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Abstract 

Eelgrass is an important part of coastal environments in the Pacific Northwest as it 

provides crucial habitat and moderates storm surge. Padilla Bay, Washington is home to one of 

the largest eelgrass meadows in North America and contains the native Zostera marina and the 

non-native Z. japonica. The relationship between these two species is of interest due to the influx 

of Z. japonica in previously unvegetated areas. I used an uncrewed aerial system (UAS) and a 

multispectral camera to study species dynamics. I compared the ability of values derived from 

the band data, two vegetation indices, and a principal components analysis (PCA) to predict 

eelgrass cover using pixel- and object-based methods. In the pixel-based analysis, using a red 

and red edge band in a multiple linear regression was the best way to estimate overall percent 

cover for the full season (R2 = 0.79). Regressions used to predict Z. marina (R2=0.55) and Z. 

japonica (R2=0.32) cover individually performed poorly. In the object-based analysis, using band 

means and standard deviations in a support vector machine (SVM) classification resulted in an 

overall accuracy of 78.3%. This method performed the best at classifying segments based on 

dominant species, with user’s accuracies for Z. marina and Z. japonica of 80% and 100%, 

respectively. PCA-informed segmentation and classification also performed well, with an overall 

accuracy of 70.6%. Conducting object-based image segmentation with the Micasense Dual 

Camera System and SVM classification may be a promising method for identifying spectral 

differences between Z. marina and Z. japonica. 
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1.0  |  Introduction 

1.1  |  Eelgrass in the Pacific Northwest 

 Eelgrass provides a variety of critically important ecosystem services in nearshore marine 

environments in the Pacific Northwest. These services include the provision of habitat for 

Dungeness crabs (Cancer magister) and juvenile salmon (Oncorhynchus spp.) as well as 

moderating storm surge (Barbier et al. 2011, Rubin et al. 2018). Two species of eelgrass occur in 

the Pacific Northwest: the native Zostera marina and the introduced Zostera japonica. Z. 

japonica was introduced to the Pacific Northwest in the early 1900’s, likely as a contaminant of 

the Japanese oyster cultivation in Willapa Bay and northern Puget Sound (Harrison and Bigley 

1982). Z. japonica typically grows higher in the intertidal zone and has proliferated in naturally 

unvegetated areas of the tidal flats above the elevation of Z. marina (Baldwin and Lovvorn 1994, 

Hahn 2003, Ruesink et al. 2010). Over the course of a year, growth patterns for both eelgrass 

species fluctuates seasonally. Maximum biomass for Z. japonica and Z. marina in Padilla Bay, 

Washington peaks between June and August (Thom 1990). The shoot density of Z. japonica  

declines dramatically in the fall, with an annual minimum of less than 100 shoots m-2 in January, 

followed by a dramatic increase in the spring, with an annual maximum of over 3,200 shoots m-2 

in July (Thom 1990). The shoot density of Z. marina stayed relatively consistent over the year at 

around 500 shoots m-2, but with seasonal variation in biomass in response to changes in leaf 

area/shoot length (Thom 1990). 

Almasi and Eldridge (2008) modeled the Z. japonica in the Yaquina estuary on the 

Oregon coast and found that most important limiting factors to growth were limited vegetative 

shoot and seedling survival. In the same estuary, Young et al. (2015) recorded a 1500% increase 

in the areal extent of Z. japonica from 1997 to 2007 but did not observe a related decrease in Z. 
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marina extent during that time. This indicates that Z. japonica is capable of proliferating in areas 

without competition with Z. marina. Under simulated summer conditions, Harrison (1982) 

observed that when submerged, Z. marina grew more than twice as fast as Z. japonica, 

potentially shading Z. japonica and limiting its ability to spread into Z. marina vegetated areas. 

Since it grows at higher elevations, Z. japonica is more frequently exposed at low tides and for 

longer periods of time than Z. marina. In part of its invaded range, Z. japonica grows better 

under higher temperatures, making it more resistant to extremes in environmental 

conditions (Shafer et al. 2008, Ruesink et al. 2010).  

 Interactions between Z. marina and Z. japonica have been increasingly studied in the 

Pacific Northwest as Z. japonica expands its range. In a transplant experiment in Willapa Bay, 

Bando (2006) found that interspecific competition between Z. japonica and Z. marina reduced 

above-ground biomass more than intraspecific competition. Furthermore, Bando (2006) 

disturbed the transplanted plots by removing the plants and recording the natural revegetation 

patterns over the following two years. This disturbance was meant to mirror common 

disturbances to mudflats, such as shellfish dredging and trampling. They found that disturbance 

increased productivity and fitness in Z. japonica but decreased productivity and fitness in Z. 

marina (Bando 2006). In Willapa Bay, the removal of Z. japonica has also been found to 

positively affect the growth of Ruppia maritima, suggesting that Z. japonica outcompetes species 

outside the family Zosteraceae (Boardman and Ruesink 2022).  

Competition between Z. marina and Z. japonica is exhibited on a microtopological level 

as well. Hannam and Wylie-Echeverria (2015) conducted several transplant experiments in 

Padilla Bay which showed Z. marina suppressed Z. japonica above-ground biomass by over 60% 

in pools and 47% on mounds. However, due to its physiological limits, Z. marina was less 
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prevalent on mounds regardless of Z. japonica presence (Hannam and Wylie-Echeverria 2015). 

Thus, Z. marina excludes Z. japonica from areas where it is well-established and has adequate 

water cover, whereas Z. japonica can establish itself in the higher intertidal where Z. marina can 

neither thrive nor compete. 

 Epiphytes colonize eelgrass leaves shortly after they emerge and have been recorded to 

consist of 11% of annual biomass and 50% of above-ground net primary production (NPP) in 

Padilla Bay (Thom 1990). In Netarts Bay, Oregon, differing quantities of epiphytic diatom 

species on Z. marina were recorded seasonally, with one group dominant from November to July 

(species of Cocconeis, Gomphonema, Rhicosphenia, Synedra, and Navicula directa), and another 

from August to October (species of Navicula and Nitzchia) (Whiting 1983). In Padilla Bay, 

eelgrass epiphytes have also been found to vary seasonally, and have their peak biomass in June 

(Thom 1990). The dominant epiphytes observed during the June biomass peak in Padilla Bay 

were diatoms, Ceramium pacificum (red alga), and Ulva fenestrata (green alga) (Thom 1990). 

Thom (1990) also noted that C. pacificum, U. fenestrata, and Gracilaria pacifica were most 

common in the Z. marina beds. Epiphytes are thought to hinder eelgrass growth by restricting 

light exposure to the eelgrass leaves. The abundance of grazers can impact epiphyte biomass, and 

in turn, limit the potential adverse effects of epiphytes on eelgrass growth. For example, the 

isopod, Idotea resecata reduced epiphyte biomass by one-third in Padilla Bay (Williams and 

Ruckelshaus 1993).  

1.2  |  Ground monitoring efforts 

 The extent of eelgrass in Puget Sound has been monitored by coastal managers in a 

variety of ways. Ground-based methods, such as using transects and quadrats to mark sampling 

areas, provide a detailed picture of many eelgrass characteristics. This method can 
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cover from the upper intertidal to the subtidal using divers. Furthermore, ground-based methods 

have been used for many years, which allows for easily repeatable change analyses over long 

periods of time. The Nearshore Habitat Program at the Washington DNR employs the use of 

towed underwater videography in their Submerged Vegetation Monitoring Program 

(SVMP) to survey subtidal and intertidal Z. marina beds in many Puget Sound eelgrass 

communities. This method is less intensive than diver transects and can still cover subtidal Z. 

marina beds. In some cases, plant characteristics are not as easily identifiable as in ground-based 

methods. Berry et al. (2003) noted that only catastrophic changes in some Z. 

marina characteristics were detectable using this method. Also, current SVMP observations do 

not include the upper intertidal areas where Z. japonica is found, and thus lack Z. japonica area 

estimates (Christiaen et al. 2016). Padilla Bay, Washington contains over 3000 ha of eelgrass in 

one of the largest contiguous beds in North America (Bulthuis 1995). According to ground 

monitoring data and aerial photos taken of the boundary between vegetated and unvegetated 

areas, Z. japonica area in Padilla Bay increased from 236 ha in 1989 to 669 ha in 2004 (Bulthuis 

and Shull 2006). 

1.3  |  Remote sensing for seagrass monitoring 

Satellite imagery and crewed flights are frequently used to monitor eelgrass. Both 

methods employ multispectral imagery which is useful for vegetation monitoring. In Padilla Bay 

alone, eelgrass has been mapped using satellite imagery, standard aerial color photography, and 

compact airborne spectral imagery (Webber et al. 1987, Bulthuis 1995, Shull 2000). Satellite 

imagery has been used for large area coverage and the regular revisit times and the 

long time series of available imagery (since 1972 for Landsat) makes this approach an attractive 

method for monitoring environmental change (Klemas 2015). However, satellite resolution is 
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generally quite low (~10s of meters), with the exception of new satellites such as Worldview 4 

which provides multispectral imagery with a resolution of 1.24 m. Yet, the inability to coordinate 

satellite image acquisition with low tide events makes it challenging to monitor interannual 

changes using this imagery in nearshore marine environments.  

Crewed flights are more flexible than satellite imagery with regard to timing data 

collection with low tide events. Bulthuis (1995) and Shull (2000) timed manned flights to 

coincide with the lowest tide of the year. Ball et al. (2014) used aerial imagery obtained from 43 

crewed flights from 1939 to 2011 to calculate changes in seagrass area. These images were 

orthorectified to 0.3 m per pixel resolution. They compared the efficacy of unsupervised 

classification methods to delineate seagrass extent, including the use of a principal component 

analysis (PCA) to inform classification (Ball et al. 2014). While crewed flights offer a 

relatively high-resolution option for a large area, costs are often prohibitive and may not be 

realistic to repeat multiple times within a single growing season.  

Small uncrewed aerial systems (UAS) may provide an efficient way to acquire data for 

environmental research and monitoring with both high temporal and spatial resolution that will 

complement current ground-based, satellite, and crewed aircraft methods (Anderson and Gaston 

2013). The growing recreational and commercial market for UAS has driven the costs down 

dramatically and has led to greatly increased capability. The low cost, the very high spatial 

resolution (10 cm or better), and the ability to precisely time flights during low tide events and 

days with low wind speeds and sun angles are attractive features of this technology (Bryson et al. 

2013, Casella et al. 2017). Some modern multispectral sensors that can be mounted on UAS have 

more bands than most satellites and may be the key to unlocking spectral differences between 

vegetation types. In automated, unsupervised classification approaches, having multiple narrow 
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bands in each region of the visible spectrum provides more information upon which to base the 

classifications. For example, the “red edge” region of the spectrum, which is between the red and 

near infrared, has long been purported as a region of importance for estimating chlorophyll 

content (Gates et al. 1965). The Micasense Dual Camera Imaging System is a cutting edge 10-

band multispectral camera which contains three bands in the red edge region of the spectrum 

(Micasense). In theory, having these additional bands will help elucidate the variations in 

spectral signatures due to differences in chlorophyll content. 

Nahirnick et al. (2020) used historical aerial imagery alongside UAS imagery to conduct 

an eelgrass change detection study in the Salish Sea or British Columbia. They visually 

interpreted eelgrass extents for both sets of imagery and evaluated change in area and shape in 

accordance with environmental indicators such as shoreline activities and residential housing 

density. Nahirnick et al. (2020) found that human activities were strongly correlated with both 

decreased eelgrass area and increased meadow fragmentation. From 1932 to 2016, eelgrass area 

at their study sites on Mayne and Saturna islands decreased by an average of 45.1%, highlighting 

the importance of monitoring eelgrass extent in the Salish Sea (Nahirnick et al. 2020). However, 

visually estimating eelgrass extents is time-consuming and introducers user error. In this study, I 

will investigate unsupervised segmentation techniques that rely on spectral data for delineation 

alongside supervised classification of eelgrass cover. For an environment in which sampling time 

is limited by tidal events, UAS flights have the potential to be the accurate, low impact (e.g., no 

trampling of eelgrass) method needed to detect small-scale change in eelgrass meadows.  

1.4  |  Research goals 

The objective of my study is to obtain high-resolution, multispectral imagery over the 

course of the 2020 growing season of the PB-NERR transects in Padilla Bay, Washington using 
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a UAS. I will use this imagery to build predictive models of percent cover of both Z. marina and 

Z. japonica in 2020. Due to the fluctuations in epiphyte load throughout the year for Z. japonica 

and Z. marina, I will also determine whether there are significant differences in epiphyte load 

from June to September and determine whether there are also species-specific differences in 

epiphyte load. 
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2.0  |  Methods 

2.1  |  Study area 

This study was conducted in Padilla Bay, in Skagit County, Washington. Padilla Bay 

contains more than 3,000 hectares of eelgrass and is contained by the mainland to the east, 

Samish Island to the north, Guemes Island to the west, and Fidalgo Island to the south and west 

(Figure 1, Bulthuis 1995). 

Three permanent monitoring transects established and supervised by the Padilla Bay 

National Estuarine Research Reserve (PB-NERR) exist in the northern section of the bay (Figure 

1). These transects extend over 4 km from shore and are divided into 6 zones (Table 1). The 

study area transitions from unvegetated mudflats to Z. japonica dominated meadows, then to Z. 

marina dominated extents in the lower intertidal and subtidal regions of the transects (Table 1). 

Table 1. Padilla Bay National Estuarine Research Reserve permanent monitoring zone 

characteristics and distance from shore. 

Zone 

Approximate 

distance 

from shore 

(m) 

Characteristics 

1 0-300 Unvegetated, intertidal 

2 300-800 Z. japonica dominant, intertidal 

3 800-1485 Mix of Z. japonica and Z. marina, with Z. japonica dominant, intertidal 

4 1485-1915 Mix of Z. japonica and Z. marina, with Z. marina dominant, intertidal 

5 1915-3490 Z. marina dominant, intertidal 

6 3490-4385 Z. marina dominant, subtidal 
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Figure 1. Overview of the study site at Padilla Bay, Washington. Permanent biomonitoring plots 

spread across 3 transects maintained by PB-NERR extend approximately 4 km into Padilla Bay. 

For the purposes of this study, I surveyed plots in the first 2.5 km of the transects. Map data are 

from PB-NERR, Esri, HERE, Garmin, FAO, NOAA, and USGS.  
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For the purposes of this study, I fully covered zones 1-4 and flew over a portion of zone 

5. I did not include any of zone 6 in the flight path since the eelgrass would not be exposed at 

low tide. Also, PB-NERR researchers monitor zone 6 using divers which was outside the scope 

of ground truth data collection for this study.  

2.2  |  Permanent monitoring plots 

Within each of the three transects, there are seven permanent plots in each of the six 

zones, for a total of 126 plots (Figure 2). The transects are 4 km long, oriented on an east-west 

axis. The transects are spaced approximately 75 m apart north to south. The zones are 

determined by the dominant cover type (Table 1). Within each zone, seven permanent plots are 

distributed evenly across the length of the zone, ranging from only 50 m apart in Zone 1, to 275 

m apart in Zone 5. Each plot has a PVC marker along the transect marking the general location 

of the plot. Each PB-NERR monitored plot is located 2 m directly north of the PVC marker and 

is 0.5 x 2 m in area orientated east-west along the 2 m axis. The corners of the plot are marked 

with short pins in the sediment. All 126 of the PVC markers have GPS coordinates, and 53 have 

highly accurate RTK coordinates. Markers placed on a subset of these 53 locations just prior to 

the UAS flights were used to georectify the orthomosaics in the image processing steps. 

2.3  |  UAS flights 

2.3.1  |  Equipment 

I used a DJI Matrice 210 UAS mounted with a Micasense Dual Camera Imaging 

System to conduct all flights. The Micasense camera has 10 bands, and the distribution of these 

bands provides coverage in the visible spectrum as well as the transition to the infrared part of 

the spectrum (Table 2). The Micasense camera system bands are comparable to those of widely 
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used satellites such as Landsat 8 and Worldview 2 (Figure 3). The sensor resolution is 1280 x 

960 pixels (Micasense).  

 

Figure 2. Map of permanent plots used for annual monitoring by PB-NERR showing the zone 

divisions and the UAS flight extent. 

 

Table 2. Micasense Dual Camera Imaging System spectral band specifications. In the following 

sections, bands will be written as: name-center wavelength(band range). For example: Coastal blue 

444(28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band Number and Name 

Center 

Wavelength 

(nm) 

Band 

Range 

(nm) 

1- Coastal blue 444 28 

2- Blue 475 32 

3- Green 531 14 

4- Green 560 27 

5- Red 650 16 

6- Red 668 14 

7- Red edge 705 10 

8- Red edge 717 12 

9- Red edge 740 18 

10- Near infrared 842 57 
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2.3.2  |  Flight path development 

Flight path polygons were developed in the DJI Pilot App. The polygon used for all flights was 

225 m north to south and 2,500 m east to west. This ensured that there would be a buffer to the 

north and south of the transects so the plots used for ground truth data would be 

captured in the imagery. The polygon was adjusted so there would be 6 flight lines out and 6 

flight lines back to cover the study area, allowing for plenty of battery life in case of emergency. 

The side overlap was set to 75% and the frontal overlap was set to 80%. The same flight polygon 

was used for all flights, ensuring the same area was captured for all flight dates (Figure 1). The 

flight altitude was 90 m resulting in a ground resolution of 6 cm. Given these parameters, each 

flight could be completed in about 90 minutes, including two brief stops to change batteries. 

 

 

 

Figure 3. Comparison of Micasense Dual Camera Imaging System, Landsat 8, and Worldview 2 

spectral bands. At our flight altitude of 90 m above ground level, the Micasense Dual Camera 

Imaging System has a spatial resolution of 6 cm per pixel. The Landsat 8 satellite has a spatial 

resolution of 30 m for each of the five bands displayed. The Worldview 4 satellite has a spatial 

resolution of 1.24 m. 
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2.3.3  |  Scheduling flights 

To get the best quality imagery possible, I scheduled flights around the lowest low tides 

when the eelgrass was the most exposed. Using a combination of tide charts and PB-NERR 

scientist experience of tidal patterns in Padilla Bay, I planned 8 flight dates during the summer of 

2020. Unfortunately, I had to cancel the September 15 flight due to wildfire smoke and 

extremely low visibility. To determine the start time for each flight, I first calculated the time of 

the lowest low tide at the study site. According to PB-NERR researchers, the transect area 

typically reached the lowest low tide approximately 50 minutes after the predicted low tide at the 

Swinomish Channel tide station which is located 17 km south of the study area (NOAA Tides & 

Currents 2020). I planned to start each flight 90 minutes before the low tide at the study site to 

ensure all imagery would be captured before the tide changed direction. This was done help keep 

the imagery consistent since the grass blades would flow in the direction of the ebb current. The 

average tide stage during the flights was -2.1 ft.  

2.3.4  |  Flight protocol 

On the day of the flight, two field volunteers were given 0.5 by 0.5 m panels with a 

“checkerboard” pattern to place over 33 of the PVC pipes with high-resolution RTK coordinates. 

These panels served as ground control during the image processing and were all within the first 5 

zones of transects 1 and 3 (Table 18). After placing the last ground control panel, volunteers 

walked back to a position that was about 2000 m from shore. The volunteers carried radios to 

facilitate contact with the flight crew who operated from the beach at the east end of the transect. 

Between the volunteers and the flight crew on shore, we were able to maintain visual line of 

sight of the UAV during all phases of the flight. After the flight, ground control panels were 

collected and returned to shore. 
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 Prior to starting the flight, and at each battery change during a flight, I captured an image 

of the Micasense Calibrated Reflectance Panel. This calibration panel has a known, wavelength-

specific reflectance. During post-processing, use of these calibration images enables me to 

convert the brightness index values in each image to reflectance values and therefore controls for 

variation in solar illumination (due to sun angle, clouds, and aerosols) both within and between 

flights. This step ensures that imagery taken on different dates are comparable. 

 Using the DJI Pilot app, I loaded the pre-planned flight path to the UAV. I manually 

operated the UAV to takeoff and fly to the starting altitude. Once the UAV was near the starting 

point for the flight path, I switched from manual to autopilot and the UAV started the data 

collection. Each flight consisted of at least 3 segments, with each segment typically consisting of 

2 flight lines out and 2 flight lines back. Each segment typically lasted between 21 and 23 

minutes and covered 10 km of image collection. Near the end of the battery life of each segment, 

I landed the UAV on shore, changed the batteries, and took another photo of the calibration 

panel. I then took off manually and resumed the programmed flight. All flights were conducted 

in accordance with the Federal Aviation Administration (FAA) Part 107 regulations (FAA 2020). 

2.4  |  Biological sampling 

2.4.1  |  Plot selection 

I randomly selected 28 plots from the 126 PB-NERR monitoring plots at which to collect 

ground truth data throughout the field season. These data were intended to supplement the data 

for all 126 plots that were collected by PB-NERR staff on July 4 and July 5, 2020. I stratified the 

random selection by zone since each zone is characterized by different dominant cover types. I 

excluded zone 1 from the selection because it is unvegetated. I excluded zone 6 because it is 

subtidal and was out of range for the flights. While I kept the original plot names used by PB-
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NERR, I did not sample in the exact location of their permanent plots to avoid disturbing their 

annual data collection. Instead, I set up temporary plots south of the PVC marker for my ground 

truth collection dates. 

2.4.2  |  Percent cover 

Percent cover was recorded at the 28 plots in July, August, and September. I built a 0.5 m 

by 2 m plot, consistent with those used in the annual PB-NERR biomonitoring. I oriented each 

plot E-W along its 2 m axis. The northeast corner of the plot was positioned 2, 3, or 4 m due 

south of the PVC marker in July, August, and September, respectively. This was done so that the 

eelgrass would not be disturbed by footprints made to access the study area, nor would eelgrass 

plant collection impact future percent cover observations.  

I used a point intercept method to record percent cover. I built a 0.5 m by 0.5 m plot with 

string crossing at 5, 15, 25, 35, and 45 cm on both axes to form a grid with 25 string 

intersections. I recorded the topmost cover type at each of the 25 intersections. Cover type was 

marked as algae (primarily Ulva sp.), bare, detritus (primarily dead eelgrass), live Z. japonica, 

or live Z. marina. This process was conducted four times, totaling the length of the 0.5 x 2 m 

plot. 

2.4.3  |  Epiphyte measurements 

I anticipated that epiphytes may alter the spectral signature of the eelgrass and, since 

epiphyte mass is known to vary seasonally in Padilla Bay, this could be a source of noise in my 

analysis (Thom 1990). To assess seasonal variation in epiphyte load, one plant was collected at 

each plot for both Z. marina and Z. japonica. The plant was selected from the northeast corner of 

the plot. If no plant of that species was present in the northeast corner, the rest of the plot was 

searched. Eelgrass sample collection was abandoned if there was no plant of that species 
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available within the vicinity of the plot. Since eelgrass samples were collected after image 

collection, taking a sample did not impact the percent cover measured. Plants were clipped at 

ground level to exclude below-ground mass. Before placing samples in collection bags, I 

removed sediment and epifauna such as snails and isopods. Samples were placed into individual 

Ziploc bags and labeled with the plot, plant species, and date. 

In the lab, I measured and recorded the shoot length from the base of the clipping to the 

end of the longest leaf. Then, I used a razor blade to carefully scrape the epiphytes off each blade 

of grass. The epiphytes scraped from each sample were collected onto individual coffee filters 

labeled with the collection date, plot, and the species of the eelgrass sample. The clean eelgrass 

sample was placed into an individual paper bag and labeled according to plot, species, and date. 

 I dried the bags containing eelgrass biomass and coffee filters containing epiphyte 

biomass in a drying oven at 70° C for 48 hours. I used an analytic balance for all mass 

measurements. To take the eelgrass biomass, I took the dried sample out of the paper bag used 

for drying and placed the sample on the balance tray. Since it was impossible to remove the dried 

epiphytes from the coffee filters, I put the entire filter including the epiphytes in the tray and 

recorded the mass. To account for the mass of the clean filter, I placed 5 clean filters in the 

drying oven and recorded the mass of each dried filter. To determine epiphyte biomass, I 

subtracted the average dried filter mass from the overall filter and epiphyte mass. 

2.5  |  Image processing  

Each flight generated over 23,000 individual images with a separate set of images for 

each of the ten bands. I processed this imagery using Agisoft Metashape Professional Version 

1.6.4 build 10928 (64 bit). The workflow was largely based on instructions published by the 

United States Geological Survey National Unmanned Aircraft Systems (UAS) Project Office and 
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the Agisoft Helpdesk Portal (USGS National UAS Project Office 2017). A detailed method 

outlining the workflow used to create various GIS layers from the imagery collected with the DJI 

Matrice 210 and Micasense Dual Camera System can be found in the appendix.  

For each date, the result was a ten band orthomosaic with a ground resolution of 6 cm. 

Additional processing was conducted using ENVI 5.6 + IDL 8.8 (64-bit) software. The first step 

simply involved resampling the imagery to a ground resolution of 10 cm. This was done to 

somewhat reduce the data volume and because this resolution was deemed to be adequate for my 

analysis and 10 cm pixel were better suited to extracting spectral data from the 0.5 by 2.0 m 

ground truth plots. The next step involved converting the raw image data from digital numbers 

(integer values ranging from 0 to 32768 that are simply a reflectance index) to actual reflectance 

values ranging from 0 to 1. I did so using the following formula for each of the 10 bands: 

=  
(𝐷𝑁 𝑏𝑎𝑛𝑑 𝑥)

32768⁄  

2.6  |  Calculation of PCA, NDVI, and NDRE 

In ENVI, I ran a PCA with all 10 Micasense bands with the goal of reducing the 

dimensionality of the dataset while retaining much of the variation in the data. Khan et al. (1992) 

found using a PCA in coastal habitats to be useful in reducing the effect of water depth on 

multispectral imagery. Similarly, Ball et al. (2014) found classification based on PCA results to 

accurately differentiate seagrass habitat. The parameters used in ENVI to conduct the PCA are 

provided in the appendix (Table 20). I retained the first three PC layers to use as predictor 

variables. I also interpreted the contrasts present in the loadings of the PCA and how they varied 

throughout the first three PCs. 

I also generated Normalized Difference Vegetation Index (NDVI) and Normalized 

Difference Red Edge Index (NDRE) layers in ArcGIS Pro. These metrics are commonly used as 
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vegetation health indices (Campbell 2007). I calculated two different versions of NDVI using 

both red bands from the Micasense camera (Table 2) in the following equation: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄  

I also calculated three versions of NDRE using each of the three red edge bands from the 

Micasense camera (Table 2) in the following equation: 

𝑁𝐷𝑅𝐸 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒)

(𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒)⁄  

Each of the normalized difference indices will be referred to with a subscript that refers to the 

band numbers in Table 2. For example, NDVI6,10 refers to the NDVI calculated with bands 6 and 

10. Following these steps, I had 18 data layers (the eight layers described above plus the 

reflectance values for the original 10 bands) from which to extract plot-level values.  

2.7  |  Object-based image analysis 

 Image segmentation was conducted in eCognition Developer 10.2 (Trimble Germany 

GmbH 2021). My workflow for developing image segments was largely informed by video 

tutorials produced by eCognition Developer (2019). I imported a full season mosaic (all flight 

dates) of the imagery into eCognition. This layer contained all 10 bands from the Micasense 

camera. Prior to segmenting the image, I calculated two NDVI layers, one each for the two red 

bands of the Micasense camera. Upon visual inspection, I decided that the NDVI calculated with 

the red 668(14) band was better at delineating between bare and vegetated areas and I used this 

layer to mask out unvegetated areas prior to segmenting the rest of the image mosaic. 

 To segment the vegetated area, I used the multi-resolution segmentation tool. This 

method allows for multiple data layers to inform the segmentation and depends on the desired 

scale, shape, and compactness of the resulting segments. Multi-resolution segmentation is 
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commonly used in scenarios where spectral data are the primary data source for segmentation (as 

opposed to existing feature classes such as building outlines, municipal boundaries, etc.) and has 

previously been used for grassland classification (Xu et al. 2019). Scale, shape, and compactness 

parameters of 100, 0.1, and 0.5, respectively, were used to segment the imagery. A scale 

parameter of 100 sets the minimum object size as 100 pixels, which equals 1 m2 for this study. 

The shape parameter is chosen in accordance with how much emphasis should be placed on 

shape versus color. Since this study is interested in the spectral qualities of vegetation, I set the 

shape parameter to 0.1. Finally, the compactness parameter was set to 0.5 to place an even 

emphasis on compactness versus smoothness in the resulting image shapes. I used different 

source data to create four versions of the segmentation: one with the 10 Micasense bands, one 

with the 3 principal components, one with the NDVI6,10 layer, and one with the NDRE7,10 layer. 

Summary statistics for the segments in each of these versions were exported to Microsoft Excel. 

2.8  | Statistical analysis 

Statistical analysis was performed in RStudio Version 1.3.1093 (RStudio Team 2020). 

Raw band reflectance, vegetation indices, and PCA values were used to build linear models to 

predict percent cover of Z. marina, percent cover of Z. japonica, and total percent cover of 

eelgrass (combined Z. marina and Z. japonica) (Table 3).  
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Table 3. List of plot-level variables used in statistical models to predict percent cover of Z. marina, 

Z. japonica, and total Zostera spp. cover. Predictor variable values were obtained by taking the 

mean value for each plot.  

 

To extract these values for the pixel-based analysis, I used ArcGIS Pro 2.6.0 to create a 

polygon feature layer where polygons represented the location of the 126 ground truth plots 

sampled by PB-NERR personnel and the 28 ground truth plots that I sampled. Coordinate data 

for the plots were calculated relative to the GPS coordinates for the PVC markers that were 

provided by PB-NERR. For each ground truth plot, I used ArcGIS Pro to extract and export data 

from the layers representing each of the predictor variables. For each plot, I calculated the mean 

for each predictor variable. These values were exported to and compiled in Microsoft Excel. This 

process was conducted for each of the 10 bands, as well as for the PCA layers calculated in 

ENVI and NDVI and NDRE layers calculated in ArcGIS Pro. I will compare the predictive 

power of the PCA to that of NDVI, NDRE and raw reflectance values for each of the 10 bands. 

 To extract values for the object-based image analysis, I identified the image segments 

which contained the ground truth plots for each of the four segmentations (band, PCA, NDVI, 

Variable Data source 

Response variables:  

Total Zostera spp. % cover Field observations by Hein, July-September 2020 

Z. marina % cover Field observations by Hein, July-September 2020 

Z. japonica % cover Field observations by Hein, July-September 2020 

Total Zostera spp. % cover Field observations by PB-NERR, July 2020 

Z. marina % cover Field observations by PB-NERR, July 2020 

Z. japonica % cover Field observations by PB-NERR, July 2020 

Predictor variables:  

Bands 1-10 Raw data collected by the Micasense camera 

NDRE7,10, NDRE8,10, NDRE9,10 NIR band 10 and red edge bands 7, 8, and 9 

NDVI5,10, NDVI6,10 NIR band 10 and red bands 5 and 6 

Principal components 1-3 PCA calculated from 2020 spectral data 
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NDRE). The mean reflectance and standard deviation of each segment were joined with the 

associated ground truth plot. These summary statistics were exported to Microsoft Excel and 

used as training and test data. I used these values to build categorial Support Vector Machine 

(SVM) models in the “e1071” package in R to classify the segments based on percent cover of Z. 

japonica and Z. marina (Meyer et al. 2021). I used k-fold cross validation to evaluate the 

classification and used confusion matrices to determine overall, user’s, and producer’s accuracy. 
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3.0  |  Results 

3.1  |  Image quality 

 I successfully completed 8 image collection flights between June 7 and August 29, 2020. 

Using Agisoft Metashape, I was able to generate orthomosaics for six of these images (Figure 

12-17). For the August 18 flight, imagery from a small portion of the eastern section of the 

transect could not be stitched together (Figure 17). This section was mostly featureless bare mud. 

I was unable to generate orthomosaics for the low sun angle flight from June 24 due to the high 

tide stage and the flight from August 29 due to the high tide, wind, and waves. 

3.1.1  |  Sun glint 

 The presence of sun glint proved to be a challenge in capturing reliable, good quality 

imagery of the study area. Imagery collected during the June 7 and June 23 flights was heavily 

impacted by sun glint. Upon initial visual inspection of the orthomosaics, there were areas of 

reflectance distortion due to sun glint. This is a common problem in UAS imagery captured over 

bodies of water. Nahirnick et al. (2019) suggest flying with sun angles lower than 40°, cloud 

cover less than 10% or more than 90%, and wind speeds less than 5 m s-1 would limit sun glint. 

In scheduling flights, I prioritized the lowest tides over sun angle primarily because Nahirnick et 

al. (2019) worked in areas with submerged eelgrass and their main goal was to delineate the 

eelgrass extent, not to predict biological characteristics (e.g., percent cover or species 

delineation) from the spectral signatures in the imagery. However, I did take these guidelines 

into consideration and planned the flight for the lowest sun angle possible given the lowest tide 

stage. Variable wind speeds and a changing sun angle over the course of a single day of imagery 

collection impacted the image quality. For example, on the July 4, 2020 collection date, the sun 
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angle increased from 50.1° to 61.2° during the 90-minute flight period. As a result, images taken 

later in the flight when the sun angle was higher contain more sun glint. 

 To investigate how much the sun glint was impacting the overall imagery, I exported the 

reflectance histograms for each band for each of the imagery collection dates. Based on these 

histograms, it was evident that the upper limits of the reflectance were different depending on the 

band. For example, since the study area is primarily vegetated, reflectance values in the NIR 

band were higher than those in the blue band. If I were to impose the same upper threshold of 

reflectance to represent sun glint on all the bands, it would result in masking out values on some 

bands that naturally have higher reflectance, even with the absence of sun glint. 

 Upon visual inspection of the imagery, I determined that approximately 5% of the area of 

the total imagery from the 2020 field season consisted of sun glint. I used the image statistics to 

identify the threshold representing the 95th percentile of total reflectance for each band. I created 

a binary mask where pixels above the 95th percentile value were given a value of 0 and pixels 

below the 95th percentile were given a value of 1. I repeated this process for all 10 bands in the 

full season mosaic of imagery. In some cases, the pixels identified as sun glint varied in location 

depending on the band. To avoid a situation in which a pixel has values for some bands, but not 

all, I multiplied the 10 binary masks together. This resulted in one binary mask per imagery date 

in which all pixels identified as sun glint for any band were given a value of 0. Finally, I 

multiplied this mask by the orthomosaic image of that date to create an orthomosaic where the 

sun glint pixels have a value of 0 which I set as the “No Data Value”. 

After filtering out the sun glint pixels, the June 7 and June 23 orthomosaics were left with 

swaths of “no data” on the southern edge of the study area and in several streaks across the 

middle of the transects (Figure 12, Figure 13). Imagery from July 4 and July 21 was moderately 
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impacted by sun glint in the southern part of the transects but was unaffected in the northern half 

of the transects (Figure 14, Figure 15). The best quality imagery in terms of sun glint was 

captured on August 1 and August 18, 2020. Streaking is minimal throughout the August 

orthomosaics, and few pixels needed to be removed in the sun glint filtering process (Figure 16, 

Figure 17). Since the June 7 and June 23 imagery was highly impacted by sun glint and filtering 

removed many pixels, I decided not to use those orthomosaics for analysis (Table 4). I cropped 

the July 4 and July 21 orthomosaics so that they contained only the northern half of the 

orthomosaic (Table 4). Thus, for analysis of these dates, only transect 1 ground truth plots are 

considered. Finally, I used the entire orthomosaic for each the August 1 and August 18 flights 

since they were minimally impacted by sun glint (Table 4).  

Table 4. Summary of imagery used in final analysis for the “full season” dataset. 

 

I used two imagery sets for the pixel-based analysis. The first included the “full season” 

dataset as described in Table 4. The second includes only the transect 1 area of the July 4 

imagery and will be referred to by that date. I chose to analyze the imagery in this way to allow a 

comparison of the predictive ability of the full season versus a single flight, and to evaluate the 

predictive power accordingly. I used the July 4 imagery because there more ground-truth data 

Date  

Portion of 

orthomosaic used in 

final analysis 

Reason for exclusion 

6/7/20  Not used Full scene severely impacted by sun glint 

6/23/20  Not used Full scene severely impacted by sun glint 

6/24/20 Not used Orthomosaic did not stitch together due to high tide 

7/4/20  Transect 1 only Transects 2 and 3 impacted by sun glint 

7/21/20  Transect 1 only Transects 2 and 3 impacted by sun glint 

8/1/20  Full scene N/A 

8/18/20  Full scene N/A 

8/29/20  Not used Orthomosaic did not stitch together due to high tide and wind 
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available for that date, since the annual PB-NERR biomonitoring data collection took place on 

July 4 and 5, 2020 and they granted me use of their percent cover data. 

3.1.2  |  Optimal flight parameters 

Over the course of the season, the flights began earlier in the day which resulted in lower 

solar angles at the beginning and end of the flight (Table 5). The overall change in solar angle 

during the flight increased over the season, from a change of +0.53° on June 7 to +13.53° on 

August 29 (Table 5). Notably, the sun angle remained below 52° for the entirety of both the 

August 1 and August 18 flights (Table 5). In contrast, the sun angle during the June flights was > 

62° and, for the July flights, changed from 50-55° at the beginning of each flight to 61° at the 

conclusion of these flights (Table 5). For all four of these flights, sun glint was a significant issue 

(Figure 12-15). Also, the minimum tide measurement for the June and July flights was below -2, 

whereas the minimum tides on August 1 and August 18 were -1.9 and -1.7, respectively (Table 

5). The June 24 flight was conducted much later in the day specifically to try and achieve a sun 

angle lower than 40° as suggested by Nahirnick et al. (2019). I was unable to generate an 

orthomosaic from the resulting images, probably due to the deeper water (+5.0 above MLLW) 

which obscured much of the detail in the eelgrass beds. Similarly, I was unable to generate an 

orthomosaic for the August 29 flight when the tide stage was at -0.9 feet and there were 

significant wind-generated surface waves (Figure 4). These results suggest that a sun angle of 

less than 52° and a tide lower than -0.9, and perhaps closer to -1.7 as on the August 18 flight, is 

needed to minimize sun glint and provide sufficient detail to generate an orthomosaic. 
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Table 5. Imagery collection dates, tide measure, start and end time, maximum wind speed, and 

solar angles from the summer 2020 field season. Flights began 90 minutes prior to low tide to 

ensure all images would be taken before the tide began to flood. The tide measure is the level at 

the end of each flight. Flights on all dates except for 6/24/2020 and 8/29/2020 produced imagery 

that could be stitched into an orthomosaic. 

 

Given these results, I wanted to know if it would have theoretically been possible to 

schedule 2020 flights that met the following criteria: 1) tide state close to -1.9 ft, with “close” 

defined as ± 0.5 ft, and 2) sun angle lower than 52°. As shown in Table 5, there were four times 

in 2020 that met all three criteria (April 11, July 2, July 19, and August 18), as well as three dates 

that met criteria 1) but had a maximum sun angle slightly higher than 52° (May 7, June 4, and 

August 3).  

Date  

Min height 

(ft above 

MLLW) 

Start Time  End Time  

Maximum 

wind speed 

(m/s) 

Solar Angle at 

Start of Flight 

Solar Angle at 

End of Flight 

6/7/20  -2.8 12:20 PM  1:50 PM  1.8 62.55 63.08 

6/23/20  -2.3 12:40 PM  2:10 PM  6.0 64.08 62.43 

6/24/20 +5.0 6:05 PM 7:35 PM 3.5 38.23 23.41 

7/4/20  -2.7 10:40 AM  12:10 PM  1.0 50.1 61.24 

7/21/20  -2.3 11:40 AM  1:10 PM  1.5 55.75 61.71 

8/1/20  -1.9 9:45 AM  11:15 AM  2.0 37.58 50.62 

8/18/20  -1.7 10:40 AM  12:10 PM  4.5 42.21 51.88 

8/29/20  -0.9 8:55 AM  10:25 AM  6.5 23.91 37.44 
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Figure 4. Near infrared images captured during data collection over the same area for the A) low 

sun angle flight on June 24, 2020; tide at +5.0 ft above MLLW and B) low tide flight on August 

1, 2020; tide at -1.9 ft above MLLW. 

 

Table 6. Actual and theoretical data collection dates in 2020 that 1) occur during daylight hours 

and 2) have a tide no lower than -1.9 ft. The April 11, July 2, July 19, and August 18 theoretical 

flights also have sun angles lower than 52°. 

Date  

Min height 

(ft above 

MLLW) 

Start Time  End Time  
Solar Angle at 

Start of Flight  

Solar Angle at 

End of Flight  

Best quality flights of 2020: 

8/1/2020  -1.9 9:45 AM  11:15 AM  37.58  50.62  

8/18/2020  -1.7 10:40 AM  12:10 PM  42.21  51.88  

Theoretical flights: 

4/11/2020 -1.4 1:05 PM 2:35 PM 50.17 46.44 

5/7/2020 -1.4 10:29 AM 11:59 PM 45.19 55.68 

6/4/2020 -1.9 9:29 AM 10:59 AM 39.74 53.50 

7/2/2020 -1.7 8:29 AM 9:59 AM 29.23 43.95 

7/19/2020 -1.8 9:32 AM 11:02 AM 37.61 51.30 

8/3/2020 -1.7 10:19 AM 11:49 AM 42.95 54.02 

8/18/2020 -1.7 9:50 AM 11:20 AM 34.96 47.19 
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3.2  |  Epiphyte load 

 To quantify seasonal variation in epiphyte load over the course of the season, I 

standardized the dry weights of epiphytes as a percentage of the total above ground dry weight of 

the individual plant from which they were scraped. This allowed me to compare epiphyte load 

throughout the season while taking increasing plant size into account as well. Epiphyte load 

ranged from 0% to 80.4% for Z. japonica and from 0% to 68.8% for Z. marina. A one-way 

ANOVA was conducted to compare the effect of date on epiphyte load for Z. japonica and Z. 

marina. There was not a statistically significant difference in epiphyte load on either Z. japonica 

(F(2, 160) = 1.138, p = 0.32) or Z. marina (F(2, 160) = 0.513, p = 0.6) samples between the three 

biomass collection dates (Figure 5). 

 I also plotted epiphyte load for each species as a function of the elevation above MLLW 

(m) (Figure 6). Elevation data were obtained from PB-NERR and represent the elevation at the 

PVC post marking the plot. I ran a simple linear regression on epiphyte load and elevation above 

MLLW and found a significant but very weak relationship between the two variables for Z. 

japonica (R2 = 0.05, p < 0.05) and a significant but weak relationship between the two variables 

for Z. marina (R2 = 0.33, p < 0.001). However, I did observe a stronger relationship between Z. 

marina epiphyte load and elevation above MLLW for the August ground truth data (R2 = 0.63, p 

< 0.001) (Figure 7).  
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Figure 5. Epiphyte biomass as a percent of plant biomass for Z. japonica and Z. marina samples 

collected on July 2, August 2, and September 1, 2020. The center line of the boxplot is the median 

and the lower and upper bounds of the box are the lower (25th percentile) and upper (75th percentile) 

quartile values, respectively. The whiskers extend 1.5 times the interquartile range above the upper 

quartile and below the lower quartile. Outliers are represented by dots. 

 

 
Figure 6. Epiphyte biomass as a percent of plant biomass for Z. japonica and Z. marina samples 

as a function of elevation above mean lower low water (m) (MLLW). A simple linear regression 

shows a significant but very weak between epiphyte load on Z. japonica and elevation above 

MLLW (R2 = 0.05, p < 0.05) and a significant but weak relationship between epiphyte load on Z. 

marina and elevation above MLLW (R2 = 0.33, p < 0.001). 
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Figure 7. Epiphyte biomass as a percent of plant biomass for Z. marina samples collected on 

August 2, 2020, as a function of elevation above mean lower low water (m) (MLLW). A simple 

linear regression shows a moderate relationship between epiphyte load and elevation above 

MLLW (m) for Z. marina in August (R2 = 0.63). 

 

3.3  |  Principal component analysis 

 I conducted two PCAs in ENVI: one using the full season set of imagery and one using 

July 4 imagery. These PCAs will be referred to as the “full season PCA” and the “July 4 PCA”. I 

chose to do a separate PCA for the July 4 imagery so that I could compare the predictive strength 

of the full season models with the strength of a single date model. July 4 is the only date for 

which I had sufficient ground control data for a single date analysis. Much of the variance in the 

full season dataset results from variation in the sun angle and wind-driven waves. Since the PCA 

is based upon the total variance in the imagery, I needed to conduct separate PCAs on each 

imagery set to obtain accurate results. The loadings for the first three principal components of the 

full season PCA have distinct characteristics. The first principal component explains 60.84% of 

the variance (Table 7). All bands have negative loadings and are of a similar magnitude, ranging 
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from -0.15 to -0.39 (Table 7). The second principal component explains 35.64% of the variance 

(Table 7). In PC2, there are some strong contrasts between band loadings. Most notably, the red 

edge and NIR bands have strong negative loadings (< -0.34) which contrast the positive loadings 

of the blue and red bands (Table 7). The third principal component explains only 1.61% of the 

variance (Table 7). In PC3 there is a strong contrast between blue, red, upper Red edge 740(18) 

and NIR bands with the green bands and the lower Red edge 705(10) band (Table 7). 

Table 7. Loadings for the first three principal components of the PCA conducted on all 10 bands 

of the Micasense dual camera system for the full season mosaic of imagery (July 4, July 21, August 

1, and August 18, 2020). 

Band PC1 PC2 PC3 

Coastal blue 444(28) -0.374499 0.1685 0.352719 

Blue 475(32) -0.358578 0.235164 0.191769 

Green 531(14) -0.394088 0.083382 -0.260399 

Green 560(27) -0.38776 -0.015717 -0.668404 

Red 650(16) -0.359298 0.229755 0.015903 

Red 668(14) -0.336719 0.277639 0.357799 

Red edge 705(10) -0.296861 -0.34658 -0.165945 

Red edge 717(12) -0.206621 -0.450194 -0.017857 

Red edge 740(18) -0.166163 -0.478431 0.180082 

NIR 842(57) -0.156863 -0.47702 0.368352 

% variance explained 60.84 35.64 1.61 

 

 The results of the July 4 PCA are extremely similar to those of the full season, but the 

patterns for PC1 and PC2 are switched. In the July 4 PCA, PC1 accounts for 64.34% of the 

variance and has strong contrasts between all the bands in the visible part of the spectrum (blue, 

green, and red) with the red edge and NIR bands (Table 8). The second principal component 

explains 35.53% of the variance. All loadings are negative and range from -0.08 to -0.52 (Table 

8). The third principal component explains only 0.71% of the variance but has a notable contrast 
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between the loadings of the Green 560(27) and Red edge 705(10) bands with the NIR 842(57) 

band (Table 8). Hence, the pattern of loadings on PC3 are similar for both the July 4 PCA and 

the full season PCA but with the signs reversed. 

Table 8. Loadings for the first three principal components of the PCA conducted on all 10 bands 

of the Micasense dual camera system for only the July 4 imagery. 

Band PC1 PC2 PC3 

Coastal blue 444(28) 0.377443 -0.139424 -0.098346 

Blue 475(32) 0.382378 -0.120551 -0.140781 

Green 531(14) 0.353420 -0.230517 0.107712 

Green 560(27) 0.316061 -0.310027 0.214870 

Red 650(16) 0.383375 -0.104697 -0.181778 

Red 668(14) 0.387192 -0.076711 -0.279207 

Red edge 705(10) -0.070835 -0.525576 0.612962 

Red edge 717(12) -0.243349 -0.424798 0.051650 

Red edge 740(18) -0.254517 -0.412266 -0.302012 

NIR 842(57) -0.246200 -0.416270 -0.576313 

% variance explained 64.34 33.53 0.71 

 

3.4  |  Pixel-based analysis 

3.4.1  |  Total eelgrass cover 

 For both the full season of imagery and for the July 4 subset, I created 18 regression 

models and compared their efficacy at predicting total eelgrass cover (Table 9). These models 

used all 10 bands of the Micasense camera, all available permutations of NDVI and NDRE given 

the Micasense bands, as well as combinations of the first three PCs. Equations for the most 

effective models for each predictor variable category are presented in Table 10. Generally, the 

July 4 models outperformed the full season models for all types of predictor variables (Table 9). 

Individually, the raw band data for the full season did not perform well. But for the July 4 subset, 

using individual bands as predictor variables yielded decent results, with all but one model 
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having an R2  greater than 0.6 (Table 9). I explored multiple band combinations and found that 

using the Red 650(16) and Red edge 717(12) bands together had the highest R2, with R2 = 0.79 

and R2 = 0.89, for the full season and July 4 images, respectively (Table 9). This combination 

also yielded variance inflation factors (VIF) less than 4, which indicates the absence of 

collinearity in the predictors. All combinations of three or more bands were collinear and were 

not considered in this analysis.  

The PCA results for the July 4 subset yielded the next best results, with the model 

utilizing PC1 and PC3 yielding an R2 of 0.887 (Table 9). The full season model using PC1 and 

PC2 had an R2 of 0.71 (Table 9). Overall, using the first three principal components as predictor 

variables yielded an R2 of 0.75 for the full season and 0.885 for July 4 (Table 9). It is noteworthy 

that although PC3 captured a very small percentage of the variance for both the full season 

(Table 7) and July 4 (Table 8) PCAs it was included in the best PCA models and the magnitude 

of the coefficient for PC3 in these models is comparable to the loadings for the other PCs that 

captured a much higher percentage of the variance (Table 10). For the full season model, the 

magnitude of the coefficient for PC3 is roughly three times greater than the coefficient for PC1 

even though PC1 captures 60% of the variance in the imagery vs. only 1.6% of the variance for 

PC3. For the July 4 model, the coefficient for PC1, which captures 64% of the variance in the 

imagery is roughly 50% greater than the magnitude of the coefficient for PC3, which captures 

only 0.7% of the variance in the imagery. This suggests that, although PC3 captures very little 

variance in the imagery, it is capturing an important bit of information. 

 Using NDVI also proved to be an effective method to predict total eelgrass cover. The 

effectiveness of using NDVI to predict total eelgrass cover did not seem to depend on which red 

band was used in the calculation. For the full season, using NDVI as the predictor variable had 
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an R2 of 0.763 when calculated with the Red 650(16) band and an R2 of 0.759 when calculated 

with the Red 668(14) band (Table 8). For the July 4 subset, the NDVI calculated with the Red 

650(16) band resulted in an R2 of 0.872 and the NDVI using the Red 668(14) had an R2 of 0.875 

(Table 8).  

Unlike the NDVI models, the efficacy of the NDRE models changed drastically with the 

choice of red edge band used in the calculations. The NDRE models using the Red edge 705(10) 

band performed decently, with an R2 of 0.62 and 0.76 for the full season and July 4 datasets, 

respectively (Table 9). Using the Red edge 717(12) band resulted in a weak relationship between 

NDRE and total eelgrass cover, with an R2 of 0.36 and 0.47 for the full season and July 4 

datasets, respectively (Table 9). Models using the NDRE calculated with the Red edge 740(18) 

band had no relationship with total eelgrass cover, with an R2 of 0.06 and -0.02 for the full 

season and July 4 datasets, respectively (Table 9). 

3.4.2  |  Z. japonica cover 

 Pixel-based regression models performed very poorly at predicting Z. japonica percent 

cover. All modeling efforts resulted in R2 below 0.33, with most around 0.1 (Table 11). Overall, 

the highest R2 were seen in models using the blue bands (Table 11). There does not appear to be 

a difference in overall efficacy between the full season and July 4 models. 

3.4.3  |  Z. marina cover 

 Overall, using the July 4 subset resulted in more effective Z. marina percent cover 

predictive models than the full season of imagery. However, the best models had mediocre R2 

values. The model using PC2 and PC3 had the highest R2 of all full season models with 0.48 

(Table 12). For the July 4 subset, the best model used the NDVI calculated with the Red 650(16) 

band and had an R2 of 0.56 (Table 12). 
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Table 9. Summary of regression models used to predict total eelgrass cover for the full season 

mosaic of imagery and for the July 4 subset. The number after the band name is the central 

wavelength, and the number in parentheses is the band width. For the full season, n=101, and for 

July 4, n=40. Highlighted rows indicate the best model for each category of predictor variable for 

the full season and for the July 4 data. 

 Full season July 4 

Predictor variable(s)  
Adjusted 

R2 
F-statistic p-value 

Adjusted 

R2 
F-statistic p-value 

Coastal blue 444(28) 0.14 16.94 < 0.001 0.83 194 < 0.001 

Blue 475(32) 0.24 33.67 < 0.001 0.85 219.5 < 0.001 

Green 531(14) 0.05 6.395 0.013 0.77 130 < 0.001 

Green 560(27) -0.005 0.49 0.48 0.65 74.7 < 0.001 

Red 650(16) 0.29 42.68 < 0.001 0.87 258.5 < 0.001 

Red 668(14) 0.36 58.96 < 0.001 0.88 283 < 0.001 

Red edge 705(10) 0.24 33.67 < 0.001 0.33 20.33 < 0.001 

Red edge 717(12) 0.48 95.35 < 0.001 0.67 81.48 < 0.001 

Red edge 740(18) 0.52 111.2 < 0.001 0.66 78.28 < 0.001 

NIR 842(57) 0.49 98.89 < 0.001 0.61 63.04 < 0.001 

Red 650(16) +  

    Red edge 717(12) 
0.79 195.1 < 0.001 0.89 164.6 < 0.001 

NDVI5,10 0.763 326.2 < 0.001 0.872 265.6 < 0.001 

NDVI6,10 0.759 319.2 < 0.001 0.875 273.4 < 0.001 

NDRE7,10 0.62 165 < 0.001 0.76 125.7 < 0.001 

NDRE8,10 0.36 57.05 < 0.001 0.47 36.19 < 0.001 

NDRE9,10 0.06 7.39 0.008 -0.02 0.33 0.57 

PC1 0.01 2.325 0.1304 0.86 249.7 < 0.001 

PC2 0.61 158.5 < 0.001 0.45 32.38 < 0.001 

PC3 0.40 69.26 < 0.001 0.51 41.67 < 0.001 

PC1 + PC2 0.71 125.2 < 0.001 0.882 147.3 < 0.001 

PC1 + PC3 0.45 42.42 < 0.001 0.887 154.6 < 0.001 

PC2 + PC3 0.66 99.28 < 0.001 0.53 23 < 0.001 

PC1 + PC2 + PC3 0.75 100.6 < 0.001 0.885 101.1 < 0.001 

 

  



36 

 

Table 10. Equations for the most effective regression model for band data, NDVI, NDRE, and 

PCA used to predict total eelgrass cover. The number after the band name is the central 

wavelength, and the number in parentheses is the band width. The subscript numbers after the 

vegetation indices refer to the band numbers used to calculate the index. 

Predictor variable(s) Equation 
Adjusted 

R2 

Full season   

Red 650(16) +  

  Red edge 717(12) 

Total % cover = 46.7 – 1804.6 * “Red 650(16)” + 1048.9 

* “Red edge 717(12)” 
0.79 

NDVI5, 10 Total % cover = 15.6 + 135.5 * NDVI5,10 0.76 

NDRE7, 10 Total % cover = 36.2 + 251.6 * NDRE7,10 0.62 

PC1 + PC2 + PC3 
Total % cover = 74.6 + 405.9 * PC1 – 1087.7 * PC2 – 

1562.4 * PC3 
0.75 

July 4   

Red 650(16) +  

  Red edge 717(12) 

Total % cover = 98.7 – 2943.6 * “Red 650(16)” + 655.3 * 

“Red edge 717(12)” 
0.89 

NDVI6,10 Total % cover = – 11.9 + 143.9 * NDVI6,10 0.87 

NDRE7,10 Total % cover = 11.2 + 313.1 * NDRE7,10 0.76 

PC1 + PC3 Total % cover = 62.4 – 1557.5 * PC1 + 942.8 * PC3 0.887 
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Table 11. Summary of regression models used to predict Z. japonica cover for the full season 

mosaic of imagery and for the July 4 subset. The number after the band name is the central 

wavelength, and the number in parentheses is the band width. For the full season, n=101, and for 

July 4, n=40. Highlighted rows indicate the best model for each category of predictor variable for 

the full season and for the July 4 data. 

 Full season July 4 

Predictor variable(s)  
Adjusted 

R2 
F-statistic p-value 

Adjusted 

R2 
F-statistic p-value 

Coastal blue 444(28) 0.019 2.95 0.09 0.21 11.44 0.002 

Blue 475(32) 0.32 4.37 0.04 0.2 10.65 0.002 

Green 531(14) 0.012 2.27 0.14 0.14 7.10 0.01 

Green 560(27) 0.0042 1.43 0.23 0.08 4.58 0.04 

Red 650(16) 0.053 6.62 0.01 0.18 9.74 0.003 

Red 668(14) 0.04 5.17 0.03 0.19 10.07 0.003 

Red edge 705(10) -0.01 0.012 0.91 0.0097 1.38 0.25 

Red edge 717(12) 0.0028 1.29 0.26 0.1 5.46 0.03 

Red edge 740(18) 0.016 2.69 0.10 0.12 6.11 0.02 

NIR 842(57) 0.018 2.86 0.09 0.099 5.27 0.03 

NDVI5,10 0.054 6.74 0.01 0.1 7.77 0.008 

NDVI6,10 0.044 5.69 0.02 0.15 8.06 0.007 

NDRE7,10 0.066 8.13 0.005 0.13 6.88 0.01 

NDRE8,10 0.23 3.38 0.07 0.051 3.083 0.09 

NDRE9,10 -0.001 0.0027 0.96 -0.019 0.29 0.59 

PC1 -0.0061 0.39 0.54 0.17 8.76 0.005 

PC2 0.02 3.07 0.08 0.058 3.40 0.07 

PC3 0.026 3.74 0.06 0.081 4.43 0.04 

PC1 + PC2 0.045 3.36 0.04 0.16 4.65 0.02 

PC1 + PC3 0.055 3.95 0.02 0.15 4.54 0.02 

PC2 + PC3 0.017 1.86 0.16 0.086 2.83 0.07 

PC1 + PC2 + PC3 0.046 2.61 0.06 0.14 3.04 0.04 
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Table 12. Summary of regression models used to predict Z. marina cover for the full season mosaic 

of imagery and for the July 4 subset. The number after the band name is the central wavelength, 

and the number in parentheses is the band width. For the full season, n=101, and for July 4, n=40. 

Highlighted rows indicate the best model for each category of predictor variable for the full season 

and for the July 4 data. 

 Full season July 4 

Predictor variable(s)  
Adjusted 

R2 
F-statistic p-value 

Adjusted 

R2 
F-statistic p-value 

Coastal blue 444(28) 0.05 6.34 0.013 0.46 33.79 < 0.001 

Blue 475(32) 0.10 12.73 < 0.001 0.48 37.37 < 0.001 

Green 531(14) 0.0063 1.64 0.2 0.48 37 < 0.001 

Green 560(27) -0.0095 0.046 0.83 0.44 31.87 < 0.001 

Red 650(16) 0.11 13.63 < 0.001 0.51 42.32 < 0.001 

Red 668(14) 0.17 22.43 < 0.001 0.52 42.8 < 0.001 

Red edge 705(10) 0.24 33.24 < 0.001 0.25 14.24 < 0.001 

Red edge 717(12) 0.35 55.75 < 0.001 0.44 31.11 < 0.001 

Red edge 740(18) 0.34 52.72 < 0.001 0.41 28.37 < 0.001 

NIR 842(57) 0.31 46.6 < 0.001 0.39 25.73 < 0.001 

NDVI5,10 0.44 79.62 < 0.001 0.56 49.79 < 0.001 

NDVI6,10 0.45 85.11 < 0.001 0.55 49.16 < 0.001 

NDRE7,10 0.31 46.76 < 0.001 0.48 36.94 < 0.001 

NDRE8,10 0.2 25.78 < 0.001 0.32 19.69 < 0.001 

NDRE9,10 0.05 6.83 0.01 -0.0008 0.97 0.33 

PC1 0.03 3.93 0.05 0.53 44.83 < 0.001 

PC2 0.4 67.77 < 0.001 0.29 16.82 < 0.001 

PC3 0.22 30.29 < 0.001 0.32 19.2 < 0.001 

PC1 + PC2 0.42 38.07 < 0.001 0.52 22.42 < 0.001 

PC1 + PC3 0.22 15.49 < 0.001 0.53 22.9 < 0.001 

PC2 + PC3 0.48 47 < 0.001 0.31 9.65 < 0.001 

PC1 + PC2 + PC3 0.49 33.62 < 0.001 0.52 15.2 < 0.001 
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3.5  |  Object-based image analysis 

 I segmented the full season imagery in four different ways, each using a different 

predictor variable source to inform the multiresolution segmentation process. To mirror the 

pixel-based analysis, I did a segmentation based on band data, NDVI, NDRE, and PCA. For the 

NDVI-based segmentation, I used NDVI6,10 because it visually did a better job of defining 

vegetated areas. For the NDRE-based segmentation, I used NDRE7,10 because, as shown in the 

pixel-based analysis results, it outperformed the other two NDRE versions (Table 9).  

Ground truth data were subset to the 85 plots with at least 80% of total vegetative cover 

since the purpose of this analysis is to determine whether it is possible to define areas of Z. 

marina and Z. japonica separately from each other. I masked the bare area in the imagery prior 

to performing the segmentation process using an NDVI threshold of 0.15, and so theoretically, 

the segments I classified during this analysis were fully vegetated, or nearly so. However, some 

ground plots contained algae and detritus and it is reasonable to assume that the masking process 

of the bare area was not perfect, and some bare areas might be present in the image segments. 

For these reasons, I decided to set the threshold of vegetation at 80% to allow for the inclusion of 

other cover types in small percentages.  

There were 16 ground truth plots that contained less than 80% of vegetated cover that 

were not used in training or testing the SVM. Six of these plots were completely bare and were 

located within the area delineated as “bare” through the NDVI masking in eCognition. Since the 

SVM was developed only to classify within vegetated areas, the bare ground truth plots were not 

used. The other 10 plots were sparsely vegetated and were found in areas that contained small 

segments at the threshold between bare and vegetated areas in Padilla Bay. Since these plot 
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polygons were each intersected by multiple image segments, they were not used as ground truth 

since they were associated with more than one segment. 

3.5.1  |  Accuracy of object-based image analysis methods 

 After ground truth data were subset according to their level of overall vegetation, I tested 

several methods of categorizing the plots based on whether they were Z. japonica dominant, Z. 

marina dominant, or mixed. The definitions used to place ground truth plots in these categories 

are presented in Table 13. Overall, using method 3 of ground truth categorization produced the 

most accurate classifications (Table 14). User’s, producer’s, and overall accuracies for the 

NDRE, NDVI, and PCA segmentations based on categorization method 3 are presented in Table 

15. Confusion matrices for results for all categorization methods are available in the appendix. 

Table 13. Criteria used to categorize the vegetation type in ground truth plots that were at least 

80% vegetated. The categorization will be used to inform segmentation classification. 

Method 

# 

Z. japonica 

dominant 

Z. marina 

dominant 
Mixed 

1 
>80% of 

total cover 

>80% of 

total cover 

Split into two categories: 

Z. japonica dominated 

50-80% of total cover 

is Z. japonica 

Z. marina dominated 

50-80% of total cover 

is Z. marina 

2 
>80% of 

total cover 

>80% of 

total cover 

Either Z. japonica or Z. marina has 50-80%  

of the total cover 

3 
>90% of 

total cover 

>90% of 

total cover 

Neither Z. japonica nor Z. marina has >90%  

of the total cover 

4 
>70% of 

total cover 

>70% of 

total cover 

Neither Z. japonica nor Z. marina has >70%  

of the total cover 
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Table 14. Summary of overall percent classification accuracy for the four ground truth 

categorization methods and the four image segmentation types for classification informed by mean 

value for all pixels in a segment.  

Method  

# 

Segmentation method 

Band NDVI6,10 NDRE7,10 PCA 

1 57.8 51.3 55.6 58.8 

2 60.2 57.7 63.0 68.2 

3 60.2 64.1 70.3 70.6 

4 57.8 58.2 69.1 68.6 

 

The SVM classification based on the band segmentation and the mean band values for 

each segment was somewhat accurate overall, with a total accuracy of 60.2% (Table 15). While 

the producer’s accuracy for Z. japonica dominant plots was high, the user’s accuracy for this 

category was low (57.1%) and was commonly misclassified as Z. marina dominant (Table 15). 

Classification between Z. marina dominant and mixed plots was muddled, with producer’s and 

user’s accuracies for these categories between 54.5 and 64.9% (Table 15). Using the 10 band 

means and the 10 band standard deviations drastically improved the accuracy of the 

classification to 78.3% overall (Table 15). This method also improved or maintained the user’s 

and producer’s accuracies for all classes (Table 15). 

The SVM classification based on the NDVI6,10 segmentation was 64.1% accurate overall 

for both the classification using only the mean NDVI6,10 for each segment and the classification 

using the mean and standard deviation of NDVI6,10 for each segment as predictor variables 

(Table 15). While the overall result is decent, the classification accuracy for identifying Z. 

japonica is very poor, with a user’s accuracy of 25.0% for both sets of predictors (Table 15). 

Using the mean NDVI6,10 resulted in a low producer’s accuracy for mixed plots as well, at only 
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48.6%, but had a very high user’s accuracy for that category at 80.9% (Table 15). The user’s and 

producer’s accuracies for classifying Z. marina and mixed plots using mean and standard 

deviation are between 59.5 and 74.3%, which is slightly worse than the results from the NDRE 

based segmentation (Table 15). 

 Classifying segments based on the NDRE7,10 was accurate overall with a total accuracy of 

70.3% using the mean NDRE7,10 for each segment and 69.1% using the mean and standard 

deviation of NDRE7,10 for each segment (Table 15). However, when looking at the user’s and 

producer’s accuracies for the different categories, it’s clear this classification does not work for 

identifying areas dominated by Z. japonica, with 0 of 8 Z. japonica plots identified correctly 

(Table 15). The Z. marina and mixed categories are more accurately identified using the NDRE 

segmentation than the band segmentation, with user’s and producer’s accuracies ranging from 

63.0-78.4% (Table 15). 

 The SVM classifications based on the PCA segmentation was the second most accurate 

of all segmentations evaluated, at 70.6% (Table 15). While this overall result is close to the 

overall accuracy for the NDRE7,10 segmentation (69.1%), it does a better job of identifying Z. 

japonica plots. The user’s and producer’s accuracies for classifying Z. japonica when using the 

means of the PCs for each segment as a predictor variable are 83.3%and 62.5%, respectively 

(Table 15). The user’s and producer’s accuracies for classifying Z. japonica when using the 

means and standard deviations of the PCs for each segment as predictor variables are both 75.0% 

(Table 15). Using both the means and standard deviations also appears to be the best because the 

user’s and producer’s accuracies are the most consistent for each of the three categories 

evaluated (Table 15). 
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Table 15. Summary of user’s, producer’s, and overall accuracy results for the SVM classifications 

run on all four segmentation types using ground truth categorization method 3. N = 85 for ground 

truth plots used to build the SVM classifier for each segmentation type. 

Segmentation 

type 

Predictor 

variable(s) 

Cover 

category 

Accuracy (%) 

User’s Producer’s Overall 

Band 

Mean 

Z. japonica 100.0 57.1 

60.2 Z. marina 54.5 64.9 

Mixed 62.9 56.4 

Mean & 

standard 

deviation 

Z. japonica 100 71.4  

Z. marina 80.0 75.7 78.3 

Mixed 74.4 82.1  

NDVI6,10 

Mean 

Z. japonica 100.0 25.0 

64.1 Z. marina 56.4 88.6 

Mixed 80.9 48.6 

Mean & 

standard 

deviation 

Z. japonica 100.0 25.0  

Z. marina 59.5 62.9 64.1 

Mixed 66.7 74.3  

NDRE7,10 

Mean 

Z. japonica NA 0 

70.3 Z. marina 62.7 86.5 

Mixed 83.3 69.4 

Mean & 

standard 

deviation 

Z. japonica 0 0  

Z. marina 63.0 78.4 69.1 

Mixed 77.1 75.0  

PCA 

Mean 

Z. japonica 83.3 62.5 

70.6 Z. marina 65.9 78.4 

Mixed 74.3 65.0 

Mean & 

standard 

deviation 

Z. japonica 75.0 75.0  

Z. marina 67.5 73.0 70.6 

Mixed 73.0 67.5  

 

  



44 

 

3.5.2  |  Mapping object-based image analysis results 

 I applied the results of the SVM for the band and PCA informed segmentations to the 

entire image set and mapped them according to the predicted cover type. As previously 

explained, for each segmentation, I predicted cover in two ways: 1) using the mean values for the 

segments, and 2) using the mean values and the standard deviations for the segments. Overall, 

the predicted area for each cover type remained similar between the band and PCA methods 

(Figure 8). When using only the mean to predict cover type, the total area for each cover type for 

the band and PCA methods were almost identical, with Z. marina as the most abundant cover 

(93.9 and 91.2 ha, respectively) Z. japonica as the least (6.4 and 9.4 ha, respectively) (Figure 8, 

Table 16). When using the mean and standard deviation to predict cover type, the total area of 

the Z. marina and mixed categories are more similar to each other. For the band segmentation, Z. 

marina was estimated at 70.6 ha and mixed at 80.9 ha (Table 16). For the PCA segmentation, Z. 

marina was estimated at 74.7 ha and mixed at 73.4 ha (Table 16).  

For all four maps, the NDVI mask applied in eCognition to delineate between bare and 

vegetated area is consistent, as evidenced by the identical segmentation at the transition from 

bare to vegetated regions (Figure 9-12). The band segmentation with the mean and standard 

deviation as predictor variables performed the best overall in the accuracy assessment (78.3%) 

with robust user’s and producer’s accuracies (Table 15). The map produced with this method 

follows the general pattern of cover type based on the PB-NERR zones, where dominant cover 

changes from bare, to Z. japonica, to mixed, to Z. marina moving down the intertidal (Table 1, 

Figure 9). With the exception of July 4, the classifier did an accurate job of identifying Z. 

japonica as the dominant cover type at the threshold between vegetated and unvegetated regions 

in the eastern end of the transect (Figure 9). The approach using only the band means to predict 
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cover type did not perform as well in the accuracy assessment overall (60.2%) or for the user’s 

and producer’s accuracies, which ranged from 54.5% – 64.9% (apart from the Z. japonica user’s 

accuracy at 100%) (Table 15). These inaccuracies are visible in the map as well. For example, 

for July 4, almost the entire transect is predicted to be mixed and there are very small regions of 

Z. marina and Z. japonica (Figure 10). Furthermore, there is a very large swath of predicted Z. 

marina at the eastern end of the vegetated section of the August 18 imagery, which should be 

either Z. japonica or mixed, given its general position in the transect (Figure 10, Table 1). 

While overall accuracy was the same for the PCA based segmentation and SVM 

classification based on mean values vs. means and standard deviations (Table 15), mapping the 

predicted cover shows differences between the two approaches. In the map created from 

predictions based on the mean values of the first three PCs, August 1 and August 18 look like 

what we’d expect based on the PB-NERR zones (Table 1). However, the overall pattern is 

different for the July 4 and July 21 imagery classifications in the vegetated area. In the July 4 

classification, most of the vegetation was classified as mixed, with some clumps of Z. marina 

dominated areas in the western end and also the eastern end of the study area (Figure 11). In the 

July 21 classification, the majority of the vegetation was classified as Z. marina, with a section 

of Z. japonica at the eastern end of the vegetated area (Figure 11). Also in the July 21 

classification are several Z. japonica dominant segments in the far western end of the transect 

(Figure 11). I believe these segments accurately predict the presence of Z. japonica in this 

region, since there is a higher elevation area in zone 5 where the water is shallow enough for Z. 

japonica to grow (Figure 13). 

The overall patterns in the map created with the PCA segmentation and mean and 

standard deviation informed SVM classifier are more straightforward. For each of the imagery 
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dates, the cover type transitions according to the PB-NERR zones (Table 1). The main error in 

this version is the presence of a large swath of Z. marina in the southeastern corner of the 

vegetated area in the August 1 imagery (Figure 12).  

Table 16. Predicted area and producer’s accuracies for the four cover categories predicted by the 

SVM informed by the band and PCA segmentations. There are no producer’s accuracies for the 

bare category because this cover type was estimated using the NDVI mask in eCognition, not with 

the SVM and ground truth plots. 

Segmentation 

method 

Predictor 

variable(s) 
Cover category 

Producer’s 

accuracy 

(%) 

Area (ha) Area (%) 

Band 

Mean 

Bare N/A 36.2 18.5 

Z. japonica 57.1 6.4 3.3 

Mixed 56.4 59.2 30.2 

Z. marina 64.9 93.9 48.0 

Mean & 

standard 

deviation 

Bare N/A 36.2 18.5 

Z. japonica 71.4 8.0 4.1 

Mixed 82.1 80.9 41.3 

Z. marina 75.7 70.6 36.1 

PCA 

Mean 

Bare N/A 36.2 18.5 

Z. japonica 62.5 9.4 4.8 

Mixed 65.0 58.8 30.0 

Z. marina 78.4 91.2 46.6 

Mean & 

standard 

deviation 

Bare N/A 36.2 18.5 

Z. japonica 75.0 11.3 5.8 

Mixed 67.5 73.4 37.5 

Z. marina 73.0 74.7 38.2 
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Figure 8. Predicted area for each predicted cover type for the band and PCA informed segmentation 

methods. Numbers presented on the bar plot represent the percent of the total area for that predicted 

cover type. 
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Figure 9. Map of predicted cover type classified using SVM based on raw band informed 

segmentation. Mean values of all 10 bands and segment standard deviations were used to train the 

SVM. Overall accuracy for predicting vegetation type cover for this method is 78.3%. 
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Figure 10. Map of predicted cover type classified using SVM based on raw band informed 

segmentation. Mean values of all 10 bands were used to train the SVM. Overall accuracy for 

predicting vegetation type cover for this method is 60.2%. 
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Figure 11. Map of predicted cover type classified using SVM based on PCA informed 

segmentation. Mean values of the first three principal components were used to train the SVM. 

Overall accuracy for predicting vegetation type cover for this method is 70.6%. 
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Figure 12. Map of predicted cover type classified using SVM based on PCA informed 

segmentation. Mean values for the first three principal components and segment standard 

deviations were used to train the SVM. Overall accuracy for predicting vegetation type cover for 

this method is 70.6%. 
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Figure 13. Z. japonica dominated area in zone 5, near plot 3.5.B. This area higher in elevation than 

its surroundings, allowing Z. japonica to grow even though it is far from shore. 
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4.0  |  Discussion 

The primary goals of this study were to: 1) develop models to predict percent cover of 

eelgrass using high-resolution multispectral imagery and 2) use these models to map the 

distribution and abundance of Z. japonica and Z. marina in Padilla Bay. In order to achieve these 

goals, I have evaluated the challenges to obtaining high-resolution multispectral imagery from a 

UAV in nearshore marine environments. These challenges include water depth, wind-driven 

waves, sun glint and variation in epiphyte load.  

4.1  |  Image collection and quality  

 Wind-driven waves, higher tides, and sun glint were the main challenges I faced in 

generating orthomosaics from the UAS imagery. In a similar study, Nahirnick et al. (2019) 

suggested that sun glint can be avoided by flying when sun angles are <40°. However, 

particularly during the early summer, these sun angles only occur at higher tide stages. Following 

the Nahirnick et al. (2019) suggestion, my June 24 flight, which was timed to take place when 

the sun angle was <40°, occurred at a minimum tide stage of +5 ft above MLLW. The creation of 

an orthomosaic requires stable tie points to match equivalent locations across the thousands of 

photos acquired during a flight. For this June 24 flight, deep water and waves created by wind 

and the flood tide created a dynamic water surface that made it impossible to locate the stable tie 

points needed to stitch images together into an orthomosaic (Figure 4). The Nahirnick et al. 

(2019) study sites were deeper than Padilla Bay and their main objective was simply to detect the 

presence of eelgrass and to delineate the edges of the eelgrass meadows. For their study, they 

chose to prioritize low sun angle and minimal wind speed to obtain imagery suitable for their 

study. My objective was not simply to detect eelgrass but to quantify percent cover and 

distinguish between Z. japonica and Z. marina. For this reason, I felt that more detailed imagery 
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would be needed, and I elected to fly during the lowest possible tides for each date. This resulted 

in sun angles that were generally greater than 40° and sun glint was an issue. For the June 7 and 

23 flights, the very low tides enabled me to generate orthomosaics, but the sun angle was 

consistently >60° and resulted in sun glint that made these orthomosaics unusable (Table 5). For 

the July flights, only the first half of the flight, when sun angles were close to 50°, were useable 

and the second half of these flights, when the sun angle was closer to 60° were not useable due to 

sun glint (Table 5).  

 A combination of wind-driven waves and higher tides made it impossible to generate an 

orthomosaic for the bare portion of the August 18 and the full August 29 imagery. Seagrass beds 

in shallow areas are known to attenuate waves and reduce water velocity by 60% as compared to 

unvegetated areas (Hansen and Reidenbach 2013). Although there was only a small amount of 

water on these mudflats, this difference in wave attenuation between vegetated and unvegetated 

areas could explain why the mudflats in the study area were more impacted visually by high 

wind than the eelgrass beds. For all flights with minus tides prior to August 18, lower tides 

(Table 5) resulted in completely dewatering the mudflats and I was successful in mosaicking the 

imagery for the area covered by mudflats as well as the rest of the study area (Figure 14-18).  

The sun glint filter I applied to the successful orthomosaics worked well at eliminating 

the most affected pixels. Unfortunately, eliminating areas of sun glint decreased the number of 

ground truth plots that were usable for the July flights. I looked specifically at ground truth plots 

that lost pixels due to the sun glint filtering and found that the remaining pixels were, on average, 

much higher in reflectance than the ground truth plots that did not lose pixels to filtering. This 

suggests that even after the glint filtering process, there was still an impact of the sun glint on the 

remaining pixels. Thus, I decided not to use these plots for model development since the spectral 
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data from these plots was still impacted by sun glint. This left me with 21 of my own July ground 

truth plots, along with 30 ground truth plots monitored by PB-NERR in the study area. The 

August 1 and August 18 flights seemed to be least impacted by sun glint (Figure 18, Figure 19). 

Very few pixels were removed in the glint filtering process for each of these dates, and the 

resulting imagery had limited streaking. As such, I could use the entire ground truth dataset (N = 

51) for each of these dates to inform the classifications. The August 1 and August 18 flights both 

had a maximum sun angle below 52° (Table 5) which seems to have reduced the amount of sun 

glint in the imagery (Figure 18, Figure 19). In contrast, the June 7 and June 23 flights which I did 

not use in my analysis because there was too much glint had maximum sun angles of 63° and 

64°, respectively (Figure 15-16, Table 5).  

I prioritized flying during the lowest low tides of the season, but given the quality of the 

imagery, it seems that striking a balance between tide and sun angle is necessary to produce 

high-quality imagery of eelgrass in Padilla Bay. Sun glint is exacerbated in shallow waters 

lacking eelgrass because the water readily forms wind-blown waves. As a result, I’d suggest 

flying only when speeds are below 5 m s-1. Furthermore, to keep imagery consistent within each 

flight, operators should note when wind speeds change over the course of a flight, even if under 

5 m s-1 since waves can form in shallow waters even under low wind speeds, resulting in sun 

glint. In addition to this, the lowest low tides often coincide with high sun angles (Table 5). For 

example, the minimum tides for the June 7, June 23, July 4, and July 21 flights were all lower 

than -2.0 ft below MLLW and each of these dates had a maximum sun angle greater than 60° 

(Table 5). These dates were all heavily impacted by sun glint and were either excluded from 

analysis or cropped to a smaller area to avoid glint impact. Thus, putting less emphasis on flying 

during the lowest low tides in Padilla Bay and placing more emphasis on flying at a lower sun 
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angle (< 52°) and at wind speeds < 5 m s-1 should reduce the interference of sun glint in UAS 

imagery.  

In order to monitor seasonal dynamics during future monitoring efforts, it will be crucial 

to keep the flight conditions as consistent as possible, so the resulting imagery is consistent 

between collection dates. It is possible to schedule flights from April to August where the 

minimum tide is approximately -1.9 ft below MLLW and the maximum sun angle is around 52°, 

which were the parameters met for the August 1 and August 18 flights which produced the 

highest quality imagery (Table 6). These criteria should be taken into consideration when 

planning UAS flights over Padilla Bay and would likely be of use in other shallow eelgrass 

meadows. 

4.2  |  Impact of epiphyte load 

Given that epiphytes on eelgrass have been known to consist of over half the biomass in 

some meadows, seasonal variation in epiphyte biomass could introduce a source of noise in the 

spectral signatures of Z. japonica and Z. marina (Sieburth and Thomas 1973, Ruesink 2016). 

Previous studies in Padilla Bay indicated that epiphytes on eelgrass do vary seasonally and have 

their highest biomass in spring and summer (Whiting 1983, Thom 1990). However, I found that 

epiphyte biomass in my study area was generally below 50% of the plant biomass. Also, I did 

not observe any significant seasonal variation in epiphyte load as a percentage of total plant 

biomass for either Z. japonica or Z. marina (Figure 5). Since my study was conducted in the 

summer from June through August, I may have missed the early season increase in epiphyte 

load. Although seasonal variation in epiphyte load was not an issue for my study, any future 

studies that begin early in the spring will need to consider the impact of seasonal variation in 

epiphyte load on spectral signatures. 
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 While I did not observe any significant seasonal variation in epiphyte load from July to 

September, the variance of epiphyte load among sample sites for any given date was high (Figure 

5). This indicates that there may be spatial variation in epiphyte load as opposed to temporal 

variation in epiphyte load during the summer months. Overall, I did not observe any notable 

spatial variation in epiphyte load as a function of elevation above MLLW (Figure 6). However, 

there was a stronger relationship between epiphyte load and elevation above MLLW for Z. 

marina samples collected in August (R2 = 0.63, Figure 7). Increasing epiphyte load with 

increasing depth was also observed by Thom (1990) where net primary productivity in epiphytes 

increased from a depth of 0.8 m above MLLW to -0.1 m below MLLW. Also, the August 1 and 

August 18 classifications were arguably the best for each of the segmentation techniques which 

may be an indicator that epiphyte load is a spectral predictor of eelgrass species when it is 

positively correlated with depth (Figure 9-12). However, the August 1 and August 18 imagery 

was also the highest quality imagery collected in this study, and without additional investigation 

it is impossible to conclude whether epiphyte load affects the spectral signature of eelgrass from 

my results. I did not collect the data necessary to rigorously evaluate this claim but doing so 

would provide interesting opportunities for future research. Furthermore, determining whether 

spatial variation in epiphyte load produces a significant amount of noise in the spectral data 

could help efforts to refine delineation between Z. marina and Z. japonica in modeling efforts. 

4.3  |  Principal components analysis 

4.3.1  |  Brightness index 

The consistent negative loadings for all bands of PC1 of the full season analysis and PC2 

for the July 4 analysis indicate that these PCs are essentially indices of overall brightness. It is 

noteworthy that this brightness index captures most of the variance (61%) in the full season 
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analysis but only 33% for the July 4 analysis (Table 7, Table 8). This probably results from large 

brightness variance resulting from illumination differences and sun glint between the different 

image dates that were included in the full season analysis. These illumination differences result 

from variation in sun angle and cloud cover between dates.  

4.3.2  |  Vegetation index 

The main plant pigments of chlorophyll a, chlorophyll b, α-carotene, and lutein all absorb 

strongly in the blue and red portions of the visible spectrum. High reflectance in the NIR results 

from the absence of absorption in this portion of the spectrum and strong scattering and 

reflectance by leaf mesophyll cells within the leaf (Gates et al. 1965, Tucker and Garratt 1977). 

Contrasting loadings for the red edge and NIR bands vs. the red and blue bands for PC2 of the 

full season analysis (Table 7) and for PC1 of the July 4 analysis (Table 8) indicate that these PCs 

represent a vegetation index. In particular, the contrasting loadings for the red vs. the red edge 

and NIR bands for these PCs are analogous to the structure/content of the NDVI and NDRE. It is 

noteworthy that, as noted above, although photosynthetic pigments absorb quite strongly in both 

the red and blue portion of the spectrum – and actually somewhat more strongly in the blue – the 

blue portion of the spectrum is not typically used for vegetation remote sensing when using 

spaceborne sensors. This is due to the effects of Rayleigh scattering, which results in differential 

scattering of short wavelengths. This scattering is most pronounced when there is a very long 

pathlength between the sensor and the vegetation, as is the case for spaceborne sensors 

(Campbell 2007). However, for sensors on a UAV, the pathlength from the sensor to the ground 

is minimal and this explains why the loadings for the Coastal blue 444(28) and Blue 475(32) 

bands are comparable to those of the Red 650(16) and Red 668(14) bands for PC2 and PC1 for 

both the full season and July 4 analyses, respectively. It is also noteworthy that for the July 4 
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analysis, the PCA-based vegetation index (PC1) captures most of the scene variance (64%; Table 

8) while for the full season analysis, the PCA-based brightness index (PC1) captures most of the 

variance (60%; Table 7).  

4.3.3  |  PC3 

For both the full season and July 4 analyses, interpretation of the loadings for PC3 are 

less clear than those for PC1 and PC2 and the loadings for PC3 are somewhat different for these 

two analyses. For both analyses, PC3 captures only a very small proportion of the variation in the 

imagery (1.6 and 0.7%, respectively). For the full season, there was a contrast of blue and red 

with green, which mimics the known absorbance curve for vegetation, where blue and red are 

absorbed strongly while green is reflected (Gates et al. 1965). In the July 4 PCA, there’s a strong 

contrast between the red edge and NIR bands. The red edge is known to relate to chlorophyll 

content in leaves (Gates et al. 1965) which suggests PC3 could also be a vegetation index. 

Interestingly, the contrasts in the loadings for the full season and July 4 PCAs are different but 

relate to the same reflectance trends in plants. Despite the very small proportion of the variance 

that is explained and the ambiguous meaning of this PC, it was included in the models with the 

greatest predictive power.  

4.4  |  Pixel-based models to predict percent eelgrass cover 

In an effort to model the percent coverage of eelgrass, I evaluated the use of a variety of 

linear regression models that were based on individual bands, band combination, common 

vegetation indices and principal components axes. Overall, the predictive power of the models 

was quite good with R2 values for the best models ranging from 0.75 to 0.89 (Table 9). The 

models created to predict total percent cover of eelgrass in the July 4 imagery consistently 

outperformed those created for the full season of imagery (Table 9). As previously stated, this is 
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likely because there is more overall variation in reflectance in the full season between each 

collection date due to variation in tide stage and sun angle (Table 5) as well as unmeasured 

factors such as cloud cover and wind speed. Consequently, there was more noise in the data, as 

evidenced by the brightness index (PC1 for the full season analysis) explaining 61% of the 

variation for the full season PCA (Table 7) but only 34% of the variation for the July 4 PCA 

(Table 8).  

Overall, the best percent cover model was based on a combination of the Red 650(16) 

and Red edge 717(12) bands (full season R2 = 0.79, July 4 R2 = 0.89, Table 9). Chlorophyll 

absorbs strongly in the red part of the spectrum, around 645 nm, which is captured by the Red 

650(16) band of the Micasense camera (Gates et al. 1965). Gates et al. (1965) were among the 

first to suggest that the position of the sharp increase in reflectance in the transition from red to 

near infrared, known as the red edge, could be useful in measuring chlorophyll content. 

Furthermore, Delegido et al. (2013) found that using a red band of 674 nm and red edge band of 

712 nm in a normalized difference index correlated strongly with the leaf area index in many 

crop species. The normalized difference index suggested by Delegido et al. (2013) is similar to 

the standard NDVI but substitutes the red edge band for the NIR band that is typically used for 

calculating NDVI. 

Total percent cover models based on NDVI were nearly as good as the Red 650(16)/ Red 

edge 717(12) models (full season NDVI5,10 R
2 = 0.76; July 4 NDVI6,10 R

2 = 0.87, Table 9). The 

PCA -based models were also reasonably good. It is not surprising that the PCA-based 

vegetation index – PC2 for the full season and PC1 for the July 4 analysis – individually have 

more predictive power than the other two PCs (Table 8). It is also noteworthy that for the July 4 

analysis, where the brightness index (PC2) captures less of the variance in the image, the 
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vegetation index (PC1) has more predictive power individually (R2 = 0.86) than is the case for 

the full season analysis where the vegetation index (PC2) has somewhat less predictive power 

(R2 = 0.61). As noted above, although interpretation of PC3 is not at all clear, it is interesting that 

it is included in best PCA-based percent cover models for both the full season and July 4 

analyses (Table 8). In the case of the full season analysis, using the brightness index (PC1) and 

vegetation index (PC2) is the next best model with an R2 = of 0.71 but the model that includes 

PC3 increases the predictive power to 0.75. For the July 4 analysis only the vegetation index 

(PC1) and PC3 are included in the best model, with an R2 = of 0.887 and the addition of the 

brightness index (PC2) reduces the predictive power of the model very slightly to 0.885. Again, 

it is not at all clear whether PC3 is really picking up on a true signal in the data or if this simply 

represents a spurious result. 

Predicting cover of Z. japonica and Z. marina individually proved to be a challenge for 

the pixel-based analysis. The R2 for all the Z. japonica regression models were below 0.33 for 

the full season and below 0.21 for the July 4 data (Table 11). Predicting Z. marina cover was a 

bit more successful, but the best R2 was 0.56 for the regression using the NDVI5,10 (Table 12). 

Using pixel-based methods to predict percent cover of Z. japonica and Z. marina was ultimately 

unsuccessful. 

4.5  |  Object-based image segmentation 

Using object-based image segmentation to define areas of high Z. japonica cover and 

high Z. marina cover yielded promising results. Using SVM with k-fold cross validation on a 

training and test set with discrete categories produced overall accuracies between 60-78%, which 

was much more accurate than the pixel-based modeling attempts for each species (Table 15). As 

evidenced by the pixel-based results, predicting Z. japonica cover was a challenge. But, using the 
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PCA based image segmentation with SVM classification resulted in a user’s accuracy of 83.3% 

and producer’s accuracy of 62.5% in identifying Z. japonica dominated areas when using only 

the mean of the first three principal components as predictor variables (Table 15). Identifying Z. 

marina dominated plots was similarly accurate, with a user’s accuracy of 65.9% and producer’s 

accuracy of 78.4% for the same method (Table 15). In terms of overall accuracy, the 

classification which used the 10 band means and the 10 band standard deviations performed the 

best, with an overall accuracy of 78.3% (Table 15). However, using 20 parameters requires an 

ample ground truth dataset, which may not be feasible to collect for a smaller study (temporally 

or spatially). Furthermore, the segmentation based on NDRE was comparable to that of the PCA 

segmentation (Table 14). But the PCA-based segmentation drastically outperformed the NDRE-

based segmentation in correctly classifying Z. japonica dominant plots, as the NDRE-based 

segmentation did not identify any Z. japonica plots correctly (Table 15). Thus, the 10-band based 

segmentation with SVM classification was the most successful in my trials, but the PCA based 

segmentation is also a good option for picking up on differences between the two eelgrass 

species and does not require as many predictor variables to obtain a similar result. Using PCA is 

also a promising method for studies with a multispectral camera with fewer bands. Since many 

of the contrasts in the loadings were between the red, red edge, and NIR bands, these are the 

most important to have.  

One goal for this study was to evaluate the potential for using spectral signatures to 

delineate areas of Z. japonica and Z. marina. The PCA-based segmentation with SVM 

classification did a good job of accurately classifying areas with over 90% of cover of either 

species. But there were plenty of plots that were classified as “mixed” that were still dominated 

one of the species. Although I did attempt to split the mixed category into two more specific 
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mixed categories: Z. japonica dominated mixed and Z. marina dominated mixed (Table 13) this 

resulted in considerable misclassification (Summary: Table 14, Band: Table 21, NDRE: Table 

26, NDVI: Table 31, PCA: Table 36). Thus, the best PCA-based segmentation with SVM 

classification presented here has a broader definition for the mixed category. 

The SVM classifications using both means and standard deviations did a better job 

visually of classifying cover type than the SVM classification based only on means for both the 

band and PCA informed segmentations (Figure 9-12). Apart from one erroneous swath of Z. 

marina in the southeastern vegetated section of the August 1 imagery, the PCA and band 

classifications using means and standard deviations follows a general pattern of bare, Z. japonica 

dominated, mixed, and Z. marina dominated moving from the coast through the upper and lower 

intertidal (Figure 9, Figure 12). This also follows the distribution observed by several aerial 

studies in Padilla Bay as well as annual biomonitoring patterns observed by PB-NERR (Figure 

12, Bulthuis 1995, Shull 2000, Table 1). I believe the swath of Z. marina in the high intertidal 

(zone 2) is a result of inconsistent imagery quality across the August 1 flight because Z. marina 

is not dominant at such high elevations (Ruesink et al. 2010). Over the course of the flight, the 

sun angle increased by over 13° (Table 5), and since flights started at the northeast corner of the 

study area, the southern portion of the transect was covered by the UAS when the sun angle was 

highest. For the July 4 and July 21 flights, the impact of the increasing sun angle was so great 

that transects 2 and 3 were cropped from the orthomosaic.  

Interestingly, the segmentation and classification picks up on the presence of two 

channels in the northern central portion of the study area by classifying them as Z. marina 

dominant (Figure 9, Figure 12). These channels are clearly visible in the raw imagery, especially 

in the NIR 842(57) band (Figure 18B). Hannam and Wylie-Echeverria (2015) conducted 
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transplant experiments and found that Z. marina outcompeted Z. japonica in pools by over 60%. 

While I do not have the adequate ground truth data needed to validate the presence of Z. marina 

in the channels in my classification, these results would be consistent with the findings of 

Hannam and Wylie-Echeverria (2015). In their experiments, Hannam and Wylie-Echeverria 

(2015) also found that Z. marina was not prevalent on mounds due to its physiological 

constraints. Also, some classifications pick up on the mounds in zone 5 at the west end of the 

transect that are higher than the surrounding area and contain Z. japonica and bare areas, even 

though the zone is primarily intertidal Z. marina (Figure 9: 7/21 and 8/1, Figure 12: 7/4. 7/21, 

8/1). The fact that these areas show up on some dates and not others may suggest that there are 

seasonal dynamics between Z. marina and Z. japonica in this area, but additional ground truth 

observations would be required to elucidate these subtleties. 

 Overall, Z. japonica extent in this study is under-classified in comparison to previous 

studies and regional trends of Z. japonica expansion in previously unvegetated areas (Bulthuis 

1995, Young et al. 2015). I think this comes down to two factors. First, the SVM classification 

was built to predict cover in fully vegetated areas. When I segmented the imagery in eCognition, 

I used an NDVI mask to delineate between vegetated and unvegetated regions in the study area. 

The minimum segment size of 100 pixels (1 m2) produced a vector-based map with segments 

that had adequate information to define them spectrally, while also allowing small patches of 

eelgrass in the high intertidal to be defined appropriately. Using this method, I was confident that 

the segments with an NDVI greater than 0.15 were vegetated and needed further analysis to 

classify between Z. marina, Z. japonica, and mixed regions. Thus, to train the SVM, I subset my 

ground truth dataset to only those plots that were at least 80% vegetated. I think this method 

worked well in terms of classifying thickly vegetated regions, which are primarily mixed and Z. 
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marina dominant. It also negates the need for future studies to collect ground truth data for plots 

that are less than 80% vegetated since the NDVI mask does a good job delineating bare versus 

vegetated regions. 

My ground truth collection was based on plot locations that could contain a thickly 

vegetated area alongside a bare area, resulting in a low overall percent eelgrass cover (which was 

likely Z. japonica). These plots were excluded from the SVM training because they were not at 

least 80% vegetated. I maintain that these plots should not have been used to build the SVM in 

this study, since bare mud has a much different spectral signature than vegetation. Secondly, I 

defined species dominance as >90% of the total vegetation in a plot that was at least 80% 

vegetated (Table 13). This rule helped increase the overall accuracy of my segmentation 

classifications (Table 14), but there were several plots with a high percentage of Z. japonica that 

were regarded as mixed since they did not meet the 90% threshold. I think this approach would 

benefit from additional Z. japonica dominant plots that were at least 80% vegetated in total. This 

would help define the Z. japonica spectral signature more rigorously and improve the overall 

results. Furthermore, additional ground truth plots would help refine the mixed category. Ideally, 

there could be several levels of “mixed” depending on the ratio of Z. japonica to Z. marina. But 

in this study, I simply did not have enough examples of each potential mixed category to train a 

robust SVM algorithm that could accurately predict multiple mixed categories. 

4.6  |  Conclusion 

 Although sun glint presented challenges throughout this study by limiting the number of 

orthomosaics in the final dataset and preventing the use of many ground truth data points, I was 

able to develop and test several models for eelgrass cover estimation in Padilla Bay, Washington. 

Overall, using one date of imagery instead of a full season’s worth of imagery produced better 
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results. In the pixel-based analysis, using the red and red edge bands was useful in predicting 

overall eelgrass cover since reflectance in these bands is indicative of plant structure and health. 

Similarly, the PCA for the full season and the July 4 data produced a principal component that 

contrasted the reflectance of the visible spectrum with the red edge and NIR, which mirrors the 

trends in the reflectance curve for vegetation. This method seems to be a good way to condense 

imagery data from cameras with many bands, since simply using all bands in linear regression 

leads to collinearity between predictor variables. But, if delineating between Z. japonica and Z. 

marina is of interest, pixel-based efforts are not sufficient. Instead, I found that segmenting 

based on PCA or the full 10-band dataset of the Micasense Dual Camera both performed well 

when using segment means and standard deviations as predictor variables in the classification, 

especially when it came to delineating between Z. japonica and Z. marina dominated areas, 

suggesting that further research can continue to define spectral signatures for each of these 

species.  
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6.0  |  Appendices 

6.1  |  Image processing workflow in Agisoft Metashape 

All image processing was completed in Agisoft Metashape Professional Version 1.6.4 

build 10928 (64 bit). The workflow was largely based on instructions published by the United 

States Geological Survey National Unmanned Aircraft Systems (UAS) Project Office and the 

Agisoft Helpdesk Portal (USGS National UAS Project Office 2017). Parameters used in 

constructing orthomosaics for this study are compiled in Table 17. 

6.1.1  |  Loading imagery and calibrating reflectance 

Photos were added to a new project as part of a multi-camera system, which allows 

Agisoft Metashape to load the images properly to create a multi-band image. Calibration images 

taken before the flight were added in this step as well. The “Calibrate Reflectance” tool locates 

the calibration panel images and moves them to a separate folder. Agisoft automatically applies a 

mask to cover everything in the image aside from the reflectance panel. Next, I input the 

calibration information for the calibration panel. This consists of a list of reflectance by 

wavelength that is specific to this calibration panel. This information was acquired directly from 

Micasense. Additional calibration information is provided by a sun sensor that is mounted on the 

top of the drone and that is linked to the camera. The sun sensor records incoming illumination in 

real time and stores this information with each image. The final pre-processing step is to use the 

reflectance panels and data from the sun sensor to run the reflectance calibration. This process 

corrects for variation in illumination that results from variation in cloud cover,  haze and sun 

angle and results in images with actual reflectance values for each image rather than simply a 

brightness index. 
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6.1.2  |  Aligning photos 

In this process, exterior and interior orientation parameters are estimated based on 

translation components, rotation angles, and camera configuration (Agisoft LLC 2020). The 

result is a sparse point cloud which contains the locations of matched tie points between images. 

The parameters for the “Align Photos” tool were set based on the method outlined by Agisoft for 

use with a Micasense sensor (Table 17, USGS National UAS Project Office 2017). Due to the 

large size of the imagery dataset, accuracy for the “Align Photos” tool was set to “medium”. This 

downsizes the images by a factor of 4 during the initial alignment which speeds 

up processing time. I ran the alignment with “Generic Preselection” and “Reference 

Preselection”, both of which use spatial metadata from the images to determine which images 

overlap. The generic preselection tool subsets the overlapping images and matches them with a 

lower accuracy setting. Reference preselection uses coordinate information stored with each 

image to determine overlapping images and is useful for more uniform scenes, such as the 

eelgrass meadows captured in this study. The key point limit was set to 40,000, which is the 

maximum number of features in each image to be considered during the alignment. The tie point 

limit was set to 4,000, which is the maximum number of matching points between any two 

images. 

While processing the imagery for some data collection dates, not all photos could be 

aligned at medium accuracy. When this occurred, I subset the unaligned photos and ran the 

“Align Photos” tool with all the same parameters except the accuracy was set to “low”. This 

process was repeated with accuracy set to “lowest” if there were remaining unaligned cameras. 

Once the alignment was complete, I ran the “Optimize Cameras” tool using the fit f, cx, cy, k1, 

k2, k3, b1, b2, p1, and p2 parameters. 
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Table 17. Parameters and settings used in Agisoft Metashape to align photos, reduce errors, and 

build the dense point cloud, mesh, DEM, and orthomosaic layers. Settings used were kept 

consistent between imagery dates, except for the Gradual Selection settings. These levels were set 

depending on the total number of points selected, as per the USGS UAS Project Office guidelines. 

 

 

  

Tool Parameter Setting used 

Align Photos 

Accuracy Medium 

Generic preselection Checked 

Reference preselection Checked 

Key point limit 40,000 

Tie point limit 4,000 

Apply masks to None 

Guided image matching Unchecked 

Adaptive camera model 

fitting 
Unchecked 

Gradual 

Selection 

Reconstruction 

uncertainty 
< level 50, goal = level 10 

Projection accuracy Set to level where 50% of points are selected 

Reprojection error Set to level where 10% of points are selected 

Build Dense 

Point Cloud 

Quality Medium 

Depth filtering Mild 

Calculate point colors Checked 

Build Mesh 

Source data Dense cloud 

Surface type Height field 

Face count High 

Interpolation Enabled 

Calculate vertex colors Checked 

Build DEM 

Projection NAD83 (2011)/ Zone 10N (EPSG::6339) 

Source data Dense cloud 

Interpolation Enabled 

Build 

Orthomosaic 

Projection NAD83 (2011)/ Zone 10N (EPSG::6339) 

Surface Mesh 

Blending mode Mosaic 

Enable hole filling Checked 

Pixel size (m)  0.1 x, 0.1 y 
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6.1.3  |  Error reduction 

The same ground control points were used for all flights (Table 18). I added ground 

control coordinates as a text file to the project and designated point name, longitude, latitude, and 

elevation (m). Once points were created, I subset images to those that contained ground control 

points. I manually shifted the position of the markers in Agisoft to match the location of the 

ground control panel in the imagery. This adjusts the overall photo alignment to the ground 

control points. 

After georeferencing the ground control panels, I filtered points as recommended by the 

USGS National UAS Project Office (Table 19, USGS National UAS Project Office 2017). Using 

the ”Gradual Selection” tool, I removed points based on their values for several criterion, 

including reconstruction uncertainty, projection accuracy, and reprojection error. The degree to 

which points were filtered varied based on the specific image set, but overall, parameters 

described by the USGS National UAS Project Office were used (Table 17). After deleting points 

in each step, I optimized cameras using the fit f, cx, cy, k1, k2, k3, p1, and p2 parameters. After 

the gradual selection steps, I tightened the tie point accuracy to 0.7. This value was chosen based 

on the clarity of the imagery.  

After all error reduction steps were complete, I ran the “Optimize Cameras” tool again, 

using the fit f, cx, cy, k1, k2, k3, k4, b1, b2, p1, p2, p3, and p4 parameters. 
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Table 18. List of plots used as ground control points for orthomosaic georectification. All points 

have highly accurate RTK coordinates. 

Transect 

# 
Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

1 1.1.E 1.2.G 

1.3.C 

1.3.D 

1.3.F 

1.3.H 

1.3.J 

1.4.A 

1.4.E 

1.4.G 

1.4.I 

1.4.K 

1.5.B 

1.5.C 

3 
3.1.D 

3.1.G 

3.2.B 

3.2.C 

3.2.D 

3.2.G 

3.3.A 

3.3.C 

3.3.D 

3.3.E 

3.3.G 

3.4.A 

3.4.B 

3.4.G 

 

 

Table 19. Summary of parameters used for error reduction and point filtering on sparse point cloud 

in Agisoft Metashape Professional 1.6.4. 

 

 

 

 

 

 

 

6.1.4  |  Building the dense point cloud, mesh, digital elevation model, and orthomosaic 

Next, the sparse point cloud created from the photo alignment is used to generate a dense 

point cloud of the study area. The dense point cloud is based on depth maps which are calculated 

using dense stereo matching (Agisoft LLC 2020). In Agisoft Metashape Professional Version 

1.6.4, each point in the dense point cloud has a confidence value calculated by the number of 

contributing depth maps used to locate that point. Parameters used to calculate the dense point  

cloud were based in part on suggestions by Agisoft and in part on user decision (Table 17). 

Overall quality was set to “medium” to strike a balance between detail and processing time. 

Depth filtering, a tool used to identify outliers, was set to “mild”. According to Agisoft, “mild” 

Parameter Purpose 

Reconstruction uncertainty Remove points with poor geometry 

Projection accuracy Remove points with pixel matching errors 

Reprojection error Remove points with pixel residual errors 
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depth filtering is recommended for scenes in which there are important small details. Since one 

goal of this study is to evaluate the eelgrass to the finest degree possible with UAS, using “mild” 

depth filtering seemed appropriate. Finally, “calculate point colors” was checked. 

 I used the dense point cloud to construct a polygonal mesh. This layer is based on the 

depth maps data calculated in the dense point cloud creation. Parameters for this tool were 

chosen based on suggestions by the USGS National UAS Project Office (Table 17, USGS 

National UAS Project Office 2017). I used the dense point cloud as the source data to generate a 

higher quality output than would be created if using the sparse point cloud. The “height field” 

surface type is used for terrain modeling and was selected for this study. Face count was set to 

“high” which produces the highest detail polygonal mesh. I enabled interpolation so that 

erroneous holes would be filled during the mesh creation. Finally, I checked “calculate vertex 

colors” so that the resulting mesh could be viewed in true color. All other parameters were left in 

their default setting. 

 To build the digital elevation model (DEM), I used the dense point cloud as the source 

data. I enabled interpolation which allows the program to calculate the DEM for all areas in the 

study range with at least one image. I set the projection type as NAD83 (2011)/UTM Zone 10N 

(EPSG::6339). This projection was used for DEMs on all imagery collection dates. Resolution 

(m) and total size (pix) were left in their default settings. The DEMs produced were not used for 

analysis in this study. 

 The final step in Agisoft Metashape was to create the orthomosaics of the study area. 

Initially, I built the orthomosaics with the original resolution captured by the Micasense camera, 

which was 6 cm per pixel. However, the fine original resolution did not warrant the file size and 

processing time required to create the orthomosaic. Consequently, I resampled the orthomosaic 
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to a 10 cm per pixel resolution. I built the orthomosaic from the mesh created in earlier steps and 

set the projection type to NAD83 (2011)/UTM Zone 10N (EPSG::6339). At this point, the initial 

processing of the imagery in Agisoft Metashape is complete. 

6.2  |  Parameters used in ENVI workflow for PCA 

 The parameters listed in Table 20 were used in ENVI to produce the full season, July 4, 

Sentera, and Sequoia PCAs mentioned in this study. 

Table 20. Summary of parameters used for PCA in ENVI. 

 

  

Parameter Setting used 

Spectral subset 10/10 bands 

Mask band Mask data ignore values [all bands] 

Stats x and y resize factor 1 

Calculate using Covariance matrix 

Output mask value 0 

Output data type Float 

Number of PC output bands 10 
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6.3  |  Imagery 

A. 

B. 

 C. 

 

Figure 14. Orthomosaics created from imagery collected on June 7, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. 

 

 

 

 

 

A. 

B. 

 C. 

 

Figure 15. Orthomosaics created from imagery collected on June 23, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. 
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A. 

B. 

 C. 

 

Figure 16. Orthomosaics created from imagery collected on July 4, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. 

 

 

 

 

 

A. 

B. 

 C. 

 

Figure 17. Orthomosaics created from imagery collected on July 21, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. 
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A. 

B. 

 C. 

 

Figure 18. Orthomosaics created from imagery collected on August 1, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. 

 

 

 

 

 

A. 

B. 

 C. 

 

Figure 19. Orthomosaics created from imagery collected on August 18, 2020 in A) color infrared 

(bands 10, 6, 4), B) infrared (band 10), and C) NDVI. Due to poor image quality in the eastern 

section of the study area, Agisoft Metashape was not able to stitch together most of the bare area 

between the coastline and eelgrass beds, resulting in a shorter orthomosaic. 
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6.4  |  Object-based image analysis supplemental results 

 Confusion matrices for all classification methods for all segmentation types are presented 

in this section. Refer to Table 12 for criteria used to categorize ground truth plots prior to SVM 

classification. 

6.4.1  |  Band segmentation 

Table 21. Accuracy assessment for SVM classification model based on 10 raw band means derived 

from image segmentation using ground truth categorization method 1. Overall accuracy for this 

classification method is 57.8%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 

Mixed,  

Z. japonica 

dominant 

Mixed,  

Z. marina 

dominant 

Row 

total 

Producer’s 

accuracy 

(%) 

Z. japonica 

dominant 
4 4 0 0 8 50.0 

Z. marina 

dominant 
0 44 0 0 44 100.0 

Mixed,  

Z. japonica 

dominant 

0 18 0 0 18 0.0 

Mixed,  

Z. marina 

dominant 

0 13 0 0 13 0.0 

Column total 4 79 0 0 83  

User’s 

accuracy (%) 
100.0 55.7 NA NA 

Total accuracy: 

57.8% 
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Table 22. Accuracy assessment for SVM classification model based on 10 raw band means derived 

from image segmentation using ground truth categorization method 2. Overall accuracy for this 

classification method is 60.2%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
4 3 1 8 50.0 

Z. marina 

dominant 
0 37 7 44 84.1 

Mixed 0 22 9 31 29.0 

Column total 4 62 17 83  

User’s accuracy 

(%) 
100.0 59.7 52.9 Total accuracy: 60.2% 

 

Table 23. Accuracy assessment for SVM classification model based on 10 raw band means derived 

from image segmentation using ground truth categorization method 3. Overall accuracy for this 

classification method is 60.2%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
4 3 0 7 57.1 

Z. marina 

dominant 
0 24 13 37 64.9 

Mixed 0 17 22 39 56.4 

Column total 4 44 35 83  

User’s accuracy 

(%) 
100.0 54.5 62.9 Total accuracy: 60.2% 
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Table 24. Accuracy assessment for SVM classification model based on 10 raw band means and 10 

raw band standard deviations derived from image segmentation using ground truth categorization 

method 3. Overall accuracy for this classification method is 78.3%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
5 0 2 7 71.4 

Z. marina 

dominant 
0 28 9 37 75.7 

Mixed 0 7 32 39 82.1 

Column total 5 35 43 83  

User’s accuracy 

(%) 
100.0 80.0 74.4 Total accuracy: 78.3% 

 

Table 25. Accuracy assessment for SVM classification model based on 10 raw band means derived 

from image segmentation using ground truth categorization method 4. Overall accuracy for this 

classification method is 57.8%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
1 8 2 11 9.1 

Z. marina 

dominant 
0 41 4 45 91.1 

Mixed 0 21 6 27 22.2 

Column total 1 70 12 83  

User’s accuracy 

(%) 
100.0 58.6 50.0 Total accuracy: 57.8% 
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6.4.2  |  NDRE segmentation 

Table 26. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDRE calculated with red edge 705(10) derived from image segmentation using 

ground truth categorization method 1. Overall accuracy for this classification method is 55.6%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 

Mixed,  

Z. japonica 

dominant 

Mixed,  

Z. marina 

dominant 

Row 

total 

Producer’s 

accuracy 

(%) 

Z. japonica 

dominant 
0 8 1 1 19 0.0 

Z. marina 

dominant 
0 39 1 5 45 86.7 

Mixed,  

Z. japonica 

dominant 

0 9 1 4 14 7.1 

Mixed,  

Z. marina 

dominant 

0 5 2 5 12 41.7 

Column total 0 61 5 15 81  

User’s 

accuracy (%) 
NA 63.9 20.0 33.3 

Total accuracy: 

55.6% 

 

Table 27. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDRE calculated with red edge 705(10) derived from image segmentation using 

ground truth categorization method 2. Overall accuracy for this classification method is 63.0%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
0 8 2 10 0.0 

Z. marina 

dominant 
0 36 9 45 80.0 

Mixed 0 11 15 26 57.7 

Column total 0 55 26 81  

User’s accuracy 

(%) 
NA 65.5 57.7 Total accuracy: 63.0% 
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Table 28. Accuracy assessment for SVM classification model based on the mean NDRE calculated 

with red edge 705(10) derived from image segmentation using ground truth categorization method 

3. Overall accuracy for this classification method is 70.4%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
0 8 0 8 0.0 

Z. marina 

dominant 
0 32 5 37 86.5 

Mixed 0 11 25 36 69.4 

Column total 0 51 30 81  

User’s accuracy 

(%) 
NA 62.7 83.3 Total accuracy: 70.4% 

 

Table 29. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDRE calculated with red edge 705(10) derived from image segmentation using 

ground truth categorization method 3. Overall accuracy for this classification method is 69.1%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
0 8 0 8 0.0 

Z. marina 

dominant 
0 29 8 37 78.4 

Mixed 0 9 27 36 75.0 

Column total 0 46 35 81  

User’s accuracy 

(%) 
NA 63.0 77.1 Total accuracy: 69.1% 
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Table 30. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDRE calculated with red edge 705(10) derived from image segmentation using 

ground truth categorization method 4. Overall accuracy for this classification method is 69.1%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
0 9 3 12 0.0 

Z. marina 

dominant 
0 42 4 46 91.3 

Mixed 0 9 14 23 60.9 

Column total 0 60 21 81  

User’s accuracy 

(%) 
NA 70.0 66.7 Total accuracy: 69.1% 

 

6.4.3  |  NDVI segmentation 

Table 31. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDVI calculated with red 668(14) derived from image segmentation using ground 

truth categorization method 1. Overall accuracy for this classification method is 51.3%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 

Mixed,  

Z. japonica 

dominant 

Mixed,  

Z. marina 

dominant 

Row 

total 

Producer’s 

accuracy 

(%) 

Z. japonica 

dominant 
0 10 0 0 10 0.0 

Z. marina 

dominant 
1 40 0 1 42 95.2 

Mixed,  

Z. japonica 

dominant 

0 16 0 0 16 0.0 

Mixed,  

Z. marina 

dominant 

0 10 0 0 10 0.0 

Column total 1 76 0 1 78  

User’s 

accuracy (%) 
0.0 52.6 NA 0.0 

Total accuracy: 

51.3% 
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Table 32. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDVI calculated with red 668(14) derived from image segmentation using ground 

truth categorization method 2. Overall accuracy for this classification method is 57.7%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
0 8 2 10 0.0 

Z. marina 

dominant 
1 28 13 42 66.7 

Mixed 0 9 17 26 65.4 

Column total 1 45 32 78  

User’s accuracy 

(%) 
0.0 62.2 53.1 Total accuracy: 57.7% 

 

Table 33. Accuracy assessment for SVM classification model based on the mean NDVI calculated 

with red 668(14) derived from image segmentation using ground truth categorization method 3. 

Overall accuracy for this classification method is 64.1%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
2 6 0 8 25.0 

Z. marina 

dominant 
0 31 4 35 88.6 

Mixed 0 18 17 35 48.6 

Column total 2 55 21 78  

User’s accuracy 

(%) 
100.0 56.4 80.9 Total accuracy: 64.1% 
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Table 34. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDVI calculated with red 668(14) derived from image segmentation using ground 

truth categorization method 3. Overall accuracy for this classification method is 64.1%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
2 6 0 8 25.0 

Z. marina 

dominant 
0 22 13 35 62.9 

Mixed 0 9 26 35 74.3 

Column total 2 37 39 78  

User’s accuracy 

(%) 
100.0 59.5 66.7 Total accuracy: 64.1% 

 

Table 35. Accuracy assessment for SVM classification model based on the mean and standard 

deviation of NDVI calculated with red 668(14) derived from image segmentation using ground 

truth categorization method 4. Overall accuracy for this classification method is 57.7%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
2 7 3 12 16.7 

Z. marina 

dominant 
0 32 11 43 74.4 

Mixed 0 12 11 23 47.8 

Column total 2 51 25 78  

User’s accuracy 

(%) 
100.0 62.7 44.0 Total accuracy: 57.7% 
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6.4.4  |  PCA segmentation 

Table 36. Accuracy assessment for SVM classification model based on the means for the first three 

principal components derived from image segmentation using ground truth categorization method 

1. Overall accuracy for this classification method is 58.8%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 

Mixed,  

Z. japonica 

dominant 

Mixed,  

Z. marina 

dominant 

Row 

total 

Producer’s 

accuracy 

(%) 

Z. japonica 

dominant 
5 5 0 0 10 50.0 

Z. marina 

dominant 
0 44 2 0 26 95.6 

Mixed,  

Z. japonica 

dominant 

0 15 1 1 17 5.9 

Mixed,  

Z. marina 

dominant 

1 10 1 0 12 0.0 

Column total 6 74 4 1 85  

User’s 

accuracy (%) 
83.3 59.5 25.0 0.0 

Total accuracy: 

58.8% 

 

Table 37. Accuracy assessment for SVM classification model based on the means for the first three 

principal components derived from image segmentation using ground truth categorization method 

2. Overall accuracy for this classification method is 68.2%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
5 4 1 10 50.0 

Z. marina 

dominant 0 41 5 46 89.1 

Mixed 1 16 12 29 41.4 

Column total 6 61 18 85  

User’s accuracy 

(%) 
83.3 67.2 66.7 Total accuracy: 68.2% 
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Table 38. Accuracy assessment for SVM classification model based on the means for the first three 

principal components derived from image segmentation using ground truth categorization method 

3. Overall accuracy for this classification method is 70.6%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
5 2 1 8 62.5 

Z. marina 

dominant 
0 29 8 37 78.4 

Mixed 1 13 26 40 65.0 

Column total 6 44 35 85  

User’s accuracy 

(%) 
83.3 65.9 74.3 Total accuracy: 70.6% 

 

Table 39. Accuracy assessment for SVM classification model based on the means and standard 

deviations of the first three principal components derived from image segmentation using ground 

truth categorization method 3. Overall accuracy for this classification method is 70.6%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
6 2 0 8 75.0 

Z. marina 

dominant 
0 27 10 37 73.0 

Mixed 2 11 27 40 67.5 

Column total 8 40 37 85  

User’s accuracy 

(%) 
75.0 67.5 73.0 Total accuracy: 70.6% 
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Table 40. Accuracy assessment for SVM classification model based on the means for the first three 

principal components derived from image segmentation using ground truth categorization method 

4. Overall accuracy for this classification method is 68.2%. 

 Predicted cover   

 
Z. japonica 

dominant 

Z. marina 

dominant 
Mixed Row total 

Producer’s 

accuracy (%) 

Z. japonica 

dominant 
5 6 1 12 41.7 

Z. marina 

dominant 
0 42 5 47 89.4 

Mixed 2 13 11 26 42.3 

Column total 7 61 17 85  

User’s accuracy 

(%) 
71.4 68.9 64.7 Total accuracy: 68.2% 

 

6.5  |  Camera comparison  

6.5.1  |  Objective 

 There are several multispectral sensor options available for research other than the 

Micasense Dual Camera system, including the five-band Sentera 6X and the four-band Parrot 

Sequoia (Sentera, senseFly). These cameras are less expensive than the Micasense Dual Camera 

system but have fewer bands. The goal for this analysis was to determine whether there is a 

marked difference in the capability to predict percent cover when fewer bands are used to inform 

the predictions. Band specifications are presented in Table 41. 
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Table 41. Sentera 6X and Parrot Sequoia band specifications. 

Band 
Center 

wavelength (nm) 

Band width 

(nm) 

Sentera 6X 

Blue 475 30 

Green 550 20 

Red 670 30 

Red edge 715 10 

NIR 840 20 

Parrot Sequoia 

Green 550 40 

Red 660 40 

Red edge 735 10 

NIR 790 40 

 

6.5.2  |  Methods 

I compared the efficacy of the Micasense Dual Camera System, Sentera 6X, and Parrot 

Sequoia cameras by using a subset of the Micasense bands which were closest in wavelength to 

those of the cameras to conduct additional PCAs. I determined the appropriate bands to use by 

calculating the wavelength range and overlap for each camera (Table 42). Then, I used the PCA 

results to inform regression models using the method described in section 2.8.  
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Table 42. Comparison of bands for the Micasense Dual Camera System, Sentera 6X, and Parrot 

Sequoia cameras. Overlap refers to percentage of the total width of the Sentera 6X or Parrot 

Sequoia band covered by the equivalent Micasense band. 

Band 

Center 

wavelength 

(nm) 

Band width 

(nm) 

Equivalent 

Micasense band 

Overlap with equivalent 

Micasense band (%) 

Sentera 6X 

Blue 475 30 Blue 475(32) 93.75 

Green 550 20 Green 560(27) 50 

Red 670 30 Red 668(14) 100 

Red 

edge 
715 10 Red edge 717(12) 75 

NIR 840 20 NIR 842(57) 20 

Parrot Sequoia 

Green 550 40 Green 560(27) 87.04 

Red 660 40 
Red 650(16) and 

Red 668(14)* 
100 

Red 

edge 
735 10 Red edge 740(18) 50 

NIR 790 40 NIR 842(57) 0 

*the Parrot Sequoia red band overlapped 100% with each of the Micasense red bands. I 

calculated the average between these two bands and used the average as the red band layer in 

the PCA. 

 

6.5.3  |  Results 

 Loadings for the Sentera 6X PCA and Parrot Sequoia PCA followed a similar pattern to 

those of the Micasense PCA. The first principal component consists of loadings in the same 

direction and of similar magnitudes, indicating its use as a brightness index (Table 43, Table 44). 

For the Sentera 6X PCA, the second principal component contrasts the blue and red band with 

the red edge and NIR, which is characteristic of a vegetation index (Table 43). The Parrot 

Sequoia does not have a blue band, so the second principal component contrasts the green and 

red with the red edge and the NIR (Table 44). Finally, while the third principal component for 

each camera explains very little variance in the dataset (2.31 – 2.52%), there are some interesting 
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patterns. For example, in the Sentera 6X and Parrot Sequoia PCAs, there is a strong positive 

loading on the green band which highly contrasts the strong negative loadings on the red and 

NIR bands (Table 43, Table 44).  

Table 43. Loadings for the first three principal components of the PCA conducted on a subset of 

Micasense dual camera bands nearest those of the Sentera 6X camera. The PCA was run on the 

full season mosaic of imagery (July 4, July 21, August 1, and August 18, 2020). 

Band PC1 PC2 PC3 

Blue 0.532941 0.301399 -0.225538 

Green 0.573297 -0.034389 0.749426 

Red 0.502031 0.357402 -0.448095 

Red edge 0.293718 -0.607061 0.036811 

NIR 0.221358 -0.641652 -0.430522 

% variance 

explained 
56.22 40.26 2.52 

 

Table 44. Loadings for the first three principal components of the PCA conducted on a subset of 

Micasense dual camera bands nearest those of the Parrot Sequoia camera. The PCA was run on 

the full season mosaic of imagery (July 4, July 21, August 1, and August 18, 2020). The red band 

was calculated by averaging both red bands of the Micasense dual camera. 

Band PC1 PC2 PC3 

Green -0.500751 -0.486851 -0.701602 

Red -0.236635 -0.718213 0.644614 

Red edge -0.593288 0.343793 0.038444 

NIR -0.584177 0.359099 0.301247 

% variance 

explained 
56.94 40.42 2.31 

 

 Overall, the regression models built with the Sentera 6X and Parrot Sequoia PCAs 

performed very similarly to those built with the Micasense PCA. When predicting total percent 

cover of eelgrass, the multiple R2 for the Sentera 6X and Parrot Sequoia were slightly better than 

the Micasense camera, at 0.766 and 0.774, respectively (Table 45). The regression models for the 
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Sentera 6X and Parrot Sequoia performed just as poorly as the Micasense camera when 

predicting Z. japonica and Z. marina percent cover individually (Table 45).  

Table 45. Comparison of multiple linear regression models built to predict total eelgrass percent 

cover, Z. japonica percent cover, and Z. marina percent cover. All results are based on the model: 

percent cover = PC1 + PC2 + PC3. All models are on 3 and 98 degrees of freedom and n=101. 

Camera Multiple R2 F statistic p-value 

Micasense 0.7475 100.6 < 0.001 

Sentera 6X 0.7658 111.1 < 0.001 

Parrot Sequoia 0.7744 116.5 < 0.001 

Micasense 0.0458 2.614 0.0555 

Sentera 6X 0.0353 2.23 0.0894 

Parrot Sequoia 0.0426 2.499 0.0641 

Micasense 0.4921 33.62 < 0.001 

Sentera 6X 0.4894 33.27 < 0.001 

Parrot Sequoia 0.4514 28.7 < 0.001 
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