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Abstract 

Tire-wear particles (TWPs) are considered among the largest contributors of microplastics to the 

environment. They are subject to break-down due to environmental weathering, which allows for 

potentially toxic chemicals to be released from and sorbed onto the particles.  In this study, 

leachate generated from “weathered” and “un-weathered” TWPs were used for sublethal toxicity 

tests with Americamysis bahia. Organisms were exposed for 2, 4, and 6 days and the effects 

endpoints included changes in respiration rate and molecular responses (i.e., changes in the 

abundance of transcripts after 4 days of exposure). A threshold for stimulated respiration rate 

was detected for weathered leachate on day 2 only between 0.133 and 0.67 g/L TWP leachate. 

For the un-weathered leachate, the threshold was on days 4 and 6 and was between 0.54 and 1.08 

g/L TWP leachate. There were dysregulated contig sequences, in all tested concentrations for 

weathered (0.67, 1.34, and 2.68 g/L) and un-weathered (0.27, 0.54, and 1.08 g/L) TWP 

leachates; the contigs had sequences orthologous to specific gene descriptions in arthropods and 

were considered significantly dysregulated at an FDR ≤ 0.05 and |log2FC| ≥ 1. There were 80 

dysregulated contigs across all tested weathered leachate concentrations and 139 dysregulated 

contigs across all tested un-weathered concentrations. Upregulated contigs at 2.68 g/L for 

weathered and 1.08 g/L for un-weathered leachates showed enrichment compared to the de novo 

reference transcriptome; this coincided with a significant respiration stimulation observed at 1.08 

g/L in the un-weathered leachate. There were five enriched pathways in the weathered group and 

10 enriched pathways in the un-weathered group; serine hydrolase, serine-type peptidase, and 

peptidase activity were enriched in both groups. Many contig sequences mapped to gene 

descriptions that regulated physical body structure, inflammatory response, and mediated 

protein-protein interactions, signifying that TWP leachate exposure disrupts many internal 

molecular processes in A. bahia.  
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1.0 – Introduction 

1.1 – Tire particles as microplastics and tire particle composition 

Small particles of plastic pollution, including microplastics ranging from >100 nm to < 5 

mm in diameter and nanoplastics <100 nm in diameter (Nguyen et al. 2019), are becoming more 

prevalent in the marine environment due to the continued production, degradation, and chemical 

persistence of plastics (Galgani et al. 2015, Gunaalan et al. 2020). Although it is difficult to 

quantify the amount of plastic input into the oceans, it is estimated that nearly 8 million tons of 

plastic per year are discharged to the ocean from both land and sea-based sources (Gallo et al. 

2018). According to the United Nations Environment Programme (2018), of these 8 million tons 

of plastic discharged to the environment during various stages of its production or degradation, 

36% (or approximately 3 million tons) are at the micro scale. Of these 3 million tons of 

microplastics, approximately 47% are from tire particles that come from the abrasion of tires, 

making tire particles the largest single contributor of microplastic inputs to the environment. 

Although not originally considered a microplastic due to their elastomeric properties, tire 

particles are more recently referred to as microplastics in the scientific literature (e.g., Kole et al. 

2017, Wagner et al. 2018, Hartmann et al. 2019, Hüffer et al. 2019, Halle et al. 2020) and will be 

considered as such in the current study.   

Tire particles are thermoset polymers, which are polymers that are irreversibly hardened 

by curing, or cross-linking (Halle et al. 2020).  Tire particles are further classified as elastomers, 

which are defined by ISO (2012) as macromolecules with the ability to rapidly return to their 

initial dimension after deformation. They are divided into natural elastomers, commonly known 

as latex rubber, and synthetic elastomers, both of which are present in tires (Halle et al. 2020). 

Typical types of synthetic rubber include styrene butadiene rubber (SBR), polybutadiene rubber 
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(PBR), butyl rubber (IIR), and synthetic polyisoprene (IR) (Lin and Teng 2002, Hüffer et al. 

2019). Tires are produced using different formulations and ratios of natural and synthetic 

elastomers to change the properties of wear, grip, and rolling resistance (Halle et al. 2020). They 

are also composed of a mixture of fillers and additive chemicals that contribute to the tire’s 

performance, functionality, and durability (Hirata et al. 2014). The weight composition of a 

generic tire includes 21% synthetic rubber, 29% natural rubber, 26% reinforcing fillers, 6% 

additive chemicals, 3% organic fiber cord, 10% steel cord, and 5% bead wire (Hirata et al. 2014).    

Tire particles contain a variety of additive chemicals depending on the brand and type of 

tire, and some of those additive chemicals differ from those associated with traditional 

microplastics (Halle et al. 2020). These tire-associated additives can include several kinds of 

carbon black and other fillers such as silica and calcium carbonate, extender oils and softeners 

(that can include polycyclic aromatic hydrocarbons, or PAHs), pigments, vulcanization 

chemicals such as sulphur and zinc oxide, curing agents, stearic acid, plasticizers that adjust the 

processability and hardness of the compounds, protective agents such as 6-PPD, and several 

different antioxidants, biocides, and oxonates which include compounds like aniline, 

benzothiazole, and methylbenzothiazole (Lin and Teng 2002, Kreider et al. 2010, Hirata et al. 

2014, Hüffer et al. 2019, Wagner et al. 2018, Halle et al. 2020).   

1.2 – Sources of tire particles and input to the environment 

Tire-wear particles (TWPs) are defined as secondary microplastics produced by the 

abrasion of tires in contact with road surfaces (Kole et al. 2017, Wagner et al. 2018). TWPs are 

different from “crumb rubber granulate” (CRG), also called “crumb tire rubber” (CTR) by some 

studies, which are particles purposely ground from end-of-life tires and re-purposed for use as 

filler in artificial turf fields, playgrounds, safety surfaces, and walkways as a method of recycling 
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used tires (Capolupo et al. 2020, Halsband et al. 2020). There are different names in the literature 

for tire particles depending on their source and depending on whether road dust or road-related 

chemicals are associated with them (Halle et al. 2020). In my study, “TWPs” refers to tire-wear 

particles that were produced via abrasion of tires. 

There is increased recognition of TWPs as a large source of microplastics to the 

environment (Kole et al. 2017, Wagner et al. 2018). Tire consumption has exponentially 

increased over time; according to a 2022 report by Global Industry Analytics, Inc., as of 2021, 

the US market was 544.3 billion units and currently accounts for a 27% share in the global 

market (GIA, Inc. 2022). In a study by Kole et al. (2017), the authors obtained an approximate 

global estimate of the amount of TWPs emitted into the environment per capita; this estimate 

predates the percentage estimate of total TWP inputs to the environment given by the United 

Nations Environment Programme (2018) but is the newest estimate of per capita TWP emissions. 

Kole et al. (2017) looked at either national tire-wear particle emissions estimates (when 

available) or data on the mileage and number of vehicles driven for thirteen countries (The 

Netherlands, Norway, Sweden, Denmark, Germany, United Kingdom, Italy, Japan, China, India, 

Australia, United States, and Brazil) and found that the average per capita TWP emission rate 

ranges between 0.23-4.7 kg/year, with a global per capita estimate of 0.81 kg/year (Kole et al. 

2017). In general, more TWPs are generated in urban areas than in rural areas due to the larger 

number of tires on the road (Verschoor et al. 2016, Kole et al. 2017). Sommer et al. (2018) 

further suggests that the usual focus on traffic density as the only way of characterizing the TWP 

emission conditions at any given roadside is not sufficient, and they state that considering traffic 

mode and speed is also important. A study conducted by the Dutch government reported the 

contributions of total TWP emissions to different environmental compartments. They determined 
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that TWPs on road surfaces represent the largest percentage of all TWPs across environmental 

compartments: 3% enter surface waters directly, 8% enter water via sewage, 5% becomes 

airborne, 36% is deposited in the soil, 43% remains on road surfaces as residue, and the rest of 

the TWPs are retained in sludge (Verschoor et al. 2016).   

The size of TWPs generated is dependent on factors such as the type of pavement, 

temperature, speed of travel, as well as the age and composition of the tire (Kole et al. 2017). 

There can be considerable variation in the size of TWPs, with different studies reporting 

different size ranges depending on the method of TWP collection or generation; the generally 

reported range of TWP sizes is between 10 nm to several 100 µm (Verschoor et al. 2016, Kole et 

al. 2017). The fate and transport of TWPs in the environment are largely dependent on their size, 

with smaller particles usually emitted into the air and subsequently dispersed, and larger particles 

deposited on road surfaces close to their source of generation and transported by rainwater runoff 

into surface waters, soils, and sewers (Kole et al. 2017). Atmospheric transport and runoff during 

rain events are considered the two most important modes of TWP transport in the environment 

(Wik and Dave 2009, Kole et al. 2017), although 90-99% of generated TWPs are non-airborne 

and remain on the roadside, subject to transport by runoff into freshwater and marine 

waterbodies (Wagner et al. 2018).   

1.3 – Environmental weathering of TWPs 

Once TWPs and other microplastics enter the environment, they are subject to further 

break-down due to a variety of degradation processes. These processes can include hydrolysis, 

UV photodegradation, mechanical abrasion, and biodegradation. As degradation and break-down 

continue, new surface area on the particles is exposed, allowing for chemicals both to be released 
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from the particles into the environment, and to be sorbed from the environment onto the particles 

(Alimi et al. 2018).   

1.3.1 – Leaching additive chemicals into the environment 

TWPs can leach many additive chemicals that are associated with them, some of which 

can be toxic, into the environment (Sadiq et al. 1989, Ozaki et al. 2004, Bocca et al. 2009, 

Degaffe and Turner 2011, Rhodes et al. 2012, Wachendorf et al. 2017, Halsband et al. 2020). 

Sadiq et al. (1989) compared concentrations of metals in tire particles to concentrations of the 

metals in roadway soil samples normalized to background un-contaminated soil and found that 

Zn, Ba, Pb, and Ni were higher in roadway soils, indicating that both tires and traffic volume 

contribute to environmental metal contamination. In another study, researchers found that tire 

particles contained a high ratio of Zn and Cd compared to background roadway dust and were 

cited as sources of Zn and Cd into the environment (Ozaki et al. 2004).   

Halsband et al. (2020) investigated the metal and organic chemical content of both un-

weathered, or “pristine” (collected directly from a commercial supplier) and naturally weathered 

(collected from outdoor sports fields in Norway) crumb rubber particles from end-of-life tires 

and the corresponding seawater leachates. Through various mass spectrometry methodologies, 

the authors found similar organic chemical profiles for both un-weathered and weathered crumb 

rubber leachates, which included a range of polycyclic aromatic hydrocarbons (PAHs) and 

phenolic compounds like bisphenols, benzothiazole, N-1, and 3-dimethylbutyl-N'-phenyl-p-

phenylenediamine (Halsband et al. 2020). The authors also found Zn (in g/kg quantities) and Fe, 

Mn, Cu, Co, Cr, Pb, and Ni (in mg/kg quantities). They discovered that the most abundant 

organic chemical and metal compounds in the crumb rubber leachates were benzothiazole and 

Zn, respectively (Halsband et al. 2020). The authors also reported that metals are released from 
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the tire particles over a longer time period than are the organic chemicals, with the metals 

continuing to leach into solution over the course of the authors’ 30-day leaching period, while 

the organic chemical concentrations stabilized in the leachate solution within only a few days.   

In a study based out of Western Washington University, a variety of leachates created 

from “weathered” and “un-weathered” TWPs across 6 different years (2013-2018) were 

analyzed for metal content (Roberts 2021).  It was found that, for all 6 years, out of 6 analytes 

(i.e. Al, Co, Cu, Mn, Ni, and Zn), Zn was present at the highest concentrations in the leachate, 

from 1-3 orders of magnitude greater than the other metals. In addition, Zn content in the “un-

weathered” leachates was consistently higher than in “weathered” leachates for 5 out of the 6 

years, with one exception in 2014.  

An earlier study examining the chemical constituents of TWP leachate agree with 

Halsband et al.’s (2020) conclusion that Zn is a major component of the leachate (Bocca et al. 

2009). Bocca et al. (2009) investigated the content of 25 metals leached from synthetic turf, or 

crumbled granulates from recycled tires, collected from 32 different playgrounds in Italy. The 

authors compared the amount of each element leached under acidic conditions (pH = 5) with the 

amount leached in deionized water and found that Zn was the component with the highest 

concentration in leachate in each type of leaching condition (Bocca et al. 2009). However, when 

the authors normalized the mass (in mg) of each leached metal found in the acidic solution to the 

mass (in kg) of metal in the original rubber particles, they found that Zn only leached 1%, 

whereas Mg, Mn, and Sr leached 10% of the concentration that was found in the rubber particles 

themselves, indicating that more Zn was available for release beyond the 24 hour leaching period 

(Bocca et al. 2009).  
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Many environmental factors can impact the amount of chemical that can leach from tire 

particles, including tire particle size, the amount of light present during leaching, the amount of 

time spent leaching, the salinity of the water, and the pH of the water. Two studies looked at the 

environmental influences affecting the amount of Zn leached into various solutions. In general, 

the amount of Zn leached into solution was higher when the tire particle size was smaller, in the 

presence of light, longer leaching periods, lower salinities, and lower pHs (Degaffe and Turner 

2011, Rhodes et al. 2012). Wachtendorf et al. (2017) conducted a series of artificial weathering 

experiments on synthetic sports mats/surfaces which contain a mixture of TWPs and binding 

polymers, synthetic turf mats, and ground TWPs that had been coated with a green colored 

polyurethane protective coating as well as those that had been left un-coated. The authors used a 

variety of weathering methods, including ozone exposure, UV exposure, humidity, sub-zero 

temperatures, and simulated rainwater and paired these weathering methods with leaching. The 

authors initially found a general decline in Zn, PAHs, electrical conductivity, and total organic 

carbon (TOC) in the leachate, indicating depletion of additives and fillers accessible from the 

TWP surface. After an initial decrease in concentrations, the authors observed an increase of 

chemicals in the leachate again, which they suggested was caused by further degradation of the 

polymeric matrix and the opening of new cracks and pores in the material, allowing the release 

of additional fillers, additives, and products from the polymer matrix degradation that were not 

able to be released before (Wachtendorf et al. 2017). They also found that the green polyurethane 

protective coating on some of the TWPs resulted in a decrease in the TWP-associated chemicals 

that leached into solution as compared to the un-coated TWPs, indicating the utility of protective 

coatings. In another study, natural weathering of tire particles was investigated; the authors 

found that the out-gassing of ten volatile chemicals, including benzothiazole, other PAHs, and 
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antioxidants, was reduced in tire particles collected from two-year old turf fields when compared 

with tire particles collected from newly manufactured turf fields (Li et al. 2010). These various 

studies collectively show that environmental weathering of tire particles can alter the chemical 

composition of the particles themselves as well as the leachate created from them, and that the 

amount of chemicals released from tire particles is dependent on a variety of environmental 

conditions and interactions. 

1.3.2 – Sorption of chemicals from the environment 

In addition to leaching additive chemicals into the environment, TWPs can also act as a 

substrate on which a variety of toxic chemicals from the environment, such as metals and organic 

contaminants, can sorb (Alamo-Nole et al. 2010, Kreider et al. 2010, Sommer et al. 2018, Halle 

et al. 2020, Hüffer et al. 2020). TWPs have an affinity for both metals and organic contaminants 

due to their physical properties, including the interaction of metals with specific filler chemicals 

and the interaction of organic chemicals with the large number of amorphous regions on the 

particles, and so can be expected to have an elevated chemical load relative to other types of 

particles (Halle et al. 2020).   

In 1974, Netzer and Wilkinson investigated the potential for TWPs to remove metals 

from wastewater. They discovered that up to 99% metal removal was achieved for Cu, Hg, Ag, 

Pb, Al, Cr, Fe, Ni, Zn, Cd, Co, and Mn at varying pH levels, indicating that TWPs are effective 

at adsorbing metals. The authors suggested that carbon black was the primary constituent of the 

tire particle that binds to metals, drawing from earlier work (Netzer and Norman 1973), while the 

removal of metals by reaction with other parts of the tire such as with sulphur, synthetic rubber, 

or other types of fillers was a secondary mechanism (Netzer and Wilkinson 1974). TWPs can 

also remove mercury (II) from aqueous solutions (Knocke and Hemphill 1981, Gunasekara et al. 
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2000) via adsorption onto carbon black molecules (Knocke and Hemphill 1981), further 

supporting Netzer and Norman (1973). Rowley et al. (1984) further investigated the mechanisms 

of metal adsorption to tire rubber particles from aqueous solutions containing a variety of 

different metals and discovered an ion exchange mechanism that displaces Zn (II), present in the 

tire as a vulcanization chemical aid, and replaces it with cadmium or mercury from the solution. 

In short, these various studies indicate that TWPs are effective at adsorbing metals from the 

environment primarily through interaction with carbon black, but also through interactions with 

other constituents of the tire. 

In addition to their ability to adsorb metals, TWPs have a particular affinity for organic 

contaminants (Halle et al. 2020). According to Fried’s (2003) book on Polymer Science and 

Technology, the ratio of crystalline to amorphous regions in various types of polymers could 

influence the sorption of organic contaminants, as those are more likely to interact with 

amorphous regions of the polymer. Because all polymers are made up of both crystalline and 

amorphous regions, the affinity of organic contaminants for the particle will depend on the 

number of amorphous regions it contains (Hüffer et al. 2019, Halle et al. 2020). Elastomers like 

TWPs tend to have more amorphous regions relative to crystalline regions, which increases their 

affinity for binding organic contaminants (Halle et al. 2020). Some organic chemicals that have 

been found to bind to TWPs are toluene and xylene (Alamo-Nole et al. 2010), naphthalene 

(Gunasekara et al. 2000), n-hexane, cyclohexane, benzene, chlorobenzene, di-n-propylether, and 

2,6-dimethyl-2-heptanol (Hüffer et al. 2020). It has been suggested that organic chemicals bind 

to tires primarily by being absorbed into the polymer matrix of the tire and by being adsorbed 

onto the carbon black filler through hydrophobic interactions (Alamo-Nole et al. 2010, Hüffer et 

al. 2020).   
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TWPs can accumulate some of these chemicals from physical interactions with road 

surfaces, allowing road dust, automobile fluids, the erosion of brake pads, and the weathering of 

pavement to contribute to the chemical load that the tire particles may accumulate in the 

environment (Kreider et al. 2010, Sommer et al. 2018, Wagner et al. 2018, Halle et al. 2020). 

The sorption of environmental chemicals onto TWPs can impact their physical capacity for 

further sorption as well as their potential toxicity (Day et al. 1993, Kreider et al. 2010, Wagner et 

al. 2018, Hüffer et al. 2019, Halle et al. 2020, Hüffer et al. 2020).   

1.4 – Aquatic toxicity of TWPs 

The toxicity of TWPs to organisms is difficult to determine due to a variety of factors.  

These factors include varying routes of exposure (e.g. whether the toxicity comes from ingestion 

of the particles themselves or from exposure to the chemicals associated with those particles), the 

amount of additives and environmental contaminants that are potentially present on the particles, 

the migration tendencies of the various chemicals, and whether the chemicals associated with 

TWPs are bioavailable and under what conditions (Wik and Dave 2009, Hansen et al. 2013, Auta 

et al. 2017, Halle et al. 2020).   

1.4.1 – Particles compared to leachate 

Recent research on both freshwater and marine organisms has focused on differentiating 

between the toxicological effects of the tire particles themselves as compared to TWP leachates 

(Khan et al. 2019, Cunningham et al. 2022, Siddiqui et al. 2022). Khan et al. (2019) exposed 

Hyallela azteca to both tire particles and TWP leachates and measured the effects on mortality, 

reproductive output, and growth.  The authors found that the acute toxicity of the tire particles 

was distinct compared to that of the leachate, with the toxicity profile of the particles suggesting 

a different mechanism than that of the leachate (Khan et al. 2019). Similarly, Cunningham et al. 
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(2022) discovered that tire particles showed unique particle-specific toxicological effects in 

Daphnia magna and Danio rerio (zebrafish), although the leachate component was still the 

larger contributor to the observed toxicity. In another study, two marine indicator species, 

Americamysis bahia (mysid) and Menidia beryllina (inland silverside) were exposed to nano- 

and micro-sized tire particles as well as TWP leachates, and their behavioral responses and 

growth were measured (Siddiqui et al. 2022). The authors found that A. bahia exposed to tire 

particles exhibited significant decreases in growth as well as some alterations in behavior, 

whereas A. bahia exposed to TWP leachate did not experience any significant decrease in growth 

but did show some significant behavioral alterations (Siddiqui et al. 2022). 

These studies show that toxicity due to TWPs can either be derived from exposure to the 

particles themselves (e.g. via ingestion), or exposure to the chemicals that leach from the tire 

particles.  The goal of my study was to focus on TWP leachate-induced toxicity for two different 

environmental weathering treatment groups in order to build on previous knowledge of the 

toxicity of TWP leachate exposure to A. bahia (Roberts 2021).  

1.4.2 – TWP leachate toxicity – case studies 

Many studies have examined toxicity resulting from exposure to TWP leachates; these 

studies have investigated a variety of different species and endpoints, tested both freshwater and 

saltwater organisms and measured both sublethal and apical effects. A study was conducted by 

Wik and Dave (2006) on the sublethal effects to Daphnia magna neonates after exposure to 

TWP leachate derived from particles originating from 25 different used tires. The authors 

artificially created the TWPs, then leached the particles at 44°C for 72 hours, and subsequently 

used the leachate in 48-hour acute toxicity tests where the percent immobilization of D. magna 

was measured as an endpoint. They found that the EC50 values, or the concentrations at which 
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D. magna experienced 50% immobilization, ranged from 0.5 g/L to over 10 g/L depending on 

which specific tire the particles originated from. 

In a recent study by Cunningham et al. (2022), D. magna and D. rerio were exposed to 

concentrations of TWP leachate ranging from 10% to 100% and sublethal and apical effects were 

measured for D. rerio and D. magna respectively.  TWP leachate was generated by cutting a 

new, undriven standard passenger car tire into 2-4 mm pieces with a stainless-steel blade, milling 

the pieces and then suspending 3.25 g of the milled particles in 300 mL of liquid, and then 

filtering the tire particles through a 20 µm, 1 µm, and 0.02 µm filter to remove micro- and nano- 

sized particles. The remaining leachate stock was set at 100% and was subsequently diluted.  For 

D. rerio sublethal toxicity tests, the authors found that the EC50 for overall toxicity (with percent 

normal zebrafish embryos as the endpoint) at 120 hours post-fertilization was at a TWP leachate 

concentration of 88.65% of the stock.  Zebrafish exposed to TWP leachate at concentrations 

above 80% developed unique abnormalities including malformed jaws, snouts, eyes, as well as 

yolk sac edemas.  For D. magna acute toxicity tests, with mortality as the endpoint, the authors 

calculated a 48-hr LC50 value of 20.50% TWP leachate concentration.   

In another study, both A. bahia and M. beryllina were exposed to TWP leachate at 

different salinities (i.e. 15, 20, 25 PSU) and sublethal responses (i.e. changes in growth and 

behavior) were measured (Siddiqui et al. 2022). The authors found that TWP leachate had no 

significant effect on either organism’s growth, but they did find that it had a significant effect on 

several behavioral endpoints. Both A. bahia and M. beryllina exposed to TWP leachate 

experienced significant differences in six of the seven measured behavior variables (i.e. freezing, 

movement, in zone duration, frequency, meander, and turn angle) compared to control animals 

(Siddiqui et al. 2022). 
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 The adverse effects of a variety of microplastic leachates, including leachate derived 

from “crumb tire rubber”, on three aquatic organisms: the freshwater microalgae Raphidocelis 

subcapitata, the marine microalgae Skeletonema costatum, and the Mediterranean mussel 

Mytilus galloprovincialis were studied by Capolupo et al. (2020). The authors found that crumb 

tire rubber leachates were the most toxic of all the tested leachates for every measured endpoint 

and to all organisms. Crumb tire rubber leachates inhibited algal growth, with a 72-hr EC50 of 

0.5% of the total leachate concentration for the freshwater algae and a 72-hr EC50 of 19% for the 

marine algae.  The leachate also affected the mussels; notably, the lysosomal membrane stability, 

percent egg fertilization (EC50 36.38%), percent larval motility (48-hr EC50 18.75%), percent 

larval survival (144-hr EC50 59.38%), and embryonic development (48-hr EC50 2.22%). 

In another study, leachate was created from “crumb rubber granulate” and two species of 

marine copepods, a smaller lipid-poor Acartia longiremis and a larger lipid-rich Calanus sp., 

were exposed over the course of 14 and 17 days, with mortality as the endpoint (Halsband et al. 

2020). The authors created crumb rubber granulate leachate from both “pristine” and 

“weathered” particles. The leachates were subsequently diluted and the concentrations used in 

toxicity testing ranged between 0.01 g/L to 100 g/L. At medium leachate concentrations (5 g/L, 

15 g/L, and 35 g/L), both copepods responded to the leachate in a dose-dependent manner, with 

the smaller Acartia (48-hr LC50 of < 5 g/L) showing higher sensitivity than the larger Calanus 

(48-hr LC50 of 35 g/L).   

Recently, it has been discovered that coho salmon, Oncorhynchus kisutch, returning from 

the ocean to spawn in urban watersheds in the Pacific Northwest die in large numbers from 

exposure to stormwater runoff after rain events (Peter et al. 2018, Tian et al. 2021, McIntyre et 

al. 2021). With analytical methods using UPLC-HRMS accompanied by intensive database 
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searches, a single compound in TWP leachate, 6PPD-quinone (C18H22N2O2), a degradation 

product of 6PPD which is used in tires as an antioxidant and protectant from ozone, was found to 

be the cause of this pre-spawn mortality syndrome in juvenile coho salmon (Tian et al. 2021). 

In a study based out of Western Washington University, apical endpoint (i.e. mortality) in 

vivo 96-hr acute toxicity tests on A. bahia were conducted using a wide range of leachates from 

different types of TWPs and from two different weathering treatment groups (Roberts, 2021). 

The author used “weathered” and “un-weathered” TWPs from 6 different tire groups and 

calculated dose-response relationships and the resulting lethal concentrations for all leachate 

exposures. From these calculations, the author found that TWP leachates were more toxic than 

other microplastic leachates, based on mortality in A. bahia (Johnson 2021, Roberts 2021).   

Although an apical endpoint has been measured in A. bahia exposed to TWP leachate 

(Roberts 2021), along with sublethal effects on general growth and swimming behavior in A. 

bahia exposed to TWP leachate (Siddiqui et al. 2022), there has been no work done on assessing 

a physiological activity associated with energy metabolism in response to TWP leachate 

exposure at a sublethal level, nor has there been work done measuring molecular effects to A. 

bahia exposed to TWP leachate. Respiration is one of the basic physiological activities 

associated with energy metabolism in animals, and it has been shown to be a sensitive indicator 

used to determine physiological responses of animals in response to varying environmental 

conditions (Bao et al. 2020). Respiration rate has been studied in crustaceans to elucidate the 

effects caused by a variety of toxic chemicals, as the amount of oxygen consumed over a period 

of time is indicative of the energy the animal spent during that time period to maintain its 

processes in the presence of chemical exposure (Barbieri et al. 2009, Barbieri and Paes 2011). 

Similarly, molecular investigations can help elucidate the mechanisms through which toxic 
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responses occur. The characterization of molecular responses in an organism after exposure to a 

toxicant is possible without prior knowledge of the specific mechanisms of toxicity due to 

technology advancements in recent years (Alcaraz et al. 2021). These next generation 

technologies include transcriptomics, which is a global analysis of all expressed transcripts in an 

organism (Alcaraz et al. 2021). My study will be the first of its kind measuring both respiration 

rate and transcriptomic responses in a marine organism exposed to TWP leachate; the 

combination of a general physiological endpoint and a broad view of potentially affected body 

processes at the molecular level will provide a more complete understanding of how A. bahia are 

impacted by TWP leachates and their associated chemicals.  

1.5 – Test organism – background and use in toxicity testing 

The test organism used in this study is Americamysis bahia. The species was first 

taxonomically described in 1969 by Joane Molenock and was originally given the name 

Mysidopsis bahia (Molenock 1969). In 1994, a new genus, Americamysis, was created, and 

several existing species were classified under the new genus, including Mysidopsis bahia (Price 

et al. 1994). According to the World List of Lophogastrica, Stygiomysida and Mysida, which is 

part of the World Register of Marine Species (WoRMS) (Meland et al. 2015), A. bahia ranges 

from 3 mm-10 mm in length, lives in marine/brackish habitats, and is distributed in estuaries 

from the east coast of South America up through the Gulf of Mexico, and from the west coast of 

South America up to the southern coast of California (Mees and Meland 2012/onwards).  

In 1982, Nimmo and Hamaker reviewed the use of mysids, particularly A. bahia, in a 

variety of toxicity tests, and documented their previous work with the species and their first 

acknowledgement of A. bahia’s utility as a test organism (Nimmo et al. 1977). According to 

Nimmo and Hamaker (1982), A. bahia is an ideal organism for saltwater toxicity testing because 
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it has been shown to be as or more sensitive to toxic substances than other marine species, it is 

easily cultured and handled in the laboratory, it has a short life cycle, it is small, and its larval 

development is direct. Because of its acceptance and utility as a saltwater toxicity testing 

organism in the field of aquatic toxicology (USEPA 2002a, 2002b), and because of its previous 

use in toxicity testing with TWP leachates (Roberts 2021), A. bahia was used for this exploratory 

study of the sublethal and molecular responses of the shrimp exposed to TWP leachates.  

1.6 – Objectives and hypotheses 

The objectives of my research were to: a) determine how one weathered leachate and one 

un-weathered leachate using ground tire-wear particles (TWPs) from Roberts (2021), affect 

sublethal responses of A. bahia (with shrimp respiration rate as the measured endpoint), b) 

compare the transcriptomic responses (differential expression and pathway enrichment) of A. 

bahia exposed to the different weathering treatment groups of TWP leachate, and c) compare the 

chemical components of the weathered versus un-weathered TWP leachates and relate them to 

potential changes to the transcriptome and/or sublethal effects to respiration that may be 

observed.  

In this study, differential expression or “dysregulation” was measured by differences in 

the expressed “contigs”, or contiguous sequences of messenger RNA (mRNA), between 

treatment animals and control animals. Pathway enrichment was measured by the number of 

dysregulated contig sequences that are “overrepresented” in a specific TWP leachate exposure 

(e.g. leachate type and concentration) relative to a reference transcriptome, or the entire set of 

expressed contig sequences in A. bahia. This overrepresentation of dysregulated contigs in a 

specific treatment group relative to the reference transcriptome is defined by comparison to the 
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Gene Ontology (GO) database (Gene Ontology a, n.d.), which groups dysregulated contigs by 

their potential biological functionality in an organism.  

It was hypothesized that there will be observable effects to A. bahia exposed to TWP 

leachate relative to control animals, both in the form of sublethal effects to respiration rate and in 

transcriptomic responses. It was also expected that there will be differences in the chemistry of 

the weathered versus un-weathered TWP leachates, given that Johnson (2021) found a difference 

in chemical composition between weathered and un-weathered microplastic particle and fiber 

leachates. This probable chemical difference between the two leachate types is expected to lead 

to observable differences in the sublethal respiration rates as well as in the transcriptomic 

responses of A. bahia depending on whether the shrimp were exposed to weathered or un-

weathered TWP leachate. 

2.0 – Methods 

2.1 – The tires 

Roberts (2021) conducted apical endpoint, whole-organism acute toxicity tests on A. 

bahia using weathered and un-weathered tire-wear-particle (TWP) leachates. In brief, used tires 

from 5 different cars were collected and separated into 6 treatment groups by year, from 2013-

2018. The tires were the same brand and model and only differed by tire diameter and 

manufacture/production year. Tire particles were generated using an angle grinder with a tire 

shaping disc. The particles were dry sieved and divided into two different treatment groups: 

“weathered” and “un-weathered”. The weathered particles were put into 25 μm nylon mesh bags, 

sewn shut, placed in Bellingham Bay at 2.5 ft below mean sea level, and left for 82 days from 

September to December 2020. The weathered tire particles were collected, sonicated to remove 

sediments, air-dried, and stored in the freezer at -20°C until their use in the acute toxicity tests. 
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The un-weathered particles were stored in a freezer at -20°C from the time of generation until 

use for toxicity testing and chemical analysis. Roberts (2021) created leachates from the tire 

particles, exposed A. bahia to the leachates for 96 hours, and calculated dose-response 

relationships for lethality and the corresponding LC50s. In my study, only the TWPs from the 

2017 tires from Roberts (2021) were used; the 2017 weathered group and 2017 un-weathered 

group were classified by Roberts (2021) into different toxicity categories based on their LC50 

values from a ratio test of the LC50 values. The LC50 for the weathered group was 5.19 g/L and 

the LC50 for the un-weathered group was 1.97 g/L. 

2.2 – Leachate creation 

In my study, tire-wear particle (TWP) leachates were created according to the methods 

presented in Johnson (2021) and Roberts (2021). The tire particles were weighed out to the 

appropriate stock concentration and then placed for 48 hours in 25 ppt seawater filtered to 0.2 

μm. This allowed chemicals associated with the tire particles, either additive chemicals or sorbed 

chemicals, to leach into the seawater. For those 48-hrs, the leachates were on a rotary mixer table 

set to 100 rotations per minute in a 21°C ± 1°C, dark environmental chamber. After 48-hrs, the 

leachates were filtered through 25 and 10 μm acid-washed and acetone-rinsed mesh screens to 

separate tire particles from the leachate. The leachates were then diluted to 5 nominal 

concentrations per tire type (Table 1). The highest concentration for the weathered 2017 tire type 

was 52% of the LC50 calculated in Roberts (2021).  The highest concentration for the un-

weathered 2017 tire type was 55% of the LC50 calculated in Roberts (2021).  For each of the 

two leachate types, 50% sequential dilutions were used to create the remaining four 

concentrations. 
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Table 1. For each of two tire leachates studied in Roberts (2021), “2017 weathered” and “2017 

un-weathered", 5 nominal concentrations below the calculated LC50 were prepared. The LC50 

for the weathered group was 5.19 g/L and the LC50 for the un-weathered group was 1.97 g/L 

(Roberts 2021). The concentrations that were used in sublethal respiration toxicity tests and/or in 

downstream transcriptomic analysis are marked with a check mark. 

 

 

2.3 – Chemical analysis of leachates 

2.3.1 – Organics 

The 14 weathered and un-weathered leachates previously studied in Roberts (2021) and 

four additional TWP leachates used in a different study (Sofield et al., unpublished), all created 

at a concentration 10 g TWP/L, along with a Nanopure blank and filtered 25 ppt seawater blank 

from Shannon Point Marine Center, were extracted and analyzed for organic chemicals via liquid 

chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) at the University 

of Washington, Tacoma Center for Urban Waters (CUW). Leachate samples were stored in the 

refrigerator or on ice until they were extracted, which occurred within 20 hours of leachate 

generation. 900 mL of the leachate samples and blanks were separated into three 300 mL 

replicates and extracted in pre-conditioned OASIS HLB Solid Phase Extraction (SPE) cartridges 

over a vacuum. Elutions were performed with 10 mL of methanol (Fisher Chemical, Optima 

LC/MS grade), transferred to autosampler vials, spiked with a QTOF Internal Standard Mix, and 
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analyzed in ESI+ mode. Individual molecular weights and retention times were identified in the 

samples via high-resolution mass spectrometry (HRMS), followed by identification of chemical 

features and hierarchical clustering with Euclidean distance and Ward’s linkage. Chemical 

results from the Nanopure and seawater blanks were subtracted from the leachate sample results, 

so the leftover chemical features are unique to the leachates. 

2.3.2 – Metals 

The 14 TWP leachates previously studied in Roberts (2021), both weathered and un-

weathered leachates all at a concentration of 10 g/L, along with four control 25 ppt seawater 

samples, were analyzed for dissolved metals at Western Washington University in Bellingham, 

WA using inductively coupled plasma mass spectrometry (ICP-MS; Agilent 7500ce). The 

seawater leachate samples were diluted 10x with Nanopure water to keep total dissolved solids 

below 0.5% and acidified to 5% trace metal grade nitric acid prior to ICP-MS analysis. Chemical 

analytes included the metals Be, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, 

Cd, Sb, Ba, Tl, Pb, Th, and U. The identification of metal features in the leachates, along with 

the metals results from TWP leachates previously studied in Roberts (2021), were followed by 

multivariate principal component analysis (PCA) and hierarchical cluster analysis (HCA) with 

Ward’s linkage. The principal components coefficients were used to develop clusters to identify 

TWP leachates with similar metal profiles according to the methods presented in Ben-Hur and 

Guyon (2003). The first four principal components created through PCA were chosen to be used 

in HCA because they explain 97.98% of the variance in the system. Cr, Cd, Sb, and Pb were 

excluded from the multivariate analyses a priori, as these metals were not detected in 100% of 

the samples; Cr and Sb were detected in 14% of tested leachate samples, Pb was detected in 7% 

of samples, and Cd was not detected in any of the samples.  
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2.4 – Sublethal toxicity tests (measuring respiration rate) 

2.4.1 – Measurement of oxygen depletion 

The five concentrations of the 2017 weathered and 2017 un-weathered TWP leachates, 

presented in Table 1, were tested in triplicate following the methods for toxicity testing outlined 

in USEPA (2016) using juvenile A. bahia, < 24-hrs old, bred, hatched, and delivered from 

Aquatic Biosystems (Fort Collins, Colorado). The only difference for these sublethal tests from 

the USEPA (2016) standard method was that my exposure was for 8-days instead of 4-days. Test 

chambers, in this case 400 mL high form beakers, were covered with acid-washed petri dishes 

and were indiscriminately placed into an environmental chamber set to a 16-hr light: 8-hr dark 

photoperiod between 540-1080 lux, at 25 °C ± 1 °C.  Every 12-hrs, the mysids were fed with < 

24-hr old Artemia nauplii at a rate of 5-8 nauplii per mysid. The leachate was not renewed for 

these tests due to limited tire particle material. Oxygen was measured with integrated oxygen 

sensor spots (type SP-PSt3-YOP) from PreSens Precision Sensing GmbH (PreSens; Regensberg, 

Germany).   

A preliminary experiment was conducted to determine the duration for measuring oxygen 

depletion. A period of three-hours was chosen so that the dissolved oxygen used in shrimp 

respiration would be measurable with the PreSens system but would not be so long that 

organisms would be under oxygen stress. McKenney and Matthews (1990) used 50% pO2 as 

their minimum allowable oxygen concentration to avoid bias from low oxygen stress; in my 

experiments, the oxygen decrease in the vials fell between 5.5% - 34.3% reduction. The lower 

percent reductions were in vials measured towards the end of the exposure that had fewer 
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surviving shrimp; specifically, the 5.5% decrease was measured from a vial that contained two 

surviving shrimp after the sixth day of exposure (Appendix B). 

Every 24 hours and for each replicate in each treatment group, the leachate (containing 

approximately 10 living shrimp depending on the dose and day) was poured from the 400 mL 

toxicity testing beaker, through a 300 μm circular mesh screen, into a secondary 400 mL beaker. 

The shrimp were retained by the screen and the leachate was collected in the secondary beaker. 

Shrimp were rinsed into a plastic weigh boat by rinsing the screen with leachate at the same 

concentration as the exposure. All living shrimp in a replicate were then gently poured from the 

weigh boat into a 20 mL vial that contained an integrated oxygen sensor spot from PreSens 

(Regensburg, Germany). The vial was filled to the brim to remove any headspace with leachate 

at the same concentration as the exposure; all air bubbles were removed using a plastic pipet 

before the vial cap was sealed. Once the cap was sealed, oxygen measurements were taken 

immediately, and approximately every 20 minutes thereafter for a three-hour period. Eight to 

fourteen measures at each time point were taken by placing a PreSens polymer optical fiber 

(POF) on the outer wall of the glass vial directly opposite the oxygen sensor spot, at a 90° angle. 

The POF transfers excitation light to the sensor and the sensor response back to the PreSens 

Fibox4 trace handheld oxygen meter, which communicates with the PreSens Measurement 

Studio 2 software to display the oxygen readings. Temperature during the test was at 25°C and 

was accounted for in the oxygen readings. After the three-hour monitoring period, the shrimp 

from each of the 20 mL vials were filtered through the 300 μm mesh screen and put back into 

their respective toxicity testing beaker with the solution retained in the secondary beaker and 

placed in the environmental chamber.   
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This entire process was repeated for the same shrimp three times during the sublethal 

toxicity test.  Namely, respiration tests were conducted after two days of exposure to leachate 

(when the shrimp were ~3 days old), after four days of exposure (when the shrimp were ~5 days 

old), and after six days of exposure (when the shrimp were ~7 days old).  

2.4.2 – Measuring respiration rate 

In addition to all the vials that had shrimp in them, two 20 mL respiration vials were 

filled only with control 25 ppt seawater and monitored over the course of each three-hour 

respiration test to account for respiration by microorganisms in the test vials, as modeled by 

protocols in the literature (Toda et al. 1987, McKenney and Matthews 1990, Roast et al. 1999, 

Ogonowski et al. 2012). Respiration rate was calculated by filtering out all of the values with a 

POF light amplitude <20,000 µV, subtracting the average amount of oxygen lost via microbial 

respiration from all of the vials in which shrimp respiration was measured, calculating the rate at 

which oxygen decreased in a vial by including the eight to fourteen measurements taken with the 

POF cable at each time point in one regression, and then normalizing the amount of oxygen used 

per unit time to the volume of the respiration chamber and to the dry weight of shrimp in the vial, 

as modeled in a previous respiration study on A. bahia (McKenney and Matthews, 1990).   

2.4.3 – Determination of dry weight 

Every 24 hours for 8 days, dry weight of mysids was measured from 10 mysids from 

unexposed chambers (25 ppt filtered seawater). The shrimp were dried at 80°C for 1 hour, and 

weighed with a Metler AT261 Delta Range analytical balance to the nearest 0.01 mg. The 

average dry weight per individual was determined. This was conducted three times, and all data 

was used in one regression to determine the growth rate. The growth rate was used to estimate 

shrimp weight during the exposures and was used for normalization of respiration rate (Figure 
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1). The predicted weight of shrimp at 1.5 hours into the respiration measurements, which was the 

midpoint time of each respiration test, was used for the normalization. 

 

 

Figure 1. Americamysis bahia grow at a rate of 0.0007 mg/hr. Weight measurements were taken 

from unexposed organisms over the course of the 8-day sublethal toxicity test and are presented 

over time in decimal hours.  The different tests (Test 1, Test 2, Test 3) represent different stand-

alone tests (conducted during three consecutive months) for which the dry weights of shrimp 

were measured. Test 1 was conducted at the beginning of October 2021, Test 2 was conducted at 

the beginning of November 2021, and Test 3 was conducted at the beginning of December 2021. 

All tests were normalized to the same Time 0. 

 

2.4.4 – Percent changes in respiration rates 

Respiration rates of mysids exposed to both weathered and un-weathered TWP leachates, 

as well as respiration rates of control mysids, were calculated after two, four, and six days of 

exposure. The three control replicates for each exposure time (x) were averaged and used as a 

baseline respiration rate for that time (BRRx); the results for leachate-exposed shrimp were 

compared to the BRRx. At each leachate concentration, respiration rates normalized to mg of dry 
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body weight, were calculated for each of three replicate chambers; each replicate contained 2-11 

surviving shrimp, with most containers having between 8-10 surviving shrimp (Appendix B). 

Respiration rates from the three replicates for each mysid were averaged for each concentration 

and exposure length (Appendix C). The percent change in respiration rates on one of the three 

days (ΔRx%) of leachate-exposed shrimp relative to respiration rates of control shrimp were also 

calculated for each weathering treatment group according to the following equation: 

ΔRx(%) = ((BRRx - TRRx)/(BRRx)) x 100                 [Equation 1] 

Where “BRRx” represents the mean individual (per mysid) respiration rate for control shrimp on 

day x of exposure, and “TRRx” represents the day x corresponding per mysid respiration rate of 

shrimp exposed to leachate for one replicate. The 95% confidence intervals were determined 

using a t-distribution around the standard error of the mean ΔRx(%) calculated from the x3 

ΔRx(%) values from each replicate. The 95% confidence intervals were then compared to the 

mean change in the control respiration rate (ΔRCx(%)), as set to 0 in Equation 2.  

ΔRCx(%) = ((BRRx - BRRx)/(BRRx)) x 100                 [Equation 2] 

Significance was determined by a lack of overlap of the 95% confidence interval with the 

ΔRCx(%), or mean change in the control (line at y=0: Figure 4). 

2.5 – 96-hr sub-lethal toxicity test 

Juvenile A. bahia were divided into five control replicates as well as five replicates for 

each concentration used in transcriptomic analysis (Table 1): 0.67, 1.34, and 2.68 g/L for the 

weathered TWP leachate and 0.27, 0.54, and 1.08 g/L for the un-weathered TWP leachate. There 

were 10 mysids per replicate.  Each of the treatments was dosed with a prepared TWP leachate 

(or 25 ppt control seawater) for a 96-hr, static-renewal toxicity test, according to USEPA (2016). 
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Test chambers, in this case 400 mL high form beakers, were covered with acid-washed petri 

dishes and were indiscriminately placed into an environmental chamber set to a 16-hr light : 8-hr 

dark photoperiod between 540-1080 lux, at 25 °C ± 1 °C.  Every 12-hrs, the mysids were fed 

with < 24-hr old Artemia nauplii at a rate of 5-8 nauplii per mysid.  After 97.5±1.5-hrs, surviving 

individuals in the leachates were removed from the leachate, flash-frozen on dry ice, and 

preserved in RNAlater
®

-ICE for subsequent RNA-Seq analysis. 

2.6 – Total RNA extraction  

Total RNA was extracted from the 35 samples preserved for RNA-Seq analysis with a 

Qiagen RNeasy Universal Plus Mini Kit (Qiagen, Germany) following the manufacturer’s 

protocol. In brief, shrimp tissues (approximately 10 shrimp per replicate) were homogenized and 

exposed to a variety of solutions and wash buffers to extract total RNA. Total RNA samples 

from each replicate were stored in a -80°C freezer prior to RNA-Seq analysis.  

2.7 – Next generation sequencing – RNA-Seq 

2.7.1 – Library preparation and sequencing 

Samples with RNA integrity number (RIN) ranging between 6.1 and 9.2 were sent to 

Génome Québec Innovation Centre (Génome Québec, Montreal, QB, Canada) for library 

preparation and next-generation sequencing (RNA-Seq). Briefly, libraries were prepared from 

250 ng of total RNA per sample using NEBNext Ultra Directional kit with poly(A) magnetic 

isolation module (New England Biolabs Ltd, ON, Canada), double-stranded DNA was 

synthesized, and libraries were quantified using a KAPA Library Quantification kit with Revised 

Primers-SYBR Fast Universal kit (Kapa Biosystems) (Alcaraz et al. 2021). Paired-end libraries 

(100x2) were sequenced in a NovaSeq 6000 S4 lane (Illumina, CA, USA) at ~25 million reads 

per sample, for a total of ~875 million reads.   
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2.7.2 – Assembly and annotation of reference transcriptome, alignment of reads 

The quality of reads was assessed using FastQC (version 0.72+galaxy1) (Andrews n.d.). 

The sequences were then trimmed to a minimum Phred score of 30 and a minimum length of 35 

bases per paired-end using Trimmomatic (version 0.38.1) (Bolger et al. 2014). Quality 

assessment and trimming were done in the Galaxy Europe platform (Jalili et al. 2020). 

Because the genome of A. bahia had not been sequenced previously, a transcriptome was 

assembled de novo from all the reads in this study. De novo transcriptome assembly was 

conducted by taking the above trimmed datasets and assembled using Trinity, set to all default 

parameters, which resulted in greater than 1 million contigs.  The assembly was then clustered at 

95% similarity, which resulted in >500k clusters.  This set of contigs was then further filtered to 

a minimum of 300 nucleotides (310,860 contigs), then translated to amino acid sequences using 

the longest open reading frame (ORF) and subsequently filtered to only include proteins that had 

at least 100 amino acids.  This resulted in 34,904 PROTEIN sequences. 

This assembly was then annotated using the functional analysis module of OmicsBox 

v2.0.36 (BioBam Bioinformatics, 2019) using blastp (fast mode) in cloudblast under the non-

redundant protein BLAST database (nr v.5), with all arthropods (taxonid 6656) as the taxon 

limit, with an Expectation value (e-value) of 1.0E-3, with word size set to 6, and with the highest 

scoring pair (HSP) length cut off at 33. All other settings were set to default. 

The annotated contig (protein) IDs were then used to filter and extract nucleotide 

sequences from the de novo assembled transcriptome, which was subsequently used as reference 

for downstream analysis. The pseudo-alignment rates were tested using the Kallisto-quant tool 

(version 0.46.2+galaxy0; Bray et al. 2016) and ranged between 68.3 - 72.3%. The pseudo-
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alignment rates for all replicates and samples that were used in the assembly and annotation are 

reported in Appendix A. 

2.7.3 – Differential expression analysis 

Differential expression of nucleotide sequences, or contigs, relative to the control were 

estimated in OmicsBox v2.0.36 (BioBam Bioinformatics, 2019) using edgeR v.3.28.0 (Robinson 

et al. 2010). A counts-per-million (CPM) filter was employed to filter out sequences with less 

than 5 CPM in at least 4 of the 5 replicates per concentration in each weathering treatment group. 

Trimmed Mean of M values (TMM) was used for the normalization of library sizes. A simple 

design was selected, which made a pairwise comparison between a single concentration 

condition and the control, repeated for all experimental concentrations in each of the two 

weathering treatment groups. An exact statistical test was used, which is based on quantile-

adjusted conditional maximum likelihood (qCML) methods, and the test was robust, meaning 

estimation of differential expression was strengthened against potential outliers. The significance 

of differentially expressed contigs was scored with a cutoff false discovery rate (FDR; Benjamini 

and Hochberg, 1995) ≤ 0.05 and a minimum effect size threshold of the absolute value of log2 

fold-change (|log2FC|) ≥ 1. Venn diagrams that explored the intersections of differentially 

expressed contigs were constructed using InteractiVenn (Heberle et al. 2015). 

2.7.4 – Pathway enrichment analysis 

Pathway enrichment analysis of differentially expressed contigs was conducted 

separately for each concentration in each weathering treatment group in OmicsBox v2.0.36 

(BioBam Bioinformatics, 2019). Each analysis was conducted by comparing a test set of contigs 

with respect to a reference set. For all analyses, the reference set was the functionally annotated 

de novo assembled transcriptome, described in section 2.7.2. Separate analyses were run against 
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this reference set for both the up- versus down-regulated contigs that were differentially 

expressed at a FDR ≤ 0.05 for each of the 3 tested concentrations in each of the 2 weathering 

treatment groups, resulting in 12 separate analyses and therefore 12 different test sets. Fisher’s 

Exact Test was used for each enrichment analysis, which finds GO terms that are over-

represented in the test set with respect to the reference set. The GO term annotations used for 

enrichment were GO Molecular Functions (MF), Biological Processes (BP), and Cellular 

Components (CC). When the proportion of contigs annotated with a GO term in the test set was 

significantly higher than the proportion in the reference set, as determined by Fisher’s Exact 

Test, the GO term was overrepresented, and the pathway was considered enriched. 

3.0 – Results 

3.1 – Leachate chemistry 

3.1.1 – Organics 

The organic chemical profiles for the 18 TWP leachates used in organic chemical 

analysis, 14 of which were studied in Roberts (2021) and four that were generated and analyzed 

in the same way (Sofield et al., unpublished), were organized by hierarchical clustering and the 

leachates clustered into four groups, with a clear separation by weathering treatment group 

(Figure 2).  Cluster group #1 contained six of the nine un-weathered leachates, cluster group #2 

contained all nine weathered leachates, cluster group #3 contained only the UltraPure water 

blank, and cluster group #4 contained the remaining three un-weathered leachates (Figure 2). 

The 2017 un-weathered leachate used in my study was within cluster group #1, while the 2017 

weathered leachate was within cluster group #2 (Figure 2). Vertical comparison of the organic 

chemical profiles between cluster group #1 and cluster group #2 shows that some chemicals are 
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uniquely present in the un-weathered leachates that are not present in the weathered leachates 

and vice versa.     
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Figure 2. Hierarchical clustering (using Euclidean distances) of organic chemical features found in eighteen TWP leachates, all 

studied previously in Roberts (2021), analyzed via LC-QTOF-MS. Each row, marked by a different color, represents a different TWP 

leachate; the two circled leachates represent the 2017 un-weathered and 2017 weathered leachates that were investigated in my study.  

Each row represents the average of 3 replicate samples per leachate.  In each row, the vertical lines (i.e. red or blue) represent a single 

chemical feature, all hierarchically clustered and denoted by the black dendrogram at the top of the figure. Blue indicates the absence 

of a chemical, while red indicates the presence of a chemical; darker red means that more of that chemical is present. The leachates 

cluster into 4 distinct groups based on their organic chemical profiles and are labeled on the far left dendrogram and on the chemical 

features themselves. Black boxes separating the 4 leachate cluster groups have been added for ease of visualization.
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3.1.2 – Metals 

The metal profiles for the 14 TWP leachates studied in Roberts (2021) were organized by 

hierarchical clustering and the leachates clustered into two groups. There were detectable 

amounts of Al, Co, Cu, Mn, Ni, and Zn in both leachate types, as well as a detectable level of Sb 

in the un-weathered leachate. At the highest concentration of each leachate type used in the 

current study, some of the detectable metals exceeded the Criterion Minimum Concentration 

(CMC) Water Quality Criteria for marine acute exposure and the Criterion Continuous 

Concentration (CCC) Water Quality Criteria for marine chronic exposure according to the EPA 

Water Quality Criteria (USEPA 2016b).  In both the weathered and un-weathered treatment 

groups, both Cu and Zn exceeded the CMC and the CCC, while Ni exceeded only the CCC 

(Table 2). After 14 TWP leachate samples were organized via hierarchical clustering, cluster 

group #1 contained five of the un-weathered samples and cluster group #2 included all seven of 

the weathered leachate samples and two of the un-weathered samples. The “2017 un-weathered" 

and the “2017 weathered” leachates used in my study clustered into different groups (Figure 3); 

the 2017 un-weathered sample clustered with four other un-weathered samples, while the 2017 

weathered sample clustered with six other weathered samples and two un-weathered samples.  
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Table 2.  Concentrations of 10 different metals (in µg/L) for both the weathered and un-weathered leachates at their respective highest 

tested concentrations. Detection limits for the Agilent 7500ce ICP-MS are presented in µg/L, along with EPA Water Quality Criteria, 

including both the marine Criterion Minimum Concentration (CMC) for acute exposure and the marine Criterion Continuous 

Concentration (CCC) for chronic exposure. 
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Figure 3. Hierarchical clustering (using Euclidean distances) of six metal features found in 14 TWP leachates, all studied previously 

in Roberts (2021), analyzed via ICP-MS. All metals in Table 2 were included in the cluster analysis except for Cr, Cd, Sb, and Pb; for 

those metals, less than 15% of the TWP leachate samples had detectable concentrations of metals, so were excluded from the 

multivariate analysis. The two starred leachates represent the 2017 un-weathered (UW) and the 2017 weathered (W) leachates that 

were investigated in my study. The leachates cluster into two distinct groups based on their metal profiles, and the cluster groups are 

marked by the red boxes, the numbered labels, and the cluster labels at the top of the dendrogram
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3.2 – Respiration rates 

Percent changes in respiration rates (ΔRx%) of leachate-exposed shrimp compared to 

control shrimp were calculated for each concentration, day of exposure, and leachate type 

(Figure 4). Positive values for percent change in respiration indicate an inhibition in respiration 

rate relative to control animals, while negative values indicate a stimulation of respiration rate 

relative to control animals (Figure 4). For each leachate treatment and day of exposure, the mean 

individual respiration rates and the mean percent change in respiration rates, calculated across 

the three replicates at each exposure concentration, are reported in Appendix C.  

After two days of exposure to the weathered leachate, significant stimulation in A. bahia 

respiration rates occurred at 0.67 and 2.68 g/L, with stimulation also observed at 1.34 g/L that 

was insignificant (Figure 4, Appendix C). After two days of exposure to the un-weathered 

leachate, there were no significant differences in any treatment concentration. After four and six 

days, there were no significant differences in any concentration in the weathered group, but there 

was a significant stimulation in respiration rate at 1.08 g/L in the un-weathered group (Figure 4, 

Appendix C). 
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Figure 4. Mean percent change in respiration rate relative to the controls, across three replicates per concentration, for 2 days (a,b), 4 

days (c,d), and 6 days (e,f) of exposure to leachate at concentrations ranging from 0.07 to 2.68 g/L (Table 1). Positive values indicate 

inhibition of respiration rate relative to the controls. Negative values indicate stimulation of respiration rate relative to the controls. 

The dashed line at y = 0 represents the ΔRCx(%) as calculated in Equation 2. Error bars represent the 95% confidence interval; 

asterisks represent significant differences in respiration rate from the controls based on a lack of overlap with the ΔRCx(%); and the 

solid squares at day 4 represent the three concentrations that were used for transcriptomic analysis (Table 1).   
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3.3 – Transcriptomic responses 

Differentially expressed contigs (FDR ≤ 0.05; |log2FC| ≥ 1) compared to the control 

group, also referred to as “dysregulated contigs”, in A. bahia were explored between the three 

concentrations used in the transcriptomic analyses and within each weathering treatment group 

(Table 1). This was followed by comparison between weathered and un-weathered leachates 

without consideration of the leachate concentrations. 

Without consideration of specific leachate concentrations, there were a total of 80 

differentially expressed contigs in the weathered group, 64 of which (80%) had orthologous gene 

descriptions in arthropods and were able to be annotated. There were 139 differentially expressed 

contigs in the un-weathered group, 112 of which (81%) had orthologous gene descriptions in 

arthropods and were able to be annotated (Appendix D). When leachate concentrations were 

considered, there were 86 dysregulations in the weathered group (with five contigs shared in 

common between multiple concentrations) and 152 dysregulations in the un-weathered group 

(with 12 contigs shared in common between multiple concentrations). 

3.3.1 – Weathered leachate exposure 

There were 86 differentially expressed contigs in the weathered leachate exposure. The 

0.67 g/L concentration had a total of 14 dysregulated contigs with 12 unique contigs; the 1.34 

g/L concentration had a total of five dysregulated contigs with only one unique contig; and the 

2.68 g/L concentration had a total of 67 contigs with 62 unique contigs (Figure 5a). Of the 14 

dysregulated contigs in the 0.67 g/L concentration, one contig was shared with only the 2.68 g/L 

concentration, and one contig was shared with both the 1.34 g/L and 2.68 g/L concentrations 

(Figure 5a, Appendix D). Of the five dysregulated contigs in the 1.34 g/L group, in addition to 
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the contig shared with the other two concentrations, there were three contigs shared only with the 

2.68 g/L concentration (Figure 5a, Appendix D). No contigs were shared between the 0.67 g/L 

and 1.34 g/L concentrations (Figure 5a). 

Of the 14 dysregulated contigs in the 0.67 g/L concentration, four were upregulated 

(log2FC > 1) relative to the control (only one of which had a gene description) and ten were 

downregulated (log2FC < 1) relative to the control (nine of which had a gene description) 

(Figure 6a, Appendix D). Of the five dysregulated contigs in the 1.34 g/L concentration, four 

were upregulated relative to the control (three of which had a gene description) and one was 

downregulated relative to the control, although it had no gene description (Figure 6a, Appendix 

D). Of the 67 dysregulated contigs in the 2.68 g/L concentration, 56 were upregulated relative to 

the control (48 of which had gene descriptions) and 11 were downregulated relative to the 

control (six of which had gene descriptions) (Figure 6a, Appendix D).  

Only the 56 upregulated contig sequences in the 2.68 g/L concentration showed 

significant Gene Ontology (GO) enrichment compared to the functionally annotated de novo 

reference transcriptome; since only 48 of those contig sequences had annotated gene 

descriptions, only 85.7% of the dysregulated contigs at this concentration contributed toward 

significant GO-term enrichment and could be functionally inferred.  Overrepresented GO terms, 

indicating enriched pathways, in the 2.68 g/L concentration included four molecular functions 

and one cellular component (Figure 6a). 

3.3.2 – Un-weathered leachate exposure 

There were 152 differentially expressed contig sequences in the un-weathered leachate 

exposure. The 0.27 g/L concentration had a total of four dysregulated contigs with two unique 

contigs; the 0.54 g/L concentration had a total of 15 dysregulated contigs with four unique 
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contigs; and the 1.08 g/L concentration had a total of 133 contigs with 121 unique contigs 

(Figure 5b). Of the four dysregulated contigs in the 0.27 g/L concentration, one contig was 

shared with only the 1.08 g/L concentration, and one contig was shared with both the 0.54 g/L 

and 1.08 g/L concentrations (Figure 5b, Appendix D). Of the 15 dysregulated contigs in the 0.54 

g/L group, in addition to the contig shared with the other two concentrations, there were ten 

contigs shared only with the 1.08 g/L concentration (Figure 5b, Appendix D). No contigs were 

shared between the 0.27 g/L and 0.54 g/L concentrations (Figure 5b). 

Of the four dysregulated contigs in the 0.27 g/L concentration, three were upregulated 

(log2FC > 1) relative to the control (two of which had a gene description) and one was 

downregulated (log2FC < 1) relative to the control, and it had a gene description (Figure 6b, 

Appendix D). Of the 15 dysregulated contigs in the 0.54 g/L concentration, 12 were upregulated 

relative to the control (nine of which had a gene description) and three were downregulated 

relative to the control (two of which had a gene description) (Figure 6b, Appendix D). Of the 133 

dysregulated contigs in the 1.08 g/L concentration, 107 were upregulated relative to the control 

(87 of which had gene descriptions) and 26 were downregulated relative to the control (22 of 

which had gene descriptions) (Figure 6b, Appendix D).  

Only the 107 upregulated contig sequences in the 1.08 g/L concentration showed 

significant Gene Ontology (GO) enrichment compared to the functionally annotated de novo 

reference transcriptome; since only 87 of those contig sequences had annotated gene 

descriptions, only 81.3% of the dysregulated contigs at this concentration contributed toward 

significant GO-term enrichment and could be functionally inferred. Overrepresented GO terms, 

indicating enriched pathways, in the 1.08 g/L concentration included eight molecular functions 

and two biological processes (Figure 6b) 
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3.3.3 – Between treatments – both weathered and un-weathered leachate exposures 

The intersection between the contig sequences that were dysregulated in each leachate 

type was explored (Figure 7). The weathered leachate group had a total of 80 dysregulated 

contigs while the un-weathered leachate group had a total of 139 dysregulated contigs, 73.75% 

more than the weathered group. The weathered group had 23 unique contigs, the un-weathered 

group had 82 unique contigs, and there were 57 contigs shared between the treatment groups. 

Contig IDs, the type of dysregulation (up- or down-regulation), and orthologous gene 

descriptions for each of the contigs, as well as which treatment group they are part of are listed 

for Figure 7 in Appendix E. The weathered and un-weathered treatments shared three 

significantly enriched GO pathways (all GO molecular functions), all from upregulated contigs, 

at the highest leachate concentrations (2.68 g/L for the weathered leachate and 1.08 g/L for the 

un-weathered leachate): serine hydrolase activity, serine-type peptidase activity, and peptidase 

activity (Figure 6). 
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Figure 5. Venn diagrams of dysregulated contig sequences (FDR ≤ 0.05; |log2FC| ≥ 1) in Americamysis bahia exposed for four days 

in the three tested concentrations used in transcriptomic analyses (Table 1) in a) the weathered group and b) the un-weathered group. 

There were 86 unique dysregulated contigs in the weathered group and 152 unique dysregulated contigs in the un-weathered group. 

All dysregulated contig IDs, along with which concentration they were dysregulated in, whether they were up- or down- regulated, 

their level of expression, their counts, and the gene descriptions for orthologous genes in arthropods are listed in Appendix D.
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Figure 6. Concentration-response portraying the level of expression of dysregulated contig sequences (FDR ≤ 0.05; |log2FC| ≥ 1) as a 

function of increasing concentration for a) the weathered group and b) the un-weathered group, along with a list of significantly 

overrepresented Gene Ontology (GO) terms (in decreasing order of significance) for each weathering treatment group. Total numbers 

of dysregulated contig sequences for each concentration are listed in black, the number of upregulated contigs are listed in red, and the 

number of downregulated contigs are listed in green. The open black triangles represent the only dysregulated contigs in which 

significant pathway enrichment was found. Gene Ontology (GO) terms are divided into Molecular Functions (MF), Biological 

Processes (BP), and Cellular Components (CC), and the black stars on the GO tables indicate shared enriched pathways between 

weathered and un-weathered leachate treatment.
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Figure 7. Venn diagram of dysregulated contig sequences (FDR ≤ 0.05; |log2FC| ≥ 1) in Americamysis bahia between weathered 

leachate and un-weathered leachate four-day exposures. The numbers included in this diagram are the unique contigs for all 

concentrations in that weathering treatment group (Figure 5). Contig IDs, type of dysregulation (up- or down-regulation), and 

orthologous gene descriptions are shown for this diagram in Appendix E. 
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4.0 – Discussion 

In this study, the sublethal and molecular responses of A. bahia caused by exposure to 

two different TWP leachates were explored through sublethal acute toxicity tests (i.e. measuring 

respiration rate as the endpoint) and the analysis of overarching transcriptomic responses (i.e. 

differential expression and pathway enrichment analyses). The focus of my work was to see 

whether there were observable sublethal and/or molecular effects to A. bahia exposed to TWP 

leachates compared to the control shrimp, and to see whether there was a difference in these 

potential effects in treatment shrimp exposed to the weathered TWP leachate versus the un-

weathered TWP leachate. To explore the potential drivers of TWP leachate toxicity, both metal 

and organic chemical compounds found in each of the TWP leachates were considered along 

with the observed sublethal and molecular effects to A. bahia. 

4.1 – Sublethal responses – respiration rates of A. bahia 

One sublethal response was measured in my study: the respiration rate of A. bahia. The 

hypotheses that there would be changes in respiration rate compared to the control shrimp and 

that there would be differences in respiration rate between the weathered versus un-weathered 

TWP leachates were both supported. 

4.1.1 – Stimulation in respiration rate  

According to Garnacho et al. (2001), the baseline respiration rates of mysid shrimp are 

dependent on a variety of factors, including variations in mysid weight, age, and reproductive 

status, and/or variations in environmental conditions such as season, salinity, or temperature. In 

my study, all these factors were either controlled for (i.e. age, reproductive status, season, 

temperature, and salinity) or randomized (i.e., mysid weight). Depending on the concentration 

and the length of exposure, after exposure to both the weathered and un-weathered TWP 
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leachates, A. bahia exhibited stimulation of respiration rate (Figure 4). This observed stimulation 

of A. bahia respiration rate relative to the controls is consistent with a respiratory uncoupler of 

phosphorylation, an acetylcholinesterase inhibitor, or potentially a respiratory irritant (McKim et 

al. 1987). Because the TWP leachates that A. bahia were exposed to in my study are composed 

of a complex mixture of chemicals, including hundreds of organic chemicals (Figure 2), it is 

difficult to ascertain which of those chemicals or chemical groups may have been responsible. 

However, the observed stimulation in respiration rate is consistent with past studies on the 

respiration rates of A. bahia after entire life-cycle exposures to organic pesticides. McKenney 

(2018) detailed the results of many of his previous studies measuring A. bahia respiration rates 

after exposure to a variety of pesticides: endrin, an organochlorine (McKenney 1982); 

thiobencarb, a carbamate (McKenney 1985); fenthion, an organophosphate insecticide 

(McKenney and Matthews 1990); and DEF, an organophosphate herbicide (McKenney et al. 

1991). In all these separate studies, exposure to organic pesticides resulted in elevated respiration 

rates that were observable early in the exposure period for juvenile mysids (McKenney 2018).  In 

younger juveniles, respiration rate increased linearly with increasing pesticide concentration, 

while in older juveniles and adults, the relationship between pesticide concentration and 

respiration displayed a curvilinear dose-response relationship (McKenney 2018), indicating that 

A. bahia can exhibit differences in respiration response depending on their age and time of 

exposure to organic pesticides. In a study exposing another species of mysid shrimp, Neomysis 

integer, to water soluble fractions of light fuel oil at various temperatures, the authors found that 

the respiration rates of the shrimp were temperature dependent; the authors modeled respiration 

rate as a function of temperature and oil concentration and found that above 10°C, the mysids 

generally increased their respiration rate with increasing oil concentration, although the trend 
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was subtle (Laughlin and Linden 1983). In contrast to the stimulation in mysid respiration rate 

reported in these previous studies, Capuzzo et al. (1984) exposed juvenile lobster, Homarus 

americanus, to Southern Louisiana Crude Oil and found that stage 1 larvae exposed for 24 hours 

and all stages of larvae exposed for 72 hours showed significant reductions in respiration rate 

compared to the controls. After analysis of the exposed animals via GC-MS, the authors found 

trace amounts of benzene, thiophene, toluene, alkylcyclohexane, and alkylbenzenes in the lobster 

tissue (Capuzzo et al. 1984). The results of these studies suggest that different organic chemicals 

can lead to different effects to crustacean respiration rates; this difference in response is likely 

reflective of these different organic chemicals having different mechanisms of action.  

To my knowledge, there has been no work done on the effects of metals exposure on the 

respiration rates of A. bahia specifically. However, there are many studies that look at respiration 

rates of crustaceans in general; crustaceans generally exhibit a reduction in respiration rate after 

exposure to metals (Spicer and Weber 1991). This could be due to metal-induced pathological 

damage and interference with respiratory processes that can include a decrease in ventilation, 

impeded gas exchange at respiratory surfaces, disrupted perfusion, impaired respiratory gas 

transport to or from the tissues, or the direct inhibition of cellular respiration (Spicer and Weber 

1971). The respiration rate of a variety of crustacean species have been tested, and in almost 

every case, there was a significant decrease in respiration rate compared to control animals 

reported by the authors. An exception was in one study where no significant change in the 

respiration rate of Cancer pagurus was found over the exposure period to Cu and Zn, and any 

respiratory impairment that was temporarily observed was due to an increase in the diffusion 

barrier thickness at the crab’s respiratory surfaces and was reversible even during continued 

metal exposure (Spicer and Weber 1992). In another study, exposure to Cu decreased the 
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respiration rate of Artemia larvae by approximately 25% without significantly affecting motility 

(Corner and Sparrow 1956). The oxygen consumption rates of both adult and larval Uca 

pugilator were depressed after acute exposure to mercury (Vernberg and Vernberg 1971, 

DeCoursey and Vernberg 1972, Vernberg et al. 1973). Depledge (1984) found that after 

exposure to either 10 mg/L Cu ions or 1 mg/L mercury ions, the respiration rate of Carcinus 

maenas (L.) decreased relative to control animals, with the 10 mg/L Cu treatment suppressing 

crab respiration within 2 hours. Exposure of Farfantepenaeus paulensis to both 10 mg/L Zn and 

2 mg/L cadmium inhibited the shrimps’ oxygen consumption by 25% and 32.4% respectively, 

relative to control shrimp (Barbieri 2009). In another study by the same author, the oxygen 

consumption in cadmium-exposed F. paulensis was measured across different salinities; at a 

salinity of 5, the highest cadmium concentration used (2 mg/L) decreased oxygen consumption 

by 53.7% (Barbieri and Paes 2011). Cambaroides dauricus experienced respiratory inhibition 

after both 96-hr acute and 7 and 14-day sub-chronic exposures to Cu; for the acute exposure, the 

respiration rate decreased by 48.4% at 16.48 g/L Cu (50% of the 96-hr LC50), while for the sub-

chronic exposures, the respiration rate decreased by 39.6% after 7 days and 52.4% after 14 days 

at 2.06 mg/L Cu (Bao et al. 2020). Spicer and Weber (1991) compiled the results of many of 

these studies, and they suggested that water-borne Cu and Zn disrupt gill function in crustaceans 

which results in a decrease in respiration rate leading to the development of internal hypoxia, 

although reparation can be accomplished at high sub-lethal concentrations. 

Comparing the observed stimulation of A. bahia respiration rate after TWP leachate 

exposure in my study to the respiration responses of crustaceans exposed to both organic 

chemicals and metals (both components of TWP leachate) in these previous studies, it can be 

hypothesized that the largest contributor to the observed sublethal toxicity in both the weathered 



    48 

and un-weathered TWP leachate exposures is the organic chemicals rather than the metals 

present in the leachate because stimulation was observed in every case (Figure 4). This is not to 

say that the metals in the leachate have no contribution to the observed toxicity in A. bahia, just 

that they do not likely contribute to the measured sublethal response of changes in respiration 

rate. In Roberts (2021), the author compared metal concentrations across weathered and un-

weathered TWP leachates with the corresponding calculated LC50 values for the leachates. He 

found that Zn was a probable driver of inorganic TWP leachate toxicity that could lead to A. 

bahia mortality. The Cu and Ni concentrations in the leachates were inversely correlated with 

toxicity; as toxicity increased, the Cu and Ni concentrations decreased, indicating that those 

metals did not contribute to the observed toxicity. However, as the toxicity increased, the Zn 

concentrations stayed relatively constant, implying that Zn could be a contributor to the 

inorganic TWP leachate toxicity to A. bahia.  

4.1.2 – Respiration response between weathered and un-weathered TWP leachate exposures  

 In addition to the significant stimulation in respiration rate compared to control animals 

for both leachate types, there were also differences in the patterns of respiration response in 

shrimp depending on whether they were exposed to weathered or un-weathered TWP leachate. In 

shrimp exposed to the weathered TWP leachate, the only significant effect was observed on the 

second day of exposure at the highest (2.68 g/L) and third highest (0.67 g/L) concentrations, after 

which point the respiration rate of the exposed shrimp was not significantly different from the 

control shrimp at the 95% confidence interval (Figure 4).  In contrast, the shrimp exposed to the 

un-weathered TWP leachate only exhibited significant stimulation at the highest concentration 

(1.08 g/L) later in the exposure period (i.e., both on the fourth and sixth days), while the shrimp 

exhibited no significantly different effect compared to the controls early in the exposure period 
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(i.e., on the second day of exposure) (Figure 4). This supports that there are different 

mechanisms of action for toxicity for the weathered versus un-weathered TWP leachates. In 

Roberts (2021), the author found that the weathered and un-weathered TWP leachates were 

classified into different toxicity categories based on their LC50 values (5.19 g/L for the 2017 

weathered leachate and 1.97 g/L for the 2017 un-weathered leachate). 

According to the organic chemical analysis of the leachates, the weathered and the un-

weathered TWP leachates have different organic chemical profiles, with some groups of organic 

chemicals only present in the weathered group and other groups of organic chemicals only 

present in the un-weathered group (Figure 2). In addition, the weathered and un-weathered 

leachates statistically clustered into separate groups based on the groups of organic chemicals 

present in each (Figure 2). Similarly, the weathered and un-weathered leachates used in my study 

statistically clustered into separate groups based on the metals present in each (Figure 3), even 

though in both leachates, concentrations of Cu and Zn exceeded both EPA Water Quality 

Criteria (CMC and CCC) and Ni concentrations exceeded the CCC (Table 2). Although the 

chemical profiles of the weathered versus un-weathered leachates are different both in organics 

and in metals (Figure 2, Figure 3), the differences between weathering treatment groups 

observed in their respiration response (Figure 4) is likely due to differences in organic chemicals, 

as the organics are likely the chemicals driving this sublethal respiration response, as discussed 

earlier. 

Although specific metals were detected in the TWP leachates, individual organic 

chemical features were not able to be determined. Future chemical analyses on the leachates used 

in my study that further investigate the specific organic chemicals present in each one would 

help to infer which organic chemical or group of organic chemicals may be contributing to the 
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observed sublethal response of changes in respiration rate outlined in section 4.1.1. Halsband et 

al. (2020) tested both naturally weathered (from tire particles collected from an outdoor sports 

field) and un-weathered “crumb rubber granulate”) leachates for both metals and organic 

compounds and found that the organic chemicals were different for the weathered versus un-

weathered crumb rubber granulate leachates. The authors found that the weathered crumb rubber 

granulate leachates contained higher concentrations of phenanthrene, PAHs, and bisphenols, and 

phenols, while the un-weathered crumb rubber granulate leachates contained more phthalates, 

additives, phthalide, acetophenone, n-Cyclohexylformamide, and benzothiazole (Halsband et al. 

2020). The differences in response of A. bahia between weathering treatment groups are further 

explored in my study at the molecular level of biological organization via the results of the 

differential expression and pathway enrichment analyses. 

4.1.3 – Other potential sublethal responses 

Only one sublethal response was measured in my study. Although an effect was observed 

for the sublethal endpoint of respiration rate, it is important to note that this is not the only 

possible sublethal response that A. bahia could have exhibited. Another recent study 

investigating the impacts of TWP leachates measured A. bahia growth and swimming behavior 

(i.e., freezing, movement, in-zone duration, frequency, meander, and turn angle) and found that 

in TWP leachate-exposed shrimp, growth was not significantly impacted, but all six swimming 

behaviors were significantly different from the control shrimp (Siddiqui et al. 2022). In future 

studies with A. bahia exposed to TWP leachate, measuring other types of sublethal responses 

will be important to get a more holistic picture of the range of responses that could occur in A. 

bahia in response to TWP leachate exposure. To inform what endpoints to assess in these future 
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studies, global transcriptomics was used to cast a broader net that could identify possible new or 

unknown biological functions in A. bahia that may be affected by the TWP leachates. 

4.2 – Molecular responses – changes in differential expression and enriched pathways 

The molecular responses of A. bahia after TWP leachate exposure were first explored 

within each weathering treatment group, followed by an exploration between weathering 

treatment groups. The hypotheses that there would be changes in the transcriptomic responses of 

leachate exposed shrimp compared to the control shrimp and that there would be differences in 

response between shrimp exposed to the weathered versus the un-weathered TWP leachate were 

both supported. 

Within each of the leachate treatments, molecular responses were considered from 

multiple angles. First, the contigs that appeared in more than one concentration were explored 

(Table 3), as they are dysregulated at the lowest concentrations and are therefore likely the first 

processes to be impacted in A. bahia in response to TWP leachate exposure. Second, the levels 

of expression of contig sequences were investigated (Figure 6), along with contigs that had 

comparatively large levels of expression (Table 4) or had high counts (Table 5). The majority of 

dysregulated contigs had a 2-3 fold-change (FC) relative to the control (Appendix D), so contigs 

with a cutoff level of expression of |FC| > 5 were further investigated as potentially highly 

dysregulated (Table 4). In addition, contigs with a counts per million (CPM) > 100 were further 

investigated, as they had high counts compared to the majority of contig sequences (Table 5, 

Appendix D). Finally, the overrepresented Gene Ontology (GO) terms that appeared within each 

leachate treatment were investigated (Figure 6). GO terms are the result of grouping contig 

sequences based on their potential functionality; they are meant to reflect the most up-to-date 

view of the contig sequences’ role in biology (Gene Ontology b, n.d.). The association of a 
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contig sequence with a GO term falls into three categories: Molecular Functions (MF), or the 

molecular activities of individual contig sequences; Cellular Components (CC), or where in the 

body the contigs are active; and Biological Processes (BP), or to which pathways and larger 

processes a specific contig sequence’s activity contributes (Gene Ontology b, n.d.). 

Between leachate weathering treatment groups, contigs that appeared in both treatments 

were explored further, along with the GO terms that were overrepresented in both the weathered 

and un-weathered leachate treatments.  

4.2.1 – Weathered group 

In the weathered leachate group, there were five upregulated contigs found in more than 

one weathered leachate concentration (Figure 5). Three of those five contigs were upregulated in 

both the highest (2.68 g/L) and middle (1.34 g/L) weathered leachate concentrations and were 

mapped to orthologous gene descriptions in arthropods: one contig sequence is associated with a 

lysosomal protective protein, one is associated with an uncharacterized protein 

(LOC119576313), and one is associated with a proton-coupled folate transporter (PCFT)-like 

gene object (Table 3). It is important to note that uncharacterized proteins do not currently have a 

known function, and they are marked with an LOC identifier number. The two of the five 

remaining contigs shared among the three weathered leachate concentrations did not have 

orthologous gene descriptions, so their functionality could not be meaningfully inferred from the 

de novo annotation (Table 3).  However, one of those contigs was shared among all three 

concentrations (Figure 5, Table 3); it was upregulated with a 17.5 FC and 6 CPM at the lowest 

tested concentration (0.67 g/L) and is likely a sequence for a gene that is one of the first to be 

impacted in A. bahia after exposure to weathered TWP leachate. The other contig was highly 

upregulated with an 851 FC in the 2.68 g/L concentration and a 689 FC in the 0.67 g/L 
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concentration, but it was not dysregulated at all in the 1.34 g/L concentration (Table 3). This is a 

similar pattern to the day 2 % change in respiration results (Figure 4a), suggesting that this 

unknown contig sequence may contribute to early-juvenile respiratory processes in A. bahia.  

Future studies and an annotated A. bahia genome would be helpful to understand what processes 

this contig sequence may or may not contribute to. Even though there are very high fold changes 

in this contig sequence in shrimp exposed to weathered TWP leachate relative to control shrimp, 

there are only 2.66 CPM, meaning that this particular contig sequence has a large expression 

change but does not appear very often when considering all reads. In all ~250 million reads that 

this contig sequence was upregulated in within the weathered treatment group, this contig only 

appeared 665 times, indicating that it is a holistically lowly expressed contig sequence (Table 3). 

All dysregulated contigs in the weathered treatment group were plotted as a function of 

concentration (Figure 6a). For all contigs that appear in more than one concentration in the 

weathered treatment, their FC levels of expression increased with increasing concentration 

(Table 3). It was expected that the lowest concentration would have the fewest and most lowly 

expressed contigs while the highest concentration would have the most numerous and the most 

highly expressed contigs, but this is not what was found. The lowest concentration (0.67 g/L) had 

14 dysregulated contigs, whereas the middle concentration (1.34 g/L) had five dysregulated 

contigs and the highest concentration (2.68 g/L) had 67 dysregulated contigs (Figure 6a). There 

were some highly expressed dysregulated contigs at the 0.67 g/L concentration that did not 

follow the expected pattern (Figure 6a), one of which is the above-mentioned contig sequence 

with 689 FC, the positive value signifying upregulation.  Another is a contig sequence with an 

FC of –721.96, signifying downregulation; this contig sequence was not mapped to an ortholog 

description, so its function is currently unknown, and it also had a low CPM of 2.70 (Table 4). 
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All contigs in the weathered treatment group with |FC| > 5 were considered as highly 

dysregulated (Table 4). Within these results, contigs that also had a CPM > 25 were considered, 

as this means that the contig is both highly expressed relative to the control and that it has a high 

enough count to imply that it may contribute to a biological process that is affected in A. bahia. 

Only one contig that has an |FC| > 5 as well as a CPM > 25 and is mapped to an orthologous 

gene description in arthropods was unique to the weathered treatment group. This contig was 

upregulated at the 2.68 g/L leachate concentration and is a proton-coupled folate transporter 

(PCFT)-like gene object (Table 4). The PCFT is a proton symporter and is the mechanism by 

which folates are transported across cell membranes (Zhao et al. 2017). Its upregulation indicates 

that the affected mysids are increasing their folate transport to counter the stress they are under 

from weathered TWP leachate exposure. In addition, contigs with CPM > 100, but a |FC| < 5, 

that were unique to the weathered leachate group at the 2.68 g/L leachate concentration included 

upregulation of an obstructor of the F2 gene, an uncharacterized protein (LOC119573628), and a 

fibrocystin-L-like gene (Table 5).  Fibrocystin is a gene that has been shown to control cellular 

structure and adhesion, with its deficiency linked to deformities in epithelial structure (Ziegler et 

al. 2020). Its upregulation suggests that shrimp are attempting to maintain their cellular structure 

despite stress from the weathered TWP leachate.  

The highest concentration of weathered leachate, 2.68 g/L, was the only concentration in 

the weathered leachate group that showed significant GO-term enrichment compared to the de 

novo annotated reference transcriptome, and all enrichment came from upregulated contig 

sequences. All of these upregulated contigs were grouped together by their potential function, 

and it was found that there were five significant GO-terms; three molecular functions and one 

cellular component (Figure 6a). The cellular component enrichment suggests that the molecular 
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functions occur in the extracellular regions (Figure 6a). Of the four molecular functions, only one 

was unique to the weathered group: chitin binding, and it was the most significantly 

overrepresented (Figure 6a). Chitin binding proteins are located in the cuticle, a protective 

barrier covering the outer surface of the shrimp’s body and regions of the gastrointestinal tract, 

and in the peritrophic membrane, a vital physical barrier unique to invertebrates located in the 

gut (Yang et al. 2018, Xu et al. 2021). These protective barriers guard against physical injuries, 

chemical injuries, and pathogen infections (Yang et al. 2018, Xu et al. 2021). Xu et al. (2021) 

studied chitin binding proteins in shrimp (Marsupenaeus japonicus), and found that the proteins 

served as an opsonin, or pattern recognition receptor to achieve antibacterial immune response in 

the shrimp; the proteins were able to identify and tag foreign substances that allowed the 

shrimp’s immune system to target harmful bacteria (Xu et al. 2021). Although in my study A. 

bahia were exposed to chemicals, the enrichment of upregulated contigs associated with chitin 

binding makes sense, as the route of chemical exposure from the leachate was through the 

seawater in which they lived. The mysids may have been able to recognize the chemicals in the 

leachate as foreign substances, and their bodies increased the production of chitin-binding 

proteins to thicken or enhance their protective barriers. These overrepresented GO terms that 

appear only in the weathered leachate group indicate that the chemical or group of chemicals that 

contribute to these observed transcriptomic responses in A. bahia are unique to the weathered 

TWP leachate, and are likely organic chemicals, as the organic chemical profiles between 

weathering treatment groups have clear differences (Figure 2), whereas most metals appear in 

both weathering treatment groups (Table 2). 
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4.2.2 – Un-weathered group 

In the un-weathered leachate group, there were 12 upregulated contigs found in more 

than one un-weathered leachate concentration (Figure 5). Ten of those contigs had orthologous 

gene descriptions, and of those ten, three contig sequences were for uncharacterized proteins 

(Table 3). It is important to note that two of the contig sequences mapped to the same 

uncharacterized protein description with the same LOC identifier (Table 3). This is one of the 

downfalls of using an organism for which not much is known of the genome; since there is no 

annotated genome for A. bahia, we had to use contig sequences mapped to ortholog gene 

descriptions for all arthropods instead of specific gene IDs and descriptions for A. bahia. If I had 

been able to use gene IDs and descriptions for our specific organism, we would have been able to 

make much more informative conclusions about the effect of TWP leachate to A. bahia and what 

genes and processes were dysregulated. Mapping contig sequences to orthologous gene 

descriptions means that there is inherent uncertainty and duplication; two different contig 

sequences mapped to the same orthologous description means that they could potentially share 

the same function or be a part of the same gene. All results reported in my study and all inference 

of function from the contig sequences reported in the de novo A. bahia transcriptome assembly 

and annotation are generalized to all arthropods (taxonid 6656). The remaining seven contig 

sequences that had orthologous gene descriptions included the upregulation of a lysosomal 

protective protein in all three un-weathered leachate concentrations; an upregulation of a PCFT - 

like gene object, a pentraxin-related PTX3 - like protein, and a putative ankyrin repeat protein 

RF_0381 isoform X4 in the 1.08 g/L and 0.54 g/L leachate concentrations; an upregulation of a 

glycine N-methyltransferase in the 1.08 g/L and 0.27 g/L leachate concentrations; and a 

downregulation of a chitinase-3-like protein and a protein obstructor-E-like isoform X1 in the 

1.08 g/L and the 0.54 g/L leachate concentrations (Figure 5, Table 3). The PTX3 protein is made 
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in many different types of cells in response to primary inflammatory signals (Mantovani et al. 

2003); its upregulation suggests that the shrimp were responding to inflammation resulting from 

un-weathered TWP leachate exposure starting at a concentration of 0.54 g/L. The protein 

obstructor-E like isoform X1 had high counts, with a CPM of 1401.93, and is a chitin-binding 

protein associated with maintaining body shape by controlling the mechanical properties of the 

exoskeleton (Tajiri et al. 2017). Its downregulation starting at a concentration of 0.54 g/L 

indicates that the shrimp may start to experience physical deformation of their exoskeletons after 

exposure to un-weathered leachate.  

For all contigs that appear in more than one concentration in the un-weathered treatment, 

their FC levels of expression increased with increasing concentration (Table 3). The un-

weathered group showed a more expected pattern in how the level of expression changed with 

concentration; in general, the lowest concentration (0.27 g/L) had the fewest dysregulated 

contigs (four) and the lowest levels of expression, the middle concentration (0.54 g/L) had 15 

dysregulated contigs and a larger level of expression, and the highest concentration (1.08 g/L) 

had the most numerous dysregulated contigs (133) and the largest levels of expression (Figure 

6b). There were some highly expressed dysregulated contigs at the 1.08 g/L concentration that 

are notable (Figure 6b). First, there was a contig sequence with a 540.80 FC, signifying 

upregulation; this contig does not have a known function and has low counts at 2.66 CPM (Table 

4).  Second, there was a contig sequence with a –599.62 FC, signifying downregulation; this 

contig is associated with xylulose kinase and has a low CPM of 2.51 (Table 4). In humans, 

xylulose kinase is an enzyme that catalyzes the reaction that produces a key regulator of 

lipogenesis and carbohydrate metabolism, xylulose 5-phosphate (Bunker et al. 2013). The 

downregulation of xylulose kinase in A. bahia suggests that there is an imbalance in their 
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metabolic regulation after exposure to un-weathered TWP leachate at a concentration of 1.08 

g/L. 

All contigs in the un-weathered treatment group with |FC| > 5 were considered as highly 

dysregulated (Table 4). Within these results, contigs that also had a CPM > 25 were considered, 

as this means that the contig is both highly expressed relative to the control and that it has a high 

enough count to imply that it may contribute to a biological process that is affected in A. bahia. 

Only one contig that has a |FC| > 5 as well as a CPM > 25 and is mapped to an orthologous gene 

description in arthropods was unique to the un-weathered treatment group. This contig was 

upregulated at the 1.08 g/L leachate concentration and is mapped to a papilin isoform X4 gene 

(Table 4). Papilin is an extracellular matrix glycoprotein that has been found to inhibit a specific 

metalloproteinase; its presence influences cell rearrangements, especially during arthropod early 

embryonic development (Kramerova et al. 2000). Excess expression of papilin in Drosophila 

causes lethal abnormalities in muscle, Malpighian tubule, and trachea formation during early 

development (Kramerova et al. 2000), so its upregulation in juvenile A. bahia could result in 

developmental abnormalities. In addition, contigs with CPM > 100, but an |FC| < 5, that were 

unique to the un-weathered leachate group at the 1.08 g/L leachate concentration include 

upregulation of a contig sequence associated with a low-density lipoprotein receptor (LDLR) - 

like gene object and an uncharacterized protein (LOC113806809), along with a downregulation 

of a contig sequence associated with a hemocyanin A chain and an oplophorus-luciferin 2-

monooxygenase non-catalytic subunit-like gene object (Table 5). LDLR is a receptor that binds 

lipoproteins in both mammals and insects and transports these lipoproteins into cells by 

endocytosis to replenish fat (Rodenburg and Van der Horst 2005). Upregulation of LDLR has 

been found to be concurrent with critical periods where endocytosis of lipoprotein is needed 
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(Rodenburg and Van der Horst 2005).  It can be assumed that A. bahia were under stress from 

the TWP leachate and therefore were increasing their expression of LDLR to replenish energy 

stores. Hemocyanin is a metalated protein responsible for the sensing, transport, and storage of 

oxygen, and is freely dissolved in the hemolymph plasma of arthropods and molluscs (Coates 

and Decker 2017). Originally thought to be primarily a respiratory protein, its synthesis was 

expected to be related to respiratory system stress (Senkbeil and Wriston 1981). Senkbeil and 

Wriston (1981) studied hemocyanin in the lobster, H. americanus, and found that although 

hemocyanin was produced when under hypoxic stress, only a small fraction of the hemocyanin 

appeared to be essential for respiratory function. Rather, hemocyanin has recently been found to 

be an integral component of biological defense systems in arthropods, combating infection, 

parasitism, viremia and physical damages (Coates and Decker 2017). The downregulation of 

hemocyanin at 1.08 g/L (Table 5) was not consistent with the observed stimulation of respiration 

rate in A. bahia at 1.08 g/L (Figure 4 d,f), which indicates that the downregulation of 

hemocyanin may instead be related to the impairment of defense systems in A. bahia rather than 

to respiratory stress.  

The highest concentration of un-weathered leachate, 1.08 g/L, was the only concentration 

in the un-weathered leachate group that showed significant GO-term enrichment compared to the 

de novo annotated reference transcriptome, and all enrichment came from upregulated contig 

sequences. All of these upregulated contigs were grouped together by their potential function, 

and it was found that there were ten significant GO-terms; eight molecular functions and two 

biological processes (Figure 6b). Of these ten significant GO terms, the two biological processes 

and five of the molecular functions were unique to the un-weathered leachate group. The 

significant biological processes indicate that the upregulated contigs in the 1.08 g/L un-
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weathered leachate concentration significantly disrupted both proteolysis and cysteine 

biosynthetic process from serine pathways in A. bahia (Figure 6b). Contributing to these 

disrupted biological processes, the molecular functions of catalytic activity acting on a protein, 

hydrolase activity, cystathionine beta-synthase activity, endopeptidase activity, and serine-type 

endopeptidase activity were all significantly overrepresented (Figure 6b).  

Overall, after exposure to 1.08 g/L of un-weathered TWP leachate, many different 

enzymes in A. bahia that catalyze reactions that contribute to proteolysis, or the breakdown of 

proteins or peptides into their component amino acids, were overrepresented. Hydrolase is an 

enzyme that catalyzes hydrolysis reactions, endopeptidase is an enzyme that catalyzes the 

cleavage of peptide bonds within a polypeptide or protein. Serine-type endopeptidase is a 

specific type of endopeptidase that has been found to be essential to the functions of various 

physiological and pathological processes, including survival, developmental processes, digestion, 

fertilization, blood coagulation, apoptosis, fibrinolysis, and immune defense (Park and Kwak 

2020). In addition, cystathionine beta-synthase, an enzyme that is involved in the reaction 

converting serine to cysteine, was overrepresented (Kitabatake et al. 2000). Cysteine is an 

essential amino acid unique in its ability to form disulfide linkages that greatly contribute to 

protein structure (Kitabatake et al. 2000). In one study, a cysteine-rich protein called stablin 

stabilized the hemolymph clotting mesh in arthropods and was able to immobilize bacteria at 

injury sites, suggesting that cysteine could play a role in the initial stages of defense and healing 

(Matsuda et al. 2007). The overrepresentation of the biological process creating cysteine from 

serine in A. bahia exposed to un-weathered TWP leachate could be an attempt to increase 

defense mechanisms. These overrepresented GO terms that appear only in the un-weathered 
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leachate group indicates that the chemical or group of chemicals that contribute to these observed 

transcriptomic responses in A. bahia are unique to the un-weathered TWP leachate. 

4.2.3 – Between treatments – both weathered and un-weathered groups 

Without considering leachate concentrations, there were 23 differentially expressed 

contigs that appeared only in shrimp exposed to weathered leachate, 82 differentially expressed 

contigs that appeared only in shrimp exposed to un-weathered leachate, and 57 differentially 

expressed contigs that appeared in shrimp regardless of if they were exposed to weathered or un-

weathered TWP leachate (Figure 7, Appendix E). The un-weathered TWP leachate disrupted 

more molecular processes in A. bahia than its weathered leachate counterpart, and this signifies 

that the un-weathered TWP leachate was more toxic overall, which is also evidenced by its lower 

LC50 value (Roberts 2021). Although there were differences in transcriptomic response between 

the leachates, in this section the contigs that were dysregulated in both weathering treatment 

groups are further explored, as these contigs are more generally representative of TWP leachate 

impacts to A. bahia regardless of the whether the tire particles were weathered or not. 

Of the dysregulated contigs that appear in more than one leachate concentration within a 

weathering treatment group (Figure 5), four contig sequences were dysregulated in both 

weathering treatment groups and were upregulated relative to the control in every case (Table 3). 

These include one sequence that has an unknown function (does not have an orthologous gene 

description) and three sequences that map to orthologous gene descriptions in arthropods: a 

lysosomal protective protein, an uncharacterized protein (LOC119576313), and a proton-coupled 

folate transporter (PCFT) - like gene object, in decreasing order of significance (Table 3). The 

lysosomal protective protein was more highly upregulated with a larger FC in the un-weathered 

group, and it occurred at all three concentrations (e.g., 0.27, 0.54, and 1.08 g/L) instead of just in 
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the middle (1.34 g/L) and high (2.68 g/L) concentrations in the weathered group. The 

uncharacterized protein (LOC119576313) had a higher FC in the un-weathered group as well. 

The PCFT- like gene object was more highly dysregulated in the un-weathered group at the 

middle leachate concentration but was more highly dysregulated in the weathered group at the 

highest leachate concentration, with the 2.68 g/L weathered leachate concentration showing a 

|FC| > 5 (Table 3). This is an important set of contigs, because they are dysregulated at multiple 

concentrations tested in each weathering treatment group, and they occurred in shrimp exposed 

to TWP leachate regardless of whether the tire particles were weathered or un-weathered. This 

suggests that these individual contig sequences could potentially be biomarkers for TWP 

leachate exposure in A. bahia. If I had used a stricter log2FC filter of log2FC ≥ 1.5, which would 

make it statistically more difficult for a contig sequence to be dysregulated compared to the 

control, all of these contigs would have still been dysregulated except for the lysosomal 

protective protein at the 1.34 g/L weathered leachate concentration and at the 0.27 g/L un-

weathered leachate concentration (Appendix D). Because the results are close to the same with a 

stricter log2FC cutoff employed, and because the lysosomal protective protein remains 

dysregulated at the highest leachate concentrations under this stricter cutoff, I can be more 

confident in these contigs’ potential utility as general TWP biomarkers in A. bahia. Future 

studies could be directed towards discovering specific TWP biomarkers in A. bahia, and the 

above findings may be a good place to start.  

The contigs with |FC| > 5 as well as a CPM > 25 that were mapped to orthologous gene 

descriptions in arthropods and that appeared in both the weathered and the un-weathered leachate 

treatments include an upregulation of a hypothetical protein Anas_12497, a putative ankyrin 

repeat protein RF_0381 isoform X4, and an uncharacterized protein (LOC119576313) (Table 4). 
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Most of these are hypothetical or uncharacterized proteins that do not yet have known functions, 

but ankyrin repeat proteins have a specific repeated amino acid sequence and have been linked to 

functions including cell-cell signaling, cytoskeleton integrity, transcription and cell-cell 

regulation, inflammatory response, development, and various transport phenomena, all of which 

mediate specific protein-protein interactions (Mosavi et al. 2004). Additionally, there was 

downregulation of a chitinase-3 like protein with |FC| > 5 and CPM > 25 in both the weathered 

and un-weathered groups (Table 4). The chitinase-3-like protein binds to chitin, heparin, and 

hyaluronic acid, is regulated by many factors including stress, and plays a large role in tissue 

injury, inflammation, tissue repair, and remodeling responses (Zhao et al. 2020). The 

downregulation of this protein would not allow the affected organism to successfully repair its 

tissues or fight inflammation when under stress, and this is a shared effect between the two 

weathering treatment groups, indicating that the chemical or group of chemicals that contribute 

to this response in A. bahia appear in both leachate types (Figure 2, Table 2). In addition, the 

previously discussed downregulation of the protein obstructor E-like isoform in the un-

weathered group at both the 1.08 g/L and the 0.54 g/L concentrations with a CPM of 1401.93 

also appears in the weathered group with a CPM of 1401.93, but only at the 2.68 g/L 

concentration (Table 5). This suggests that there may be an element of deformation of body 

shape that occurs in the cuticle in shrimp exposed to both weathered and un-weathered TWP 

leachate (Tajiri et al. 2017). 

The highest concentrations of both weathered and un-weathered TWP leachate (2.68 g/L 

and 1.08 g/L respectively), were the only concentrations that showed significant GO-term 

enrichment compared to the de novo annotated reference transcriptome, and in both weathering 

treatment groups all enrichment came from upregulated contig sequences. The un-weathered 
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group had five more GO terms overrepresented than the weathered group (Figure 6).  Of the five 

significant GO terms found in the weathered group and the ten significant GO terms found in the 

un-weathered group, only three GO terms were shared between treatment groups, and all three 

were molecular functions: serine hydrolase activity, serine-type peptidase activity, and peptidase 

activity (Figure 6). Although these molecular functions were impacted in shrimp exposed to both 

leachates, it is important to note that the relative significance of these overrepresented GO terms 

was higher in the un-weathered group than in the weathered group (Figure 6). Similar to the GO 

terms that appeared uniquely in the un-weathered group, the three GO terms shared between 

weathering treatment groups mainly involve the breakdown of proteins and polypeptides.  

Serine hydrolases are a broad superfamily of enzymes that catalyze a variety of important 

hydrolysis reactions in a two-step process with all enzymes in the superfamily unified by the 

presence of a serine residue in the active site. They consist of proteases and peptidases, lipases, 

and carboxylesterases, and are considered one of the largest functional enzyme classes in all 

forms of life (Kumar et al. 2021). Peptidases are enzymes that catalyze the cleavage of peptide 

bonds; they are also known as proteases and are further divided into endopeptidase and 

exopeptidase enzymes (Barrett and McDonald 1986); endopeptidase enzymes (overrepresented 

in the un-weathered leachate group only) cleave bonds internal to a protein, while exopeptidase 

enzymes cleave bonds on the terminal end of a protein. Serine-type peptidase falls under the 

broader serine hydrolase enzyme family. Serine peptidases have been found to be important in 

physiological processes related to immune response and embryonic development and body 

patterning in Drosophila (Kumar et al. 2021). Lysosomal protective proteins, dysregulated in 

multiple leachate concentrations in both weathered and un-weathered groups, are a type of serine 

peptidase that forms a complex with beta-galactosidase and neuraminidase hydrolase enzymes, 
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exerting a protective function necessary for their stability and activity (Galjart et al. 1991, 

Bonten et al. 1995). The upregulation of lysosomal protective proteins in A. bahia would allow 

specific hydrolases in the lysosomes to continue to function properly. 
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Table 3. The five contig IDs that are dysregulated in more than one concentration in the weathered leachate, and the 12 contig IDs 

that are dysregulated in more than one concentration in the un-weathered leachate group. The first four contig IDs in each leachate 

treatment are marked with an asterisk to indicate that they appear in both leachate treatments. The “Concentration Overlap” column 

details which concentrations the contig ID is dysregulated in. The type of dysregulation (up- or down- regulated relative to the 

control), along with the fold-change (FC) level of expression, counts per million reads (CPM), false discovery rate (FDR) adjusted p-

value, orthologous gene descriptions in arthropods, and whether the contig ID had a |FC| > 5 or a CPM > 100 are included. The 

intersections of these contigs are visualized in Figure 5 and their levels of expression are included in Figure 6. 
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Table 4. All dysregulated contig sequences from Appendix D with a |FC| > 5. Contigs IDs are generally grouped by increasing level 
of expression (FC) within each leachate treatment group; some exceptions are where one contig ID is expressed across multiple 
concentrations; these were kept together. There are 12 dysregulated contig IDs in the weathered leachate group and 16 dysregulated 
contig IDs in the un-weathered leachate group with |FC| > 5. The gene descriptions for which specific contig IDs are unique to a 
treatment group are colored in gray. 
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Table 5. All dysregulated contigs from Appendix D that have a CPM > 100. Contig IDs are ordered by increasing CPM within each 
leachate treatment group. There are 13 dysregulated contig IDs in the weathered leachate group and 14 dysregulated contig IDs in the 
un-weathered leachate group with CPM > 100. The gene descriptions for which specific contig IDs are unique to a treatment group are 
colored in gray. 
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4.3 – Connecting effects through levels of biological organization 

Connecting molecular effects to apical effects or adverse outcomes in whole organisms is 

an identified data gap for traditional microplastics (Jeong and Choi 2019, Gunaalan et al. 2020) 

as well as for TWPs. The connections are important because apical effects are traditionally more 

relevant to environmental risk assessments (Ankley et al. 2010), yet the molecular responses can 

be detected sooner, they may give clues as to what the specific biological processes are that may 

be the target of TWPs, and they may help explain why apical responses occurred. One 

conceptual framework that connects these levels of biological organization is the adverse 

outcome pathway (AOP) framework (Ankley et al. 2010, Villeneuve et al. 2014a, Villeneuve et 

al. 2014b). My study is the first to look at the molecular and sublethal responses in marine 

organisms exposed to TWP leachate for which there was previously observed mortality of the 

same organism using the same TWP materials (Roberts 2021). While my study presented a 

unique opportunity to connect molecular effects to apical effects via the AOP framework, this 

was not possible due to the lack of interoperability between omics databases and the AOP Wiki 

(AOP-Wiki, n.d., Martens et al. 2018) and the fact that AOPs are usually constructed after 

exposure to a single chemical, or “stressor”, while TWP leachates are a complex mixture of 

chemicals containing metals and organic compounds (Table 2, Figure 2). 
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4.4 – Conclusions and future directions 

This was an exploratory study investigating both the sublethal and molecular responses of 

a marine organism to TWP leachate, the first of its kind. We found that A. bahia experienced 

significant stimulation in respiration rate after exposure to TWP leachate, which is consistent 

with previous studies exposing A. bahia to organic chemicals, and in contrast to previously 

observed responses of crustaceans to metals exposure. This indicates that the organic chemicals 

in the TWP leachate are likely driving the observed sublethal respiration response in A. bahia, 

although the specific chemicals responsible were not able to be determined. In addition, 

differences in patterns of respiration rate were observed after exposure to the weathered versus 

un-weathered leachates, which could be due to the differences in either the metals or the organic 

chemicals present in each leachate; the leachates statistically clustered into different groups 

based on differences in their metal and organic chemical profiles respectively.  

It was also found that there was significant dysregulation of contig sequences in A. bahia 

in both weathering treatment groups. In my study, dysregulated contig sequences are contigs that 

were significantly differentially expressed in the treatment group compared to the control group 

at the cutoff filters I employed (i.e. FDR ≤ 0.05 and |log2FC| ≥ 1). Dysregulated contigs include 

upregulated contigs, or those sequences that appear more often in the treatment group compared 

to the control group (|log2FC| > 1), and down-regulated contigs, or those sequences that appear 

less often in the treatment group compared to the control group (|log2FC| < 1). Exposure of 

shrimp to the un-weathered leachate resulted in more dysregulated contig sequences overall 

(Figure 7) and more overrepresented GO term enrichment at the highest concentration (i.e., 1.08 

g/L) than resulted from exposure to the weathered leachate (Figure 6). Chitin binding in 

extracellular regions was significantly overrepresented and upregulated in the weathered 
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treatment group (Figure 6). Catalytic activity acting on a protein, hydrolase activity, 

cystathionine beta-synthase activity, endopeptidase activity, and serine-type endopeptidase 

activity molecular functions were overrepresented and upregulated in the un-weathered treatment 

group, which impacted two biological processes: proteolysis and cysteine biosynthetic process 

from serine (Figure 6). Serine hydrolase activity, serine-type peptidase activity, and peptidase 

activity were significantly overrepresented and upregulated in both treatment groups (Figure 6). 

Many contig sequences mapped to orthologous gene descriptions that regulated physical body 

structure, inflammatory response, and mediated protein-protein interactions, signifying that TWP 

leachate exposure disrupts many internal molecular processes in A. bahia. The transcriptomics 

results taken together – both the types of dysregulated contigs with orthologous gene 

descriptions (Table 3) and the enriched pathways (Figure 6) – indicate that the leachates are non-

specific in their mechanism of toxic action; they induced generalized responses in the shrimp. 

Three important dysregulated contig sequences appear in more than one concentration in both 

leachate types and map to the following orthologous gene descriptions: a lysosomal protective 

protein, an uncharacterized protein (LOC119576313), and a proton-coupled folate transporter 

(PCFT) - like gene object (Table 3).  These could be potential general biomarkers of TWP 

leachate exposure in A. bahia, but future studies are needed to strengthen this theory, and to 

determine what this uncharacterized protein’s function is.  

The results of my study and Roberts’ (2021) study imply that the un-weathered TWP 

leachate is more toxic overall, disrupting more molecular processes in A. bahia than its 

weathered counterpart at similarly toxic sublethal concentrations and resulting in a lower LC50 

value. This implies that the additive chemicals associated with the tire particles and the 

chemicals picked up by the tire particles from the roadside are more toxic to marine organisms 
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than the chemicals sorbed from the marine environment. This suggests that the time where TWPs 

are immediately released into the marine environment is the time where the chemicals associated 

with TWPs will have the greatest effect on marine organisms, as is observed by the occurrence 

of urban stormwater runoff mortality syndrome in coho salmon directly after large rain events 

(Peter et al. 2018, McIntyre et al. 2021).  

The impacts of TWP leachate to A. bahia, an estuarine organism commonly used in 

toxicity testing, suggest that the chemicals associated with TWPs can have effects that cascade 

through levels of biological organization at sublethal concentrations, despite the current inability 

to link these effects through the AOP framework. It is important to note that the concentrations 

used in my study, although sublethal, are not at known environmentally relevant concentrations, 

although there is much uncertainty to what actual TWP concentrations are in the environment. 

Wik and Dave (2009) suggest that environmentally relevant concentrations of TWPs in surface 

waters range between 0.03 - 56 mg/L, which is between 3 and 5,666 times less than the lowest 

concentration used in the weathered leachate exposures (0.17 g/L) and 1.25 to 2,333 less than the 

lowest concentration used in the un-weathered leachate exposures (0.07 g/L). The concentrations 

used in my study (Table 1) were selected based on the calculated LC50 values in Roberts (2021) 

and because of my study’s exploratory nature and the uncertainty surrounding whether there 

would be observable responses in A. bahia at the sublethal and/or molecular levels and at what 

leachate concentrations those responses would be evident. There was no observable effect on 

respiration rate at the lowest leachate concentrations for either the weathered or un-weathered 

leachate exposures (Figure 4). As for molecular effects at the filters employed (FDR ≤ 0.05 and 

|log2FC| ≥ 1), there were only 12 dysregulated contigs at the lowest tested concentration in the 

weathered leachate exposure (0.67 g/L) and 4 dysregulated contigs at the lowest tested 
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concentration in the un-weathered leachate (0.27 g/L) (Table 1, Figure 5). If the TWP leachate 

concentrations used had been lower, it is hard to predict how much lower the level of 

dysregulation would have been, or if there would have been any dysregulation. It is accepted in 

the literature that TWPs are an environmentally relevant problem (Peter et al. 2018, McIntyre et 

al. 2021, Tian et al. 2021), I just cannot say for certain, given the results of my study, that that is 

true for A. bahia.  

Because of the lack of information currently available in the literature on A. bahia (its 

genome has not been sequenced), approximately 20% of the dysregulated contigs found in this 

study did not have an orthologous gene description in arthropods (Appendix D), making it so that 

the functionality of those dysregulated contigs could not be inferred in any meaningful way. 

Future studies will be necessary to build up knowledge about the specific genes and pathways 

that are disrupted in A. bahia after TWP leachate exposure, along with what function they may 

perform. The first assembled and annotated transcriptome for A. bahia was generated from this 

work and will be published in an upcoming manuscript, serving as an important launchpad for 

those future studies. 
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Appendix A 

Number of input read pairs, number of reads both surviving after being trimmed, number of reads pseudo-aligned to the de novo assembled reference 

transcriptome, percent of reads both surviving, and the percent pseudo-alignment rates of every replicate sample in the de novo assembled reference 

transcriptome. 
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Appendix B 

The number of shrimp in each respiration chamber replicate for each concentration, day of exposure, and leachate type. The range is between 2-11 surviving 

shrimp, with the majority of chambers containing between 8-10 surviving shrimp, and the number of shrimp in each chamber was used to calculate mean 

individual respiration rates reported in Appendix C. 
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Appendix C 

Mean mysid respiration rates (µg O2 mg d.w.-1 hr -1) and mean % changes in respiration rates relative to control animals are reported after 2 days, 4 days, and 6 

days of exposure to leachate for each of two leachate types, “weathered” and “un-weathered”. The mean individual respiration rate for the control (0.00 g/L), 

marked with an asterisk for each day of exposure and leachate treatment, represents the respective BRRx used in Equation 1 to calculate the % change in 

respiration rate in shrimp exposed to leachate for each of 3 replicates. The mean % change respiration rates reported here are the average of the 3 replicates at 

each concentration. Positive mean % change values indicate inhibition in respiration rates relative to the controls, while negative mean % change values indicate 

stimulation relative to the controls.    
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Appendix D 

Dysregulated contig sequences (represented by the “Contig ID” column) in Americamysis bahia exposed to TWP leachates. There are 80 contig IDs in the 

weathered group and 139 contig IDs in the un-weathered group.  The “Concentration Overlap” column details which concentrations a certain contig ID was 

dysregulated in; some contig IDs are dysregulated in more than one concentration; there are a total of 86 dysregulated contigs in the weathered group (including 

those shared in common between concentrations) and 152 dysregulated contigs in the un-weathered group (including those shared in common between 

concentrations). For each contig ID and for each concentration in which it was dysregulated, whether it was up-regulated or down-regulated relative to the 

control was specified, and the level of expression (measured in fold change (FC) and log2foldchange (log2FC)), counts (measured in counts per million (CPM) 

and log2counts per million (log2CPM)), and the false discovery rate adjusted p-value (FDR) was included.  Finally, the gene description of orthologous genes (in 

all arthropods) was included, where possible, for each dysregulated contig ID. In the weathered group, 64 out of the 80 contig IDs had a gene description (~80%), 

leaving 16 out of 80 (~20%) without a description. In the un-weathered group, 112 out of the 139 contig IDs had a gene description (~81%), leaving 27 out of 

139 (~19%) without a description. Rows with |FC| ≥ 5 and CPM > 100 are indicated. 
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Appendix E 

The contig IDs, type of dysregulation (up- or down-regulation), and orthologous gene descriptions for the 57 shared contigs between weathering treatment 

groups, the 23 unique contigs in the weathered leachate group, and the 82 unique contigs in the un-weathered leachate group, as displayed in Figure 7. 
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