Sleeter et al. 2012). The 

ecoregion exhibits an average elevation of 150 meters and is dominated by the urban centers along its 

length. This ecoregion had the highest rate of land-cover change between 1986 to 1992 and 1992 to 

2000 compared to all other ecoregions in the western United States. Within this, the largest net change 

in the Puget Lowland land cover between 1973 and 2000 was the estimated loss of 17.2 percent (1767 

km 2) of the forest class. This loss of forested land was mirrored by the 53.8 percent (1186 km 2) 

increase in developed lands over the same period. These changes in land use towards deforestation and 

increased urbanization likely contributed to major changes in the quantity, quality, and seasonality of 

the water that flows through the Puget Lowland ecoregion’s streams, lakes, and groundwater. Natural 

vegetation is the most common and effective shade to reduce heat load in surface waters (Shumar and 

de Varona, 2009) and the impervious surfaces indicative of urbanized lands transfer heat to stormwater 

and subsequent receiving waters (Van Buren et al. 2000). Additionally, urbanization contributes to 

altered flows and impaired water quality (LeBlanc et al. 1997). Some of these impairments include 

untreated wastewater and runoff that can carry mixtures of pollutants, including metals, as well as 

nutrients (Tong and Chen 2002, McGrane 2016). None of the lakes in this study had examples of 

untreated wastewater impairments. These alterations to ground and surface water chemistry can have 

meaningful impacts on aquatic species and the ability for surface waters to continue under their 
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designated uses for Washington State, which are specified uses in the State’s water quality criteria for 

water bodies or water body segments (WAC 173-201A-200). 

 

The North Cascades ecoregion is adjacent to the Puget Lowland ecoregion and is composed of steep, 

mountainous terrain including the North Cascades National Park, the Mount Baker-Snoqualmie 

National Forest, the Okanogan—Wenatchee National Forest, as well as the Pasayten, Glacier Peak, 

Alpine Lakes, and Henry M. Jackson Wildernesses (Sleeter et al. 2012). All the lakes in my study 

within the North Cascades ecoregion are in the western or central portions of the ecoregion and are 

subjected to similar climates. The North Cascades, partially due to the multitude of legally protected 

areas, experienced roughly one-third of the land-cover change as a percent of the total land area 

between 1973 and 2000 that the Puget Lowlands did. In 2000, 70.3 percent of the North Cascades 

ecoregion was estimated to be covered by forest while only 0.6 percent was developed. More than 97 

percent of changes in land use were due to timber harvesting, subsequent succession to grassland, and 

return to forested land. The North Cascades ecoregion is undergoing a very different land-use change to 

that of the Puget Lowlands and may offer a refuge for more sensitive algae taxa. 

 

Research has been conducted on phytoplankton diversity, influence of watershed and soil parameters 

on water quality, and cyanobacteria blooms for lakes within the Puget Lowland ecoregion (Llewellyn 

2010, Gravon 2013, Horton 2014). Likewise, there has been an effort to study some mountain lakes of 

the North Cascade ecoregion for the relationship between water quality and algal communities (Wong 

2013, Pfannenstein 2016, Lawlor 2019). Mountain lakes are particularly sensitive to changes in climate 

and water chemistry (Skjelkvale and Wright 1998) whereas small, urban lakes such as those within the 

Puget Lowlands are often already impacted by eutrophication and other runoff related issues (Jacobsen 

and Nyholm 1986)
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The water quality of individual mountain lakes is greatly influenced by the surrounding 

watershed. Some watershed characteristics such as terrestrial vegetation, geology, and watershed slope 

determine levels of nutrients and organic matter in mountain lakes (Wetzel 2001, Fureder et al. 

2006, Tolotti et al. 2006). The geology of the North Cascades greatly varies with some lakes being 

impacted by a mix of glacial deposits, igneous, sedimentary, or metamorphic rocks/formations? from 

an array of periods. Meanwhile, the geology of the Puget Lowland lakes is dominated by Quaternary 

glacial deposits (Washington State Department of Natural Resources, 2015). Watershed drainage area, 

steepness, and aspect all impact the quality and quantity of water flowing into a lake.   

 

Water Chemistry 

Metals in surface water occur naturally due to geologic weathering and leaching of metal-laden soils. 

Alpine systems can also be influenced by atmospheric deposition via precipitation, wildfire smoke, 

volcanic activity, and industrial activity (Bradl 2005). Some alpine lakes are exposed to acid mine 

drainage from historical and modern mining activity. Many watersheds within Washington State 

contain geologic formations high in deposits of gold, silver, copper, lead, zinc, arsenic, and other metals 

(Broughton 1942). Metal speciation and bioavailability are complex processes and are influenced by a 

variety of factors including hydrodynamic energy within a lake, water temperature, stratification, 

biological activity, acidity, and organic carbon availability (Elder 1988). In addition to geologically 

introduced metals and those distributed by atmospheric processes, many lakes in developed areas are 

impacted by urban runoff. This runoff can contain elevated levels of metals such as copper, zinc, 

cadmium, tungsten, nickel, antimony, iron, and lead from vehicles, industry, construction, and leaching 

from developed surfaces (Brown and Peak 2006, McKenzie et al. 2009, Markiewicz et al. 2017, Muller 

et al. 2020). 
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In freshwater systems the two most studied nutrients are phosphorous and nitrogen as they are essential 

for growth and are often in short supply relative to other nutrients for aquatic photosynthesizing 

organisms (Schindler 1977). Nitrogen and phosphorous are found in particulate and dissolved phases 

and both are commonly in various chemical forms. Particulate matter can come from living and dead 

organic matter or inorganic sources such as minerals. Dissolved forms of nitrogen and phosphorous are 

often from the same sources as particulate matter but can also include dissolved nitrogen gas. This 

nitrogen gas and dissolved inorganic forms of nutrients are what plants and algae process. 

Eutrophication can occur when concentrated sources of nutrients such as fertilizers, septic waste, or 

soaps enter a water body and is a common issue in urban and peri-urban lake ecosystems (Jacobsen and 

Nyholm 1986, Putt et al. 2019). This eutrophication can lead to algal blooms that have negative effects 

on other aquatic species and can potentially be harmful to humans (Schindler 1978, Anderson et al. 

2002). 

 

Chlorophyll is a pigment that acts as a photoreceptor and allows photosynthesizing organism such as 

aquatic macrophytes and algae to convert simple molecules into more complex organic compounds 

(May 2006). There are six types of chlorophyll (A, B, C, D, E, and F) with A being the most common. 

Chlorophyll A, the primary photoreceptor for photosynthesis, has peak light absorptions in the red and 

blue wavelengths. Other forms of chlorophyll and other accessory pigments absorb additional 

wavelengths of sunlight and assist photosynthesis by transferring energy to chlorophyll A (Croce et al. 

2003). Chlorophyll concentrations can be determined by measuring the fluorescence of a water sample 

and comparing that to a calibration curve or by measuring the absorption of light. This fluorescence 

measurement is light being emitted as radiation as chlorophyll molecules return to a non-excited state 

after absorbing an appropriate wavelength of light. Because chlorophyll A is the primary 

photoreceptive pigment in all freshwater algae, it can be used to estimate phytoplankton population 



 
 

5 
 

biomass (APHA 2005). Lakes with higher levels of nutrients and productivity would be expected to 

have increased chlorophyll A levels. 

 

Turbidity is a measure of water clarity based on the amount of light scattered by particles within the 

water column (EPA 2012; Perlman 2014). Turbidity measurements can be used as an indicator of water 

quality as they are related to total suspended solids. However, turbidity is not a direct measure of any 

one particle but instead measures the aggregate light scattering of suspended solids, dissolved organic 

matter, and other particles or dyes in the water column. As a measure of water clarity, turbidity can 

provide information on the ability of sunlight to penetrate the water column and the depth of the photic 

zone (Hakanson 2005). Additionally, turbidity is an important factor for aquatic systems as more 

suspended particles result in increased water temperature and decreased dissolved oxygen (EPA 2012). 

Urban runoff contributes to the turbidity of surface waters from direct contributions such as 

construction dust or particulates. Runoff can also have indirect contributions to turbidity as nutrient 

inputs can increase phytoplankton populations and detritus.  

 

Similar to turbidity, alkalinity is not the measure of a single chemical. Alkalinity is the acid neutralizing 

capacity of a body of water (Mattson 2009). In freshwater systems the major buffering components are 

carbonate, bicarbonate, and hydroxides. Alkalinity of a water body is often due to the weathering of 

bedrock and soils near that body of water. Minerals rich in carbonates and strong base cations like 

magnesium and calcium increase the alkalinity of nearby water bodies but the weathering of minerals 

high in iron and sulfur can reduce alkalinity as ferric hydroxides and sulfuric acid are produced 

(Mattson 2009). Alkalinity is commonly measured by titrating a sample against a strong acid until the 

entire acid neutralizing capacity is depleted (USGS 2018). 
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 Wetzel (2001) refers to dissolved oxygen (DO) as an essential factor second only to water itself for the 

field of limnology. Dissolved oxygen is the amount of oxygen present in water and is necessary for 

many forms of aquatic life. In areas of eutrophication, high rates of respiration deplete DO and can lead 

to death. Cold water has the capacity to hold more DO than warmer water. Dissolved oxygen and other 

factors such as temperature and chlorophyll are often not homogeneous throughout a lake. They are 

often stratified with each layer having a different composition of respiration, photosynthesis, and 

temperature. These factors lead to different concentrations of DO (Boehrer and Schultze 2008). Urban 

lakes which may be experiencing increasing temperatures and nutrient levels would be expected to 

have lower DO levels than cooler, less productive lakes. 

 

Planktonic Algae as Bioindicators 

Algae have an extensive history of use as indicators of water quality conditions as each taxon has 

specific requirements for, and responses to, physical and chemical conditions (Wetzel 2001; Jarvinen et 

al. 2012). While macroinvertebrates are generally used as freshwater indicators of environmental 

quality in the United States, algae can be used in a similar manner based on the ability of freshwater 

systems to support sensitive taxa (EPA 2017). 

 

The nutrients present in a system can modify the algal community composition. Phosphorous and 

nitrogen act as limiting nutrients for algal growth (Morris and Lewis 1998; Morales-Baquero et al. 

2006; Llewellyn 2010) and are commonly sourced from geologic processes, decomposition of plant 

and animal material, and human activities (USGS 2017). Cyanobacteria stand out in that they possess 

the ability to fix dissolved nitrogen gas while other taxa require inorganic salts of nitrogen or organic 

nitrogen. Taxa unable to fix nitrogen gas can uptake nitrogen and other essential growth nutrients 

through filter—feeding or engulfing bacteria and particulates (Caron et al. 1993; Herrero et al. 2001). 
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As lakes become nutrient-rich, especially with phosphorous, cyanobacteria blooms become more 

common and potentially toxin-forming taxa may be present. On the other side of the trophic state 

spectrum, some algae taxa prefer oligotrophic conditions. Many desmids are characteristic of low 

nutrient lakes that may be experiencing slightly acidic and dystrophic conditions (Bellinger and Sigee 

2015). Some specific species of desmids such as Closterium aciculare are more prevalent in high-

nutrient environments while other Closterium as well as Comsarium and Staurastrum desmids are 

common in minerotrophic fens with acidic, mineral and calcium-rich conditions. 

 

In addition to nutrients, metals can modify algal community composition by acting as nutrients or 

toxicants. Plancho et al. (2015) found that many algal species were tolerant of metals, such as thallium, 

cadmium, lead, and zinc, that other organism are highly susceptible to, and that species in 

Euglenophyta were able to thrive in thallium concentrations up to even 240 ppb which is 120 times the 

US EPA surface-water standard. While some species may be tolerant of specific metals, a review on 

metal effects on algal communities by Prasad (2001) reports that both algal abundance and diversity 

were commonly reduced by highly metal-polluted sites. 

 

Objective 

This data was produced through Western Washington University’s Institute for Watershed Studies 

Northwest Lake Monitoring Program. This program has been an ongoing public service since 2006 to 

provide baseline water quality data for local lakes that did not have ongoing monitoring programs. My 

first objective for this study was to fulfill the Northwest Lake Monitoring goal and analyze these 

available data sets for exceedances and trends in the water quality of the lakes. My second goal was to 

characterize the lakes using combinations of the available data to inform the ongoing monitoring 

program.  
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Methods 

Sample Collection 

Of the 68 lakes represented in this analysis, 62 were sampled by Western Washington University’s 

Institute for Watershed Studies (IWS) as a part of its annual Northwest Lake Monitoring program 

(Figure 2). The other six lakes were more remote alpine lakes which were sampled by Michael Lawlor 

in collaboration with IWS for his thesis published in 2019. All lakes were sampled between 6/21/2017 

and 8/16/2017. As Lawlor (2019) includes a time series for six lakes, for my work, the single sampling 

date closest to those of the IWS sampling was selected for each of the six lakes. Of the 68 lakes 

sampled, 45 fall within the Puget Lowlands ecoregion and 28 are within the North Cascades ecoregion. 

 

The Northwest Lake Monitoring program is a public service established by IWS in 2006 to provide 

water quality data for lakes that do not have regular water quality monitoring programs. Lakes are 

sampled from public access points. For the 62 lakes sampled by IWS, a YSI EXO1 multiparameter 

field meter was used to measure temperature, pH, dissolved oxygen, and conductivity in the field 

(Table 1). Due to the distance of many sites from the IWS laboratory and the number of sites being 

collected per day, water samples were stored on ice and in the dark until they were returned to the 

laboratory. Phytoplankton samples were collected with a 20-µm net and returned to the laboratory 

unpreserved. In the IWS laboratory, subsamples were created and analyzed for metals, total nitrogen, 

total phosphorus, turbidity, alkalinity, and chlorophyll. Prior to analysis, subsamples for dissolved 

metals and dissolved organic carbon (DOC) were filtered through a 0.45—µm filter. Once returned to 

the IWS laboratory, phytoplankton samples were placed in an environmental chamber at 23 ºC and a 

16L/8D light cycle until taxonomic identification could be performed. 
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Samples collected by Lawlor (2019) had different preservation techniques because they were not able 

to be quickly returned to IWS for storage and analysis. These samples were all separated into 

subsamples which were filtered, acid-fixed and chilled when appropriate in the field. These samples 

were analyzed following the same method, on the same equipment, and with the same quality control 

procedures once they were returned to IWS. 

 

Laboratory Analysis 

Algae 

Algal identification was performed by Dr. Robin Matthews, Institute of Watershed Studies, Western 

Washington University, to the lowest practical taxonomic unit as described in Lawlor (2019). Algal 

data were formatted in a presence-absence list for each sample. Diatoms were excluded due to time 

constraints but an analysis including diatoms is available in Pfannenstein (2016).  

 

Metals 

Metals analysis was performed by Eric Lawrence (WWU). Samples were acidified with trace metal 

grade nitric acid and analyzed according to EPA standards (EPA 1994). The analysis was performed for 

all lakes over three separate days of analysis on Western Washington University’s Advanced Materials 

Science & Engineering Center (AMSEC) Agilent 7500ce Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS) following the AMSEC ICP-MS Standard Operating Procedure for liquids 

based off of EPA (1994).  Hardness is expressed in mg/L as calcium carbonate and is determined from 

the total calcium and magnesium concentrations found at each sampling site using the following 

equation: 

 

Hardness (mg equivalent CaCO /L) = 2.497 (Ca, mg/L]) x 4.118 (Mg, mg/L) 
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Water Quality 

Field measures by IWS or Lawlor with a YSI probe were made using YSI in-situ methodology and 

laboratory analyses were performed following American Public Health Association (APHA) 

methodology as described in Table 1. 

 

Statistical Methodology 

Statistical analyses were performed using the statistical software R (R Core Team, 2021). Any metal 

analyte with more than 40% of samples above 15% relative standard deviation (RSD) or more than 

40% below detection limit (BDL) was removed from further analysis (Table 2).  Metal analytes with 

less than 40% BDL had those BDL measurements randomly drawn from a uniform distribution 

between 0 and the daily limit of detection (LOD) by a two-point calibration (Croghan 2003). Elements 

with multiple analyzed isotopes that were also highly correlated were pared down to the most common 

isotope (Table 2).  Water quality parameters with over 40% BDL or with 40% of samples above 15% 

RSD were removed from further analysis (Table 2). 

 

Descriptive statistics and boxplots were used to visualize distinctions among lakes for water quality 

parameters, metals concentrations, and algal species richness. Bivariate correlations were performed 

between each water quality variable, metal analyte, and algal species richness. Kendall’s tau rank-based 

correlation analysis was used due to the non-parametric nature of many of the variables (Kendall 1976). 

A significant correlation was defined as having a p-value equal to or below the α value of 0.05. 
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Principal component analysis (PCA) was applied to a centered and scaled data matrix derived from all 

water quality data to evaluate correlations and other relationships between variables (Praus 2005).  The 

method was repeated for metals data and also for the algal species richness data. 

 

Principal component coefficients from each of the three PCAs were applied using squared Euclidean 

distance with Ward’s method to establish stable clusters (Ben-Hur & Guyon 2003). Cluster stability 

was determined using an iterative approach where the number of principal components used was 

reduced until clusters became unstable. The most parsimonious clustering results were used as they 

represented the most informed model while maintaining the ability to interpret the relative input of the 

original variables. Clusters were defined using the cutree function in R to create a designated number 

of clusters. Boxplots, univariate descriptive statistics, Kruskal-Wallis tests (α = 0.05), and the 

nonparametric Wilcoxon rank-sum tests (α = 0.05) were used to compare original variable data between 

clusters. A significant result was defined as having a p-value below the α value of 0.05. 

 

Results and Discussion 

Univariate 

Metals 

Boxplots showing range, median, and the first and third quartile for each metal analyte are shown in 

Figures 3-6. Summary statistics are shown in Table 3. Figure 7 shows all metal analyte boxplots on a 

single plot for comparative purposes. Calcium had the largest range of values from 390 to 28,072 µg/L. 

Magnesium and potassium followed with ranges from 59 to 8466 µg/L and 55 to 3293 µg/L 

respectively. Iron (2.66-1945 µg/L), manganese (0.58-410 µg/L), aluminum (13.1-219 µg/L), and 

arsenic (0.03-118 µg/L) were the only other elements with a comparatively large range. 
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The range of calculated hardnesses for the lakes (1.2-103.0 equivalent mg/L of CaCO3) all fell within 

soft (0-60 mg/L) and moderately hard water ranges (60-120 mg/L) as seen in Figure 8. The relevant 

benchmark for the sampled metals are the Criteria Maximum Concentration (CMCs) and Criterion 

Continuous Concentrations (CCCs) from Washington State’s aquatic life criteria (WAC 173-201A-

200). The metal criteria that require site-specific hardness corrections were nickel, copper, zinc, and 

lead. In this analysis, samples were compared against the benchmarks based on the hardness value 

found at each sampling site. For example, the Criteria Maximum Concentration (CMC) for lead at the 

lowest and least protective hardness is 1.43 µg/L and the CMC at the highest and most protective 

hardness is 0.79 µg/L (Table 3). All other metal benchmarks in this study were not hardness corrected. 

Where there were no relevant Washington State criteria, acute and chronic benchmarks were obtained 

from British Columbia’s aquatic life criteria (cobalt and antimony) or Indiana’s Department of 

Environmental Management (molybdenum). None of these alternative criteria were exceeded (Table 3). 

Due to having more than half of the water samples outside of the model range for the current aluminum 

DOC-pH-hardness corrected criteria from 2018, the previous 1988 US EPA values were used, which do 

not correct for site specific water quality. All available benchmarks are included on Figures 3-6 for a 

visual comparison of recorded total metal values against CMCs and CCCs. 

 

Table 3 gives values for each metal with applicable benchmarks and the number of samples when those 

criteria were exceeded. There were 20 relevant benchmarks: nine acute benchmarks and 11 chronic 

benchmarks. There were five instances of lakes exceeding acute benchmarks and 21 instances of lakes 

exceeding chronic benchmarks (Table 4). Of the 26 exceedances for CCCs and CMCs for any metal, 15 

came from lakes within the North Cascades ecoregion and 11 from lakes within the Puget Lowlands 

ecoregion. With almost double the sampled lakes falling within the Puget Lowland ecoregion, this 

result is unexpected but not statistically significant (n= 68; χ-squared =2.79, p-value >0.05). Nine lakes 

exceeded the 1988 US EPA CCC for aluminum (87 µg/L), four exceeded Washington State’s current 
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CCC for iron (1000 µg/L), and eight lakes exceeded Washington State’s current copper CCC (hardness 

corrected) with five of those also exceeding the acute CMC (hardness corrected). 

 

The nine lakes that exceeded the 1988 US EPA CCC for aluminum of 87 µg/L are Bear, Boardman , 

Evan, Geneva, Gold Mill Pond, Ketchum, Loma, Squalicum, and Vogler (Table 4).  Bear Lake, 

Boardman Lake, Lake Evan, and Gold Mill Pond are all situated near each other on the Mountain Loop 

Highway within the North Cascades ecoregion and are accessed using forest roads. Lake Geneva and 

Squalicum Lake are located east of Bellingham, WA within the Puget Lowland ecoregion but 

immediately adjacent to the North Cascades ecoregion. Lake Geneva is located within a nature reserve 

while Squalicum Lake (Puget Lowland ecoregion) is surrounded by private homes with public fishing 

access. Ketchum Lake and Lake Loma are both lakes lined by private homes in northwest Snohomish 

County, WA within the Puget Lowland ecoregion and experience algae blooms. Vogler Lake is a warm, 

shallow lake located near Concrete, WA within the North Cascades ecoregion but has public access for 

non-motorized boats. Four of the five lakes within the North Cascades ecoregion all likely experience 

similar geologic impacts due to their proximity and Vogler Lake may be within a watershed 

experiencing similar impacts. Elevated aluminum concentrations within a watershed may be due to the 

underlying geological formation and the introduction of that formation into surface waters. Aluminum 

is the most abundant metal in the Earth’s crust and nearly ubiquitous within surface waters due to 

leaching and atmospheric deposition. Another possible influence could be the addition of aluminum in 

the form of aluminum sulfate, or alum, as a treatment because it can be used to inactivate phosphorous 

and reduce the likelihood of an algal bloom. Alum treatments can be purchased by the public and are 

much more likely to have been used in lakes more at risk for cyanobacteria blooms such as those within 

the Puget Lowlands ecoregion.  
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Four lakes exceeded the CCC for iron of 1000 µg/L. These lakes were Beaver, Monte Cristo, Wiser, 

and Geneva (Table 4). Beaver and Wiser Lakes are suburban lakes in the Puget Lowlands which are 

often used for recreation and both experience algal blooms. Lake Geneva is in a nature reserve adjacent 

to a low traffic, two-lane road within the Puget Lowlands ecoregion. Beaver Pond is in the same nature 

reserve near Lake Geneva and it had an elevated iron concentration (715 µg/L), but did not exceed the 

CCC for iron. Monte Cristo Lake is in the North Cascade ecoregion and is influenced by historical 

mining activity in the area (Washington Department of Ecology 2011). Myrtle Lake has nearly one 

tenth the iron level (124 µg/L) of Monte Cristo Lake. Myrtle Lake is across the Mountain Loop 

Highway from Monte Cristo Lake and is thought to be much less influenced by the mining in the area. 

Similar to aluminum, iron is the second most prevalent abundant metal in the Earth’s crust and is a 

common metal in freshwater lakes due to the natural weathering of rocks and soils. This natural 

occurrence can be elevated by mining activity which may have been a source of the high iron level in 

Monte Cristo Lake. 

 

Of the eight lakes that exceeded their hardness-corrected CCC for copper, five also exceeded their 

acute hardness-corrected CMC (Table 4). The three lakes that only exceed their CCC are Evan, Loma, 

and Monte Cristo. Lake Loma is lined by homes north of the Tulalip Reservation in Snohomish County, 

WA, Lake Evan is located adjacent to a trailhead off the Mountain Loop Highway, and Monte Cristo 

Lake is a mining-impacted lake on the eastern end of the Mountain Loop Highway. Monte Cristo Lake 

had the highest measured copper concentration (4.39 µg/L), but the high hardness of the water also 

resulted in the highest hardness-corrected CCC ( 4.19 µg/L). The five lakes that exceeded both the 

chronic and acute criteria are Bear, Highwood, Picture, Sunset, and Terrell (Table 4).  

 

Bear, Highwood, and Picture lakes are all located within the North Cascades ecoregion with Highwood 

and Picture being across Mt. Baker Highway from each other within the Mt Baker Ski Area. Road salts 
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and brake particles on this highly trafficked road are likely contributing to their elevated levels. 

Interestingly, Highwood Lake was nearly triple the concentration of copper that Picture Lake does 

despite their nearly identical hardness-corrected CCCs and CMCs (Table 4). This difference could have 

been related to the parking lot located near Highwood Lake or the specific runoff dynamics from the 

encompassing roads into the surface waters. Sunset Pond is an urban lake in Whatcom County adjacent 

to a mall and is nestled in the joining of Interstate 5 and State Route 542. It was created by excavating 

material for the construction of Interstate 5. This proximity to impervious surfaces and a constant 

stream of automobile traffic may be increasing the amount of copper found in the lake. Lake Terrell is 

also a man-made lake in Whatcom County which provides habitat for stocked fish and waterfowl 

within a wildlife area. However, it is much larger at 500 acres. This peri-urban lake is surrounded by 

the wildlife area where the direct impacts from copper building materials and road runoff are not 

apparent. The size of this shallow lake in combination with atmospheric deposition may have 

contributed to the excess of copper (Davis et al. 2001). Vehicle emissions are more likely contributors 

to any local atmospheric copper amounts than the nearby oil refineries (Bosco et al. 2005, Ragothaman 

and Anderson 2017). 

 

Water Quality 

Boxplots for water quality parameters are shown in Figures 9-10. Each plot shows the data range, 

median, and first and third quartiles. When available, detection limits are included as dashed horizontal 

blue lines. Summary statistics are shown in Table 5. 

 

The relevant criteria for these selected water quality parameters come from Washington State’s aquatic 

life criteria (WAC 173-201A-200). For temperature and DO, there are different levels of criteria for 

different categories of freshwater designated uses. Included on Figure 9 for temperature and in the 

summary table (Table 5) are the most protective 7-day average of the daily maximum temperature (7-
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DADMax) for waters designated for Char Spawning and Rearing (12 °C) and the least protective 7-

DADMax for waters designated for Indigenous Warm Water Species (20 °C). Of the 68 lakes tested, 

only two single-point-in-time measurements were below the most protective 7-DADMax of 12°C. 

Upper Bagley Lake (8.1°C) and Lower Bagley Lake (8.1°C) are alpine lakes in the Heather Meadows 

Recreation Area near Mt. Baker. Terminal Lake (16 °C) is located between the Bagley Lakes but is a 

much smaller lake. When compared to the least protective 7-DADMax, 49 of the 68 measurements 

were above the 20 °C criteria. The highest recorded temperature measurement was from Vogler Lake 

(25.6 °C) which is a shallow lake near Concrete, WA. It should be noted that the measurements in this 

study are single data points that were taken at a single-point-in-time that was earlier in the day than the 

expected daily maximum (Woolway et al. 2016). These measurements are not the intended comparison 

for the 7-day average maximum required by Washington State’s aquatic life criteria for temperature and 

the designated use of each lake is not considered. However, this failure of single measurements to meet 

the least protective 7-DADMax aligns with a trend of Washington’s waters being impaired due to high 

temperatures. Of the 3,813 total causes of impairment for Washington’s 303(d) Listed Waters in 2008, 

988 of those were caused by temperature (US EPA 2021). 

 

As with temperature, dissolved oxygen (DO) has different criteria for different designated uses in 

Washington State’s aquatic life criteria. The relationship was the same; the most protective level was 

for waters designated for Char Spawning and Rearing (9.5 mg/L) and the least protective level was for 

Indigenous Warm Water Species (6.5 mg/L) (WAC 173-201A-200). Unlike the temperature criteria 

which were reviewed for a 7-DADMax, DO is compared against a Lowest 1-Day Minimum. Forty-six 

lakes were outside the most-protective criteria of 9.5 mg/L. Of those 46, seven were also below the 

least protective criteria. Beaver Pond had the lowest measured DO (2.21 mg/L) and was joined by Lake 

Geneva (6.3 mg/L), Gold Mill Pond (6.2 mg/L), Hoag Pond (4.94 mg/L), Monte Cristo Lake(6.13 
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mg/L), Summer Lake (6.3 mg/L), and Sunday Lake (4.13 mg/L). These are all shallow lakes and 

ponds. 

 

The aquatic life criteria for pH in Washington State consistently ranges from 6.5-8.5 pH units. There 

are different allowances in human-caused variation for different designated uses, but those were not 

considered in this analysis. Only nine lakes fell outside of that range and all were measured at less than 

6.5 pH units. The lowest measurement was from Heather Lake (5.43 pH units). Interestingly, of those 

nine lakes, Beaver Lake (6.1 pH units), Lake Geneva (6.3 pH units), Gold Mill Pond (6.2 pH units), 

and Summer Lake (6.3 pH units) were also below the least protective DO criteria. 

 

Turbidity has a criterion based on exceedances over background levels that also differ for designated 

uses in Washington State. As background turbidity data were not available for all sampling sites, 

measurements were not compared against a criterion. Lower Bagley, Upper Bagley, Lower Twin and 

Upper Twin lakes all had turbidity levels at 0.2 NTU. All are alpine lakes accessible by short hikes 

within the North Cascades ecoregion. The site with the highest turbidity was Lake Erie (33.6 NTU) 

which is located on Fidalgo Island. 

 

 

Algae 

Of the 68 lakes that were sampled, 56 of them had algae samples retrieved (Appendix). From these 56 

samples, Dr. Robin Matthews identified 419 algal taxa, not including diatoms, which were excluded 

due to time constraints. Honeymoon Lake had only 6 taxa while Hoag Pond had 78 taxa observed 

(Figure 11). Honeymoon Lake is a small residential reservoir located on Whidbey Island while Hoag 

Pond is a small residential pond with dense vegetation and wildlife populations. The data used for PCA 
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were presence/absence for all 419 taxa at 56 sites. This gives an indication of species richness but not 

algal biomass or diversity indices that include both species richness and numerical abundance. 

 

Bivariate 

A non-parametric correlation matrix (Wei and Simko 2021) for all water quality, metals, and algae 

richness is shown in Figure 12. The larger circles and deeper colors denote a stronger correlation. There 

were 378 total correlations with 141 being significant (α = 0.05). Non-significant correlations are 

shown with an ‘x’. 

 

The largest cluster of positively correlated variables contained both ionic strength related variables 

(alkalinity, calcium, magnesium, conductivity and other minor cations) and algal production related 

variables (total nitrogen, dissolved organic carbon, turbidity, total phosphorus, and chlorophyll). The 

metals manganese and iron were also included in the positively correlated cluster with algal 

productivity variables. These metals are known to be limiting factors in algal growth in fresh water 

(Liu et al. 2018). Algal richness did not have a significant positive correlation with any other variable. 

This can be accounted for as richness does not represent the productivity of the lake in the way that 

chlorophyll, total nitrogen, and total phosphorus do. Richness instead represents the number of taxa 

found at a specific lake. 

 

Algae richness only had three significant correlations: vanadium, DO, and pH ( τ = 0.204;  τ = 0.273; τ 

= 0.264). Vanadium has been shown to have a hormetic effect on algal growth in specific species, but 

there has not been research on the element’s effects on taxa richness (Meisch et al. 1977). Due to the 

complex nature of water chemistry dynamics, it cannot be concluded that decreasing DO or pH leads to 

an increase in algae richness. One study of acidic bogs in Slovenia found that changes in pH and DO 
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over time did lead to an increase in tolerant species, but that more parsimonious explanations for 

differences in algae richness were found in the shade, geology, and altitude of the study sites 

(Klemenčič et al. 2010). The use of single point measurements in my study differs from Lawlor (2019). 

Lawlor’s temporal study of six lakes provided a much more specific study area where more specific 

significant correlations were found. The relatively small samples size of six lakes likely had less 

variability in unmeasured watershed characteristics than the 68 lakes in my study. Klemenčič et al. 

(2010) found that variables such as the shade, geology, and altitude explain most of the differences in 

species richness in their data. 

 

Temperature had few significant correlations. Most interesting was the lack of a significant negative 

correlation between DO and temperature. This well-researched relationship normally is an example of 

the inverse relationship between temperature and the solubility of gaseous oxygen in water. The 

relationship may not be evident due to the sampling often being near to shore, at varying times of day, 

the large differences in ionic strength at sites, the effects of altitude on gas solubility, or the biological 

influences of respiration and photosynthesis. 

 

Multivariate 

PCA and Hierarchical Clustering 

The principal components analysis (PCA) of the metal data included all 17 metals in Table 3 for all 68 

lakes that were sampled. The first ten principal components (PCs) accounted for 95.0 % of the total 

variance (Figure 13). The ordination of the first PC accounted for 37.7 % of the total variance. The 

second PC accounted for 19.6 % of the total variance. The variable loadings for each PC are included 

in Figure 14 and Table 6. 
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Hierarchical clustering found that using eight PCs produced the most stable clusters with the fewest 

PCs (Figure 15). The first eight PCs accounted for 91.2% of the total variance of the metals data. 

Clustering on the first eight PCs produced three distinct non-random clusters (n= 68; χ-squared =10.5, 

p-value <0.01). Figures 16-32 show boxplots for all metals for each of the three clusters. Cluster 1 and 

Cluster 3 were well separated by PC1 (Table 7). Visually, Cluster 3 had the highest concentrations of 

metals, Cluster 1 had the lowest concentrations, and Cluster 2 was highly variable which limited the 

ability to distinguish it from the other two clusters. Cluster 1 and Cluster 3 were always significantly 

different from each other as determined by nonparametric Wilcoxon rank-sum tests. For manganese, 

zinc, and lead, Cluster 2 was not significantly different from Cluster 1 but was significantly different 

from Cluster 3. Cobalt was the best separator of all three clusters as each cluster was significantly 

different from the other two. Note that most of the zinc concentrations detected for Cluster 1 and 

Cluster 2 were below the limit of quantitation and would be expected to not be significantly different 

from each other. 

 

All ten water quality variables (Table 5) from all 68 lakes were used for the water quality PCA. The 

analysis resulted in ten PCs containing 100% of the total variance as there were only 10 water quality 

parameters used in the PCA. The first PC accounted for 56.2 % of the total variation and was most 

impacted by total nitrogen, chlorophyll-a, turbidity, and conductivity (Figure 33; Table 8). The second 

PC accounted for an additional 15.1 % of the total variance and was influenced by pH, DO, and total 

phosphorus. This separation of influential variables in the first two PCs can also be seen visually by the 

separation of variables in Figure 34.    

 

Hierarchical clustering based on the water quality PCA resulted in four clusters based off five PCs 

being the most parsimonious and stable clustering option (Figure 35). The first five PCs from the water 

quality PCA contained 94.2% of the total variance in the water quality data. These four clusters were 
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found to be non-random (n= 68; χ-squared =10.5, p-value <0.05). Figures 36-45 show boxplots for all 

water quality parameters for each of the four clusters. Cluster 1 contains only four lakes, but those four 

lakes had significantly higher levels of every parameter except temperature (Table 9). Temperature was 

the least informative parameter for PC 1 (Figure 34) and had only eight significant correlations with all 

other variables in the total analysis (Figure 12). For total nitrogen, chlorophyll, turbidity, and DOC, 

Cluster 1 was elevated, Clusters 2 and 3 were not significantly different from each other, and Cluster 4 

had lower levels (Figures 36-38 and 41;Table 9). The variables that separated Clusters 2 and 3 were 

conductivity, alkalinity, total phosphorus, pH, DO, and temperature (Figures 39-10, 42, 43-45; Table 9). 

Cluster 4 had significantly higher pH and DO values than Cluster 3. These are also the only two 

variables where all four clusters were significantly different from each other although there are visual 

overlaps between the ranges of each cluster for both pH and DO (Figures 43-44). 

 

Algae samples were analyzed for 56 of the 68 lakes. For those 56 lakes, all 419 algal taxa identified 

during the sampling season were recorded as present or absent. The first ten PCs shown in Figure 53 

represent 50.4% of the total variance in the data set. The first PC comprised 8.3% of the total variance 

and there is much less of a visual distinction between PCs in the algae PCA (Figure 46) than the metal 

(Figure 13) and water quality (Figure 33) PCAs. Figure 47 and Table 10 show that PC 1 was largely 

influenced by desmid taxa (“DE”) while PC2 was mainly impacted by euglenoids (“EU”). 

 

Hierarchical clustering from the algae PCA produced 6 stable clusters from the first eight PCs (Figure 

48). These eight PCs accounted for only 44.2 % of the total variance of the algae data. These six 

clusters were non-random (n = 56; χ-squared =18.4; p-value <0.01). Figure 49 shows boxplots for total 

taxa identified by cluster. With 56 lakes used in the algal analysis and six clusters formed, there are 

fewer lakes per cluster than the metals and water quality data clusters which limits the ability to 

compare clusters against each other. There are significant differences between the number of lakes 
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purely based on the number of algae taxa identified. Clusters 1 and 3 had the highest number of taxa 

followed by Cluster 2 and Cluster 4 with Clusters 5 and 6 having the fewest algae taxa identified per 

lake (Table 11). There were many significant groups of clusters formed which are best understood 

visually in Figure 49. 

  

As desmid and euglenoid taxa had greater impacts than chlorophytes and others on clustering, they 

were included in the algae cluster comparison. Numbers of desmid taxa observed had significant 

differences among algae clusters with Clusters 1 and 2 having significantly more desmids observed 

than Clusters 4, 5, and 6 (Figure 50; Table 11). Fewer significant differences were observed in numbers 

of euglenoid taxa between clusters with only Cluster 3 being higher than Clusters 2, 5, and 6 (Figure 

51; Table 11). 

 

An attempt to group sites known to produce harmful algal blooms by Dr. Robin Matthews was 

unsuccessful as there is not enough toxin data available from Washington State Ecology or Western 

Washington University’s Institute for Watershed Studies. This supports previous work that has been 

able to predict algae blooms based on water quality parameters but not cyanobacteria blooms or 

harmful algal blooms (Llewellyn 2010). The addition of metals concentrations and algae taxa 

identification did not show any significant trends and the lakes known to have produced harmful algal 

blooms based on the information from the IWS did not have a higher proportion of potentially toxin-

forming species to cyanobacteria algae than other lakes included in the analysis (Institute for Watershed 

Studies 2021). 
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Cluster Comparison 

When comparing the clusters produced from each data set against each other, a mosaic plot can be used  

to show where there are positive, non-random associations and where there are negative, non-random 

associations. For example, when comparing the three clusters from the metals data against the four 

clusters from the water quality data, the association is non-random (χ-squared =56.2; p-value <<0.001). 

The overlap between clusters can be visualized as the size of the squares in Figure 52. The positive 

residuals (solid outlined) indicate a positive association and the negative residuals (dashed outline) 

indicate a negative association. There are large positive associations between metal Cluster 1 and water 

quality Cluster 3; metal Cluster 2 and water quality Cluster 1; and metal Cluster 3 and water quality 

Cluster 2. Water quality clusters were used for the following lake grouping discussion as they are the 

more prevalent form of understanding lake systems and provide the most coherent explanations for 

cluster overlaps.   

 

A comparison between water quality clusters and algae clusters shows a non-random pattern (χ-squared 

=38.6; p-value <<0.001). This comparison is shown visually in Figure 53. There are positive 

associations between water quality Cluster 2 and algae Cluster 1 as well as between water quality 

Cluster 3 and algae Cluster 2. Algae Clusters 1 and 2 only have 6 and 4 lakes in them, respectively, so 

the trends that are observed are likely not applicable across the entire set of water quality clusters or the 

entire data set. These two algae clusters have high to average numbers of total algae taxa identified in 

them (Figure 53; Table 11), and they do have more desmids than other algae clusters (Figure 50). 

 

Performing an association analysis on the metal clusters and algae clusters shows a non-random 

association (χ-squared =26.1; p-value <0.01) with a positive association between metal Cluster 3 and 

algae Cluster 4 (Figure 54). Algae Cluster 4 shows middling total taxa, desmid taxa, and euglenoid taxa 
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richness (Table 11). Metal Cluster 3 shows elevated concentrations of almost all metals that have the 

greatest impact on clustering and is often significantly higher than Metal Clusters 1 and 2 (Table 7). 

 

Lake Grouping Descriptions 

Water Quality Cluster 1 

These four low elevation lakes had the highest levels of almost all water quality parameters including 

chlorophyll, pH, DOC, and total phosphorus which indicate high productivity lakes. All four lakes are 

urban or peri-urban lakes located within the Puget Lowlands ecoregion. They are classified as 

hypereutrophic or eutrophic by Carlson’s chlorophyll and phosphorus index (Carlson 1976). The lakes 

are classified in metals Clusters 2 and 3 and have elevated levels of hardness-related cations and iron. 

High counts of cyanobacteria taxa and the nutrients present indicate strong possibilities of 

cyanobacteria blooms that may contain toxin—forming taxa (EPA 2014, Bennett 2017; Appendix). 

 

Water Quality Cluster 2 

Of the 25 lakes in this cluster, 24 were also included in metals Cluster 2. Sunset Lake was included in 

metals Cluster 1. They are mostly classified as oligotrophic or mesotrophic by Carlson’s chlorophyll 

parameter with two lakes classified as eutrophic. Using the phosphorus parameter provides similar 

classifications with the same two lakes classified as eutrophic but three other lakes join them for a total 

of five lakes classified as eutrophic by the phosphorus parameter. These lakes had elevated 

conductivity and metal concentrations similar to water quality Cluster 1. These intermediate elevation 

lakes are also prone to cyanobacteria blooms that may be toxic even if they are classified as 

oligotrophic. The lakes classified as oligotrophic are Gold Mill Pond, Monte Cristo, and Myrtle which 

are all within the North Cascades ecoregion. The only other lake within this water quality cluster is 

Evan Lake which was classified as mesotrophic by both parameters. 
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Water Quality Cluster 3 

These 16 lakes did not significantly overlap with any metals groups or classifications using Carlson’s 

index. They are distributed to all three metal clusters and have chlorophyll-based classifications from 

oligotrophic to eutrophic and phosphorus-based classifications from oligotrophic to hypereutrophic. 

However, this group of lakes is similar in their low DO, low pH, elevated metals such as arsenic and 

iron, and increased presence of euglenoid taxa. These lakes could be described as acidic bogs or having 

bog-like watersheds in the case of Monte Cristo. The presence of Monte Cristo, the lake with by far the 

highest concentration of mining-related metals, serves as an exaggerated example of the defining 

characteristics. 

  

Water Quality Cluster 4 

Most of the 23 lakes in this cluster were also in metals Cluster 1 with only five being classified into 

metals Cluster 2. Almost all the lakes were classified as oligotrophic by both of Carlson’s parameters 

with six being classified as mesotrophic by the chlorophyll parameter and 3 being classified as 

mesotrophic by the phosphorus parameter. There are generally clear, unproductive lakes at high 

elevation. They have low turbidity, low pH, and higher presence of desmid taxa. This cluster contains 

almost all the alpine lakes within the North Cascades and includes some of the less impacted 

intermediate elevation peri-urban lakes such as Lake Samish and Reed Lake. 

 

Conclusions 

The premise of my study was to define similarities and differences in individual and groups of lakes 

across Northwest Washington. Sixty-eight lakes were analyzed for water quality parameters, metal 

concentrations, and 56 lakes for alga taxa richness. Univariate analysis showed the variability among 

lakes for each group of analytes with most analytes having a relatively small interquartile range with a 
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high total range. By comparing the single analytes against Washington State benchmarks, a survey of 

impacted waters offers agencies an opportunity for succinct monitoring. A comparison of lakes 

exceeding metals benchmarks by ecoregion shows that lakes within the more urbanized Puget 

Lowlands ecoregion are not more likely to have water quality or metals parameters exceeding 

benchmarks than lakes within the North Cascades ecoregion. The underlying geology of Washington 

State may be contributing to elevated concentrations of metals in lakes within the North Cascades 

ecoregion.  

 

A bivariate analysis reinforced expectations of certain water chemistry parameters. Nutrients, dissolved 

organic carbon, ionic strength, and chlorophyll were all correlated and clustered together by 

hierarchical clustering. Metals were mostly positively correlated with each other.  

 

Multivariate analysis and clustering emphasized specific variables that are most useful for 

differentiating lakes. Principal component analysis and hierarchical clustering of water quality 

parameters, metal concentrations, and algal taxa richness each produced distinct clusters but all three 

data sets had significant overlaps with each other. While the algal taxa richness was informative, much 

of the information that may have been gleaned was lost when reducing the data to rank order or total 

richness. The unique knowledge of and experience with algae in Northwest Washington that Dr. Robin 

Matthews provided this study may limit the widespread application of this approach beyond 

fundamental measures of richness and diversity. The metals data set provided an interesting contrast as 

some analytes are biological building blocks while others, or even the same analytes in high enough 

concentrations, are measured in excess of state benchmarks. Due to the high correlation among metals 

concentrations, the abundance of essential minerals is often tied to a proportional presence of regulated 

and concerning elements. 
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Water quality parameters are the most common approach to understanding biological conditions in a 

lake and were the most informative approach to lake grouping. However, the additional information 

offered by the metals and algal taxa richness produced a much more complete analysis and elucidated 

similarities that may have not been identified otherwise. Use of all three data sets provided a more 

complete representation of each lake and the groups of lakes as a whole than using only water quality 

parameters or an index of trophic state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

28 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Washington State ecoregions with Puget Lowlands labeled as PL and North Cascades labeled 
as NC. Adapted from Thorson et al. 2003.  
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Figure 2. Map of sampling locations for the Northwest Lake Monitoring project Western Washington 
University’s Institute for Watershed Studies. The delineation between lakes classified as Puget 
Lowlands and North Cascades is shown in red. An interactive version with site descriptions and water 
quality data is available at https://www.wwu.edu/iws/.  
 
 
 
 
 
 
 
 
 
 
 
 

https://www.wwu.edu/iws/


 
 

30 
 

 
 
Figure 3. Boxplots of magnesium, aluminum, potassium, and calcium concentrations at all 68 lake 
sampling sites. Shown on the boxplots are minimum, lower quartile, median, upper quartile, and 
maximum. The average limit of quantitation is shown as a dashed horizontal line. Benchmarks are 
shown as a dot-dash or dotted horizontal line. Lakes exceeding their chronic benchmark are shown as 
points and those that exceed their acute benchmarks are shown as diamonds.  
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Figures 4. Boxplots of vanadium, chromium, manganese, and iron concentrations at all 68 lake 
sampling sites. Shown on the boxplots are minimum, lower quartile, median, upper quartile, and 
maximum. The average limit of quantitation is shown as a dashed horizontal line. Benchmarks are 
shown as a dot-dash or dotted horizontal line. Lakes exceeding their chronic benchmark are shown as 
points and those that exceed their acute benchmarks are shown as diamonds.  
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Figures 5. Boxplots of cobolt, nickel, copper, and zinc concentrations at all 68 lake sampling sites. 
Shown on the boxplots are minimum, lower quartile, median, upper quartile, and maximum. The 
average limit of quantitation is shown as a dashed horizontal line. Benchmarks are shown as a dot-dash 
or dotted horizontal line. Lakes exceeding their chronic benchmark are shown as points and those that 
exceed their acute benchmarks are shown as diamonds.  
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Figures 6. Boxplots of arsenic, molybdenum, antimony, barium, and lead concentrations at all 68 lake 
sampling sites. Shown on the boxplots are minimum, lower quartile, median, upper quartile, and 
maximum. The average limit of quantitation is shown as a dashed horizontal line. Benchmarks are 
shown as a dot-dash or dotted horizontal line. Lakes exceeding their chronic benchmark are shown as 
points and those that exceed their acute benchmarks are shown as diamonds.  
 



 
 

34 
 

 

 
Figure 7. Boxplots of all metal analytes. Shown on the boxplots are minimum, lower quartile, median, 
upper quartile, and maximum.  
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Figure 8. Boxplot of hardness at lake sampling sites determined from calcium and magnesium 
concentrations. Shown on the boxplot are minimum, lower quartile, median, upper quartile, and 
maximum. Nine lakes were characterized as moderately hard water (60-120 mg/L) and fifty-nine were 
characterized as soft water (0-60 mg/L).  
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Figures 9. Boxplot of water quality measurements at all 68 lake sampling sites. Shown on the boxplots 
are minimum, lower quartile, median, upper quartile, and maximum. Relevant Washington State 
criteria are shown as dotted and dot-dash horizontal lines.  
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Figures 10. Boxplots of water quality measurements at all 68 lake sampling sites. Shown on the 
boxplots are minimum, lower quartile, median, upper quartile, and maximum. Detection limits are 
shown as dashed horizonatal lines.  
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Figure 11. Boxplot of total algal taxa observed in each lake. Shown on the boxplot are minimum, lower 
quartile, median, upper quartile, and maximum. Algae were identified to the lowest practical taxinomic 
unit.  
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Figure 12. Correlation plot for all metal and water quality data. Larger circle and deeper color means 
more positively/negatively correlated. ‘x’ indicates not significant p-value (a = 0.05). There are 378 
total correlations of which 141 are significant. Hierarchical clustering was applied to group variables 
with those with the most similar correlations. Correlation variables and significance statistics are 
available in Appendix.  
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Figure 13. Variance plot of the first ten principal components (PCs) for the PCA based on the total 
metals data. These ten PCs account for 95.0% of the total variance.  
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Figure 14. Ordination along PC I and PC II from the PCA of the total metals data.  
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Figure 15. Hierarchical clustering of sampled lakes using total metals concentrations. Using the first 
eight principal components produced the most parsimonious clustering. These components account for 
91.2 % of the total variance. Monte Cristo was included in Cluster 3. Clusters are non-random. n = 68; 
χ-squared =10.5; p-value <0.001. 
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Figure 16. Boxplot of cobalt concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 17. Boxplot of lead concentrations by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. The detection limit is shown as a dashed 
horizontal line. Letters are used to denote significant differences between clusters by nonparametric 
Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 18. Boxplot of manganese concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 19. Boxplot of zinc concentrations by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. The detection limit is shown as a dashed 
horizontal line. Letters are used to denote significant differences between clusters by nonparametric 
Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 20. Boxplot of antimony concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 21. Boxplot of arsenic concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 22. Boxplot of copper concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 23. Boxplot of iron concentrations by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. The detection limit is shown as a dashed 
horizontal line. Letters are used to denote significant differences between clusters by nonparametric 
Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 24. Boxplot of nickel concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 25. Boxplot of molybdenum concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 26. Boxplot of vanadium concentrations by hierarchical cluster. Shown on the boxplot are  
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 27. Boxplot of barium concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 28. Boxplot of chromium concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 29. Boxplot of potassium concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
 
 
 
 
 
 
 



 
 

57 
 

 
 

 
Figure 30. Boxplot of calcium concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 31. Boxplot of magnesium concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 32. Boxplot of aluminum concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown as a 
dashed horizontal line. Letters are used to denote significant differences between clusters by 
nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 33. Variance plot of all ten PCs for the PCA based on the water quality data. These ten PCs 
account for 100 % of the total variance.  
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Figure 34.  Ordination along PC I and PC II from the PCA of the water quality data. The grouping at 
approximately (-.4, -.2) contains the variables total nitrogen, turbidity, and chlorophyll.  
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Figure 35. Hierarchical clustering of sampled lakes using water quality parameters. Using the first five 
principal components produced the most parsimonious clustering. These five variables account for 
94.2 % of the total variance. Clusters are non-random. n = 68; χ-squared =10.5; p-value <0.05. 
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Figure 36. Boxplot of total nitrogen concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. The detection limit is shown at 57.8 
μg-N/L. Letters are used to denote significant differences between clusters by nonparametric Wilcoxon 
rank-sum tests with an α = 0.05.   
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Figure 37. Boxplot of chlorophyll concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

65 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Boxplot of turbidity measurements by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.    
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Figure 39. Boxplot of conductivity measurements by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 40. Boxplot of alkalinity concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 41. Boxplot of DOC concentrations by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. Letters are used to denote significant differences 
between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 42. Boxplot of total phosphorus concentrations by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

70 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43. Boxplot of pH measurements by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. Letters are used to denote significant differences 
between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 44. Boxplot of DO measurements by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. Letters are used to denote significant differences 
between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 45. Boxplot of temperature measurements by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 46. Variance plot of the first ten PCs for the PCA based on the algal richness data.  These ten 
PCs account for 50.4% of the total variance. 
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Figure 47. Ordination along PC I and PC II from the PCA of the algal richness data. Key taxa have 
been colored for visual comparison.  
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Figure 48. Hierarchical clustering of sampled lakes using algal presence data. Using the first eight  
principal components produced the most parsimonious clustering. These components represent 44.2 % 
of the total variance. Clusters are non-random. n = 56; χ-squared =18.4; p-value <0.01. 
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Figure 49. Boxplot of algae taxa identified by hierarchical cluster. Shown on the boxplot are minimum, 
lower quartile, median, upper quartile, and maximum. Letters are used to denote significant differences 
between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 50. Boxplot of desmid taxa identified by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.   
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Figure 51. Boxplot of euglenoid taxa identified by hierarchical cluster. Shown on the boxplot are 
minimum, lower quartile, median, upper quartile, and maximum. Letters are used to denote significant 
differences between clusters by nonparametric Wilcoxon rank-sum tests with an α = 0.05.  
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Figure 52. A mosaic plot of the three metal clusters and four water quality clusters. The size of the 
rectangle indicates the number of lakes that are shared between the two groups. The shade of the 
rectangles indicates the magnitude of the Pearson residuals and a dashed outline indicates a negative 
Pearson residual.  
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Figure 53. A mosaic plot of the six algae clusters and four water quality clusters. The size of the 
rectangle indicates the number of lakes that are shared between the two groups. The shade of the 
rectangles indicates the magnitude of the Pearson residuals and a dashed outline indicates a negative 
Pearson residual.  
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Figure 54. A mosaic plot of the six algae clusters and three metal clusters. The size of the rectangle 
indicates the number of lakes that are shared between the two groups. The shade of the rectangles 
indicates the magnitude of the Pearson residuals and a dashed outline indicates a negative Pearson 
residual.  
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Table 1. Parameter analysis location, methodology, detection limit, and confidence interval for all water 
quality parameters and metals. Parameters were either measured in situ, in the Institute for Watershed 
Studies Laboratory, or the Advanced Materials Science & Engineering Center. Adapted from Lawlor 
(2019).  
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Table 2. A list of analyzed elements and water quality parameters. Included are any analytes that were 
excluded for having too high of a relative standard deviation (RSD) between repeated measurements, 
having too many measurements below the detection limit (BDL) or isotopes that were removed to 
avoid redundancy within the principal components analysis.  
 

Variable Retained Removed for RSD Removed for BDL Removed Isotope 
Element  Magnesium, 

aluminum, 
potassium, 
calcium, 
vanadium, 
chromium, 
manganese, iron, 
cobalt, nickel, 
copper, zinc, 
arsenic, 
molybdenum, 
antimony, barium, 
lead 

Beryllium Beryllium, 
selenium, silver, 
cadmium, thallium, 
thorium, uranium 

Iron 57, barium 
137, lead 207 

Water Quality 
Parameter 

Temperature, 
dissolved oxygen, 
pH, conductivity, 
alkalinity, 
chlorophyll, 
turbidity, total 
phosphorus, total 
nitrogen, dissolved 
organic carbon.  

Nitrate, soluble 
reactive phosphate 

Nitrate  
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Table 3. Summary statistics for metal concentrations for all 68 lakes sampled. Also included are the 
average detection limit (DL) and average limit of quantitation (LOQ) from the three days of metals 
analysis. Criteria Maximum Concentrations (CMCs) and Criterion Continuous Concentrations (CCCs) 
from Washington State’s aquatic life criteria and the number of lakes that exceed those criteria are 
included where available. Some metal criteria require hardness corrections and their values are 
included at the lowest measured hardness and at the (highest measured hardness). The number of lakes 
exceeding those hardness-corrected criteria are for their specific water conditions. Other criteria are 
also included when appropriate Washington State values were not available. Table 3 shows 
measurements for lakes exceeding criteria. Raw data available in Appendix.  
 

 
a Values are from US EPA 1988 National Recommended Aquatic Life Criteria. 
b Values are acute and chronic criteria from British Columbia’s 2004 Water Quality Guidelines. 
c Values are Tier II acute and chronic values from the Indiana Department of Environmental 
 Management.  
d Value is from British Columbia’s 2021 Working Water Quality Guidelines: Aquatic Life, Wildlife, & 
 Agriculture.  
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Table 4. Measurements of specific metals in lakes that exceed criteria. Criteria Maximum 
Concentrations (CMCs) and Criterion Continuous Concentrations (CCCs) from Washington State’s 
aquatic life criteria are included where available. Some metal criteria require hardness corrections and 
their values are included at that lake’s specific criteria. Another criteria is included when appropriate 
Washington State values were not available.  
 

 
 
 
a Value from US EPA 1988 National Recommended Aquatic Life Criteria. 
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Table 5. Summary statistics for water quality parameters for all 68 lakes sampled. Detection limit (DL) 
and confidence interval (CI) are included where available. Washington State aquatic life criteria and the 
number of lakes outside of the criteria are included. Due to the different criteria for specific water use 
designations, the least protective criteria and the (most protective criteria) have been included for 
temperature and dissolved oxygen.  
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Table 6. The relative contribution by each element to the variance accounted for in principal 
components one (PC1) and two (PC2). Relative contributions have been reported as absolute values.  
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Table 7. Comparison of cluster medians for the four metals that contribute most to principal component 
1. Significantly different cluster values for each metal are denoted by different letters adjacent to each 
value. Significance was determined by a Mann-Whitney test using R (R Core Team 2021) with an α = 
0.05.  
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Table 8. The relative contribution by each water quality parameter to the variance accounted for in 
principal components one (PC1) and two (PC2).  
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Table 9. Comparison of cluster medians for all water quality parameters. Parameters are ordered by 
decreasing impact on principal component 1. Cluster medians not sharing a superscripted letter are 
significantly different. Significance was determined by a Mann-Whitney test using R (R Core Team 
2021) with an α = 0.05.  

Water Quality Parameter 

Cluster 1  Cluster 2 Cluster 3 Cluster 4 
n=4 n=25 n=16 n=23 

Median value 
Total Nitrogen (µg-N/L) 1915a 401.3b 544.4b 109.4c 
Chlorophyll a (µg/L) 129a 3.6b 4.55b 1.21c 
Turbidity (NTU) 25.35a 0.9b 1.655b 0.49c 
Conductivity (µS/cm) 219.5a 120.8b 46.85c 28.7c 
Alkalinity (mg/L) 64.9a 42.8b 15.95c 9.7c 
DOC (mg/L) 13.9a 5.9b 8.15b 1.8c 
Total Phosphorous (µg-P/L) 109.8a 12.2b 25.35c 5.6d 
pH (pH unit) 9.3a 8b 6.6c 7.1d 
DO (mg/L) 13.06a 9.12b 6.74c 8.89b 
Temperature (°C) 23.4ab 23.4a 21.7b 19.8c 
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Table 10. Taxanomic units with the greatest contribution to the variance accounted for in principal 
components one (PC1) and two (PC2).  
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Table 11. Comparison of cluster medians for algae taxa identified. Cluster medians not sharing a 
superscripted letter are significantly different. Significance was determined by a Mann-Whitney test 
using R (R Core Team 2021) with an α = 0.05.  
 

 Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 
 n=6 n=4 n=3 n=5 n=25 n=13 
 Median 

Algae Taxa 
Identified 73a 48b 66ab 42bc 29c 24c 

Desmid Taxa 
Identified 19a 20a 8abc 5bc 3d 4c 

Euglenoid 
Taxa Identified 7ab 3a 9b 5ab 2a 1a 
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