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Preamble 

This document has two parts: this primary document which was written in journal 

manuscript format, and a Supplemental Materials document which describes additional 

information related to the research. The primary document is a complete narrative and can be 

read on its own. The Supplemental Materials provide background information, a more thorough 

methods description, and additional results. It should be read in conjunction with the primary 

document, but it does include its own table of contents, tables, and figures. 
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Abstract 

Climate change is projected to increase river flooding in the Puget Sound region of 

Washington State by reducing snowpack and yielding more intense storm events. Pairing 

meteorological forcings from general circulation models (GCMs) with a physically based 

hydrologic model is a robust method of assessing watershed response to projected climate. 

Before GCM forcings can be applied to regional hydrologic models, some form of downscaling 

or regionalization is required. Dynamical downscaling is a means of incorporating mesoscale 

atmospheric processes within GCM-informed boundary conditions. Here I apply climate 

projections, dynamically downscaled using the Weather Research and Forecasting model (WRF), 

to the Stillaguamish watershed in northwest Washington State using the physically based 

Distributed Hydrology Soil Vegetation Model (DHSVM). I simulate hourly streamflow for 12 

high emissions scenarios (i.e., Representative Concentration Pathway 8.5) throughout the 1,724-

square-kilometer basin from 1970 through 2099 and analyze climate and hydrologic trends, with 

a particular emphasis on peak flows. My projections indicate that as the climate warms, 

snowpack will recede to higher elevations and the basin will shift from transitional to rain-

dominant, leading to an increase in average winter streamflows and a decline in spring and 

summer streamflows. Peak streamflow magnitude in the Stillaguamish River will increase by 

about +26.5% across the assessed return intervals (2 to 100 years) and flow durations (3 hours to 

1 week) by the 2080s. Similarly, modern day peak flow magnitudes will recur more frequently. 

Flow generating mechanisms also change, with rain-on-snow events decreasing in likelihood 

while extreme precipitation events become more common and more severe. These shifts have 

wide ranging implications for flooding within the developed lowlands of the watershed, and for 

threatened salmonid populations which are culturally and economically critical to the region. 
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1 Introduction 

In the Salish Sea region of Washington State and British Columbia, peak streamflow 

magnitude and frequency are increasing as the climate warms, particularly in transitional rain-

snow basins like that of the Stillaguamish River (Hamlet and Lettenmaier, 2007; Lee et al., 2018; 

Chegwidden et al., 2020). Two primary mechanisms are at work: changes in rain-snow 

partitioning elevation (Mote et al., 2018) and more intense winter rain events (Warner et al., 

2015).  

Snowpack in mountainous regions of the Pacific Northwest acts as a natural reservoir – 

snow accumulates throughout cold winter months, when the majority of annual precipitation falls 

(Neiman et al., 2008), and melts during drier spring and summer months, wetting soils and 

supplying summer streamflow (Stewart et al., 2004; Hamlet et al., 2013). As the climate warms, 

snowlines are retreating to higher elevations, exposing a greater proportion of landscape to 

winter rainfall rather than snow (Ikeda et al., 2019), resulting in higher peak winter streamflow 

and lower summer streamflow.  

Intense winter storm events in the Salish Sea Region are typically attributable to 

atmospheric rivers (Ralph et al., 2017) – narrow bands of water vapor lasting on the order of 

hours to days that produce heavy rain and snow when they flow over the high relief of the 

Cascade Mountain Range (Rutz et al., 2014). As the climate warms, the amount of water vapor 

atmospheric rivers carry is projected to increase, yielding not only greater precipitation but also 

rainier versus snowier storms (Warner et al., 2015). Modeling indicates this will result in higher 

winter peak streamflow, particularly in basins that have historically been snowier but by the end 

of the century will be increasingly rainier due to rising winter air temperatures (Hamlet et al., 

2013).  

In this study I assess changes in peak streamflow by applying an ensemble of general 

circulation model (GCM) projections that were dynamically downscaled with the Weather 

Research and Forecasting model (WRF; Skamarock et al., 2008) to a calibrated distributed-

hydrology-soil-vegetation model (DHSVM; Wigmosta et al., 1994). I evaluate changes in peak 

streamflow magnitude and frequency from 1980 through 2099 for each downscaled GCM and 

evaluate how peak-flow generating mechanisms change through time. This research is novel in 

its incorporation of dynamically downscaled meteorological projections. Whereas other similar 

studies incorporated statistically downscaled projections, which typically have limited temporal 
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resolution (Hamlet et al., 2013; Dickerson-Lange and Mitchell, 2013; Freeman, 2020; Clarke, 

2020), the projections used in this study have native sub-hourly temporal resolution. This is 

critical for incorporating intense short-duration rainfall events like atmospheric rivers (Salathe et 

al., 2014) that can yield extreme peak flows. This research also advances methods for coupling 

WRF outputs with DHSVM. Both models are complex and require significant time investments 

to learn and calibrate.  

1.1 The Stillaguamish Watershed 

The Stillaguamish River discharges a 1724 km2 watershed in the Puget Sound region of 

northwest Washington State and has a mean annual discharge of about 95 cubic meters per 

second (m3s-1, 3400 cubic feet per second [cfs], USGS, 2016, Figure 1). The Stillaguamish River 

has three primary tributaries: Pilchuck Creek to the north, the North Fork of the Stillaguamish 

River to the northeast, and the South Fork of the Stillaguamish River to the south. The North and 

South Forks of the Stillaguamish River have high relief (elevation ranges from about 15 to 2,000 

meters above sea level [USGS, 2001]), and are dominated by coniferous forests. The North and 

South Forks are transitional rain-snow basins and maintain significant winter snowpack above 

approximately 1,000 m. Pilchuck Creek drains a lower relief, rain-dominated section of the basin 

(elevation ranges from about 5 to 1,100 meters above sea level) and contains a greater proportion 

of developed lands (e.g., agriculture, urban, residential). 

Near-surface geology in the valleys of the Stillaguamish watershed is dominated by 

unconsolidated alluvial and glacial deposits. These deposits are Pleistocene in age or younger 

and were deposited during the recession of the Cordilleran ice sheet which retreated about 

13,000 years ago, or subsequently due to fluvial processes. The Vashon Drift unit which includes 

advance, lacustrine, proglacial, outwash, till and recessional deposits is the dominant surficial 

geologic unit within the watershed (Booth et al., 2003). This unit is a common source of post-

glacial landslides in the region such as the devastating Oso landslide which occurred in March 

2014 along the North Fork of the Stillaguamish River (USGS, 2017; Wartman et al., 2016). 

Bedrock in the watershed comprises Mesozoic subduction-borne metamorphic units which are 

exposed in high relief sections of the watershed (Booth et al., 2003).  

The Stillaguamish watershed experiences a Pacific maritime climate with cool wet 

winters and warm dry summers. Precipitation is highly variable across the watershed due to high 

relief (Roe et al., 2003) and the surrounding regional topography, which includes the Olympic 
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Mountain range to the southwest and the Cascades Mountain range to the east (Mass, 1981; 

Whitney et al., 1993, Minder et al., 2008). Within the historical record, annual precipitation 

magnitude in the Stillaguamish watershed ranges from less than one meter in the lowlands to 

over three meters in the highlands (PRISM Climate Group, 2014). Approximately 75% of 

precipitation in the watershed falls between October and March. The watershed periodically 

receives heavy winter precipitation from atmospheric rivers – bands of warm, wet air that cross 

the Pacific Ocean and create heavy precipitation along the west coast of the North America 

(Lorente-Plazas et al., 2018). Studies examining the prevalence of atmospheric river landfalls 

suggest they will become more frequent and intense in a warmer future climate (Gao et al., 2015; 

Warner et al., 2015).  

From 1895 to 2014 average air temperatures in the Puget Sound region increased by 

about 0.7 °C (Abatzglou et al., 2014). This upward trend is projected to continue or increase 

through the coming decades in part due to the accumulation of anthropogenically generated 

greenhouse gases such as carbon dioxide, methane, and others which absorb infrared radiation 

that is reflected from and emitted by Earth’s surface (IPCC, 2021). Modeling efforts aimed at 

quantifying future air temperatures of the western Cascades project further warming ranging 

from about 1.9 °C (in a low emissions scenario) to about 4.8 °C in a high emissions scenario by 

the 2080s, relative to the period 1950 to 1999 (Rogers and Mauger, 2021). 

1.2 Peak Flows 

Peak flows are high magnitude, short duration streamflows that last on the order of hours 

to days (Ryberg et al., 2017). Extreme peak flows can lead to flooding, the second most deadly 

weather-related phenomena in the United States (extreme heat being the deadliest; Ashley and 

Ashley, 2008; NWS, 2021; Han and Sharif, 2021), and cause significant infrastructure damage 

(Jongman et al., 2012, Winsemius et al., 2016). In the Puget Sound region, increasing peak-flow 

magnitude and increasing flow variability are depleting threatened salmonids (Embrey, 1987; 

Beamer and Pess, 1999; Greene et al., 2005; Mantua et al., 2010; Ward et al., 2015) which are 

culturally and economically critical to local Indigenous peoples. Despite these negative 

outcomes, peak flows also perform functions critical to river evolution (Friedman and Lee, 2002; 

Richter and Thomas, 2007) and ecosystem health by connecting floodplains to streams (Beechie 

et al., 2013) and maintaining a diverse variety of habitats (Leibowitz et al., 2018). The balance 

point between negative and beneficial consequences of peak flows correlates with magnitude – 
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very high magnitude peak flows (>100-year flows) are detrimental to both the human 

environment and ecosystem health (Lapointe et al., 2000; Thomaz et al., 2007) whereas smaller 

magnitude peak flows (<10-year flows) have neutral to positive outcomes for a variety of 

ecosystem services (Talbot et al., 2018). Studies examining peak flows in the Puget Sound 

region project increases in both flood magnitude and frequency as a function of climate change 

(Hamlet and Lettenmaier, 2007; Salathé et al., 2014; Lee et al., 2018; Berghuijs et al., 2016; S. 

Chegwidden et al., 2020), suggesting peak flows will become more detrimental to both the 

human environment and aquatic ecosystems by the end of the century. 

2 Methods 

I paired dynamically downscaled regional climate projections generated with the Weather 

Research and Forecasting model, (WRF; Skamarock et al., 2008) from 12 high-emissions 

general circulation models (GCM) with a calibrated physically based hydrologic model -- the 

Distributed Hydrology Soil Vegetation Model (DHSVM; Wigmosta et al., 1994; Wigmosta et 

al., 2002), to produce streamflow projections from 1980 through 2099 in the Stillaguamish 

Watershed. Quantifying changes in peak streamflows was the focus of the analysis. To quantify 

changes in peak flow magnitude and frequency over time I performed flood frequency analysis 

on simulated streamflows within three climate normals: the 1990s (water years 1981-2010), 

2050s (water years 2040-2069), and 2080s (water years 2070-2099). To examine trends in peak 

flow generating processes, I linked annual maximum flows (AMF) to antecedent watershed 

conditions.  

2.1 Gridded Meteorological Forcings 

The historical meteorologic forcings used for hydrologic model calibration, hereafter 

referred to as PNNL-Obs, were generated by Ruby Leung and colleagues at the Pacific 

Northwest National Laboratory using WRF model version 3.2 (Chen et al., 2018). The lateral 

boundary conditions and sea surface temperature for this WRF implementation were derived 

from the North America Regional Reanalysis (NARR; Mesinger et al., 2006). Reanalysis 

datasets are internally consistent gridded collections of weather observations created by 

combining available historical data and past short-range weather forecasts. The NARR-forced 

historical WRF simulation used to calibrate the model had a spatial resolution of 6 kilometers 

(km), a timestep of 1-hour, and a simulation spanning from 1981 through 2015.  
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The dynamically downscaled climate projections used in this study were generated by 

Cliff-Mass’s research group at the University of Washington Atmospheric Sciences Department 

using WRF model version 3.2 (Mass et al., 2022). For each WRF simulation, lateral boundary 

conditions and sea surface temperature were applied from a parent GCM, similar to NARR and 

PNNL-Obs. The lateral resolution of the WRF projections (hereafter referred to as WRF-GCM) 

was set to 12-km. Prior to applying the WRF-GCM projections to the Stillaguamish DHSVM, 

their native 12-km grid was transferred via bilinear interpolation to a 6-km grid matching PNNL-

Obs. To reduce biases between WRF-GCMs (e.g., cold, hot, wet, or dry biases), spatial bias-

correction factors were made by comparing mean annual meteorology at a given grid cell for a 

WRF-GCM projection to the respective grid cell of PNNL-Obs. The bias correction factors were 

calculated for water years 1981-2015, and they were applied to each grid cell for a given WRF-

GCM projection prior to forcing the Stillaguamish DHSVM. All parent GCMs in this study were 

obtained from the Climate Model Inter-comparison Project, phase 5 (CMIP5; Taylor et al., 

2011). A total of twelve high-emissions Representative Concentration Pathway (RCP) 8.5 (Van 

Vuuren et al., 2011) GCMs are included in the model ensemble (Table 1). These GCMs were 

selected based on Brewer and Mass (2016) who evaluated and ranked GCMs based on their 

ability to reproduce the climate of the Pacific Northwest. The projections used in this study were 

also used in Lorente-Plazas et al. (2018).  

Climate projections derived from GCMs have coarse spatial (>100 kilometers) 

resolutions which limit their viability for watershed-specific hydrological modeling. 

Downscaling is a means of improving spatial resolution based on historical observations (i.e., 

statistical downscaling) or physical relationships through numerical modeling (i.e., dynamic 

downscaling; Widmann et al., 2003). A novel aspect of this study is that I used dynamically 

downscaled historical meteorology (PNNL-Obs) to calibrate my hydrologic model and then 

applied dynamically downscaled climate projections (WRF-GCM) over the same meteorologic 

forcing grid. This has several advantages. First, all meteorologic forcings in this study have a 

native 1-hour timestep. This ensures that the hydrologic model is calibrated for near-

instantaneous flows – the basis for many hydraulic regulations and design standards (Chen et al., 

2017). Second, regional atmospheric models like WRF account for weather processes in complex 

topography and they are not limited by the sparsity of weather observations in remote areas 

(Salathé et al., 2014). Finally, by using the same regional climate model to generate both the 
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historical calibration and the future projected meteorologic forcings, the hydrologic model is 

well adapted to reflect the implications of climate change on streamflows rather than the 

implications of forcing format or downscaling method. 

2.2 Hydrologic Model 

The DHSVM is a hydrologic model that simulates dynamic (one day or shorter time step) 

soil moisture, snow cover, evapotranspiration, and runoff production at the grid scale within a 

watershed (Wigmosta et al., 1994; Wigmosta et al., 2002). It has been widely applied in 

mountainous regions around the world (e.g., Storck et al., 1998, Bowling and Lettenmaier, 2001; 

Du et al., 2014; Zhang et al., 2016) and used to assess climate change and landcover impacts on 

streamflow (e.g., Elsner et al., 2010; Dickerson-Lange and Mitchell, 2013; Lundquist et al., 

2013; Cristea et al., 2014). The DHSVM consists of a two-layer canopy to model 

evapotranspiration, a two-layer energy balance model for snow accumulation and melt, a 

multilayer unsaturated soil model, a saturated subsurface flow model, and an overland flow and 

stream routing model. Model inputs include grided timeseries of near-surface meteorology 

(precipitation, temperature, wind speed, humidity, shortwave and longwave radiation); static 

grids for topography, soil type, soil thickness, and landcover type; and a stream channel network 

based on topography (Figure 1 and SM Figures 1-4). In this study, model layers and the stream 

channel network were built at 150-meter resolution using publicly available data as described in 

the Supplemental Materials (Section SM 2.1). Chanel geometries in the DHSVM are user 

specified. My calibration includes 36 distinct channel classifications with hydraulic geometries 

and Mannings n values that correspond to drainage area and slope (steeper slopes have higher 

Mannings n values and narrower channels; larger drainage areas have larger channels; refer to 

SM Table 5). The downscaled climate projections from the WRF-GCM simulations were applied 

at 144 grid points across the watershed at a 6-kilometer horizontal resolution.  

2.3 Hydrologic Model Calibration 

Hydrologic model calibration involved bias correcting the historical representation of 

observed climate (PNNL-Obs) and optimizing hydrologic variables such as meteorological 

constants (e.g., temperature lapse rate, rain/snow partitioning thresholds), soil parameters (e.g., 

saturated lateral hydraulic conductivity, porosity), and landcover characteristics (e.g., canopy 

height, leaf area index) to produce the closest match in simulated to observed streamflows. 
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Simulated snow accumulation was also calibrated by comparing April 1st snow water equivalent 

(SWE) within a discrete elevation band to nearby SNOTEL stations with similar geographic 

settings. The Stillaguamish basin lacks a SNOTEL station.  

The PNNL-Obs dataset was evaluated in comparison to weather observations from 35 

weather stations in and around the Stillaguamish watershed. Biases between PNNL-Obs and 

regional weather observations were quantified for annual averages, seasonal averages, and 

extremes of temperature, precipitation, wind speed, and humidity. Generally, PNNL-Obs 

compared well with observations, but small corrections were applied uniformly across the basin 

to bias correct all grid cells and timesteps (Table 2). Additional details on the historical 

meteorology bias correction are provided in the Supplemental Materials (section SM 2.2).  

The PNNL-Obs dataset was used to force the Stillaguamish DHSVM throughout the bias-

correction process to evaluate meteorological data bias and ensure proper WRF-DHSVM data 

coupling. For the DHSVM calibration, parameters and constants for meteorology, soil, and 

landcover were adjusted until achieving a satisfactory model skill. Kling-Gupta efficiency (KGE; 

Gupta et al., 2009) and Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) were the 

primary statistical determinants of model skill. The baseline (pre-calibration) DHSVM 

parameterization was informed by other DHSVM-based studies in similar western Cascade 

watersheds (Dickerson-Lange and Mitchell, 2013; Freeman, 2019; Clarke, 2020) and sensitivity 

studies in similar geographies and hydroclimates (Du et al., 2014; Sun et al., 2019). Parameters 

were modified manually and through automated simulations via a multi-objective complex 

evolution global optimization method (Yapo et al., 1998). Simulated streamflows were compared 

to observed streamflows at four stream-gauging stations within the watershed which are 

equipped with continuous flow monitoring devices (Figure 1). The calibration period was water 

years (from October 1st through September 30th) 2005 (the start of automated streamflow data 

recording) through 2015 (the end of the PNNL-Obs timeseries) for three of four gauging stations 

(NFArlington, SFJordanRd, and Pilchuck626) and 2010 through 2015 for the furthest 

downstream gauging station (Silvana). Overall, model skill across the basin ranks from 

“satisfactory” to “good” based on percent bias, NSE, and KGE values (Moriasi, et al., 2007; 

Moriasi, et al., 2015, Knoben et al., 2019; Table 3; Figure 2 and SM Figures 9-12). A more 

thorough explanation of the calibration process, including details on April 1 snowpack 

calibration and evaluation, is provided in the Supplemental Materials (SM 2.2.2). 
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Calibrating a hydrologic model to peak flows is complicated by two factors: 1) potential 

data recording errors at gauging sites during peak flows and 2) the limitations of simplified 

channel geometry and flow logic which are inherent to watershed scale hydrologic models like 

the DHSVM. During peak flows, stream channels fill above their typical levels and alter stream 

morphology, invoking potential issues for automated data logging devices and rating curves 

which are typically calibrated during non-extreme flow events (Turnipseed and Sauer, 2010). 

This can yield significant errors in stream discharge like when streams breach levees and flow 

around gauging equipment or stream channels incise, aggrade, or meander. In the DHSVM, all 

simulated streamflow is retained within stream channels unless it intercepts an unsaturated grid 

cell (Wigmosta et al., 2002). During peak flows, grid cells adjacent to a stream channel are likely 

to be fully saturated, meaning all flow directed to a stream channel will be retained within the 

channel. This means the DHSVM will not simulate overbank flooding which could reduce 

downstream discharge. I focused DHSVM calibration on overall flows, with a bias towards 

higher flow volumes. The peak flows predicted by my calibrated model are generally biased high 

compared to observed flows. This could be caused by gauging data that is biased low during 

peak flows or by DHSVM limitations which cannot reproduce floodplain storage or bank 

overtopping. It could also be caused by poor model calibration. Regardless, the objective 

treatment of flows in DHSVM allowed me to analyze flow changes through time independent of 

localized channel effects, recording device errors, and imperfect model calibration. In other 

words, although my calibrated model may be imperfect in absolute terms, the relative changes in 

simulated streamflow it yields should be informative. This assumes that the calibrated model is 

sensitive to climate change (i.e., it is not missing key processes or cancelling biases) and that the 

climate projections applied to the model are accurate. Neither of these assumptions were 

rigorously tested in this study. 

2.4 Quantifying Projected Changes in Peak Flow Magnitude 

I quantified changes in peak flow magnitude within each of the 12 WRF-GCM 

simulations described in section 2.1 (Table 1). Each of these simulations are based on a parent 

GCM with its own downscaled gridded meteorological timeseries. I used statistical techniques 

on annual maximum flows (AMF; i.e., the maximum peak stream discharge within a water year 

at a given reach) over three distinct climate normals: 1981-2010 (the 1990s), 2040-2069 (the 

2050s), and 2070-2099 (the 2080s) to quantify changes in peak flow magnitude over time. Each 
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30-year sample AMF series was fit to an empirical Gumbel extreme value function (Gumbel, 

1941) via L-moment parameterization (Hosking 1990), following methods similar to Salathe et 

al. (2014) and Tohver et al. (2014). Whereas those studies used empirical generalized extreme 

value (GEV) distributions defined by bootstrap sampling with replacement, I elected to use only 

my raw simulated results with the Gumbel distribution because of its simpler form and effective 

performance with small datasets (Cunnane, 1989). In my iterative testing of Gumbel, GEV and 

Log-Pearson Type 3 distributions, each generated near equivalent results in terms of peak flow 

change over time. I automated my statistical analysis using R (R Core Team, 2020) and the 

lmom package (Hosking, 2019). A thorough description of the statistical techniques I used is 

provided in the Supplemental Materials (SM 2.4). Individual cumulative probability versus 

discharge plots were created for each DHSVM simulation forced by a WRF-GCM (Figure 3). 

Cumulative probability describes the likelihood of an AMF being less than or equal to specified 

discharge for a given climate normal and parent GCM.  

Peak flow likelihood can be expressed in decimal or fractional form on an annual basis 

(i.e., 1% likelihood) or based on return period (i.e., 100-year flow). In this study I use the latter 

nomenclature. Return period for a given flow magnitude is defined below: 

𝑅𝑅𝑅𝑅 =
1

1 − 𝑅𝑅
 

Where RP is return period and P is the cumulative probability at a given flow magnitude. Peak 

flow magnitudes were computed from empirical Gumbel extreme value functions for 2-year, 10-

year, 20-year, and 100-year events for average flow durations of 1 hour, 3 hours, 24 hours, 72 

hours (3 days), and 168 hours (1 week) for each downscaled WRF-GCM simulation. To quantify 

peak flow change over time, I calculated percent change in magnitude within individual WRF-

GCM simulations (i.e., 10-year peak flows from the 2050s and 2080s climate normal were 

compared to 10-year peak flows from the 1990s normal). This helps to overcome systematic 

biases that may be present in individual downscaled GCMs. 

2.5 Quantifying Projected Changes in Peak Flow Frequency 

A simple method of quantifying changes in peak flow frequency is to count the number 

of exceedances of a peak flow threshold through time. The threshold I elected is the 10-year peak 

flow magnitude of the calibrated model forced by PNNL-Obs. This threshold was calculated 

using the same techniques described in section 2.4 on simulated flows from water years 1986 
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through 2015. This period is slightly different than the 1990s climate normal (water years 1981-

2010) over which the WRF-GCM simulations were evaluated because the PNNL-Obs timeseries 

is shorter in duration than the WRF-GCM forcings (PNNL-Obs begins 1/1/1981 whereas WRF-

GCM forcings begin 1/1/1970). The delayed start allows adequate model spin up to establish 

reasonable soil saturation and snowpack prior to peak flow analysis. Threshold exceedances 

were counted over the 1990s, 2050s, and 2080s climate normals of each DHSVM simulation 

forced by WRF-GCM. An automated screening process was implemented to count individual 

peak flow exceedances regardless of the duration of the peak flow.  

2.6 Assessing Peak Flow Generating Mechanisms 

To assess peak flow generating mechanisms through time, I followed the methodology of 

Chegwidden et al. (2020) who built from the methods of Berghuijs et al. (2016), Musselman et 

al. (2018) and Curry and Zwiers (2018). Flow generating mechanisms were qualified based on 

antecedent watershed conditions leading up to AMFs using an automated decision tree procedure 

(Figure 4). Possible flow generating mechanisms were: (1) extreme precipitation, (2) rain on 

snow, (3) snowmelt, or (4) other. The Stillaguamish watershed exhibits characteristics of rain-

dominated and transitional rain-snow watersheds, making it susceptible to each of these 

mechanisms (Hamlet et al., 2013). The goal of this analysis was to evaluate how peak-flow 

generation is likely to change as the climate warms. 

To qualify as a snowmelt event, basin-average snow water equivalent (SWE) had to 

exceed 0.1 m within 7-days prior to an AMF and SWE had to decline by at least 10% leading up 

to an AMF (Figure 4). To qualify as a rain on snow (ROS) event, an AMF had to follow within 

four days of a rain event equal to or exceeding 0.1 m depth (basin average), and snowmelt had to 

account for greater than 20% of the sum of precipitation and snowmelt. To qualify as an extreme 

precipitation event, an AMF had to follow within four days of a precipitation event with a 

magnitude above the 99th percentile for that given year. AMFs that did not meet any of these 

thresholds were qualified as “Other” and are most likely attributable to soil saturation from 

prolonged low-intensity rain events and/or snowmelt (Chegwidden et al., 2020). Each AMF was 

attributed to a single flow generating mechanism. If multiple criteria were met, the assignment 

order was snowmelt, rain on snow, and lastly extreme precipitation. The purpose of this ordering 

is to better evaluate changes in peak-flow generating mechanisms through time. Extreme 

precipitation events are the most common driver of peak flows in present day and are likely to be 
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even more common in a warmer climate that produces less snow and more rain. Therefore, I 

biased the peak-flow mechanism decision tree towards rarer events (snowmelt and rain on snow) 

to highlight changes in peak-flow generating mechanisms through time. 

3 Results 

3.1 Changes in Climate 

Analysis of the WRF-GCM ensemble indicates that mean annual air temperature in the 

Stillaguamish watershed will increase by 2.15 to 5.34 °C from the 1990s climate normal (1981-

2010) to the 2080s climate normal (2070-2099; SM Figures 13 and 14). Precipitation also trends 

upwards, from an annual basin-average of 2.35 m in the 1990s climate normal to 2.56 m in the 

2080s climate normal (an 8.9% increase, SM Figures 16 and 17). Precipitation intensity likewise 

trends upwards, with mean ensemble-average annual maximum 24-hour precipitation magnitude 

increasing from 0.10 m in the 1990s to 0.12 m in the 2080s (a 20 % increase, SM Figure 18) and 

fall and winter months showing the greatest relative increases in storm intensity (SM Figure 19). 

Generally, the ensemble shows that rare precipitation events (e.g., 10-year or greater) are 

becoming more intense over time while high frequency events remain relatively consistent. 

3.2 Changes in Hydrology 

Simulated hindcasts (1981-2010, the 1990s climate normal) for the WRF-GCM ensemble 

display hydrology characteristic of a rainy transitional watershed with elevated winter 

streamflows, a seasonal snowpack, moderate melt-derived spring streamflows, and low summer 

streamflows (Figures 5 & 6). By midcentury (2040-2069, the 2050s climate normal), in response 

to a reduced snowpack, simulated hydrographs show a gradational shift to a more rain-dominated 

signal with higher winter streamflows and lower spring and summer streamflows. These seasonal 

signals – higher winter streamflow and lower spring and summer streamflow - become even 

more apparent by the end of century (2070-2099, the 2080s climate normal), at which point a 

spring melting phase is no longer apparent in monthly hydrographs at the mouth of the 

watershed. Individual tributaries of the Stillaguamish River show similar trends depending on 

elevation. High elevation tributaries show the most pronounced changes as they lose a significant 

portion of their spring melt signal. Lower elevation tributaries display the least change over time 

(see Supplemental Materials section S3.1 and SM Figure 20). 



 

12 
 

To examine changes in snow accumulation and melt, I analyzed basin-average snowpack 

and snow melt in the model ensemble (Figure 6). Snowpack, measured as SWE, in the 1990s 

climate normal generally peaks around April 1st across all GCMs, consistent with regional 

observations in the Pacific Northwest (Curry and Zwiers, 2018; Mote et al., 2018). The range of 

maximum basin-average SWE for the 1990s climate normal ranges from 0.07 to 0.26 m with a 

mean of 0.15 m. By the 2050s, maximum SWE declines by about 65%, and by the 2080s by 

79%. The average timing of peak snow accumulation also shifts 26 days earlier from March 28th 

in the 1990s to March 2 in the 2080s. SWE in hindcasts across the model ensemble varied 

significantly but generally seemed to be biased low comapred to PNNL-Obs. ACCESS 1.0 

generated the greatest overall snowpack and its hindcast April 1st basin-average SWE was most 

simillar to PNNL-Obs. MRI-CGCM3 and NorESM1-M produced the least basin-average SWE 

(SM Figure 15). The overall negative bias in SWE generation in the model ensemble hindcasts is 

concerning. It indicates the model ensemble may be insensitive to the effects warming will have 

on snowpack generation and melt timing. 

To assess spatial changes in snow accumulation, I examined DHSVM outputs of April 1st 

SWE for the ACCESS 1.0 simulation. I believe this GCM produced the most realistic hindcast 

snowpack for the 1990s climate normal because it produced slightly more SWE than PNNL-Obs, 

likely due to its cold bias (Bi et al., 2013; SM Figure 14, SM Figure 15). During DHSVM 

calibration, I observed that the PNNL-Obs calibrated DHSVM likely under-predicted April 1 

SWE. Over the available calibration range, PNNL-Obs yielded a mean April 1 SWE of 0.6 m in 

an elevation band similar to two SNOTEL stations located in similar geographic settings outside 

of the basin which averaged 1.07 m of SWE over the same period (a 45% low bias, refer to SM 

2.2.2 and SM Figure 8). In the ACCESS 1.0 simulation, mean April 1 SWE in the 1990s climate 

normal is equal to or greater than 0.01 m in depth over an area of 666 square kilometers (km2) of 

the 1,724 km2 watershed (39%; Figure 7). By the 2050s, this value declines to 444 km (26% of 

the watershed), and by the 2080s to 174 km (10% of the watershed). In terms of elevation, the 

April 1 snowline in the Stillaguamish recedes from about 800 m above sea level in the 1990s to 

about 1100 m above sea level in the 2080s.  

Basin-average snow melt shows similar trends to basin average snow accumulation 

(Figure 8). Peak snow melt in the 1990s climate normal spans November through May. By the 

2050s, significantly less melting occurs in late autumn and late spring as a function of warmer air 
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temperatures truncating the snow accumulation season (note that averge precipitation for these 

periods does not decline; SM Figure 16). By the 2080s, snow melt peaks from December through 

March, with average annual melt over the period declining by about 60% compared to the 1990s 

climate normal. 

3.3 Changes in Peak Flow Magnitude 

Peak flows are projected to increase basin-wide for almost all WRF-GCM simulations, 

regardless of flow duration or return period (Table 4). There is a wide range in projected peak 

flow magnitudes across the WRF-GCM ensemble. To normalize for individual biases between 

GCMs, I compared projected peak flows to their relative hindcast (e.g., ACCESS1.0 in the 1990s 

versus 2080s). At Stanwood, mean 3-hour peak flows are projected to increase by about +12.0% 

by the 2050s and +26.5% by the 2080s. The WRF-GCMs which project the greatest change in 

peak flow magnitude from the 1990s to the 2080s are CanESM2, BCC_CSM1.1, FGOALS_g2, 

and MIROC5; those projecting the least change are: ACCESS1.0, ACCESS1.3 and MRI_CGCM 

(Figures 9 and 10). The greatest range in projected change is for the rarest events (i.e., 100-year 

events).  

3.4 Changes Peak Flow Frequency 

An important factor for evaluating flood risk is flood frequency. The simulations indicate 

that projected peak flow magnitudes are not stationary through time, rather, they increase over 

time within individual WRF-GCM simulations. While my methods for calculating peak flow 

magnitude do incorporate return period, and thus implicitly factor in frequency changes, they do 

not directly consider how frequently modern extreme flows will occur in the future. To evaluate 

this metric, I counted the number of individual peak flows within each WRF-GCM simulation 

that were greater than the PNNL-Obs 10-year peak flow from 1986 through 2015. This threshold 

is the model equivalent to a modern 10-year event. 

The 10-year PNNL-Obs peak flow is 1729 cubic meters per second (m3s-1). Given the 

return period and assuming climate stationarity, a flow of that magnitude should be exceeded 

about 3 times within a 30-year climate normal. A majority (9 of 12) of WRF-GCM simulations 

exceeded the historical 10-year threshold more than 3 times over a comparable timeframe 

(Figure 11), indicating that the WRF-GCM ensemble may be biased to produce higher peak 

flows than the downscaled PNNL-Obs forcings. Over the 2050s and 2080s climate normals, the 
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10-year PNNL-Obs threshold is exceeded more frequently by all WRF-GCM simulations, 

indicating that peak flow frequency is not stationary throughout the 21st century. By the 2080s, 

the 10-year event threshold is exceeded 2.4 times more frequently than in the 1990s.  

3.5 Changes in Flow Generating Mechanisms 

The dominant AMF generating mechanism in the Stillaguamish Watershed is extreme 

precipitation throughout the simulation span (Figure 12). In the 1990s climate normal, ROS 

events are also significant, accounting for 10.6% of AMFs. These ROS events are also larger on 

average than extreme precipitation events, with an average 24-hour magnitude of 1,553 m3s-1 

compared to extreme precipitation events at 1230 m3s-1. By the 2050s climate normal, ROS 

events are rarer, accounting for 3.7% of AMFs. By the 2080s, they account for only 1.7% of 

AMFs, on average across all GCMs. The flow generating mechanism decision tree I used 

resulted in only one AMF qualifying as a snowmelt event and less than 2% of AMFs qualifying 

as other. 

These results indicate that AMFs in the Stillaguamish watershed are most often 

associated with extreme precipitation. ROS events, a type of extreme precipitation event, are also 

a factor but are likely to become less common as the climate warms and the snowpack shrinks 

(Figures 6 & 7). The shift in flow generating mechanisms towards an overwhelming dominance 

of extreme precipitation corroborates the findings of Chegwidden et al. (2020). Similarly, they 

also validate the findings of Warner et al. (2015) who found that atmospheric river events, the 

dominant extreme precipitation meteorological mechanism in the region, are projected to 

increase in intensity over time. The stronger precipitation events in the 2080s mean that even 

though ROS events are lost by the 2080s, the average streamflow magnitude resulting from 

extreme precipitation events increases in magnitude by about 26 %, roughly matching the 

average streamflow magnitude of ROS AMF events in the 1990s. 

4 Discussion 

Projected climate change will increase peak flows in the Stillaguamish River via two 

mechanisms: (1) by yielding higher air temperatures which in turn produce more rain and less 

snow and (2) by increasing extreme precipitation intensity. A shrinking snowpack will magnify 

peak flows by increasing the proportion of the watershed that receives rain during winter storm 

events. The ratio of land area that receives rain vs snow relates directly to the volume of water 



 

15 
 

supplied to streams and rivers during a flood event – rain migrates to stream channels on the 

order of hours to days; snow migrates to stream channels only when air temperatures are 

sufficiently high to produce melting – generally long after a storm event has passed. In short, 

shrinking snowpacks lead to greater runoff during and immediately after storm events. 

Snowpack has already declined significantly over recent decades (Mote et al. 2018) and my 

results indicate this trend will continue throughout the century. Atmospheric river events are 

projected to become more intense, particularly in the second half of this century (Warner et al. 

2015; SM Figure 18). As with declines in winter snowpack, this translates directly to more water 

in streams during peak flows due to higher soil saturation and greater overland flow. Rain events 

exceeding soil infiltration capacity will become more common and exceed infiltration capacity 

by greater margins by the end of the century. Overall, my results indicate that peak flow 

magnitudes will increase substantially in the watershed, by about +12% by the 2050s and 

+26.5% by the 2080s, depending on river reach, return period, and flow duration. Historic 

extreme peak flows will also be exceeded more frequently. 

This study is focused on peak flows which are a proxy for flood inundation. The 

hydraulic modeling required to derive flood inundation estimates based on my peak flow 

projections is beyond the scope of this research. Nonetheless, inferences regarding future flood 

likelihood and severity can be extrapolated from these results. Peak flows in the Stillaguamish 

watershed have seen a significant upward trend over the observed record and the majority of the 

changes have been attributed to changes in climate (Hall et al., 2014). Portions of the 

Stillaguamish watershed which are prone to periodic seasonal flooding are likely to experience 

more frequent and more severe flooding barring significant channel modification or upstream 

floodplain expansion. This will yield varying consequences across the watershed. There is 

significant human development and agriculture within the historic 100-year flood zones (FEMA, 

2020) near the mouth of the Stillaguamish River (e.g., the town of Stanwood – Figure 1). These 

areas will likely experience significantly greater and more frequent inundation due to climate 

change later this century. Increased flood severity and susceptibility will yield greater risks for 

human lives (Han and Sharif, 2021), local ecosystems (Ward et al., 2015), and inflict greater 

costs on property owners and local municipalities (Winsemius et al., 2015). Increasing flood 

frequency and severity may also impact the health of downstream ecosystems and water users 

through introduction of additional contaminant pulses that originate from point sources (Kaushal 
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et al., 2014). Spawning habitat for endangered anadromous fish species is also likely to 

deteriorate due to increased channel bed scour during peak flow events (Gendaszek et al., 2017). 

Ongoing strategies such as engineered log jams (Roni et al., 2015), or other in-stream restoration 

strategies (Marttila et al., 2019) may provide some resilience to increased magnitude and 

incidence of peak streamflows.  

In less developed portions of the watershed, greater peak flows and flooding have the 

potential to produce significant geomorphic change in the form of channel migration, 

aggradation, and/or incision (Richter and Thomas, 2007; Wicherski et al., 2017; Pfeiffer et al., 

2019). Though there will be significant negative societal outcomes associated with increasing 

peak flows, increased flooding may provide some localized and long-term ecological benefits 

such as regenerating riparian areas (Death et al., 2015; Juracek and Fitzpatrick, 2022) and 

reconnecting fragmented aquatic ecosystems (Talbot et al., 2018). Managing flood inundation 

via floodplain reconnection is a potential mechanism for improving ecosystem resilience and 

salmonid survival rates while also reducing downstream flood risks (Beechie et al., 2013). 

Floodplain reconnection may also provide other important benefits such as increased 

groundwater-surface water connectivity and improved aquifer recharge (Wohl, 2021).  

The focus of this research is extreme events (e.g., 10-year, 50-year, and 100-year events) 

which are rare, making them difficult to quantify with a limited set of models and timeseries. 

Extreme peak flows are controlled by a combination of random variability superimposed on 

longer-term trends. This analysis is based on 30-year climate normals since this period should 

encompass natural decadal climate variability. However, the 30-year period also limits the 

accuracy of the most extreme (e.g., 50- and 100-year) peak flow estimates since they are purely 

extrapolations from empirical Gumbel extreme value functions. My analysis of changes in peak 

flow magnitude is limited to individual parent GCMs. Each of the 12 GCMs in the ensemble 

produced a different range of AMFs. By focusing on peak flow changes within GCMs, I limited 

the capacity of one or more extreme events within a discrete set of GCMs to unduly affect my 

analysis. However, I did not evaluate any of the GCMs to determine which set of projections best 

match historical hydrological observations within the watershed. On average, my model 

ensemble likely underpredicted snow accumulation (Figure 5). This means that the model 

ensemble hindcasts (i.e., climate and streamflows for the 1990s climate normal) may be more 

reflective of a slightly warmer climate. This may mean that the projections underestimate the 
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effect of warming. Regardless, the conclusions are the same: warming will drive an increase in 

peak flow magnitude and a shift away from snow-related peak flow generating mechanisms. 

The limitations of this study are inherent to many physically based modeling endeavors. 

The downscaling approach with WRF limited the spatial resolution of projections to 12-

kilometers. This resolution can produce accurate basin-wide weather but may lack the resolution 

required to account for micro-climates and localized storm events like thunderstorms which are 

rare in the region but may impact future peak streamflows (Zhao et al. 2009). The watershed 

model, DHSVM, is limited to a single landcover layer (i.e., the model cannot account for 

changes in development/logging practices) and does not consider the effect of deep groundwater 

interactions. Groundwater is unlikely to affect peak flows, but it could have a significant 

influence on spring and summer streamflows which my projections indicate will decline sharply 

due to losses in snowpack. Lastly, the DHSVM, like many complex hydrologic models, is prone 

to over-parameterization (Beven, 2006). Throughout the calibration process, I attempted to avoid 

over-parameterization by using literature values when possible and manually altering sensitive 

watershed parameters within realistic bounds even if it meant achieving poorer calibration 

statistics. Despite these efforts, I cannot be sure that the model is the most accurate 

representation possible of the actual Stillaguamish watershed. 

My results indicate that the 12 GCMs in the model ensemble produce a wide range of 

snowpacks in their hindcast simulations, a critical component of regional hydrology in the 

western Cascades (SM Figure 15). Moreover, most of the hindcasts appear to be biased towards 

producing less snow than likely exists in the watershed in present day. By analyzing individual 

GCMs through time, I parsed relative changes over time from the simulations; however, the 

simulated hindcasts for the model ensemble indicate a bias towards a rainier, less snowy climate 

than available historical observations suggest is reasonable. Future work could focus on a 

discrete set of GCMs with less of a warm-bias to match historical signals for the watershed, or 

the development of a more robust bias correction process or reanalysis methodology aimed at 

producing hindcasts across the ensemble that are more representative of the present climate in 

the watershed. 

5 Conclusions 

I developed and applied dynamically downscaled climate projections generated with 

WRF to a DHSVM of the Stillaguamish Watershed to analyze how a warming climate would 



 

18 
 

affect streamflows in the watershed. To calibrate the DHSVM, I iteratively altered key 

meteorological and hydrological parameters, and evaluated model skill using statistical methods. 

My coupled WRF-DHSVM models produced “good” to “satisfactory” calibration results 

(Moriasi et al., 2015) compared to recorded streamflow at gauging sites throughout the 

watershed. After calibrating the DHSVM and developing a meteorologic basis for bias correcting 

climate projections, I applied 12 RCP8.5 projections to the DHSVM to simulate hydrological 

response from 2070 through 2099. I analyzed trends across the model ensemble in terms of 

climate, hydrology, peak flow magnitude and frequency, and flow generating processes. My 

projections indicate that the Stillaguamish will experience significant warming, increases in 

extreme precipitation incidence, and increases in peak flows on the order of +10 to +19% by the 

2050s and +23 to +39% by the 2080s.  

This research provides significant evidence for how and why peak flows are changing in 

the Stillaguamish Watershed. Put simply, a warming climate is yielding more rapid runoff and 

larger floods that occur with greater frequency. Flood generating mechanisms are changing along 

with the climate, making antecedent snowpack conditions less relevant to peak flow generation. 

Besides these applied findings, this research can also guide future efforts aimed at regionalizing 

GCM projections and coupling WRF and DHSVM to inform other watershed-scale planning 

efforts.  
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Tables 

  



Table 1 The twelve general circulation models (GCMs) used as input to the regional Weather Research 
and Forecasting (WRF) model simulations applied in this study. Horizontal resolution is given in degrees 
latitude and longitude. Vertical levels refer to the number of layers in each GCM. All simulations 
described in this study are based on the high-emissions Representative Concentration Pathway 8.5 
greenhouse gas scenario.  

Model Parent Research Center, location Resolution Vertical 
Levels 

ACCESS1-0 
Commonwealth Scientific and Industrial Research 
Organization (CSIRO), Australia/ Bureau of 
Meteorology, Australia 

1.25º × 1.88º 38 

ACCESS1-3 
Commonwealth Scientific and Industrial Research 
Organization (CSIRO), Australia/ Bureau of 
Meteorology, Australia 

1.25º × 1.88º 38 

bcc-csm1-1 Beijing Climate Center (BCC), China Meteorological 
Administration  2.8º × 2.8º 26 

CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8º × 2.8º 35 

CCSM4 National Center of Atmospheric Research (NCAR), 
USA  1.25º × 0.94º 26 

CSIRO-Mk3-6-
0 

Commonwealth Scientific and Industrial Research 
Organization (CSIRO) / Queensland Climate Change 
Centre of Excellence, Australia  

1.8º × 1.8º 18 

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences  2.8º × 2.8º 26 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, 
USA 2.5º × 2.0º 48 

GISS-E2-H NASA Goddard Institute for Space Studies, USA 2.5º × 2.0º 40 

MIROC5 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology 

1.4º × 1.4º 40 

MRI-CGCM3 Meteorological Research Institute, Japan 1.1º × 1.1º 48 
NorESM1-M Norwegian Climate Center, Norway  2.5º × 1.9º 26 

 

  



Table 2 Bias-corrections applied to the PNNL-Obs (historical) forcings. These were applied uniformly to 
all PNNL-Obs grid points and timesteps prior to hydrologic model calibration. Bias corrections were 
based on iterative evaluation of annual and seasonal trends in PNNL-Obs compared to regional weather 
observations from 35 weather stations in and around the study area. 

Variable Scaling 

Temperature + 0.2 °C 

Precipitation + 15% 

Wind −40% 

Shortwave 
Radiation 

− 10% 

 

Table 3 – Model evaluation scores for the Stillaguamish DHSVM. Simulated streamflows were compared 
to observations at four gauging stations in the watershed (Figure 1, Figure 2, and SM Figures 8 through 
11) which are operated by the Washington Department of Ecology (Ecology) and the United States 
Geological Survey (USGS). The “Calibration Water Years” column lists the available overlapping period 
between historical meteorological forcings (PNNL-Obs) and recorded observations. Daily/monthly 
average statistics are reported for percent bias, coefficient of determination (R2), Nash-Sutcliffe 
Efficiency (NSE), and Kling-Gupta Efficiency (KGE). Qualitative statistical descriptors for model skill 
from Moriasi et al., 2015 are shown in the bottom row. *A qualitative descriptor is not available for KGE, 
but it is a metric similar to NSE so the same parameter thresholds as NSE are listed for reference.  

Site Name 
(Agency, ID 
No.) 

Calibration 
Water Years 

Daily / Monthly Calibration Statistics 

% Bias R2 NSE KGE 

Silvana  
(Ecology 
05A070) 

2010-2015 -9.3 / -9.2 0.624 / 0.806 0.592 / 0.779 0.763 / 0.814 

NFArlington 
(USGS 
12167000) 

2005-2015 -11.3 / -11.3 0.622 / 0.755 0.572 / 0.723 0.760 / 0.805 

SFJordanRd 
(Ecology 
05A105) 

2005-2015 -21.4 / -21.3 0.649 / 0.794 0.607 / 0.669 0.698 / 0.709 

Pilchuck626 
(Ecology 
05D070) 

2005-2015 2.1 / 2.2 0.560 / 0.764 0.560 / 0.761 0.636 / 0.781 

Very Good 

Good 

Satisfactory 

Not Satisfactory 

X < ±5 

±5 ≤ X < ±10 

±10 ≤ X < ±15 

X ≥ ±15 

X ≥0.85 

0.85 ≥ X ≥ 0.75 

0.75 ≥ X ≥ 0.60 

X ≤ 0.60 

X ≥0.80 

0.80 ≥ X ≥ 0.70 

0.70 ≥ X ≥ 0.50 

X ≤ 0.50 

*X ≥0.80 

0.80 ≥ X ≥ 0.70 

0.70 ≥ X ≥ 0.50 

X ≤ 0.50 

 

  



Table 4. Table of minimum, average, and maximum percent change in simulated 3-hour peak flow 
magnitude across the model ensemble averaged (mean) across 2, 5, 10, and 20-year return periods. 
Percent change is relative to the 1990s climate normal (1981-2010) by the 2050s (2040-2069) and 2080s 
(2070-2099). See Figure 1 for map of locations.  

 2050s % Change 2080s % Change 
Location Min Avg Max Min Avg Max 
Stanwood -18.8 +12.0 +38.3 +6.7 +26.5 +46.8 
Pilchuck626 -22.8 +14.4 +47.9 -0.6 +29.9 +56.6 
PortageCreek -13.6 +18.2 +47.1 +5.0 +39.2 +81.2 
NFArlington -18.2 +10.8 +34.9 +3.8 +23.8 +45.6 
NFBoulderCreek -13.7 +13.7 +43.5 +8.4 +26.5 +48.7 
NFDeerCreek -15.7 +10.2 +30.2 -1.1 +22.2 +45.5 
SFJordanRd -17.0 +13.0 +41.3 +4.5 +24.9 +39.7 
SFJimCreek -16.0 +11.9 +29.1 +6.6 +27.6 +51.0 
SFCanyonCreek -15.3 +11.5 +30.3 +4.8 +23.0 +36.1 
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Figure 1. The Stillaguamish Watershed Distributed Hydrology Soil Vegetation Model 

(DHSVM) topography and stream network layers. Calibration and analysis sites are also shown. 

Model inputs for soil, landcover, and meteorological forcing nodes are included in the 

supplemental materials (SM 2.1, SM Figures 1 through 4). 
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Figure 2. Mean daily (a) and monthly (b) hydrographs of observed (black) and DHSVM 

simulated (red) streamflow at the Silvana gauging station (Figure 1). Statistical scores are 

provided in Table 3. 

 



 

 

 

  

 

Figure 3. Cumulative probability plots showing 3-hour mean annual maximum flows at 

Stanwood (Figure 1) for the ACCESS-1.0 (left) and NorESM1-M (right) DHSVM simulations. 

Simulated flows are shown as points; empirical Gumbel extreme value functions are shown as 

lines. Black symbols represent the 1990s climate normal (1981-2010), blue the 2050s (2040-

2069), and red the 2080s (2070-2099). 

 

  



 

 

 

 

 

Figure 4. Flow generating mechanism decision tree. Annual maximum flows within the 1990s, 

2050s and 2080s climate normals were assigned a single flow generating mechanism as shown. 

This logic is based on the work of Chegwidden et al., 2020.  

 

Figure 5. Mean monthly stream discharge at the mouth of the Stillaguamish River near 

Stanwood across climate normals for hydrologic simulations forced by individual general 

circulation models (GCM). Light gray, blue, and red lines represent individual GCM averages 

over 30-year climate normals for the 1990s and 2050s (left) and 2080s (right) respectively. 

Bolded black, blue, and red lines represent ensemble averages across all 12 GCMs. 

 



 

 

 

 

 

Figure 6. Mean daily snow water equivalent (SWE) watershed-wide across climate normals for 

hydrologic simulations forced by individual general circulation models (GCM). Light, blue, and 

red lines represent individual GCM averages over 30-year climate normals for the 1990s and 

2050s (left) and 2080s (right) respectively. Bolded black, blue, and red lines represent ensemble 

averages across all 12 GCMs. 

 

Figure 7. April 1 snowline by climate normal for the DHSVM simulation forced by the 

ACCESS 1.0. The 1,000 m elevation contour is shown for reference. ACCESS 1.0 is shown 

because its hindcast snowline is the most similar to PNNL-Obs.  



 

 

  

  
Figure 8. Mean monthly snowmelt as meters snow water equivalent (SWE) watershed-wide 

across climate normals for hydrologic simulations forced by individual general circulation 

models (GCM). Light, blue, and red lines represent individual GCM averages over 30-year 

climate normals for the 1990s and 2050s (left) and 2080s (right) respectively. Bolded black, 

blue, and red lines represent ensemble averages across all 12 GCMs. 



 

 

  

 

Figure 9. Discharge versus return period from empirical Gumbel extreme value functions 

for 3-hour annual maximum flows at the Stanwood (Figure 1). The black line represents 

the 1990s climate normal (1981-2010); blue the 2050s (2040-2069), and red the 2080s 

(2070-2099). Each plot shows the empirical Gumbel extreme value function for parent 

general circulation model simulations. Vertical lines are shown for 2, 10, 20, 50, and 100-

year return periods.  



 

 

 

  

 

Figure 10. Boxplots showing percent change in 10-year peak flow magnitude within 

individual general circulation model (GCM) simulations from the 1990s climate normal 

(1981-2010) to the 2080s climate normal (2070-2099) over multiple flow durations. Plots 

are arranged by reach location (refer to Figure 1).  



 

 

 

  

 

Figure 11. Frequency of 3-hour 10-year peak flow occurrence per 30-year climate normal 

at Stanwood by general circulation model (GCM). The 10-year peak flow threshold is 

1729 m3s-1 which was calculated from the empirical Gumbel extreme value function for 

the PNNL-Obs simulation from 1985-2015. Each climate normal encompasses 30 years. 

On average, a 10-year flow should occur about 3 times per 30-year climate normal. This 

figure illustrates the positive bias most WRF-GCMs have in comparison to PNNL-Obs. 

The relative increase in frequency of threshold occurrence over time illustrates the effects 

of a warmer climate on peak flows. 



 

 

 

 

 

Figure 12. Normalized kernel density plots of annual maximum flows (AMF) from the 

model ensemble, qualified by flow generating mechanism (FG Mech): extreme 

precipitation (Ext. Pcp), rain on snow (ROS), snowmelt (Snw Mlt), or other. Within each 

climate normal, there are 30 AMFs for each of the 12 general circulation models. Larger 

peaks on the y-axis indicate more frequent AMF magnitudes for a given FG Mech. Note 

that discharge is not scaled or normalized across the ensemble, so individual GCM biases 

may be affecting discharge distributions for each climate normal. 
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SM1  Additional Context on Peak Flows in the Stillaguamish Watershed 

In the Stillaguamish Watershed, peak flows are common in late fall and winter months 

following rain and snowmelt events (Hall et al., 2014; Clark et al., 2019; Freeman, 2019). Hall et 

al. (2014) completed a statistical analysis of historical peak flows in the North Fork of the 

Stillaguamish and their relation to climate and landcover factors. They found that 1-day 

maximum annual streamflows observed at the Arlington, WA USGS stream gauging station 

(NFArlington in Figure 1) exhibited an increasing trend over the historical record with a linear 

best fit line ranging from about 13,000 cubic feet per second (cfs; or 370 cubic meters per second 

[cms]) in 1929 to about 22,000 cfs (625 cms) in 2009. Over the same period, a slight decline in 

base flows was observed. Peak flow magnitude in other gauged streams in Washington generally 

exhibited weaker trends through time (Mastin, et al., 2017), perhaps indicating unique climate 

factors are at play in the Stillaguamish Watershed. Hall et al. (2014) also analyzed the 

meteorological record at Darrington, WA (located near the mouth of Boulder Creek, Figure 1) 

and determined that annual rainfall magnitude has trended upward while snowfall magnitude (as 

snow water equivalence) has trended downward. They found a statistically significant correlation 

between peak flows and annual rainfall magnitude, but no such correlation was observed 

between landcover changes and streamflows. Hall et al. (2014) developed and tested a variety of 

statistical models to predict 1-day maximum annual flows. The most skillful model they 

developed relied on day-of precipitation and 5-day antecedent precipitation magnitudes to 

predict streamflows, indicating that precipitation is far and away the most predictive parameter 

controlling peak flows in the watershed. 

SM2  Building the DHSVM and WRF Forcings 

Considerable effort is required to use the models described in this work. The Distributed 

Hydrology Soil Vegetation Model (DHSVM) is maintained by the Pacific Northwest National 

Laboratory. DHSVM version 3.2 was used in this research. The Weather Research and 

Forecasting (WRF) model is maintained by the National Center for Atmospheric Research. WRF 

version 3.2 was used in this research. Both models are open source. Construction and 

parameterization of these models and their outputs is described in this section. 
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SM2.1  Hydrologic Model Inputs  

The DHSVM requires digital grids for elevation, soil type, soil thickness, landcover, and 

stream networks. I generated these grids at a 150-meter resolution using publicly available data, 

ESRI ArcGIS, and QGIS. Meteorology is forced over these digital grids at a constant timestep. A 

description of the datasets is provided below: 

Topography – I used 10-meter digital elevation models (DEM) produced by USGS (2001) and 

available for download at the following URL: 

http://gis.ess.washington.edu/data/raster/tenmeter/byquad/index.html. To generate the DHSVM 

topography grid. I resampled a mosaic of 10-meter DEMs that encompassed the Stillaguamish 

Watershed to 150-meter resolution using bilinear interpolation (SM Figure 1).  

Watershed bounds and stream network – I generated the stream network for the Stillaguamish 

watershed using hydrology geoprocessing tools in ESRI ArcGIS and a Python script that 

executes ArcMap processes to build a stream network with a user-specified minimum source 

area (SM Figure 1). I elected to use a source area of 500,000 square meters because it provided 

adequate resolution to model high alpine streams without generating superfluous broken stream 

segments in the lowlands of the watershed. The Python script also generates a soil thickness map 

as a function of relief (higher relief areas have thinner soil layers to simulate alpine 

environments; SM Figure 2) and assigns user-specified hydraulic geometries to individual stream 

segments as a product of slope and drainage area. I specified the minimum and maximum soil 

thicknesses as 1 and 5 meters and created a hydraulic geometry classification based on visual 

assessment and measurement of satellite imagery. The python script is available for download 

here: https://github.com/pnnl/DHSVM-PNNL/tree/master/CreateStreamNetwork_PythonV 

Meteorology – Meteorological forcings were generated using the Weather Research and 

Forecasting (WRF) model. The historic (i.e., calibration/PNNL-Obs) meteorologic forcings were 

generated with WRF at 6-km horizontal resolution and have a 1-hour timestep. The projected 

meteorologic forcings (i.e., downscaled general circulation models [GCM]) were generated with 

WRF at 12-km horizontal resolution and have 1-hour timesteps. The 12-km WRF-GCM grid was 

transferred to the PNNL-Obs 6-km grid via bilinear interpolation (SM Figure 1).  

Soil Types – I used the STATSGO dataset produced by a partnership of federal, regional, state 

and local agencies known as the National Cooperative Soil Survey (NCSS). In its native form, 

STATSGO data are coarse (i.e., state-wide) vector data. I reclassified STATSGO soil units into 

http://gis.ess.washington.edu/data/raster/tenmeter/byquad/index.html
https://github.com/pnnl/DHSVM-PNNL/tree/master/CreateStreamNetwork_PythonV
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seven distinct DHSVM soil classes (SM Figure 3). I downloaded STATSGO data for 

Washington state using Penn State’s data portal: 

http://www.soilinfo.psu.edu/index.cgi?soil_data&statsgo.  

Landcover – I used the 2016 Coastal Change Analysis Program (C-CAP) dataset which is a 

NOAA product produced from Landsat Imagery. C-CAP landcover data are classified based on 

observed spectral reflectance characteristics and standardized for the contiguous United States. I 

reclassified C-CAP units into ten distinct DHSVM landcover types (SM Figure 4). C-CAP data 

are available via: https://coast.noaa.gov/ccapftp/#/ 

SM2.2  Meteorological Data Bias Correction and Hydrologic Model Calibration 

The meteorologic forcings used in this project are from an effort that involved modeling 

peak flows in the Stillaguamish and Snohomish watersheds (Mauger et al., 2021). Meteorologic 

forcing preparation methodology was the same for both watersheds, therefore details pertaining 

to both watersheds are discussed in section 2.2.1. The hydrologic models for both watersheds 

were calibrated individually, therefore, only details pertaining to the Stillaguamish River model 

are discussed in section 2.2.2.  

 SM2.2.1  Historical Meteorological Data Bias Correction 

Prior to calibrating the hydrologic models, the historical meteorological forcings (PNNL-

Obs) were evaluated to quantify their biases and determine how best to correct them to minimize 

the effect of these biases on the hydrologic simulations. This was done in two ways: 

1. By comparing WRF with surface weather observations, and 

2. By using WRF to simulate snowpack and comparing the results to observations. 

Together this allowed us to identify key biases and correct for them prior to embarking on 

hydrologic model calibration.  

Comparison with surface weather observations 

PNNL-Obs results were compared with surface observations from the 35 weather stations 

listed in SM Table 1. Observations were obtained from three sources: 

1. GHCN-D (Global Historical Climate Network - Daily; (Lawrimore et al., 2011). This 
dataset includes daily observations of total precipitation, minimum temperature, and 
maximum temperature. 

http://www.soilinfo.psu.edu/index.cgi?soil_data&statsgo
https://coast.noaa.gov/ccapftp/#/
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2. SNOTEL-BCQC (Snow Telemetry Bias Correction and Quality Control; Sun et al. 
2019). This dataset includes daily observations of total precipitation, minimum 
temperature, and maximum temperature. 

3. AWN (Ag Weather Net; http://weather.wsu.edu). This dataset includes hourly 
observations of precipitation, temperature, humidity, and shortwave radiation. 
 
These observations were compared against results from the nearest grid cell in the 

PNNL-Obs forcings. To account for elevation differences between WRF grid cells and the 

observations, temperatures were adjusted based on seasonal lapse rates (SM Table 3). Biases 

were calculated by comparing the full PNNL-Obs simulation (1981-2015) with all valid 

observational data from 1970 to 2019, for each weather station. This analysis included annual 

and seasonal averages as well as extreme metrics. 

SM Figure 5 shows the comparison between the annual average of daily minimum and 

maximum temperatures. Although the biases are similar for the two maps, they differ 

substantially among stations and do not exhibit a clear geographic pattern. On average the 

comparisons suggest a slight cold bias in the PNNL-Obs simulation. SM Figure 6 shows the 

comparison with annual precipitation and the top 1% of precipitation events in each year. These 

show a much clearer pattern, relatively consistent among both metrics, of a dry bias in the 

PNNL-Obs simulation. Based on these comparisons, a simplified approach to bias correcting 

WRF results was completed, where a uniform scaling was applied based on the average bias 

among all comparisons across the two watersheds. The same approach was used for wind and 

shortwave radiation which were both generally overestimated in PNNL-Obs (SM Figure 7). Due 

to the small number of available comparison data for wind and shortwave radiation, statewide 

data were used to develop their scaling factors.  

The bias corrections applied to the PNNL-Obs are listed in Table 2 of the primary 

document. Humidity estimates from WRF were not bias-corrected. Although observations are 

available, tests indicated that adjustments to humidity could frequently lead to over-saturated air 

or other physically implausible conditions. Future work could develop an improved approach, in 

which the relative humidity is corrected, then converted to vapor pressure deficit as used by the 

hydrologic model. Regardless of the approach, adjustments to humidity are unlikely to have a 

large effect on flood peaks. 

No observational comparisons were made for longwave radiation because very few 

observations exist. Instead, longwave estimates were estimated using an empirical formulation 

http://weather.wsu.edu/
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(Dilly and O’Brien, 1998; Unsworth and Monteith, 1975), which previous research suggests is 

superior to WRF longwave estimates (Currier et al. 2017). 

 SM 2.2.2  Hydrologic Model Calibration 

 There are no SNOTEL stations within the Stillaguamish watershed. As a consequence, I 

relied on watershed-adjacent NRCS SNOTEL stations (SM Table 2) and observed historical 

streamflow to calibrate the Stillaguamish model. Our baseline parameterization started from 

prior DHSVM-based studies in the North and South Forks of the Stillaguamish (Freeman, 2019; 

Clarke, 2020). From there I iteratively altered meteorology, soil, snow, and vegetation 

parameters based in part on Sun et al. (2019). 

Parameterizing meteorological constants within DHSVM proved to be the most 

challenging aspect of Stillaguamish DHSVM calibration. The goal for meteorological 

parameterization was to produce model estimates of SWE that were similar to those observed at 

the Skookum Creek and Alpine Meadows NRCS SNOTEL stations within a similar elevation 

band. Although they are located outside of the Stillaguamish watershed (within 100 km), I 

considered these SNOTEL stations to be proxies for the Stillaguamish watershed given their 

similar geographic settings. I achieved a qualitatively satisfactory SWE calibration using the 

seasonal temperature lapse rates and snow and rain temperature thresholds shown in SM Table 3. 

Generally, the Stillaguamish model produced less SWE with this parameterization than 

what was observed at the Skookum Creek and Alpine Meadows SNOTEL stations (SM Figure 

8); however, SWE can vary over similar geographies and altitudes due to unique alpine 

microclimates, so this bias may be inconsequential or simply a limitation of model resolution. I 

selected seasonal lapse rates based on iterative testing and literature values for similar 

watersheds (Minder et al. 2010). I was able to improve peak April 1 SWE and spring freshet 

using higher temperature lapse rates in winter months (to produce colder temps at higher 

elevations) and lower temperature lapse rates in late spring/summer months (to promote 

snowmelt in late spring/early summer). 

The most sensitive soil parameters in the Stillaguamish were lateral conductivity, 

exponential decrease, and porosity of the major soil units in the watershed (Upland 

Bedrock/Loam, Gravel Loam, and Silt; SM Figure 3; SM Table 4). Field capacity was also 

sensitive but generally related to porosity for each unit (i.e., when porosity was greater, field 

capacity also needed to be greater). Compared to literature values (e.g., Du et al. 2014, Beckers 
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et al. 2004, Freeman 2019, Clarke 2020), our calibrated soil porosities are low; however, this is 

likely a function of the goals of our research: to produce a model skilled at producing accurate 

peak flows and therefore potentially biased towards inducing overland flow/soil saturation. Soil 

thickness bounds were also a moderately sensitive parameter. I settled on minimum and 

maximum bounds of 1 and 5 meters based on iterative testing. Thinner soil limits generally 

produced inadequate low flows during summer months. Thicker soil limits did not yield 

significant effects. 

Vegetation parameters were generally less sensitive than meteorological or soil 

parameters in the Stillaguamish; however, I did perform some iterative sensitivity testing and 

parameterization of overstory leaf area index (LAI) and LAI multipliers for coniferous forests 

(the dominant landcover unit in the watershed, SM Figure 4). Select parameterization changes 

from baseline through calibration are shown in SM Table 4.  

Stream channel geometry was a moderately sensitive model parameter when maintained 

within realistic bounds. The classification schema I used is based on slope and drainage area 

associated with a given stream channel reach (Table 5). This schema was spot checked for 

accuracy by comparing simulated reach geometry with aerial images of select reaches within 

primary tributaries and the main stem of the Stillaguamish River. 

Daily and monthly average hydrographs of observed and simulated flows are provided in 

SM Figures 9 through 12 for the four calibration gauging sites in the watershed (Figure 1 in the 

primary document). Model skill is best at the North Fork of the Stillaguamish River 

(NFArlington) and the Main Stem of the Stillaguamish River (Silvana; Table 3 in the primary 

document). The South Fork of the Stillaguamish River (SFJordanRd) presented challenges, 

particularly for low flows which were generally under-simulated. Pilchuck Creek (Pilchuck626) 

presented opposite issues as low flows were generally over-simulated while peak flows were 

generally under-simulated. 

SM2.3 Flood Frequency Analysis on Simulated Peak Flows 

Flood frequency analysis is a broad set of statistical methods for quantifying extreme 

flood and/or streamflow magnitude relative to likelihood. The methods allow one to statistically 

extrapolate flood/streamflow magnitude beyond the historical observation range. For instance, in 

the United States, stream gauging stations often have a historical record for 30 years or fewer. 

Large infrastructure projects are typically designed for 50 or 100-year events. These event 
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magnitudes are typically estimated using flood frequency analysis with observed annual 

maximum flows (AMF).  

In my flood frequency analysis, I used simulated AMFs within 30-year climate normals 

from each WRF-GCM simulation to statistically extrapolate peak flow magnitudes for 2- to 100-

year return periods. Our statistical evaluation is based on the Gumbel distribution, also known as 

the type-1 extreme value distribution. The Gumbel distribution requires two parameters: location 

and scale. The Gumbel cumulative distribution function is given as: 

CDF = 𝑒𝑒−𝑒𝑒−(𝑥𝑥−𝜇𝜇)/𝛽𝛽 

where CDF is the distribution, x is a random variable, 𝜇𝜇 is the location parameter, and 𝛽𝛽 is the 

scale parameter. I defined these parameters using L-moments, which are linear combinations of 

order statistics (Hosking, 1990).  

Our data processing sequence is provided below: 

1. Average hourly flows across selected duration (e.g., 3-hour, 1-day, 1-week) 

2. Select AMFs and group them into 30-year sample sets (i.e., climate normals) 

3. Rank annual maximum flows by magnitude within each 30-year sample set 

4. Compute L-moment parameters for Gumbel distribution  

5. Derive Gumbel cumulative distribution function from L-moment parameters (i.e., 

probability vs flow magnitude) 

6. Derive return period from as 1/(1-P) where P is cumulative probability of a flow 

being less than a given magnitude 

7. Compute percent change in flow magnitude for select event size (e.g., 2-year, 10-

year, 100-year) from the 1990s climate normal to 2050s and 2080s climate 

normal. 

SM3  Additional Results 

Air temperature is a primary control on precipitation phase. Our simulations show 

significant increases in temperature by the 2050s and 2080s across the model ensemble (SM 

Figures 13 and 14). In our model ensemble, mean annual air temperature is 8.02 °C in the 1990s 

(1981-2010), 10.27 °C in the 2050s (2040-2069), and 11.86 °C in the 2080s (2070-2099). The 

coldest and hottest GCMs in the 1990s are ACCESS1-0 and NorESM1-M, respectively. In the 

2080s, the coldest GCM is GISS-E2-H and the warmest is CanESM2. The GCMs with greatest 
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and least average temperature change from the 1990s to the 2080s are CanESM2 (+5.34 °C 

increase) and GISS-E2-H (+2.15 °C increase).  

Our calibrated DHSVM has a rain/snow threshold of 1°C (i.e., precipitation in grid cells 

with air temperatures above 1 °C receive rain; below 1 °C receive snow). In the 1990s climate 

normal, a majority of GCMs produce basin-average temperatures below the rain/snow threshold 

in December and January; some GCMs also fall below the threshold in February (SM Figure 13). 

By the 2050s, only one GCM in January is below this threshold. By the 2080s, all GCMs have 

monthly mean temperatures well above the rain-snow threshold. Snow still accumulates during 

winter months in high elevation portions of the watershed in each WRF-GCM simulation, but the 

spatial distribution shrinks dramatically from the 1990s to the 2050s (Figure 5 of the primary 

document). Highlighting the control of temperature on snowpack, SWE across the model 

ensemble declines significantly by the 2050s for each GCM (SM Figure 15). 

Mean annual precipitation across the model ensemble increases from 2.35 m in the 1990s 

to 2.57 m in the 2080s. The wettest months across WRF-GCM ensemble are November, 

December and January. These are also the months that see the most substantial increases in 

average precipitation over time (SM Figures 16 and 17). Modest increases in precipitation are 

also evident in early fall (September and October) and late winter/early spring (February, March, 

and April). Modest declines in precipitation are evident in summer months (June, July, and 

August). 

Annual maximum precipitation intensity increases across the model ensemble by about 

21% (SM Figures 18 and 19). The most significant changes are in fall and winter months 

(September through February). November shows the most significant change from the 1990s to 

the 2080s, with a relative increase in ensemble-average in 24-hour maximum precipitation 

magnitude of 21%.  

SM3.1  Projected Flow Changes in Tributaries of the Stillaguamish River 

In addition to examining trends in flows at the mouth of the Stillaguamish River near 

Stanwood, I examined trends in projected flows elsewhere in the watershed. High elevation 

transitional rain-snow tributaries in the watershed (e.g., Boulder Creek and Deer Creek in the 

North Fork; Canyon Creek and Jim Creek in the South Fork; Figure 1) generally show a more 

rapid increase in average winter streamflow magnitude than rain-dominated portions of the 

watershed (i.e., Pilchuck Creek) by the 2050s. By the 2080s, this remains the case but elevated 
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winter streamflows are also apparent in the rain-dominated portions of the watershed (SM Figure 

20). 

SM3.2  Seasonal Changes in Peak Flow Threshold Exceedance 

I evaluated seasonal changes in peak flow threshold exceedance by counting the times a 

historic 10-year flow would be exceeded per month (SM Figure 21). The historic-10-year flow 

threshold I used is based on a 30-year PNNL-Obs simulation spanning water years 1985-2015. 

The months most capable of maintaining high average streamflows due to seasonal precipitation 

trends (November through February; SM Figures 16 and 17) also see the most frequent extreme 

peak flow threshold exceedances. November and December have the most exceedances in the 

1990s climate normal and show the most significant increases by the 2080s climate normal. In 

the 1990s climate normal, the 10-year flow threshold is exceeded on average 2.5 times per 30 

years during November and 3 times during December. By the 2080s, the 10-year flow threshold 

is exceeded 5 times per 30 years during November (a 100% increase) and 4 times per 30 years 

during December (a 25% increase; refer to SM Figure 21). These findings corroborate those of 

Warner et al. 2015 who evaluated the seasonal timing of heavy precipitation events in projected 

meteorology in the Pacific Northwest, finding that late fall and early winter months show the 

most dramatic increases in storm intensity through time. 
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SM Table 1. Weather stations used to evaluate downscaled historical meteorolgoical forcing (PNNL-
Obs) biases.  

Source ID Name Lat. Lon. Elv (m) Years 
AWN 330169  Arlington 48.20 -122.22 10 2017-2019 
AWN 330021  Fir Island 48.35 -122.42 0 2008-2019 
AWN 300214  Langley 48.00 -122.43 51 2014-2019 
AWN 330101  Mt. Vernon 48.43 -122.38 7 1993-2019 
AWN 330159  Sakuma 48.49 -122.37 9 2006-2019 
AWN 330092  Seattle 47.65 -122.28 9 2011-2019 
AWN 330162  Snohomish 47.90 -122.11 0 2006-2019 
AWN 330026  Woodinville 47.74 -122.15 14 2008-2019 
GHCND USC00450257  Arlington 48.20 -122.12 31 1922-2019 
GHCND USC00450456  Baring 47.77 -121.48 235 1970-2019 
GHCND USC00451233  Cedar Lake HCN 47.41 -121.75 476 1898-2019 
GHCND USC00451992  Darrington RS 48.26 -121.60 168 1911-2019 
GHCND USC00452675  Everett HCN 47.97 -122.19 18 1894-2019 
GHCND USW00024222  Everett-Snohomish 47.90 -122.28 185 1948-2019 
GHCND USR0000WFIN  Finney Cr WA 48.40 -121.79 579 1985-2019 
GHCND USR0000WGOH  Gold Hill WA 48.20 -121.50 1036 1990-2019 
GHCND USC00454169  Kent 47.41 -122.24 9 1912-2019 
GHCND USC00454486  Landsburg 47.37 -121.96 163 1903-2019 
GHCND USC00455525  Monroe 47.84 -121.99 37 1929-2019 
GHCND USC00455678  Mt Vernon 3-WNW 48.44 -122.38 4 1956-2005 
GHCND USC00456295  Palmer 3-ESE 47.30 -121.85 280 1924-2019 
GHCND USW00094248  Renton Muni Ap 47.49 -122.21 9 1998-2019 
GHCND USW00024234  Seattle Boeing Fld 47.53 -122.30 6 1948-2019 
GHCND USW00094290  Seattle Sand Pt  47.68 -122.25 18 1986-2019 
GHCND USW00024233  Seattle-Tacoma Intl  47.44 -122.31 113 1948-2019 
GHCND USC00457507  Sedro-Woolley HCN 48.49 -122.23 18 1896-2019 
GHCND USC00457773  Snoqualmie Falls  47.54 -121.83 134 1898-2019 
GHCND USC00458034  Startup 1-E 47.86 -121.71 52 1924-2019 
GHCND USC00458508  Tolt S Fk RSVR 47.70 -121.69 610 1962-2019 
SNOTEL 908  Alpine Meadows 47.78 -121.70 1067 1994-2018 
SNOTEL 898  Mount Gardner 47.36 -121.57 890 1993-2018 
SNOTEL 672  Olallie Meadows 47.37 -121.44 1228 1980-2018 
SNOTEL 911  Rex River 47.30 -121.60 1161 1995-2018 
SNOTEL 912  Skookum Creek 47.68 -121.61 1009 1995-2018 
SNOTEL 899  Tinkham Creek 47.33 -121.47 911 1993-2018 

 



 

 

  

SM Table 2. Watershed-adjacent Snowpack Telemetry (SNOTEL) sites used to evaluate 
DHSVM snow production.  

SNOTEL Site ID Lat. / Lon. Elv (m) Years 

Skookum Creek 912 47.68N / 121.61W 1009 1995-2018 

Alpine Meadows 908 47.78N / 121.7W 1067 1994-2018 
 

SM Table 3. Lapse rates and rain/snow thresholds for the 
calibrated Stillaguamish DHSVM. 

Parameter Value 

Monthly 
Temperature 
Lapse Rate 

Oct -4.5ºC/km 

Nov-Mar -5.5ºC/km 

Apr -5.0ºC/km 

May -4.5ºC/km 

Jun-Sep -4.0ºC/km 

Precipitation Lapse Rate 0.0 m/km 

Snow Threshold +1.0 ºC 

Rain Threshold +1.0 ºC 
 

SM Table 4. Select parameterization changes from baseline to final calibration for 
the Stillaguamish DHSVM. 

Parameterization Baseline Final 

Soils   

Upland 
Bedrock/
Loam 

Lateral Conductivity 0.0001 m/s 0.0002 m/s 

Exponential Decrease 2.3 1.6 

Porosity (three layers) 0.3 / 0.3 / 0.3 0.26 / 0.25 / 0.25 

Gravel 
Loam 

Lateral Conductivity 0.0005 m/s 0.008 m/s 

Exponential Decrease 3 0.6 

Porosity (three layers) 0.45 / 0.45 / 0.45 0.26 / 0.23 / 0.23 

Vegetation   

Rain/Snow LAI Multipliers 0.0003 / 0.0003 0.0001 / 0.0003 

Conifer 
Forests 

Overstory LAI 12 8 

Understory LAI 3 0.2 
 
 



 

SM Table 5. Stream channel hydraulic geometry classes in the Stillaguamish DHSVM. 
 

Slope Drainage Area (m2) Channel Geometry Manning’s 
Min Max Min Max Class Width (m) Depth (m) n 

- 0.0001                    -              120,000  1 4.6 0.3 0.055 
- 0.0001          120,000            500,000  2 8.4 0.6 0.050 
- 0.0001          500,000         5,000,000  3 22.0 1.3 0.045 
- 0.0001       5,000,000       20,000,000  4 40.0 2.2 0.040 
- 0.0001     20,000,000     170,000,000  5 80.0 5.0 0.035 
- 0.0001   170,000,000   -  6 100.0 6.0 0.035 

0.0001 0.0025                    -              120,000  7 4.3 0.3 0.055 
0.0001 0.0025          120,000            500,000  8 7.9 0.6 0.050 
0.0001 0.0025          500,000         5,000,000  9 20.6 1.2 0.045 
0.0001 0.0025       5,000,000       20,000,000  10 37.5 2.1 0.040 
0.0001 0.0025     20,000,000     170,000,000  11 75.0 4.7 0.035 
0.0001 0.0025   170,000,000   -  12 93.8 5.6 0.035 
0.0025 0.005                -              120,000  13 4.0 0.3 0.055 
0.0025 0.005          120,000            500,000  14 7.4 0.5 0.050 
0.0025 0.005          500,000         5,000,000  15 19.3 1.1 0.045 
0.0025 0.005       5,000,000       20,000,000  16 35.0 1.9 0.040 
0.0025 0.005     20,000,000     170,000,000  17 70.0 4.4 0.035 
0.0025 0.005   170,000,000   -  18 87.5 5.3 0.035 

0.005 0.015                    -              120,000  19 3.5 0.2 0.055 
0.005 0.015          120,000            500,000  20 6.3 0.5 0.050 
0.005 0.015          500,000         5,000,000  21 16.5 1.0 0.045 
0.005 0.015       5,000,000       20,000,000  22 30.0 1.7 0.040 
0.005 0.015     20,000,000     170,000,000  23 60.0 3.8 0.035 
0.005 0.015   170,000,000   -  24 75.0 4.5 0.035 
0.015 0.035                    -              120,000  25 2.9 0.2 0.055 
0.015 0.035          120,000            500,000  26 5.3 0.4 0.050 
0.015 0.035          500,000         5,000,000  27 13.8 0.8 0.045 
0.015 0.035       5,000,000       20,000,000  28 25.0 1.4 0.040 
0.015 0.035     20,000,000     170,000,000  29 50.0 3.1 0.035 
0.015 0.035   170,000,000    -   30 62.5 3.8 0.035 
0.035 0.035                    -              120,000  31 2.3 0.2 0.055 
0.035 0.035          120,000            500,000  32 4.2 0.3 0.050 
0.035 0.035          500,000         5,000,000  33 11.0 0.7 0.045 
0.035 0.035       5,000,000       20,000,000  34 20.0 1.1 0.040 
0.035 0.035     20,000,000     170,000,000  35 40.0 2.5 0.035 
0.035 0.035   170,000,000    -   36 50.0 3.0 0.035 
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SM Figure 1. Topography of the Stillaguamish watershed DHSVM. Primary subbasins are 
outlined. Meteorologic forcing nodes at 6-kilometer resolution area also shown. 

 
SM Figure 2. Simulated soil thickness in the Stillaguamish watershed DHSVM.  



 

 

 

  

 
SM Figure 3. Soil types in the Stillaguamish watershed DHSVM. 
 

 
SM Figure 4. Landcover classes in the Stillaguamish watershed DHSVM. 
 



 

 

  

         
 
SM Figure 5. Map of annual average temperature biases for the PNNL-Obs simulation. The map to the 
left shows the bias for annual average daily temperature; the map on the right shows the same for 
maximum annual temperature. The size of each circle denotes the bias (ºC), while the color denotes 
the sign of the bias. The Stillaguamish and Snohomish watersheds are outlined in black, while the 
Puget Sound coastline is shown in grey. 

            
 
SM Figure 6. As in SM Figure 5 except showing the annual average (left) and top 1% (right) 
precipitation biases (%) for the PNNL-Obs simulation.  



 

 

     
 
SM Figure 7. As in SM Figure 5 except showing the bias in annual average wind speed (left) and 
incoming shortwave radiation (right). Results are shown for the entire state of Washington since 
relatively fewer observations are available. 
 

 
SM Figure 8. Map of mean April 1st simulated snow depth as snow water equivalent (SWE) 
for water years 2004 through 2015. Only pixels with elevations between 1005 and 1070 
meters above sea level highlighted. This elevation band comprises the elevations of the 
Skookum Creek and Alpine Meadows SNOTEL stations in the adjacent Snohomish basin (SM 
Table 2). Mean simulated SWE for these pixels was 0.6 meters; mean observed SWE at the 
Skookum Creek and Alpine meadows stations over this same period was 1.07 m. 
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SM Figure 9. Daily mean hydrographs of observed flows (black) and DHSVM simulated flows (red) 
at the Silvana and NFArlington gauging stations in the Stillaguamish River (refer to Figure 1 of the 
primary document for locations). Statistical evaluation scores are provided in the Table 3 of the 
primary document. 
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SM Figure 10. Daily mean hydrographs of observed flows (black) and DHSVM simulated flows (red) 
at the SFJordanRd and Pilchuck626 gauging stations in the Stillaguamish River (refer to Figure 1 of 
the primary document for locations). Statistical evaluation scores are provided in the Table 3 of the 
primary document. 
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SM Figure 11. Monthly mean hydrographs of observed flows (black) and DHSVM simulated flows 
(red) at the Silvana and NFArlington gauging stations in the Stillaguamish River (refer to Figure 1 of 
the primary document for locations). Statistical evaluation scores are provided in the Table 3 of the 
primary document. 
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SM Figure 12. Monthly mean hydrographs of observed flows (black) and DHSVM simulated flows 
(red) at the SFJordanRd and Pilchuck626 gauging stations in the Stillaguamish River (refer to Figure 1 
of the primary document for locations). Statistical evaluation scores are provided in Table 3 of the 
primary document. 



 

  

 

 
SM Figure 13. Simulated (basin average) mean daily air temperature in the Stillaguamish watershed. 
Light gray, blue, and red lines represent individual general circulation model (GCM) averages over 
30-year climate normals for the 1990s and 2050s (top) and 2080s (bottom) respectively. Bolded black, 
blue, and red lines represent ensemble averages across all 12 GCMs. 



 

  

 
SM Figure 14. Simulated (basin average) mean monthly air temperature in the Stillaguamish 
watershed by parent general circulation model (GCM) and climate normal. The red line denotes 
rain/snow threshold in the hydrologic model.  



 

 
SM Figure 15. Simulated (basin average) mean annual snow water equivalent by parent general 
circulation model (GCM) and climate normal. 



 

  

 
 

 
SM Figure 16. Simulated (basin average) mean monthly precipitation magnitude in the Stillaguamish 
watershed. Light gray, blue, and red lines represent individual general circulaiton model (GCM) 
averages over 30-year climate normals for the 1990s and 2050s (top) and 2080s (bottom) respectively. 
Bolded black, blue, and red lines represent ensemble averages across all 12 GCMs. 



 

  

 
SM Figure 17. Simulated (basin average) mean monthly precipitation magnitude in the Stillaguamish 
watershed by parent general circulation model (GCM) and climate normal. 



 

  

 
SM Figure 18. Simulated (basin average) mean annual maximum 24-hour precipitation magnitude by 
climate normal and parent general circulation model (GCM).  



 

 
SM Figure 19. Simulated (basin average) mean month-annual maximum 24-hour precipitation 
magnitude for each climate normal and parent general circulation model (GCM). Each point 
represents the mean maximum precipitation magnitude within a given month over a 30-year climate 
normal period. Summer months (June through August) are omitted. 



  

          

 
SM Figure 20. Simulated monthly mean stream discharge. Light gray, blue, and red lines 
represent individual genreal circulation model (GCM) averages over 30-year climate normals 
for the 1990s and 2050s (left) and 2080s (right) respectively. Bolded black, blue, and red 
lines represent ensemble averages across all 12 GCMs. NFBoulderCreek and 
SFCanyonCreek drain high elevation tributaries of the Stillaguamish River with substantial 
snowpack in 1990s hindcasts. Pilchuck626 drains a lower-relief rain-dominated tributary of 
the Stillaguamish River. 

NFBoulder Creek 

SFCanyonCreek 

Pilchuck626 



 

 

 
SM Figure 21. Monthly frequency of 3-hour 10-year peak flow occurrence per 30-year climate normal 
at Stanwood by general circulation model (GCM). The 10-year peak flow threshold is 1729 m3s-1 
which was calculated from the empirical Gumbel extreme value function for the PNNL-Obs 
simulation from 1985-2015. Each climate normal encompasses 30 years. On average, a 10-year flow 
should occur about 3 times per 30-year climate normal. 
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