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ABSTRACT 

The use of sessile macroinvertebrates as leading indicators of change in marine ecosystems 

makes them potentially valuable as a management tool for predicting habitat suitability for more 

mobile, commercially important fishes. In addition to potential use as an ecosystem indicator in 

fisheries management, tunicates are used as a food resource by some Alaska Native 

communities. Variability in abundance and distribution, driven by changing physical conditions in 

the Bering Sea, could impact food security for these communities. I used fishery-independent 

NOAA survey data from the Eastern Bering Sea summer surveys from 1987 to 2019 to examine 

abundance and distribution of several tunicate species complexes (Halocynthia, Styela, and 

Boltenia) in a spatiotemporal modeling framework. Prior to fitting the models, I determined that 

frequency of occurrence (FoO) and catch per unit effort (CPUE) varied spatially between warm 

(2015-2019) and cool (2005-2010) periods for all three species. Summary statistics showed 

declines in biomass for all three species during a relatively warm period.  Based on the literature 

and these preliminary analyses I hypothesized that distributions and abundances of tunicate 

species would shift with multiyear changes in benthic conditions, especially temperature. Given 

warming trends and the relatively shallow water found in the Northern Bering Sea (NBS), I 

expect a disproportionate negative impact on benthic communities in this region. As tunicate 

species are a significant proportion of the benthic community in this ecosystem, there may be a 

large impact on coastal Alaska Native communities’ ability to harvest an important food 

resource. Additionally, relationships between environmental conditions, tunicate abundance, 

and fish distribution and abundance could lead to improved management.  
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1.INTRODUCTION 

Climate change is the most pressing issue facing our planet, with strong 

implications for the integrity of existing marine ecosystems. Sustained increases or 

decreases in temperature from the mean can lead to changes in distributions of 

individual plant and animal populations through extirpation and colonization while 

seeking their thermal optima (Morley et al. 2018, Spies et al. 2020, Stevenson and 

Lauth 2012); in turn, altering community composition (Lin et al. 2018). Climate change is 

disproportionately affecting the polar regions where temperatures are increasing at 

higher rates than the mid latitudes (Marshall et al. 2014). Organisms in these regions 

are often already occurring at the extreme end of their thermal tolerance and have 

nowhere else to go as temperatures warm further (Free et al. 2019, Pinsky et al. 2019). 

In addition to the trend in increasing temperatures in the northern latitudes there is also 

more climate and weather variability in year-to-year conditions, making it more difficult 

to forecast future conditions. The ability to better assess how economically and 

culturally important Alaskan fisheries and ecosystems are being impacted by climate 

change, as well as predict how future conditions will impact them, is of primary concern 

in fisheries management.  

 The Bering Sea is a mostly enclosed marginal sea that forms the divide between 

the United States and Russia. It covers 772,200 square miles and is an important 

location for studying connectivity between the Pacific and Arctic Oceans (Clement et al. 

2005). The Anadyr and Yukon rivers are major sources of fresh water into the Bering 

Sea (Clark and Mannino 2022). The U.S. Bering Sea boasts a $1 billion fishery (NOAA 

Fisheries 2022) for many species such as Pacific Cod (Gadus macrocephalus), Pollock 
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(Theregra chalcogramma), Bristol Bay Sockeye Salmon (Oncorhynchus nerka), Pacific 

Halibut (Hippoglossus stenolepis), Red King Crab (Paralithodes camtschaticus), Opilio 

Crab (Chionoecetes opilio) and other groundfish and invertebrates. The Russian− 

controlled waters support a $600 million fishery (NOAA Fisheries 2022). The Northern 

Bering Sea (NBS) is closed to commercial bottom trawling (though not entirely closed to 

commercial fishing, longline and pot fisheries are permitted in the region) while the 

Eastern Bering Sea (EBS) is heavily trawled.  

Climate change in the Bering Sea is affecting environmental conditions that have 

historically existed in the area. The cold pool is unique to the EBS, describing the area 

with cold near-bottom waters (less than -2 °C). During cold years the cold pool can 

persist year-round, while during warm years it breaks down completely (Wyllie-

Echeverria and Wooster 1998). Cold Pool Extent (CPE) is an oceanographic index 

determined by the amount of sea ice in late winter and spring and is used to track 

climate change in the area (Wyllie-Echeverria and Wooster 1998). Warmer 

temperatures allow for less formation of sea ice in late winter and spring, and August 

2018 saw the lowest CPE on record (Stabeno and Bell 2019). Including CPE in 

statistical models explains larger amounts of spatial variation in several fish and 

invertebrate species distributions and abundances than temperature alone, suggesting 

it is an important structuring variable (Thorson 2019). Fish distributions are impacted by 

the spatial extent of the cold pool as well as the timing of cold pool formation and 

dissolution, with sub-arctic species avoiding bottom waters less than 1°C (Thorson 

2019). CPE can be used as a direct measure of climate change in the EBS.  
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In addition to the CPE, the Bering Sea is demonstrating temporal trends in ocean 

condition researchers refer to as “stanzas” (Stevenson and Lauth 2019). These stanzas 

mark a shift from high interannual variation in temperature observed at the beginning of 

the time series (from 1987 to about 2004) to prolonged periods of bottom temperatures 

that are either higher or lower than the mean temperature for the baseline (the first 17 

years). The period from 2005 to 2010 marks a cold stanza, while that from 2015 to 2019 

marks a period of warmer than average temperatures, a warm stanza. In addition to an 

overall warming trend, in the most recent 15 years of data there is a trend towards 

increased variation in temperature from the mean (Stevenson and Lauth 2019). 

Understanding distribution change in “stanzas” of relatively cold and warm water could 

shed light on longer-term thermal preference of organisms. Distribution and abundance 

patterns at the end of the cold stanza (2010) versus the end of the warm stanza (2019 

in this dataset, presumably still getting warmer in the present) may reveal differences in 

survival under differing stanzas. 

Sessile invertebrates form important benthic communities, changing the 

environments they live in through the creation of biogenic habitat for other invertebrates 

or juvenile fish (Francis et al. 2014, Nadtochy et al. 2017). Sessile invertebrate 

assemblages also demonstrate the effects of bottom trawling on an area. Predicted 

distributions of sponges, cold-water corals, and sea pens in the Nordic seas have been 

used to accurately predict the distribution of vulnerable marine ecosystems or VMEs 

(Burgos et al. 2020). VME is a designation used to describe regions that would be 

particularly damaged by bottom trawling and are therefore deserving of regional and 

federal protection in fisheries policy.  
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The ascidians Halocynthia aurantium (sea peach) and Boltenia ovifera (sea 

onion) have been used to predict VMEs in the Anadyr region of the Bering Sea in the 

Russian controlled waters (Nadtochy et al. 2017). Ascidians in general have declined in 

frequency of occurrence (FoO) in this same region between 1895 and 2005 as 

determined by benthic grab samples (Grebmeier et al. 2006). The fact that large-scale 

trawling is not prominent in this region makes other factors, such as climate shifts, more 

compelling as drivers of biomass change to which the invertebrates might respond. It is 

unknown how sessile invertebrates might respond to an expanding or contracting cold 

pool in the Bering Sea, but they may serve as indicators of environmental conditions, 

especially in the northern seas due to their inability to move to more optimal 

environments (Burgos et al. 2020, Nadtochy et al. 2017).  

Tunicates are colonial or solitary ascidians or “sea squirts”—so called for their 

incurrent and excurrent siphons. They are exclusively found in marine environments. 

Solitary ascidians make up around 40% of named ascidian species, and they tend to 

dominate in colder water (Shenker and Swalla 2011), with colonial species making up 

most tropical populations. Historically, solitary ascidians have made up a large 

proportion of the epibenthic fauna in regions of both the EBS and NBS. They are filter 

feeders with a circumpolar distribution and have primarily been studied in terms of their 

likely position as a “sister group” to the vertebrates (Lemaire and Piette 2015) or for 

their pelagic species invasions into waters where they are not endemic (Pettitt-Wade et 

al. 2020).  

Little is known about tunicate life history and ecology in the Bering Sea, but as 

sessile invertebrates their distribution is driven by dispersal from reproduction. 
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Tunicates exhibit different reproductive patterns based on latitude. In more temperate 

latitudes there is usually one spawning event a year, while in the tropics spawning is 

more continuous (Ferrero et al. 2019). This suggests a possible role of temperature in 

spawning frequency; tunicate population sizes may be sensitive to changing 

temperatures. All ascidians are hermaphrodites and bear lecithotrophic larvae, and all 

solitary ascidians reproduce only sexually, most releasing gametes to the environment 

for external fertilization and larval development (Ferrero et al. 2019). Therefore, the 

spatial distribution of solitary tunicates is a result of local oceanography and larvae 

seeking suitable places to settle. Tunicate larvae settle relatively quickly, spending no 

more than a few days in the water column (Ferrero et al. 2019). 

This study focuses on three species complexes of solitary, sessile, tunicates 

native to the Bering Sea: Boltenia ovifera (the sea onion), Halocynthia aurantium (the 

sea peach) and Styela rustica (the sea potato). These species are the most abundant 

collected in groundfish surveys in the Bering Sea and are all important to Native 

communities in the Bering Strait region as a subsistence food resource called “Oopa” 

featured in holiday celebrations (L. Britt, NOAA RACE division, personal 

communication, September 2020, Lambert et al. 2016). They are added to stews, 

frozen whole and thinly sliced and consumed with crystalized briny water from inside, or 

blanched and peeled before consumption. Oopa or Upa (as they are called in Russia) 

are of particular importance to the Savoonga and Gambell communities on St. 

Lawrence Island, Diomede on Little Diomede Island, Wales, Shishmaref, and Teller 

(L.Britt, NOAA RACE division, personal communication, November 2022). Novy 

Chaplino in Russia hosts an annual “Upafest” where there are competitions for the 
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largest caught ascidian and cook outs of local sea-squirt dishes. As a sought-after food 

resource, tunicate availability (via abundance and distribution) has food security 

implications for the coastal Native communities in the region. With changing 

temperatures potentially influencing dispersal, understanding tunicate response to 

changing ocean conditions is a priority for food security and fisheries management.  

To understand changes in species distribution and abundance researchers often 

use species distribution models (SDMs). SDMs have emerged as a popular way to 

quantify species distributions in marine, terrestrial, and freshwater environments over 

time and/or in response to ecological covariates; additionally, they are used to make 

predictions extending beyond the study region (Elith and Leathwick 2009). Within 

fisheries science, maximum entropy (MaxEnt) SDM models have been used to relate 

presence-only data of Atlantic Herring, Atlantic Mackerel, and Butterfish to several 

environmental covariates to accurately hindcast occurrence (Wang et al. 2018). 

Generalized Linear Models (GLMs) have accurately predicted rockfish distributions on 

the California coast (Young et al. 2010). Using a 36-year fishery-independent survey in 

Texas estuaries, researchers found that abundance on both a seasonal and long-term 

scale could be accurately predicted using boosted regression trees (BRTs; Froeschke & 

Froeschke 2016). Ecological data are often collected over time and across varying 

spatial scales, suggesting that both time and space play a role in species distributions, 

sometimes tied to environmental conditions (Barnett et al. 2021). 

SDMs can be fitted using a variety of spatially and temporally explicit data. 

Tunicates are commonly collected in demersal fish surveys using bottom trawls and are 

incidental catch in NOAA’s annual groundfish surveys in Alaska. As such, we have 
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many years of data on their catch per unit effort (CPUE) at specific stations throughout 

the EBS and NBS. SDMs can be used with fishery-independent data as described 

above or with fishery-dependent data collected by onboard observers on commercial 

fishing vessels (Karp et al. 2022). Data collected over broad spatial scales and across 

long time series are particularly useful as they incorporate changing environmental 

conditions.  

State-space models relate observations of a response variable to unobserved 

(latent) “states” or “parameters” such as time or geographic location (Durbin and 

Koopman 2012).  Species distribution models (SDMs) are a type of state-space model 

in that they relate either presence/absence or biomass of a taxon to chosen covariates. 

State-space SDMs, such as species distribution model template model builder 

(sdmTMB; Anderson et al. 2022) or  vector autoregressive spatiotemporal model 

(VAST; Thorson 2019), allow investigation of relationships in distribution across space 

and time. These models have typically been used on fishery-independent survey data 

because fisheries surveys are typically conducted during consistent seasons with 

consistent effort making them comparable across time (Elith and Leathwick 2009, 

Essington et al. 2022, Evans et al. 2021, Ward et al. 2022). Due to the temporal nature 

of climate change, these types of models are applicable to understanding the effects of 

climate change on species distributions. 

To investigate changing distributions and abundances of tunicates in the Bering 

Sea, I used spatiotemporal (state-space) statistical models. This work focuses on the 

abundance (CPUE) based SDMs because a focus on occurrence-based 

(presence/absence) models could miss the importance of species present in high 
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numbers at a small number of sites (Winfree et al. 2015). CPUE changes also might 

serve as timelier indicators of impending population crashes due to environmental 

conditions, especially in sessile animals, because frequency of occurrence patterns will 

not change until the population is already extinguished (Clements et al. 2017) at which 

time the information will be less useful in fisheries management. Fishing behavior can 

be adjusted if we can recognize areas of the Bering Sea that host organisms more 

vulnerable to additional trawling pressure in the face of warming temperatures.  

I predicted the frequency of occurrence (presence/absence) and catch per unit 

effort (in kilograms/ ha) for the three tunicate species each year across the EBS and 

NBS, interpolating between stations for which I have data. Time served as a proxy for 

temperature to account for the warm and cold stanzas evaluated in this study 

(Stevenson and Lauth 2019). Because the NBS is untrawled, like the Anadyr region, 

any changes seen here could be attributable to climate change (Nadtochy et al. 2017). I 

hypothesized that a) tunicate abundances and distributions will be different between the 

end of the cold stanza (2010) and the end of the warm stanza (2019). Based on the 

literature and preliminary analyses I anticipated higher overall abundances at the end of 

the cold stanza than at present. I expected distributions to become more localized as 

water in the Bering Sea warms. I also predicted b) that changes, particularly in 

distribution, would be more pronounced at northern latitudes due to shallower, warmer 

water, potentially creating food security issues for the people living there who rely on 

tunicates as a food source both culturally and for subsistence. Tunicate populations 

may establish further offshore seeking relatively deeper, cooler water corroborating 

reports of people in the area of decreased abundance nearshore for harvest. 
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2. MATERIALS AND METHODS 

2.1 Study Area 

 
Figure 1: Map of the Bering Sea depicting the Eastern and Northern Bering Sea regions 
and major geographic features. Crosses indicate individual sampling stations for the 
NOAA Fisheries Bering Sea groundfish survey- (Stevenson and Lauth 2019). 

 

This study was carried out in the Eastern Bering Sea, bordered by the United 

States to the east and Russia to the west (Figure 1). The Bering Sea includes Exclusive 

Economic Zones belonging to both countries, as well as an international zone in the 

center often referred to as “The Donut Hole”. Figure 1 depicts the U.S.−controlled 
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portions of the Bering Sea. The area along the continental shelf in the northern and 

eastern parts of the Sea is typically shallower than 200 m, with the 200-m isobath 

determining the shelf break. The deepest point is in a southwestern portion of the 

Bering Sea outside of U.S. controlled waters in Bower’s Basin and reaches about 4000 

m. The Sea contains several islands, 16 submarine canyons, and four primary regions: 

the Bering Strait, Bristol Bay, the Gulf of Anadyr, and Norton Sound. For the purpose of 

this work the EBS is defined as the region from the Alaska Peninsula to 60°N located 

within U.S. territorial waters and is the focus area of most of the U.S. fisheries survey 

effort in the Bering Sea. The NBS is defined as the region from 60°N to 65°N within U.S. 

territorial waters and is bounded by the Bering Strait to the north.  

2.2 Data Collection 

The location (haul start latitude and start longitude), catch per unit effort (kg/ha), 

bottom temperature (ºC), and bottom depth (m) data were collected during a fishery–

independent bottom trawl survey conducted annually by the National Oceanic and 

Atmospheric Association (NOAA), Alaska Fisheries Science Center’s (AFSC) Resource 

Assessment and Conservation Engineering (RACE) division from 1987 to 2019. Survey 

trawl protocols are detailed in Stauffer (2004) and will be briefly outlined here. The basic 

set-up consists of an Eastern otter trawl with 102-mm stretched mesh body, 89-mm 

stretched mesh intermediate, 32-mm mesh codend liner, 25.3-m headrope, and 34.1-m 

footrope (Stauffer 2004). The trawl opening is spread by 1.8-m x 2.7-m steel doors. The 

net opening width averages about 16 m, and distance towed averages 2.77 km per haul 

based on tows of approximately 30- minutes. Much work has gone into making survey 
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data collection as standardized as possible so that it is comparable over time and to 

other geographic regions. 

There are 520 stations sampled each year with a single trawling effort (Figure 1), 

with most station depths falling between 25 and 75 meters. Not all stations are sampled 

every year. In only three of the 33 years (2010, 2017, 2019) the survey was extended 

into the NBS, resulting in fewer samples for this region but allowing several years for 

comparison. The response variable, abundance of species, has been standardized to 

Catch Per Unit Effort (CPUE) in kilograms per hectare. These values were calculated by 

dividing the catch weight by the area swept by the trawl; the area swept is equal to the 

product of the mean net width and the distance towed. CPUE was chosen as the 

response variable of interest over counted abundance as tunicates can be difficult to 

count and often come up in pieces during trawl surveys.  

Tunicate species were narrowed down to the three most frequently occurring 

species complexes after looking at the relative abundance across the time series of all 

tunicates in the survey data. The Boltenia complex is almost exclusively Boltenia ovifera 

(the sea onion) although B. ecinata is also present. Halocynthia is primarily Halocynthia 

aurantium (the sea peach). H. igaboja and H. hispidus are also present in very small 

numbers in some years. Styela is assumed to be made up entirely of Styela rustica (the 

sea potato). Invertebrate identification confidence has improved over the time series 

(Stevenson and Hoff 2009), and sorting species into these broader species complexes 

alleviates the misidentification of rarer species, especially early in the time series.  
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2.3 Temperature and Stanzas 

To better understand temperature patterns over the time series and to determine 

whether the stanzas noted in Stevenson and Lauth (2019) were evident in these data, I 

evaluated mean temperature and temperature variation over time. Mean temperatures 

and associated standard deviations were also mapped across the study area to 

determine spatial patterns. The purpose of determining where these stanzas were 

located in the time series was to provide two time periods between which to compare 

tunicate frequency of occurrence (FoO) and catch per unit effort (CPUE) to understand 

if temperature is a driver of tunicate distribution and abundance. 

2.4 Tunicate Abundance and Distribution  

2.4.1 Frequency of Occurrence and Catch Per Unit Effort Analysis 

Understanding where core areas of tunicate presence and abundance are within 

the study area was important to narrowing down which areas might change over time. In 

order to understand where consistent “hot spots” were, I used a 3 by 4 grid to divide the 

entire study area into 12 regions by breaking longitude into three bins (160−165 °W, 

165−170°W, and 170−175°W) and latitude into four bins (54−57°N, 57−60°N, 60−63°N, 

63−66°N) (Figure 2). Breaking the entire study area into smaller regions of combined 

stations reduces disparity in sampling effort present at smaller scales. Additionally, this 

approach allowed for examination of patterns at a larger scale for identification of 

regional distribution and abundance patterns. Eleven of the twelve regions cover sea 

area while the last is taken up by land and therefore has no tunicates in it and was 

excluded from analysis. Frequency of occurrence for each complex was calculated by 

summing the number of years the taxon was present in that region and dividing by how 
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many times stations in that region were sampled. (FoO = summed presence in a region/ 

number of samples in a region). In addition to FoO, mean CPUE for each complex was 

calculated by averaging CPUE in a particular region.  

The goal in calculating FoO and mean CPUE per region was to be able to use 

both metrics to assess potential differences between the cold and warm temperature 

stanzas at a regional scale. Differences between stanzas were calculated by comparing 

the FoO or CPUE in the cold stanza to the FoO or CPUE in the warm stanza.  
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Figure 2: Twelve regions created by averaging all stations in four latitude and three 
longitude bins for a regional-level analysis. Each dot represents an individual station 
within the region.  

2.5 Linear Models 

Simple linear models (lms) were fit for CPUE as a function of bottom temperature 

and depth (CPUE~ Temperature + Depth) for each species complex as well as all 

tunicates combined. Model residuals were assessed for violations of model 



15 
 

assumptions, and Akaike Information Criterion (AIC) was used to select the best fit of 

these models.  

2.6 Spatiotemporal Modeling  

Preliminary analyses demonstrated changes in temperature over the time series 

(1987—2019) and across the EBS study area. These temporal and spatial temperature 

structures may also affect tunicate occurrence and abundance and distribution. While 

measured variables can be used as predictors in statistical models many of these 

models cannot incorporate unmeasured, or latent, variables. These latent variables, or 

inherent variation in “state” not necessarily due to environmental covariates (Kristensen 

et al 2016), require geostatistical models. To quantify temporal and spatial patterns of 

tunicate occurrence and abundance patterns and make predictions in areas not 

explicitly sampled a model that can incorporate spatiotemporal structure is desirable 

(Anderson et al. 2022). 

 The R package sdmTMB fits species distribution models using stochastic partial 

differential equation matrices (SPDE; Commander et al. 2022, Johnson et el. 2021, 

Ward et al. 2022). SPDEs are equations that execute relations between the partial 

derivatives of a function with many variables (PDEs) via random force terms and 

coefficients (Krasinski et al. 2019). First, a mesh is generated using the location data (in 

this case, latitude and longitude from each station converted to Universal Transverse 

Mercator (UTM) coordinates. The analyst designates the number of “knots” over which 

the stations will be reduced, allowing capture of existing species distribution data, and 

interpolation between stations. For this model, 50 knots were selected over which to 

interpolate; 80 created too fine a mesh and resulted in interpolation close to existing 
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field stations and 10 was too coarse, with too much distance between observed data 

points, which could fail to capture finer-scale changes in distribution. Unique meshes for 

each species complex, as well as one mesh for all the tunicates combined, were 

generated to conduct the spatiotemporal analyses because each species complex had 

an inherently different distribution in the study area.  

SPDE approximations to Gaussian Random Fields (random fields involving a 

generalized one-dimensional normal distribution to higher dimensions) using integrated 

nested laplace approximation (INLA) can make large spatial models run more quickly 

and be less computationally exhausting (Commander et al. 2022, Taylor and Diggle 

2014, Ward et al. 2022). INLA is a method to approximate Bayesian inference that is 

popular in spatial statistics due to its analytical speed with large data sets compared to 

other methods (Taylor and Diggle 2014). The sdmTMB package essentially fits 

extended generalized linear mixed models (GLMMs) with spatial and spatiotemporal 

components approximated in the covariance structure as random effects (Ward et al. 

2022). Within the modeling framework, spatiotemporal fields can be invoked if one 

assumes spatial variation is dynamic over a time series or omitted if the spatial variance 

is expected to be constant (stationary) over time. 

The response variables of interest in this study were presence/absence and 

CPUE of each of the three species complexes as well as all species combined. I 

generated different classes of sdmTMB models to identify the group that explained the 

most variability: presence/absence as a function of spatial information, 

presence/absence as a function of spatial and temporal information, CPUE as a 

function of spatial information, CPUE as a function of spatial and temporal information 
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as well as spatiotemporal models with covariates depth and temperature included. All 

spatiotemporal models (by year) were fit assuming a random walk spatial 

autocorrelation as I anticipated that both occurrence and abundance of tunicate species 

at one station was more like the stations nearest than at stations that were further apart. 

Similarly, I expected tunicate abundance and distribution to be more similar in two 

consecutive years than in increasingly longer intervals between samples.  

 Different families and links were used to fit the models dependent upon the data 

structure. Links are used to connect a model’s outcome (random component) to the 

predictors (systematic component) when data and the model residuals are not normally 

distributed. All presence/absence models were fit with a binomial family (either 0 or 1) 

and a logit link while the CPUE models were fit assuming a Tweedie family distribution 

and a log link. These are the canonical or default links for these distributions. Tweedie 

was selected for the latter because of the continuous nature of the response variable 

(CPUE) and large number of zeros in the data.  

The R package, sdmTMB, uses Template Model Builder (TMB), a model fitting 

package for modeling latent variables, to implement maximum likelihood estimation 

using INLA for random effects associated with space and time (Kristensen et al. 2016). 

A covariance matrix typically describes the interrelationships of the observational pairs 

within a statistical model. Here a Matérn covariance matrix is used to model covariance 

depending on the magnitude of the variability and the shape of the function. This matrix 

describes the spatiotemporal component underlying the distributions of the taxa.  

Model selection was based on a combination of residual plots, comparison with 

model AICs, visual assessment of maps of observations compared with model 
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predictions, and sdmTMB’s cross-validation function. The latter function performs cross-

validation by withholding some model data in iterations or “folds” to see how model 

predictions change when varying data is retained. It is possible to specify the number of 

folds in accordance with temporal or spatial patterns to examine for which years or 

locations the model fails to perform as well; however, I used the sdmTBM cross 

validation function default of 8 randomly selected folds. 

 From an extensive list of candidate models (see appendix), the top models were 

selected comparing the summed omitted log likelihood per fold across all omitted data 

for candidate models for each species (Anderson et al. 2022). These are the default 

values for the sdmTMB_cv() function. For log likelihood, better fit is signified by higher 

values. Additionally, I calculated residual mean squared error, which serves as a 

standalone measure of model fit. Here, the lower the error the better the model fits the 

observed data points. RMSE was calculated for each candidate model.  

To make predictions across the sample area, a prediction grid was created. I 

used a 50 km² prediction grid by generating sequences of 25 km from the minimum 

values to the maximum values in both latitude and longitude. I chose 25 km as a 

meaningful scale for which to obtain predictions based on the station locations for the 

observed data, the variation in observations across the study area, and the interpolation 

used to build the model. Predicted estimates of occurrence and abundance were then 

mapped out across the spatial grid; the error associated with these estimates was also 

mapped.  
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3. RESULTS 

3.1 Temporal and Spatial Temperature Patterns 

Bottom temperature ranged from -2.1 to 15.3−°C during the period of 

observation. The mean temperature over the entire time series was 2.17−°C with a 

standard deviation of 2.16−°C. Temperature fluctuated interannually with smaller 

deviations (on average 1.6 standard deviations) from the mean until about 2005, before 

the beginning of the cold stanza. Temperature shows a sharp increase by the end of the 

time series as the warm stanza developed (Figure 3). The years 2005—2010 mark the 

colder than normal stanza (approx. -1.9 SD from the mean) while 2015—2019 

represents a warmer than normal stanza (approx. +2.3 SD from the mean). This aligns 

with previous findings, confirming the stanzas already noted in the literature (Stevenson 

and Lauth 2019). While the mean varies by year, it is important to note the pronounced 

change in variance as well; temperature variability doubles in the warm stanza near the 

end of the time series compared to the neutral stanza prior to the cold stanza (Figure 3).  

In addition to temporal patterns in mean temperature and deviation in 

temperature from the mean, there are spatial patterns within the Bering Sea (Figure 4). 

The NBS is warmer (marked by warmer red colors) and more variable (bigger dots) than 

the EBS. The water is considerably shallower in the NBS than the EBS (mean 50 m, 78 

m respectively), especially extending into Norton Sound. The cold pool can visibly be 

seen as the relatively dark blue elbow shape flanked by purple on either side (Figure 4). 
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Figure 3: Mean bottom temperature per year across the time series. Error bars 
represent standard deviation from the mean. The warm and cold stanzas are annotated 
with labels and dashed lines. The period between the stanzas and prior to the cold 
stanza is considered neutral. The mean temperature across the time series is 2.17 °C 
marked with a red dashed line. 
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Figure 4: Bottom temperature is on average warmer (red color) and more variable 
(bigger dots) in the NBS across the entire time series.  

3.2 Tunicate Frequency of Occurrence and Catch Per Unit Effort 

The three taxa varied in occurrence patterns. Halocynthia was the least 

commonly occurring, only showing up in 31% of the stations (Figure 5). Boltenia and 

Styela were each present in about 80% of stations over the time series (not necessarily 

the same stations). Styela appeared to be the least localized, with broad distribution. 

Styela was nearly ubiquitous throughout the study area (Figure 5). 

NBS 

EBS 
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Figure 5: Frequency of occurrence by station for each of the three species complexes 
over the time series. Red signifies 100% frequency of occurrence at a station and blue 
indicates that species was found rarely (less than 25%) at that location. Purple dots 
represent stations where the species is found about half the time.  

 

The mean CPUE per year for all tunicates was 23.5 kg/ha and the mean CPUE 

per station for all tunicates was 1.49 kg/ ha. Figure 6 shows the interannual variability in 

temperature with mean tunicate CPUE. Periods of colder and warmer water (the cold 

and warm stanzas) show associated increases (cold) and decreases (warm) in mean 

tunicate abundance that are corroborated in Table 1. Halocynthia had the most 

localized distribution, but the highest mean CPUE per year from the early 2000’s and 

on. Boltenia, with its intermediate distribution (Figure 5) had the lowest mean CPUE per 

year by weight (Figure 6a). Styela with is the most broadly distributed tunicate spatially 

but isn’t found in as exceptionally high numbers per station as Halocynthia.  
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Figure 6: Time series of (a) tunicate catch per unit effort for each year for each of the 
three species complexes and (b) average bottom temperature by year for the time 
series.  

 

When tunicate CPUE was compared in the same subset of years in the EBS and 

NBS, tunicate biomass was generally higher in the EBS than in the NBS. Halocynthia 

dominated the EBS in all three years but was infrequently found in the NBS (Figure 7). 

Although it was very localized, not occurring broadly, (Figure 5), it was found in very 

high biomass where it occurred. Styela was the most abundant species complex by 

biomass in the NBS during 2010, 2017, and 2019. In the EBS it had lower CPUE than 
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Halocynthia, despite being more widely distributed, suggesting it may be less sensitive 

to water temperature (Figure 6). 

 

 

Figure 7: Logged catch per unit effort of a) Northern Bering Sea and b) Eastern Bering 
Sea for Boltenia (pink), Halocynthia (green), and Styela (blue) for the three years the 
Northern Bering Sea stations are included in the data.  

3.2.1 Tunicate Frequency of Occurrence and Catch Per Unit Effort by 

Stanza 

Boltenia and Halocynthia decreased in FoO between the cold and the warm 

stanzas (Table 1). Styela FoO increased slightly between the two stanzas while 

tunicates combined remained constant (Table 1). Boltenia’s largest increase in FoO 

between the cold and warm stanzas occurred in region G in the EBS. The increase in 

Styela FoO appeared to occur largely in region L in the NBS (Figure 8). Styela 

increases in FoO were larger in magnitude than the other two species. 
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All three species decreased in average CPUE between the cold and warm 

stanzas (Table 1). CPUE was on average higher in the cold stanza than the warm, and 

there tended to be higher variability around this mean in the cold stanza than the warm. 

Region F experienced increases in CPUE between the cold and warm stanza for all 

three species even though all three species experienced overall decreases in CPUE 

between the stanzas. Again, Styela differences were largest in magnitude (Figure 9), 

with 1.692 thousand kg/hectare decline in CPUE (Table 1). 

 
Table 1: Mean frequency of occurrence (as a percentage) and mean catch per unit 
effort (in kg/ha) in each stanza for each species and the difference between the two. 
The color shows the direction of the change; blue is a decrease from cold to warm, red 
is an increase from cold to warm, and black signifies no change.   

Species Metric Cold Stanza  Warm Stanza Difference 

Bolt  Frequency of occurrence 11% 8% 3% 

Bolt  Catch per unit effort 490 kg/ha 100 kg/ha 390 kg/ha 

Halo Frequency of occurrence 3.1% 2.6% 0.5% 

Halo Catch per unit effort 1080 kg/ha 690 kg/ha 390 kg/ha 

Sty Frequency of occurrence 16% 18% 2% 

Sty Catch per unit effort 3000 kg/ha 1308 kg/ha 1690 kg/ha 

All Frequency of occurrence 8.6% 8.6% 0 

All Catch per unit effort 1310 kg/ha 680 kg/ha 630 kg/ha 
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Figure 8: Difference in frequency of occurrence between cold stanza and warm stanza 
for a) Boltenia, b) Halocynthia, and c) Styela in each of the 12 regions. Most 
pronounced increases and decreases for each species are outlined in red and blue 
respectively. 

 
Figure 9: Difference in catch per unit effort between cold stanza and warm stanza for a) 
Boltenia, b) Halocynthia, and c) Styela in each of the 12 regions. Most pronounced 
increases for each species are outlined in red. 

3.3 Linear Model Results 

Temperature and depth were both significant predictors in linear models of CPUE 

(Table 2) but did not explain much variation in any of the cases. They both appeared to 

be important structuring variables (slopes significantly different from zero), but residual 
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error is high with space and time, or other unmeasured variables unaccounted for. 

These results motivate the use of spatiotemporal SDMs to better understand how 

spatial arrangement influences distribution over time. Halocynthia showed an increase 

in CPUE with temperature while the others showed decreases (Table 2). CPUE for all 

complexes increased very slightly with depth (low positive coefficients in Table 2).  

 

Table 2: Summary table for linear models of tunicate catch per unit effort with covariates 
depth and temperature for all three taxa as well as for all tunicate species combined. 

Species 
F 
Stat P  Adj.R² 

Temp 
Coef. 

Temp 
SE Temp P  

Depth 
Coef. 

Depth 
SE Depth P  

Bolt 28.58 <0.001 0.017 -0.05 0.008 <0.001 0.003 0.001 0.01 

Halo 27.64 <0.001 0.05 0.1 0.27 <0.001 0.04 0.006 <.001 

Sty 46.18 <0.001 0.03 -0.09 0.01 <0.001 0.007 0.002 <.001 

All 191.3 <0.001 0.05 -0.07 0.008 <0.001 0.01 0.001 <.001 
 

3.4 Spatiotemporal Model Results  

Spatial and spatiotemporal models were fit for each of the three species 

complexes (Boltenia, Halocynthia, Styela) plus one for all tunicates combined (see full 

list of models in the appendix). The model results are in Table 3. CPUE for all three 

tunicate taxa was modeled as a function of spatial information only (no environmental 

covariates) with 1) assumed constant spatial variation and 2) assumed dynamic spatial 

variation by year (spatiotemporal, random walk structure). Both models were included 

for comparison. The last three models for each species are CPUE as a function of 

bottom temperature to evaluate the impact of temperature once the error associated 

with spatial and temporal processes is accounted for. Table 3 shows a complete list of 

models fit.  
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Table 3: Table showing each species complex, the model number, the structure of the 
model (spatial only or spatiotemporal), whether the temperature covariate was included 
in the model, the delta AIC (the lowest AIC value measured from each of the others), 
the coefficient estimate for the covariate (either space only, space and time together, or 
temperature) and its associated standard error, and the Matérn distance (estimated 
distance at which points become independent of each other for a given model). Best 
fitting models (determined by delta AIC) for each species are bolded. The response 
variable was catch per unit effort in all cases.  

Species 
 
Model Structure Covariate 

 ∆ 
AIC 

Coef. 
Est 

Coef. 
SE Matérn 

Boltenia 1 spatial none 397 -7.87 1.44 317.10 

Boltenia 2 spatiotemporal none 0 -7.22 1.39 314.30 

Boltenia 3 spatiotemporal Temperature 369 -0.04 0.03 313.69 

Halocynthia 4 spatial none 67 -15.57 6.46 541.84 

Halocynthia 5 spatiotemporal none 0 -13.76 2.60 295.29 

Halocynthia 6 spatiotemporal Temperature 2 -0.03 0.05 293.01 

Styela 7 spatial none 351 -7.56 2.50 404.66 

Styela 8 spatiotemporal none 12 -7.63 1.84 324.96 

Styela 9 spatiotemporal Temperature 0 -0.11 0.03 318.44 
 

3.4.1 Spatial and Spatiotemporal Models 

For all three species, the spatiotemporal models were more supported than the 

spatial models according to AIC. There is also lower standard error around the 

coefficient for the spatiotemporal models than the spatial models (Table 3). The Matérn 

distance is based on the distance at which the data points become independent of each 

other and are not spatially related. It is a helpful metric for interpreting how spatially 

correlated the points are for a particular species in a particular model. Boltenia 

observations become independent of each other at 314 km² in the best fitting model 

(Model 2), Halocynthia observations become independent of each other at 295 km² 
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(Model 5). Halocynthia’s coefficient for spatial (-15.57) and spatiotemporal (-13.76) 

information are nearly double the size of any other species.  

 The Styela predictions become a bit patchier and more pinpointed when a 

dynamic spatial variation is assumed (Figures 10c,11c). Boltenia also becomes 

patchier, especially in the southeast portion of the Bering Sea. Halocynthia spatial 

predictions don’t change much between the spatial and spatiotemporal models. 

Individually fit species models are more informative than the model fit for all tunicates 

combined because individual species varied in distribution and abundance and 

therefore are not included in these results. The patterns in the combined models were 

largely driven by the most ubiquitous taxon, Styela.  

 

 

 

 

 

 

 

 

 

 

 

 

.  
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         a) Boltenia (M1)                          b) Halocynthia (M4)                         c) Styela (M7) 

 

 

Figure 10: Predictions for catch per unit effort estimates from spatial models for a) 
Boltenia, b) Halocynthia and c) Styela. Model number corresponds to column 2 in Table 
3. X and Y values are Universal Transverse Mercator coordinates. Estimates are log 
transformed catch per unit effort for ease of visualizing distribution patterns due to high 
number of zeros in catch per unit effort data. Note varying scales for each species. 

 

 

 

a) Boltenia (M2)                               b) Halocynthia (M5)                      c) Styela (M8) 

 

Figure 11: Predictions for catch per unit effort estimates from spatiotemporal models for 
a) Boltenia, b) Halocynthia and c) Styela. Model numbers correspond to column 2 in 
Table 3. X and Y values are Universal Transverse Mercator coordinates. Estimates are 
log transformed catch per unit effort for ease of visualizing distribution patterns due to 
high number of zeros in catch per unit effort data. Note varying scales for each species. 
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3.4.2 Spatiotemporal Models with Environmental Covariates 

Temperature 

When included as a covariate in the spatiotemporal models, temperature had a 

weaker relationship with CPUE than spatial information alone as shown by a coefficient 

of smaller magnitude. Temperature does not influence spatial predictions for Boltenia 

and Styela (Figures 11a-b, 12a-b) but does appear to contribute to explaining variance 

in the data (Table 3). Of the three species complexes, Halocynthia predictions change 

the most when temperature is included as a covariate, with regions of high abundance 

becoming more localized than when the temperature covariate is omitted (Figure 12b). 

All coefficients show negative effects on CPUE with temperature (Table 3). Styela’s 

coefficient shows the largest decrease in CPUE (-0.11) with temperature compared to 

the other two species (-0.04, -0.03; Table 3). Styela is the only species for which a 

model with temperature included as a covariate is preferred over a model without the 

covariate (Table 3), although the output for Halocynthia shows support for including 

temperature in the model (∆AIC−2). Styela observations become independent of each 

other at 318 km² (Model 9). 
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a) Boltenia (M3)                              b) Halocynthia (M6)                       c) Styela (M9) 

  

Figure 12: Predictions for catch per unit effort estimates from spatiotemporal models 
with temperature as a covariate for a) Boltenia, b) Halocynthia and c) Styela. Model 
numbers correspond to column 2 in Table 3. X and Y values are Universal Transverse 
Mercator coordinates. Estimates are log transformed catch per unit effort for ease of 
visualizing distribution patterns due to high number of zeros in catch per unit effort data. 
Note varying scales for each species.  

 

Depth 

The spatiotemporal models do not support a direct relationship between depth 

and tunicate abundance. The coefficient for depth is not significantly different from 0, 

and the AIC score increases when depth is added to models. 

3.4.3 Model Validation  

The summed log likelihood values corroborated AIC in model selection from the 

candidate list; the values were highest for the Boltenia and Halocynthia spatiotemporal 

models without environmental covariates and highest for Styela with temperature 

included as a covariate. RMSEs were calculated for the spatiotemporal models (with 

and without temperature included as a covariate) as an additional measure of fit. 

Halocynthia had the smallest RMSE (15, 18 for models with and without covariates 

respectively) While Boltenia had the highest (RMSE = 33 for all models). As these 

values can range from 0 to infinity, all three of the species represent quite good fit (low 
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RMSE), although RMSE is known to be biased in models of this complexity (Anderson 

et al. 2022). 

3.4.4 Indices of Abundance 

Using the spatiotemporal model (no covariates) developed for each species, 

predicted CPUE trends for all three species, and all tunicates combined, show similar 

trends over the time series, but responses vary in magnitude (Figure 13). Styela 

predictions are higher than the other two tunicate species in the dataset, perhaps 

reflecting the broader distribution of this species in the study area. In general, 2010 was 

a year of particularly high tunicate abundance, although the mid-2000s also showed 

high CPUE predictions for Styela that were not observed in the observed annual 

averages (Figure 6).The declines seen in 2019 represent a return to baseline numbers 

seen near the beginning of the time series during a period of higher interannual 

variation of temperature for Halocynthia and Boltenia, although their trends in 

subsequent years is unknown given the lack of data. The prediction trend (black line) for 

all tunicates combined looks to be mostly driven by peaks and troughs in Styela which is 

the most abundant species from the estimates.  
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Figure 13: Catch per unit effort (in kg/ km²) predictions generated for Boltenia (orange), 
Halocynthia (green), Styela (blue) and all tunicates combined (black) with associated 
standard error (grey). The predictions are from spatiotemporal models for all three 
species without environmental covariates. 

 

4. DISCUSSION 

Spatial and Temporal Patterns are Primary Drivers of Tunicate Abundance  

Spatiotemporal models were an improvement over spatial models alone and 

temperature explained additional variance. Regional-level changes in frequency of 

occurrence and catch per unit effort do not necessarily align with the overall decreases 

seen when data are considered in aggregate across the Bering Sea, suggesting the 

importance of geography in determining distributions. For example, all three tunicate 

species experienced an increase in mean CPUE in region F between the two stanzas 

although the overall trend in CPUE across all regions was a decline (Figure 9). Region 
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F is in the center of the EBS, where the average depth is 52.5 m; additionally, Region F 

is located within the cold pool. This location may contribute to increased CPUE here 

while decreases occur elsewhere in the presence of warming temperatures; the cold 

pool may represent a pocket of reprieve in an otherwise warming environment. This 

result also supports the importance of temporal information in species distribution 

models, as the location and extent of the cold pool changes annually and at longer 

scales, and we know the cold pool is shrinking with warmer temperatures over time. The 

fact that regional-level results do not mirror overall CPUE trends speaks to the 

importance of including measures of spatial and temporal variation in predicting tunicate 

abundances and distributions in an area as big as the Bering Sea, despite its 

homogenous bathymetry. Although depth was a significant factor in linear models, it did 

not explain additional variance once the spatial and temporal variance structure were 

accounted for. This is likely due to the depth structure in the Bering Sea; there is no 

continuous slope or depth gradient along which to test the importance of depth to these 

communities, but rather a simple bathymetry where other factors are likely stronger 

structuring variables. 

 

Tunicates are More Abundant in Colder Environments  

Frequency of occurrence was higher in the cold stanza for two of the three species 

analyzed and mean catch per unit effort was higher during the cold stanza for all three 

species. All three species demonstrate predicted increases in CPUE in 2010 at the end 

of the cold stanza and sharp declines in 2019 at the end of the warm stanza in the 

model-generated index of abundance. There is higher variability in both FoO and CPUE 
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in the cold stanza than the warm stanza, suggesting that when conditions are more 

suitable (colder) tunicates have the capacity to increase substantially in both distribution 

and biomass, but when conditions are less suitable (warmer), the observed CPUE 

declines along with spatial distribution, and the index of abundance hovers closer to the 

long-term mean. 

 

Cold and Warm Stanzas Drive Occurrence and Abundance in a Regional-Level 

Analysis 

Changes in FoO occurred in more regions than did CPUE. Thus, FoO may be more 

responsive to temperature, but these changes in FoO are not visible until local 

populations have been significantly changed. CPUE is likely an earlier indicator of 

change in response to temperature due to the continuous nature of the variable and the 

fact that abundances are likely to decline in CPUE before ceasing to be present. The 

largest increases and decreases in FoO between the cold and the warm stanzas for 

most species occurred in the Northern Bering Sea where temperatures are known to be 

increasing more rapidly. It is worth keeping in mind that there are smaller sample sizes 

in the NBS. While this doesn’t affect comparisons between the NBS regions (D,H,L) and 

the rest of the regions due to mean per region calculations, the NBS data contains both 

the coldest (2010) and the warmest (2019) year in the time series, possibly impacting 

comparisons between the two stanzas in Northern Bering Sea regions D, H, and L. NBS 

data also includes an uneven number of cold (1 year, 2010) and warm years (2 years, 

2017 and 2019). 
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Spatiotemporal Models Enabled Description of Spatial and Temporal Patterns in 

Tunicate Abundance  

This dataset is unique in the extent of both spatial and temporal information that it 

includes, lending to the use of more advanced modeling techniques. Most datasets 

either cover a spatial zone in one year, or the same site over time; very infrequently do 

environmental datasets contain both spatial and temporal data collected at this extent. 

The high quality of the data provided the opportunity to explore a cutting-edge modeling 

technique and assess its effectiveness in predicting tunicate abundances and 

distributions for the purpose of identifying indicators of environmental change in the 

Bering Sea.  

The models fit the observed data well based on visual assessments of the 

observations compared to the predictions and were further validated with cross 

validation methods inherent within the modeling package. The fact that latent variation 

in space and time is the strongest predictor of tunicate CPUE does not mean that 

environmental covariates are not important, but that the way these covariates impact 

CPUE will change over time and across space. Additional covariates that were not 

measured in this study (e.g., organic matter availability in the benthos, salinity, 

seasonally averaged surface temperature, bottom type) may be important in further 

explaining distribution and abundance for these species. 

 There are many other applications for spatiotemporal models in fisheries 

management such as to reduce bycatch and manage fisheries more selectively (Dunn 

et al. 2011), identify changes in populations, manage ecosystems, conserve habitat, 

and assess effects of climate change (Thorson 2019), and evaluate length-weight 
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relationships over time that may be influenced by spatial and/or temporal processes (Al 

Nahdi et al. 2016). Using multivariate spatiotemporal SDMs such as Vector 

Autoregressive Spatio-Temporal model (VAST) could expand the utility of my analysis 

further by considering all species complexes within the same multivariate model 

framework rather than fitting three different models as done in this study.  

 

Tunicate Species Respond Differently to Temperature  

Given that different parts of the Bering Sea are experiencing different conditions 

as climate change progresses, it is not surprising that organisms with variable 

distributions will not be uniformly impacted by temperature. Predictions of Halocynthia 

CPUE change the most spatially when temperature is included in the spatiotemporal 

model. They also occupy the smallest spatial area in the Bering Sea of all species 

complexes examined, which is further cause for concern if their center of distribution is 

experiencing sustained warming. The spatiotemporal model including temperature as a 

covariate fit slightly better for Styela, suggesting that temperature may be a factor in 

Styela’s distribution and northward movement. Styela mean CPUE decreases the most 

by weight between the cold and the warm stanzas, but the FoO actually increases 

between the two stanzas. Paired with the fact that Styela is the most numerous tunicate 

species in the NBS, this suggests that an increase in FoO could be driven by higher 

rates of occurrence in the NBS as the temperature increases in their existing range. The 

range of the species is increasing though overall biomass is not. Reduced cold pool 

extent affects phytoplankton production (both timing and magnitude) in the NBS, which 

decreases organic matter (OM) supply to tunicates in the benthos (Lovvorn et al. 2016). 
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This may constrain tunicate abundance in the NBS under warming conditions (reduced 

cold pool extent). Increasing tunicate range northward is also possibly countered by 

predation from fish or mobile invertebrate species whose ranges are also expanding 

northward due to warming in the EBS, preventing overall CPUE increases. This seems 

unlikely to be the main reason for decline as many tunicates have evolved chemical 

deterrents to predation by fish in addition to their already tough tunic exterior (Holland 

2016).  

 

A Suite of Individual Species or “Composite” Indicator May be Most Informative 

Predictor 

The fact that these three tunicate species complexes are not responding to 

environmental conditions in the same way or by the same order of magnitude suggests 

that they possess differences in life-history and/or thermal tolerance, possibly caused by 

adaptation to slightly different temperature conditions. These species do all meet one 

criterion that has been identified for choosing an indicator species, in that their selection 

would be based on a sound, quantitative database from the focal region (Carignan and 

Villard 2002).  Multi-species indicators (MSI) are gaining traction in usefulness in 

monitoring biodiversity (Soldaat et al. 2017) due to an increased robustness to the 

fluctuations of individual species. Each species essentially serves as a replicate. If 

consistent trends are observed, it can be inferred that they are indicating similar 

environmental conditions the same way.  

. These three tunicate species represent different levels of abundance within their 

distribution in the EBS and NBS from patchy (Halocynthia), to relatively uniform (Styela) 
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and intermediate abundance and distributions (Boltenia). There are examples of 

commonly encountered species responding more strongly to disturbance than rare 

species (Koch et al. 2011) as well as rarer at-risk species performing well as an 

indicator group (Lawler et el. 2003). Abundant and rare species may respond differently 

to climate extremes (Chen et al. 2020) providing further motivation for including both in 

a composite indicator complex. This study suggests that tunicates could be useful 

indicators of shifting climate in the Bering Sea when analyzed in concert. Temperature 

is clearly related to Boltenia, Halocynthia, and Styela frequency of occurrence and catch 

per unit effort as shown by the regional analyses and model results in this study, which 

is the first step in determining whether they will be useful as indicators of climate effects.  

Dynamic factor analysis (DFA) is a technique that is used to detect patterns in a set 

of time series. DFA was used to relate trends in lobster abundance to environmental 

variables to better predict how at-risk populations will respond to changes in 

environmental variables (Zuur et al. 2003). This type of analysis would be useful to 

determine which environmental factors Bering Sea tunicate CPUE is most related to as 

a possible extension to a multi-species indicator analysis.  

 

Modeling Framework could be Expanded  

 Sessile invertebrates are important ecosystem engineers playing a part in marine 

biogeochemistry and moving carbon back to the water column through predation 

(Hiddink et al. 2014). Because they can’t move as adults, and like all marine ectotherms 

are more vulnerable to temperature shifts than terrestrial counterparts (Hiddink et al. 

2014), they are especially susceptible to negative impacts of sustained temperature 
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increases. Sessile invertebrates lose predator-free space quickly in the intertidal zone in 

response to warming water creating thermal mismatches (Harley 2011). The loss of cold 

pool extent in the Bering Sea could create a similar mismatch between species as sub-

arctic species like Walleye Pollock are no longer excluded from areas historically too 

cold for them much of the year. A study from the tropics showed the impacts of storm 

activity (expected to increase in occurrence and severity with climate change) on sessile 

invertebrate assemblages in the Great Barrier Reef (Walker et al. 2008). Storms are 

expected to increase in the EBS and NBS due to loss of sea ice and warming water 

(Overland and Pease 1982). Large storms in the Bering Sea stir the sediment down to 

great depths (McConnaughey and Syrjala 2014), possibly impacting invertebrate 

populations through upheaval and/or siltation from resettling sediment if these events 

become increasingly common. Mixing water masses due to these storms will also break 

down the cold pool earlier in the year, possibly creating a positive feedback loop of 

further warming (Stabeno et al. 2007). For these reasons, historically under-studied and 

non-economically important sessile invertebrates across the globe may serve as 

indicators of climate change impacts based on reduced abundance or distribution 

shifts—either within an intertidal zone or across latitudinal gradients. 

Spatiotemporal models may be improved by including seasonally averaged surface 

temperature instead of the bottom temperatures recorded at the time of data collection, 

which offer a snapshot, but not an integrated picture of the environment. More work 

needs to be done on the historically under-studied NBS as climate change continues to 

change the Bering Sea, causing species (and potentially trawl effort) to move further 

north. 
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5. CONCLUSION 

 

Both tunicate abundance and distribution are related to periods of cooler than 

average and warmer than average temperatures. Latent spatial and temporal 

correlation explains the largest portion of variability in catch per unit effort. The three 

taxa in this study were not impacted the same way, indicating different adaptations and 

tolerances to a broader suite of habitat conditions, suggesting they may have different 

utilities as environmental indicators. Halocynthia may be useful due to its relatively small 

center of distribution. Boltenia may be a useful indicator because it is more widely 

distributed than Halocynthia, but less abundant. Both could be considered “rare” 

species in terms of distribution (Halocynthia) or overall CPUE (Boltenia). There are 

some challenges associated with monitoring rare versus common species which is the 

focus of recent spatiotemporal model application (Balbuena et al. 2021). Styela is an 

example of a very commonly encountered species which might make it a useful 

indicator species. 

It is also possible that the varying “catchability” of these tunicate species, or 

ability of researchers to accurately collect all species they trawl over, impacts what we 

can observe as catch per unit effort data. Boltenia can be the most difficult to catch as 

the stalks they grow from can get tangled in trawl nets (L. Britt, NOAA RACE division, 

personal communication, November 2022). This means there may be more Boltenia out 

there than we are able to assess with current methods. Understanding how each 

species will be affected by changing climate may aid in predicting similar responses in 

other animals. Multivariate models such as VAST could also be a potential route for 

improving benthic invertebrate species distribution estimates.  
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7. APPENDIX 

 

Appendix 1.1 Table of presence/absence models considered. All Spatiotemporal 
models were fitted with a Random Walk (RW) structure. 

Response Variable  Covariate Species Model Type  

Presence/absence Depth Boltenia Spatial 

Presence/absence Depth Boltenia Spatiotemporal 

Presence/absence Temperature Boltenia Spatial 

Presence/absence Temperature Boltenia Spatiotemporal 

Presence/absence None Boltenia Spatial 

Presence/absence None Boltenia Spatiotemporal 

Presence/absence Depth Halocynthia Spatial 

Presence/absence Depth Halocynthia Spatiotemporal 

Presence/absence Temperature Halocynthia Spatial 

Presence/absence Temperature Halocynthia Spatiotemporal 

Presence/absence None Halocynthia Spatial 

Presence/absence None Halocynthia Spatiotemporal 

Presence/absence Depth Styela Spatial 

Presence/absence Depth Styela Spatiotemporal 
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Presence/absence Temperature Styela Spatial 

Presence/absence Temperature Styela Spatiotemporal 

Presence/absence None Styela Spatial 

Presence/absence None Styela Spatiotemporal 

Presence/absence Depth All Spatial 

Presence/absence Depth All Spatiotemporal 

Presence/absence Temperature All Spatial 

Presence/absence Temperature All Spatiotemporal 

Presence/absence None All Spatial 

Presence/absence None All Spatiotemporal 

 

Appendix 1.2 Table of CPUE models considered. 

Response Variable Covariate Species Model Type  

CPUE Depth Boltenia Spatial 

CPUE Depth Boltenia Spatiotemporal 

CPUE Temperature Boltenia Spatial 

CPUE Temperature Boltenia Spatiotemporal 

CPUE None Boltenia Spatial 

CPUE None Boltenia Spatiotemporal 

CPUE Depth Halocynthia Spatial 

CPUE Depth Halocynthia Spatiotemporal 

CPUE Temperature Halocynthia Spatial 

CPUE Temperature Halocynthia Spatiotemporal 

CPUE None Halocynthia Spatial 

CPUE None Halocynthia Spatiotemporal 

CPUE Depth Styela Spatial 

CPUE Depth Styela Spatiotemporal 

CPUE Temperature Styela Spatial 

CPUE Temperature Styela Spatiotemporal 

CPUE None Styela Spatial 

CPUE None Styela Spatiotemporal 

CPUE Depth All Spatial 

CPUE Depth All Spatiotemporal 

CPUE Temperature All Spatial 

CPUE Temperature All Spatiotemporal 

CPUE None All Spatial 

CPUE None All Spatiotemporal 

 

Appendix 2: R code for spatiotemporal models  

Run with R version 4.2.0 
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Rstudio 2022.02.3+492 

 

2.1 To make the meshes for each species complex: 

 

Meshspecies<- make_mesh(species.zeros, xy_cols=c("X","Y"), cutoff = 50) 

 

2.2 Spatial, Spatiotemporal, and Spatiotemporal with Environmental Covariate 

2.2.1 Spatial Information (No Covariates) 

mspecies1 <- sdmTMB( 

  data = species.zeros, 

  formula = CPUE_weight_kgperhect ~ 1, 

  mesh = meshspecies, 

  family = tweedie(link = "log"), 

  spatial = "on” 

) 

 

mspecies1 

 

2.2.2 Spatiotemporal (No Covariates) 

mspecies2 <- sdmTMB( 

  data = species.zeros, 

  formula = CPUE_weight_kgperhect ~ 1, 

  mesh = meshspecies, 

  family = tweedie(link = "log"), 

  spatial = "on", 

  time = "YEAR", 

 spatiotemporal = "RW" 

) 

 

mspecies2 

 

2.2.3 Spatiotemporal, Temperature as a Covariate 

mspeciestemp<- sdmTMB( 

  data = species.zeros, 

  formula = CPUE_weight_kgperhect ~ GEAR_TEMPERATURE, 

  mesh = meshspecies, 

  family = tweedie(link = "log"), 

  spatial = "on", 

  time = "YEAR", 

 spatiotemporal = "RW" 

) 
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Mspeciestemp 

 

2.3 Making Predictions on Model output 

Predictionsmspecies1<- predict(mspecies1, newdata = speciesnewdata, type = "link") 

 

Speciesnewdata being the grid created from sequences of original data (species.zeros) 

with appropriate variables brought over (lat, long, year, depth, etc). Type argument 

specifies the unit on the estimates, the default is type = “link” which estimates CPUE 

transformed to whichever link was selected (in this case log). 

 

2.4 Mapping Predictions 

mspecies1plot<-ggplot(predictionsmspecies1, aes(X, Y)) +  

  geom_raster(aes(fill = est)) 

 

2.5 Cross Validation 

mspecies1_cv <- sdmTMB_cv( 

  CPUE_weight_kgperhect~1, 

  data = species.zeros, mesh = meshspecies, 

  family = tweedie(link = "log"), 

  spatial = "on", 

  time = "YEAR", 

  k_folds = 8 

) 

 

 

To pull out estimated log predictive density and summed log likelihood  

mspecies1_cv$elpd 

mspcies1_cv$sum_loglik 
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