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ABSTRACT 

Polychlorinated biphenyls (PCBs) are a group of 209 highly stable molecules that were used 

extensively in industry. Although their commercial use ceased in 1979, they are still present in 

many aquatic ecosystems due to improper disposal, oceanic currents, atmospheric deposition, 

and hydrophobic nature. PCBs pose a significant and ongoing threat to the development and 

sustainability of aquatic organisms. Our hypothesis is that PCB concentration will significantly 

affect development. Zebrafish (Danio rerio) were exposed to a standard PCB mixture (Aroclor 

1254) for the first 5 days post fertilization, as there is a gap in knowledge during this important 

developmental period for fish (i.e., organization of the body). This PCB mixture was formally 

available commercially and has a high prevalence in PCB contaminated sites. We tested for the 

effects of PCB dosage on zebrafish survival, rate of metamorphosis, feeding efficiency, and 

growth. We found significant, dose-dependent effects of PCB exposure on mortality, feeding 

efficiency, and growth, but did not see a clear effect of PCBs on the rate of zebrafish 

metamorphosis. Most importantly, we identified a threshold PCB dosage beyond which PCB 

exposure had a significant impact on life-critical processes. This can further inform local 

management decisions in environments experiencing PCB contamination.  
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INTRODUCTION 

Polychlorinated biphenyls (PCBs) are a group of 209 highly stable molecules that were first 

developed in 1929 (Stalling & Mayer, 1972). They were extensively used in machinery such as 

dielectric fluid capacitors and closed-system heat exchangers as they have a high boiling point, 

good insulating properties, low flammability, and are chemically stable at high temperatures 

(Reddy et al., 2019; Stalling & Mayer, 1972). Within the United States, the Monsanto company 

was the only producer of PCBs. They manufactured eight different commercial preparations 

trademarked as Aroclors (Stalling & Mayer, 1972). Although sales were restricted to ensure 

controlled disposal, the massive environmental impact (i.e., high mortality of organisms 

inhabiting the region) of PCB contamination resulted in the worldwide prohibition of their 

commercial use in 1979 (Stalling & Mayer, 1972; Hayashi et al., 2015). However, due to their 

improper disposal, river and ocean currents, atmospheric deposition, and their hydrophobic 

nature, PCBs are prevalent in many aquatic ecosystems where they pose a significant and 

ongoing threat (LeRoy et al., 2006; Hashmi et al., 2015; Schwindt, 2015).  

PCBs are often described as “legacy contaminants” because of their slow rate of degradation. 

The prevalence of PCBs in some sediments and their propensity to bioaccumulate makes them a 

particular threat to both bottom-dwelling species and those that feed at high trophic levels 

(Foekema et al., 2008; Lovato et al., 2016). Aquatic habitats close to heavily industrialized areas 

face the highest risk from PCB contamination (Eqani et al., 2013).  

Locally, multiple areas within Puget Sound have high levels of PCB contamination (Harrison et 

al., 1994; McCain et al., 1990; West et al., 2008). Puget Sound is a large fjord system in 

Washington State that is comprised of numerous, linked inland marine and estuarine areas 
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(Burns, 1985; Moore et al., 2008). Its relatively restricted water exchange with the Pacific Ocean 

via the Strait of Juan de Fuca promotes long residence times for aquatic sedimentary pollutants 

(Harrison et al., 1994).

The bioaccumulation of PCBs in Puget Sound creates significant risks for local species, 

especially those that feed at high trophic levels in which exposure to PCBs is increased (Hickie 

et al., 2007). Pacific herring (Clupea pallasii) from Puget Sound were reported to have PCB 

levels 3 to 9 times higher than a nearby herring population in the Strait of Georgia, possibly due 

to historically higher levels of industrialization in Puget Sound (West et al., 2008). Mean PCB 

levels in juvenile Chinook salmon (Oncorhynchus tshawytcha), a herring predator, from the 

Duwamish Waterway in Seattle, Washington (an urban estuary in a heavily industrialized area), 

were three times higher than those of Chinook salmon from the nearby Nisqually River (a site 

with low levels of PCB contamination; McCain et al., 1990). PCB concentrations within local 

orca populations that prey heavily on Chinook salmon are also known to reach life-threatening 

levels (Krahn et al., 2007). These levels have the potential to result in disruptions to immune and 

endocrine systems, increasing mortality within this endangered species (Krahn et al., 2007). It is 

estimated that it will take an additional 14-57 years for PCB contamination in the Puget Sound 

area to fall below levels that pose a risk to local species (Hickie et al., 2007).  

Human exposure to PCBs can result in health concerns that range from minor to lethal (e.g., 

cancer, periorbital edema, gingival hyperplasia, abnormal skull calcification, low birth weight, 

etc.; Jafarabadi et al., 2019; Ju et al., 2012). The International Agency of Research on Cancer has 

also deemed PCBs to be a potential carcinogen in humans (Jafarabadi et al., 2019). Washington 

Department of Health has advocated against human consumption of Chinook Salmon from Puget 

Sound due to high levels of PCB contamination (Washington Department of Health, 2015). 
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Consuming contaminated seafood is one of the most likely paths of human PCB exposure, while 

inhalation and absorption through the skin can also occur (Du et al., 2012; Fattore et al., 2008; 

Kiviranta et al., 2004; Li et al., 2018; Sirot et al., 2012; Şişman et al., 2007).  

In fishes, PCB exposure and subsequent accumulation occurs via two main pathways: prey 

consumption and uptake via gills, epithelial, and dermal tissues (Antunes & Gil, 2004; Hansen et 

al., 1971; Mackay & Fraser, 2000; Visha et al., 2018). Once contamination occurs, PCBs can 

significantly alter development and impair mechanisms of homeostasis (Horri et al., 2018). 

Many of these effects are the result of PCBs acting as endocrine-disrupting compounds (Horri et 

al., 2018). PCB exposure can, for example, reduce levels of circulating thyroid hormone (TH) in 

vertebrates by as much as 30% (Crofton et al., 2005; LeRoy, 2006; Martin et al., 2012; Sumpter 

et al., 1996). 

Fishes are most sensitive to environmental pollutants during early development (Foekema et al., 

2012). When exposed to PCBs as embryos, fish are more likely to suffer from long-lasting 

effects due to the impact that PCBs can have on processes that coordinate anatomical 

organization, such as TH signaling (Foekema et al., 2012). Adequate TH levels are necessary for 

fish to metamorphose, build and maintain their skeletons, and develop functional adult feeding 

mechanisms (Galindo et al., 2019; Keer et al., 2019). Decreased TH levels (hypothyroidism) 

result in the abnormal retention of cartilaginous regions within the skull vault and incomplete 

skull ossification, leading to decreased levels of cranial motion that can impair feeding (Galindo 

et al., 2019; Hu et al., 2019; Keer et al., 2019; McMenamin et al., 2017).  

Pollutants stress living systems and can exacerbate the mortality that would normally occur 

during complicated developmental transitions, such as metamorphosis (Wesner et al., 2014). 



4 

 

Because metamorphosis is associated with high mortality under normal conditions it is 

sometimes referred to a “bottleneck” period (Wesner et al., 2014). Any toxins that further 

increase metamorphic mortality can have a large impact on population survival (Wesner et al., 

2014).  

During development an organism spends a great deal of energy on growth, with a small margin 

for energy that can be used for other biological processes without impacting survival (Metcalfe 

& Monaghan, 2001). Metamorphosis requires significant energy expenditure, so that exposure to 

toxins that interfere with metamorphosis may incur an energetic cost that can lead to mortality 

(Metcalfe & Monaghan, 2001; Wesner et al., 2014). Within the field of toxicology, it is common 

for experiments to focus on PCB exposure during early life stages (especially the embryonic 

period), while ignoring later developmental periods that may be particularly susceptible to PCB 

toxicity. The high cost of metamorphosis in combination with the fact that PCBs can disrupt the 

TH signaling that initiates and directs this important developmental transition suggests that this 

developmental stage could be heavily impacted by PCB exposure. 

Further investigations are needed to better understand how PCBs affect development and fitness, 

especially during later life stages (e.g., metamorphosis and juvenile development). This study 

provides a better understanding of the effects of PCB contaminants on a model aquatic species, 

the zebrafish (Danio rerio; Hamilton, 1822). Juvenile zebrafish (after metamorphosis, but not 

sexually mature) exposed to PCBs display muscle dysfunction, swimming defects, disruption of 

liver metabolism, and decreased reproductive fitness (Hayashi et al., 2015).  We complement this 

study by quantifying the effects of PCB exposure on survival, growth, and feeding efficiency in 

both pre- and post-metamorphic zebrafish, and by testing for effects on the rate of 

metamorphosis. 
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We determined threshold PCB tissue concentrations for significant impacts on the development 

of young zebrafish and quantified the effects of PCB exposure on their growth, survival, rate of 

metamorphosis, and feeding ability.  

Aroclor 1254 (~21% C12H6Cl4, ~48% C12H5C5, ~23% C12H4Cl6, ~6% C12H3Cl7) is the 

commercial PCB mixture that was used in this study (Bast, 1997). It is 54% chlorine by 

molecular weight (as denoted by the last two digits in its name; Ballschmiter & Zell, 1980; Bast, 

1997; Erickson, 1997; Lang, 1992; Parkinson & Safe, 1987).  We chose to examine the effects of 

Aroclor 1254 on zebrafish development because of its high prevalence in PCB-contaminated 

sites and due to it having been one of the most widely used PCB mixtures (Erickson, 1997). This 

research will assist conservation biologists and aquatic resource managers with determining 

when PCB contamination represents a significant risk to fish stocks. 

Questions & Hypotheses 

Question 1: What PCB concentration significantly affects survival?  

Null hypothesis: PCB exposure will not significantly affect survival.  

Question 2: What PCB concentrations significantly affect the timing of metamorphosis in fish 

being exposed? 

Null hypothesis: PCB exposure will not significantly affect the timing of metamorphosis. 

Question 3: What PCB concentrations significantly affect the feeding efficiency of fish being 

exposed?  

Null hypothesis: PCB exposure will not significantly affect feeding efficiency.  
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Question 4: What PCB concentrations significantly affect the standard length in fish being 

exposed? 

Null hypothesis: PCB exposure will not significantly affect standard length.  

 

Methods 

Fish Breeding, Egg Collection, and Dosing 

Wild-type zebrafish (Danio rerio; AB line) were used in this study as they are easily bred, have 

rapid development, and are a model organism with straightforward husbandry (Meyers, 2018). 

Four male/female zebrafish pairs were placed in each of 4 standard zebrafish breeding tanks 

(Tecniplast, ZB17BTE; ZB17BTISLOP; ZB17BTL) and maintained at 28 degrees Celsius in an 

incubator (Shel Lab, SMI6) overnight. Incubator lighting was adjusted to the 14:10 light/dark 

schedule to which the breeding pairs had been previously acclimated. Fish were placed in tanks 

after lights out to promote fertilization at artificial sunrise the next day.  

After breeding, 60 healthy, fertilized eggs were haphazardly selected and added to each of 42 

glass petri plates (90 mm diameter; Bomex, Shanghai, China) containing 50 mL of embryo water 

(Westerfield, 2000). This allowed for 7 replicates of 6 treatments (plates as replicates).  

Because the PCB mixture was dissolved in methanol, we utilized two control treatments: embryo 

water alone and embryo water plus methanol (a “solvent control”). We will refer to our 

treatments in the following manner, with the PCB concentrations of the treatment solutions in 

parentheses: control (embryo water only; 0 mg/L), methanol (solvent control; 0 mg/L); PCB 1 

(0.125 mg/L), PCB 2 (0.25 mg/L), PCB 3 (0.35 mg/L), and PCB 4 (0.40 mg/L). All treatments 
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except for the control treatment and PCB 4 received additional methanol so that the 

concentration of methanol in all treatments (except for the control) were equal. Treatments are 

reflective of PCB concentrations found within Pacific herring inhabiting Puget Sound (West et 

al., 2017). Eggs remained in these solutions for 5 days and dead eggs were removed daily. By 5 

days-post-fertilization (dpf) all eggs had hatched. Treatment solutions were removed from each 

plate via pipette and all larvae were gently rinsed three times with embryo water (pipetted 

carefully into plates and then pipetted out). All dead eggs and PCB water waste were disposed of 

following an approved animal care protocol (WWU 21-006). 

After rinsing, the larvae from 6 plates per treatment (36 plates total) were transferred to 

individual 4 L mason jars (one jar per plate/replicate) containing 0.50 L of embryo water. Fish 

from the remaining petri plates (1 per replicate) were euthanized, for initial length comparisons, 

according to animal care protocol WWU 21-006, fixed in paraformaldehyde and stored as 

described below. Jars were assigned to one of six, 110-quart plastic tubs using a random number 

generator in Excel (Microsoft, Inc., Redmond, WA). Water was placed in the bottom of each tub 

(~3 inches) to provide a water bath. An aquarium heater (Uniclife, HP608) was used to maintain 

the temperature of the water bath at 28 degrees C and an air stone was used to circulate the 

heated water throughout the tub and maintain an even temperature throughout. The temperature 

of the water baths was recorded each day and adjusted as necessary.  

Daily Care 

Eighty percent of the water in each jar (400 mL) was exchanged for new embryo water every day 

from 6 dpf onward. PCB wastewater was disposed of according to the approved animal care 

protocol (WWU 21-006). Ammonia levels were measured and recorded daily for each jar (API 

NH3/NH4
+ Test Kit, API, Chalfont, PA). Ammonia-absorbing sponges (EA Aquatics, San 



8 

 

Rafael, Philippines) were cut into 1.5 cm x 1.5 cm squares added to each jar (1 sponge section 

per jar). Sponges were replaced and changed every other day. Jars were inspected daily, and any 

dead fish were removed. Mortality was recorded daily for every jar. The fish in each jar were fed 

50 mL of live Paramecium culture once daily after water changes and the removal of any dead 

fish. Beginning at 10 dpf, 3 drops of live, newly hatched brine shrimp (Artemia) were also added 

to each jar using a transfer pipette.  

Brine shrimp were raised in standard brine shrimp cones (Brine Shrimp Direct, Ogden, Utah) for 

24 hours, then allowed to feed on a commercial algal suspension (Reed Mariculture, Campbell, 

California) for an additional 24 hours. Cultures were then passed through a brine shrimp strainer 

(Brine Shrimp Direct, Ogden, Utah), rinsed briefly with deionized water (DI water), and then 

rinsed from the strainer into a beaker using DI water. Live brine shrimp were allowed to briefly 

settle to the bottom of the beaker so that concentrated shrimp could be removed by pipette. The 

amount of shrimp added to each jar daily was gradually increased at a rate that allowed fish to 

consume all/most shrimp (following established protocols within the lab). Any uneaten shrimp 

were removed by pipette. On dpf 25 Paramecia feeding stopped and fish were only fed 10 drops 

of brine shrimp once daily for the remainder of the study.  

Metamorphosis 

Fish were checked daily for signs of metamorphosis starting on 10 dpf (the earliest day at which 

metamorphosis has been reported in wild-type zebrafish; McMenamin & Parichy, 2013). Fish 

were first examined in their jars against a solid background in a well-lit area. If any fish appeared 

to exhibit possible signs of metamorphosis, then the contents of the mason jar were gently 

decanted into a 2.5 L rectangular tank (Aquaneering Inc., ZT280, San Diego, California) for 

clearer viewing and confirmation of metamorphosis. Fish were considered to have entered 
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metamorphosis when they exhibited a lateral patch of iridophores (a shiny, white patch of skin) 

immediately behind the head that was flanked dorsally and ventrally by horizontal lines of 

melanophores (black lines; Fig. 1; McMenamin & Parichy, 2013). Metamorphosed fish were 

transferred to a separate mason jar within the same tub and the number of fish that had entered 

metamorphosis was recorded daily for each of the original jars. Each replicate of every treatment 

had a dedicated jar for fish that had entered metamorphosis.  

Feeding Trials 

Feeding trials were performed at 15, 25, and 35 dpf to test for an effect of PCB and/or methanol 

exposure on feeding proficiency. Five (5) fish were haphazardly collected from each mason jar 

and placed into a single 250 mL beaker containing 200 mL of embryo water at 28 degrees C. 

Each beaker was then placed in a lighted incubator at 28 degrees C for ten minutes to allow fish 

to acclimate. Twenty-five (25) brine shrimp (5 brine shrimp per fish) were then added to each 

beaker. If there were less than 5 fish alive in a jar, the number of brine shrimp was reduced 

accordingly to maintain a 5-to-1 shrimp/fish ratio. The water volume in each beaker was also 

adjusted accordingly. After three (3) minutes ice was added to each beaker to halt feeding and 

euthanize the fish according to WWU animal care protocol 21-006. The remaining brine shrimp 

were then counted, and the fish from each beaker were placed in labeled tubes in which they 

were fixed in a paraformaldehyde solution at 4 degrees C for 24 hours. After fixation fish were 

slowly transferred into 75% ethanol for storage. The standard length of each fish was measured 

under a stereomicroscope (Leica Microsystems; Model: MSV269) using digital calipers. All 

remaining fish were euthanized following the final feeding trial at 35 dpf whether or not they 

were included in a feeding trial.  
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Statistical Analyses 

Survival  

An initial Kaplan-Meier analysis was used to test for differences in survival between treatments. 

Because no significant difference was found between the control and the solvent treatment (p-

value= 0.49195; Table S1), the PCB treatments were only compared to the solvent control 

treatment in subsequent analyses. To take population density into account a Cox-Proportional 

Hazard analysis (CPH) was used to test for differences in survival between the PCB and 

methanol treatments. CPH can account for changes in population density over time, whereas 

Kaplan-Meier analyses cannot. CPH estimates a survival probability for every treatment and then 

determines the slope of the survival probability (y) PCB concentration (x) relationship. This 

slope, representing the relationship of the probability of survival for a given PCB treatment, is 

termed the Hazard Ratio (HR) for survival (Therneau & Grambsch, 2000). A HR was also 

calculated for population density in order to determine if the number of fish per jar influenced 

survival. CPH analyses were performed using the ‘coxph’ function to run a fixed-effects Cox 

model in the ‘survival’ package within R Studio (Therneau & Grambsch, 2000; Therneau 2023). 

The tubs in which the jars were maintained were treated as a random effect and fixed coefficients 

were calculated to estimate the effects of treatment and population density on survival.  

The ‘cox.zph’ function was used to test the assumption that the Hazard Ratio (HR) was constant 

throughout the study. A Kaplan-Meier survival plot was used to display daily survival across 

treatments (Figure 2), with changes in slope indicating when fish deaths occurred (Bland & 

Altman, 1998).  
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Metamorphosis 

CPH was also used to examine the metamorphosis data. Because the metamorphosis HR for 

these data was not proportional throughout the study, the ‘coxme’ function was used to run a 

mixed-effects Cox model (fixed effects & random effects). This model is not sensitive to the 

assumption that the HR is constant over time (taking population density into account; Therneau, 

2022). Population density was accounted for in this model because population density changed 

each time metamorphosing fish were removed from their original jar. We used the same random 

effects within the experimental design as noted above (jars nested within tubs; see ‘Survival’ 

section) and fixed coefficients were also treated in the same manner. HR were calculated for both 

survival and population density.  

Feeding Efficiency  

Feeding efficiency was measured as the percentage of available shrimp consumed during a trial 

(Fig. 4 and 5). A Negative Binomial Model (NBM), which is a specific version of a Generalized 

Linear Mixed Model (GLMM), was used to compare feeding efficiency across treatments for all 

feeding trials (15, 25, and 35 dpf). GLMM merges aspects of both a Generalized Linear Model 

(GLM) and a Mixed Model, and allows for irregular distributions of data (Bolker, 2015). Both 

fixed and random effects are accounted for within the GLMM model. Fixed effects differentiate 

differences between treatments. Random effects within this model are the same as those detailed 

in the section above titled ‘Survival.’ An NBM uses a Poisson-Gamma mixture to assess count 

data and allows for high variance in comparison to the mean (Yirga et al., 2020). This can 

accommodate overdispersion when the residual variance is higher than what the model can 

predict.  
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NBM analyses were run through the ‘lme4’ package in R Studio using the function ‘glmer.nb’ 

(Bates et al., 2015). The ‘q-q plot’ function in the ‘ggplot’ R package was used to determine if 

the residuals of the data were normally distributed (an assumption of the NBM; Horikoshi & 

Tang, 2016; Wickham, 2016).  

Pairwise comparisons of feeding efficiency between treatments were then performed for each 

feeding trial using the package ‘emmeans’ (Lenth et al., 2023). The False Discovery Rate (FDR) 

correction method (Lenth et al., 2023) was used to adjust p-values for multiple comparisons.  

Length 

 A GLMM was used to test for differences in the rate of fish elongation between treatments. The 

steps of these analyses followed the same order as those described for ‘Feeding Efficiency’ 

above. This model was created using the ‘glmer’ function in the ‘lme4’ package in R Studio 

(Bates et al., 2015). The function ‘emmeans’ was used to run pairwise comparisons between 

treatments at each time point (5, 15, 25, and 35 dpf; Lenth et al., 2023). Data from the PCB 4 

treatment was not included in the measurements recorded at 35 dpf as all fish in that treatment 

had died by that time. Q-Q plot was used to verify that the data met the assumptions of the 

model, and the FDR correction method was also used to adjust p-values (see ‘Feeding 

Efficiency’ above; Lenth et al., 2023; Wickham, 2016).  
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RESULTS 

Survival 

PCB concentration had a significant effect on survival (Table 1). We therefore reject our first 

null hypothesis; PCB exposure will significantly affect survival. Survival data are visually 

displayed in Figure 2. At 0 dpf the y-axis is at 1.0 (100% of fish were alive). Neither tub nor jar 

had a significant effect on survival (Table S2). The HR for survival was significant (p-value < 

2e-16) and estimated to be 130.4 (1.304e+02; Table 1), which indicates that exposure to higher 

PCB concentrations resulted in higher mortality, with PCB treated fish 130 times more likely to 

die relative to control fish. The HR for population density was significant (p-value= <2e-16) and 

estimated to be 1.046 (Table 1), indicating that the mortality of PCB-treated fish and control fish 

were affected in a similar way by population density.  

In general, higher rates of mortality were associated with higher PCB dosages (Fig. 2). However, 

fish in the PCB 2 treatment exhibited survival patterns similar to the control treatment (Fig. 2). 

Metamorphosis 

A marginally insignificant (p-value= 0.051) effect of PCB concentration on the rate of 

metamorphosis was found (Table 2). We therefore fail to reject our null hypothesis; PCB 

exposure will significantly affect the timing of metamorphosis. In general, as PCB concentration 

increased the rate of metamorphosis decreased (Table 2; Fig. 3). However, an increased rate of 

metamorphosis was seen in PCB 2 treatment (Fig. 3). The PCB 3 treatment exhibited the slowest 

rate of metamorphosis (Fig. 3). The PCB 4 treatment was excluded from these analyses as there 

were only four individuals alive at the onset of metamorphosis and this sample size would not 

support statistical analysis.  
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In this analysis an HR of 1 indicates that the treated group acted the same as the solvent control 

group (methanol) and an HR > 1 indicates a faster rate of metamorphosis relative to the control. 

An HR of 1.3045 for population density was found to be significant (p-value = 0.000; Table 2), 

which indicates that, across all treatments, the rate of metamorphosis increased as population 

density within jars decreased. When population density is not accounted for PCB exposure is 

seen to significantly slow the rate of metamorphosis (HR= 3.621e-07, p-value = 4.02e-05; Table 

2). However, when population density is included in the model the rate of metamorphosis is 

marginally insignificant (HR= 0.0316, p-value= 0.051; Table 2).  

Feeding Efficiency 

Fish from all PCB treatments except the PCB 2 treatment had significantly lower feeding 

efficiencies than control fish at 15 dpf (Table 3, pairwise comparisons between treatments at 15 

dpf). No PCB treatments exhibited significantly different feeding efficiency relative to control 

fish at 25 and 35 dpf (Table 4 and 5; Fig. 4). We therefore cannot reject the null hypothesis that 

PCB exposure will not significantly affect feeding efficiency. However, except for PCB 2 

treatment, we found that PCB exposure affected feeding efficiency in younger, pre-metamorphic 

fish, but that post-metamorphic fish were not strongly affected. The results of the complete 

pairwise comparisons are included in the supplementary data (Table S3). 

Within each treatment, fish at 15 dpf exhibited significantly lower feeding efficiencies than those 

at 25 and 35 dpf (Fig. 5). There was no significant difference in the feeding efficiencies of 25 

and 35 dpf fish within any treatment (Tables 6-9). Because no fish treated with PCB 4 survived 

to 35 dpf there could be no comparison with 25 dpf fish from this treatment.  
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Length 

Length distributions were similar across treatments (Table S4; Fig. S1) with one exception. At 35 

dpf, the surviving fish that had been treated with the highest PCB concentration at the time (PCB 

3) had body lengths that were significantly smaller in comparison to 35 dpf fish from the other 

treatments (Fig. 6; Table S4). Fish treated with 0.40 mg/L did not survive to 35 dpf. We 

therefore cannot reject the null hypothesis; PCB exposure will not affect fish length.  

Within treatments, 15 dpf fish were significantly longer than 5 dpf specimens, except for those in 

the methanol treatment (p-value= 0.0561; Table 10), and significantly shorter than both 25 and 

35 dpf specimens (Tables 10-14; Fig. S1). In both the methanol and PCB 2 treatments fish 

underwent significant increases in length between each timepoint at which length was measured 

(i.e., 5, 15, 25 and 35 dpf; Tables 10 and 12). For the PCB 1 and PCB 3 treatments there were no 

significant differences in the lengths of 25 and 35 dpf fish (Tables 11 and 13). Within the PCB 4 

treatment 15 dpf fish were significantly shorter than fish collected at 25 dpf (Table 14).  

Among treatments there were no significant differences in the lengths of fishes collected at the 

same age except for those collected at 35 dpf (Table S4; Fig. 6). At 35 dpf fish from the PCB 3 

treatment were significantly shorter than fish from the other treatments in which specimens 

survived to 35 dpf (i.e., all other treatments except for PCB 4; Table S4; Fig. 6 and S1).  

 

DISCUSSION AND FUTURE DIRECTIONS 

We identified a threshold PCB exposure level (0.35 mg/L, i.e., PCB 3; treated from 0-5 dpf), 

beyond which zebrafish development is substantially impaired in life-critical ways. PCB 3 fish 

showed exhibited decreased survival, prolonged metamorphosis, decreased feeding efficiency in 

pre-metamorphic stages, and decreased post-metamorphic growth. PCB 4 fish (0.40 mg/L; 
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treated from 0-5 dpf) exhibited high mortality from early in the study, did not survive to 

complete metamorphosis, and had low feeding efficiencies pre-metamorphosis. Identifying this 

threshold is an important step toward better informing management plans for PCB contaminated 

sites. If subsequent studies determine the PCB tissue concentration in adult female fishes that can 

result in their eggs receiving PCB exposure similar to those used in the PCB 3 and 4 treatments 

here, then aquatic resource managers should be able to better assess environmental threats from 

PCB toxicity. This study moves a step closer to being able to monitor PCB contamination risks 

to wild fish stocks by sampling tissues from adult females.  

Despite nearly half a century of recovery, PCB exposure continues to be a serious threat to 

aquatic ecosystems (LeRoy et al., 2006; Hashmi et al., 2015; Schwindt, 2015). Our ability to 

mitigate the effects of this contamination is limited by our understanding of the threshold PCB 

exposure levels that produce toxic effects in various species, and the manner in which sub-lethal 

exposure affects life-critical processes in these organisms. The findings reported here contribute 

to this understanding by identifying threshold levels of PCB exposure that have lethal effects on 

a model fish (zebrafish) and by examining how sub-lethal exposure impacts their growth, 

metamorphosis, and feeding ability. 

I examined the effects of exposing zebrafish to the most commonly used commercial PCB 

mixture: Aroclor 1254 (Erickson, 1997). Aroclor 1254 residues are frequently reported in 

environmental surveys of PCB contaminated sediments and groundwater (Majone et al., 2015). 

Although we have some understanding of how exposure to Aroclor 1254 affects vertebrates, this 

study is the first of its kind to quantify the sub-lethal effects of Aroclor 1254 during later 

developmental periods (e.g., metamorphosis and early juvenile stages).  
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Because many PCB toxicity studies have focused on determining lethal PCB contamination 

thresholds during early development (e.g., Harris et al., 1998; West et al., 2017), it is likely that 

the impact of these compounds has been underestimated. Aquatic organisms that complete their 

embryonic and larval stages despite PCB exposure may still experience impairment during later 

life (West et al., 2017). Reduced growth rates during larval and juvenile development, delayed 

metamorphosis, and the disorganization of the anatomical remodeling that occurs during 

metamorphosis, for example, can significantly reduce the survival of aquatic species and heavily 

impact the annual recruitment of young of the year to existing populations (i.e., stocks; Gilliers et 

al., 2006; Holzer et al., 2017; Laudet, 2011; West et al., 2017). In addition to quantifying the 

toxic effects of PCBs on early zebrafish development, our findings also improve our 

understanding of the threats posed by sub-lethal PCB exposure to the sustainability of wild 

populations.  

  Impacts of PCB Exposure on Survival 

Many organisms have lower abilities to compensate for toxins (e.g., PCBs) during early 

developmental relative to later life stages (Crane et al., 2006). Exposure to PCBs can also impact 

the fundamental body organization that occurs during embryogenesis (Yang et al., 2016). 

Because early development is so sensitive to PCB toxicity, we exposed specimens to Aroclor 

1254 immediately after fertilization in order to document the most severe effects of this 

compound on developing zebrafish.  

We found that PCB exposure during early development significantly affected survival 

throughout embryonic, larval, and early juvenile life stages (Table 1; Fig. 2). PCB treated fish 

were 130 times more likely to die than methanol treated fish, with the chance of mortality 
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increasing with PCB concentration (Table 1). These results were consistent with those from 

similar studies of the effects of PCBs on fishes (Ju et al., 2012; Billsson et al., 1998).  

There was higher mortality in early development (0-15 dpf), when fish are generally more 

susceptible to the effects of PCBs (Schimmel et al., 1974; Fig. 2). With the exception of the PCB 

2 treatment, we also see a dose-dependent effect of PCB exposure (the strength of the PCB 

concentration in which fish were immersed) on survival (Fig. 2). Most notably, some specimens 

from every treatment lived until 25 dpf, when zebrafish are normally metamorphosing (Guerrera 

et al., 2015). The PCB concentrations to which we exposed our specimens were therefore low 

enough that they did not necessarily prevent zebrafish from reaching the age at which, under 

normal conditions, they would have completed larval development (i.e., entered metamorphosis).  

One of the more important findings of this study is the identification of a threshold PCB 

exposure concentration for completing fish metamorphosis. In each PCB treatment except PCB 4 

we saw specimens that were able to complete metamorphosis and live until 35 dpf (Fig. 2). This 

suggests that exposure to PCB concentrations between 0.35 and 0.40 mg/L (a very narrow range) 

prevents zebrafish from completing metamorphosis, which is already a developmental transition 

associated with high mortality in wild fishes (Barth et al., 2015; Campero et al., 2008; Dixson et 

al., 2011; Doherty, 2002; Dufour & Galzin, 1993; Leis & McCormick, 2002; McCormick et al., 

2002; Wesner et al., 2014).  

 Previous studies that identified higher thresholds for lethal effects of PCBs largely examined 

embryonic development alone (e.g., Bergeron et al., 1994; Nakayama et al., 2005; Singleman et 

al., 2021). Because we also examined later developmental periods, we are able to provide a more 

accurate estimate of the PCB exposure levels that affect the mortality of developing fishes. This 
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information provides aquatic resource managers with a more accurate threshold for PCB 

concentrations that will impair the sustainability of wild stocks. 

Because PCBs can undergo maternal transfer to eggs and young, fishes that develop in PCB-free 

environments may still be affected by these toxins if their mothers were previously exposed 

(Foekema et al., 2008). This occurs as PCBs are transferred to the egg with lipids and proteins 

(Foekema et al., 2008; Nakayama et al., 2005; Daley et al., 2009; Debruyn et al., 2004; Kelly et 

al., 2011; Russell et al., 1999; Serrano et al., 2008). Additionally, maternally inherited pollutants 

are rarely excreted, and reach peak concentration during the final stages of the yolk-sac 

embryonic stage of an individual’s life cycle, which can lead to significant developmental 

disruptions (Foekema et al., 2012). 

Threats of PCB contamination to fish stocks are frequently estimated by measuring the PCB 

concentrations present in the tissues of adult fishes. Our findings suggest that maternal tissue 

concentrations above 0.35 mg/L (PCB 3) could prevent offspring from surviving to the juvenile 

stage (Fig. 2 & 3; Foekema et al., 2012; Russell et al., 1999). The results of this study therefore 

provide aquatic resource managers with a useful threshold value that can improve their ability to 

use current sampling methods (measure of PCB tissue concentrations in adult fishes) to 

determine if fish stocks are at risk from PCB contamination.   

Impacts of PCB Exposure on Metamorphosis  

An individual’s survival of metamorphosis is heavily influenced by their energy reserves 

(Olivotto et al., 2011). Metamorphosis is typically an important “bottleneck period” where post-

metamorphic survivors frequently represent a small fraction of the original population (Barth et 

al., 2015; Campero et al., 2008; Dixson et al., 2011; Doherty, 2002; Dufour & Galzin, 1993; Leis 



20 

 

& McCormick, 2002; McCormick et al., 2002; Wesner et al., 2014). Any toxins that impair such 

a sensitive developmental transition are of strong interest to aquatic resource managers. 

PCB exposure has been linked to decreased levels of TH, which plays a significant role in 

instigating and directing vertebrate metamorphosis (Dong et al., 2014; LeRoy et al., 2006). 

Organisms that are unable to maintain satisfactory TH levels may undergo metamorphic delays 

and/or impairment of the anatomical remodeling that occurs during metamorphosis (Cooper et 

al., 2020; Galindo et al. 2019; Hodin, 2006; Truman & Riddiford, 1999). Metamorphosis is also 

physiologically demanding (Campero et al., 2008; Heyland & Moroz, 2006; McCauley et al., 

2011; Menon & Rozman, 2007; Wesner et al., 2020). The stress associated with metamorphosis 

can be exacerbated in polluted environments (Hodin, 2006) because many toxins impair this 

important developmental transition (Campero et al., 2008; Debecker et al., 2017; Hodin, 2006; 

Wesner et al., 2014). The presence of Aroclor 1254 in aquatic environments has been shown to 

prolong the metamorphosis of resident species (Dong et al., 2014; LeRoy et al., 2006; Eales & 

Brown, 1993; Glennemeier & Denver, 2001; Werner, 1986; Wilbur, 1980). Such elongation of 

metamorphosis has been shown to increase mortality (McCarthy et al., 2003).  

Those organisms that survive larval development after PCB exposure may experience prolonged 

and/or disrupted metamorphosis (Billsson et al., 1998; Campero et al., 2008; Dong et al., 2014; 

Grafe et al., 2004; Schimmel et al., 1974). The metamorphic transition from larva to juvenile is 

characterized by major transformations in feeding behavior and feeding mechanics (McMenamin 

et al., 2017). Significant impacts on the development of post larval feeding mechanics can 

therefore result from TH disruption (Galindo et al. 2019; Cooper et al., 2020; McMenamin et al., 

2017). 
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PCB exposure delayed metamorphosis in a concentration-dependent manner (HR= 3.621e-07, p-

value= 4.02e-05; Table 2; Fig. 3). Population density was also found to inversely affect the rate 

of metamorphosis. When there were less fish in a jar metamorphosis occurred more quickly (HR 

= 1.3045, p-value= 0.000; Table 2). Even though lower population densities significantly 

increased rates of metamorphosis (p-value<0.0001, Table 2), when population density was taken 

into account the p-value for the effect of PCBs on the rate of metamorphosis was still 0.051 

(Table 2). Methanol and PCB 1 treatments exhibited the most rapid metamorphic rate initially, 

but this rate leveled off for the remainder of the experiment. PCB 3 showed the slowest 

metamorphic rate (Table 2; Fig. 3). The metamorphosis of fish treated with PCB 2 departed from 

the pattern established within the other treatments. These fish initially exhibited a rapid rate of 

metamorphosis and had more individuals entering metamorphosis than in the other treatments 

(Fig. 3).  

Although we found that zebrafish exposed to PCB concentrations greater than 0.35 mg/L (PCB 

3) did not complete metamorphosis, we did not find a significant effect of PCB concentration on 

the rate at which the remaining treatments entered metamorphosis (Table 2; Fig. 3). This may be 

due to errors in dosing those specimens treated with PCB 2, as the fish in that treatment showed 

a markedly different response to PCBs than those in other treatments (Table 2; Fig. 3). Visual 

comparisons of the rates of metamorphosis exhibited by the methanol, PCB 1, and PCB 3 

treatments suggest a dose-dependent effect of PCB concentration on metamorphic rate that 

would likely place wild populations at risk (Table 2; Fig. 3; McCarthy et al., 2003). 

Impacts of PCB Exposure on Feeding Efficiency 

PCBs affected the feeding efficiency of pre-metamorphic zebrafish larvae (15 dpf) in a 

concentration-dependent manner, but we saw no effects from PCBs on juvenile (i.e., post-
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metamorphic) fish at 25 and 35 dpf (Tables 3-5). When examining each treatment individually, 

feeding efficiency was found to be significantly lower at 15 dpf (pre-metamorphic fish) in 

comparison to 25 and 35 dpf (post-metamorphic fish; Table 6-9). This supports the conclusion 

that PCB exposure has a higher impact on larval feeding efficiency than it does on post-

metamorphic feeding. Death from larval starvation is common in fishes, and reduced larval 

feeding can have a strong impact on the seasonal recruitment of young fishes to existing 

populations (Cushing, 1990; Holzer et al., 2017; Kasumyan, 2001; Leaf & Friedland, 2014; 

Lusseau et al., 2014; Pritt et al., 2014). Even larval fishes that feed sufficiently to survive 

metamorphosis may experience decreased growth, reproduction, and survival in later life if larval 

feeding was impaired (Gilliers et al., 2006; West et al., 2017).  

Impacts of PCB Exposure on Growth 

We saw no effects of PCB exposure on growth until after metamorphosis, when the fish in the 

PCB 3 treatment, which was the treatment with the highest PCB dosage in which any fish 

survived past metamorphosis, were found to be significantly shorter than fish from the other 

treatments (Fig. 6; Table S4). There was also a difference in post-metamorphic growth between 

treatments. Fish in the methanol and PCB 2 treatments exhibited significant growth between 

days 25 and 35, while PCB 1 and PCB 3 fish showed no significant elongation during this time 

(Tables 10-13). Fish in the methanol and PCB 4 treatments showed no significant elongation 

between 5 and 15 dpf (Tables 10, 14). 

Disruptions in TH signaling are known to retard the growth of young fishes and PCB exposure 

can reduce TH levels (Dong et al., 2014). The possible correspondence between slower growth 

and higher PCB exposure could therefore be the result of lower TH levels in fish treated with 

higher PCB doses. It should, however, be noted that PCBs affect multiple aspects of 
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development and that these different disruptions could have negative additive effects on 

elongation (Gutleb et al., 1999; Kimbrough & Krouska, 2003; Lundberg et al., 2006; Schmidt et 

al., 2005; Singleman et al., 2021; Sisman et al., 2007; Ulbrich & Stahlmann, 2004). We cannot 

therefore definitively attribute the growth reductions seen here to the impact of PCBs on TH 

signaling alone.  

Limitations 

The greatest limitation of a toxicological laboratory experiment is the inability to represent what 

organisms will encounter in the wild. In a natural setting it is highly unlikely that organisms will 

face only a single environmental stressor (e.g., PCB exposure). Wild populations utilize a wide 

range of resources that are often limited and insufficient for the survival of all members. 

Additional stress is added to a population with fluctuations in temperature, pH, and other 

environmental variables, as well as being exposed to multiple pollutants. The interaction of these 

variables is likely to have complex effects on fish development that will be difficult to predict. 

Another limitation is inconsistency in the composition of Aroclor 1254 mixtures. The ratio of 

individual PCB congeners found within Aroclor mixtures varies across batches (Johnson et al., 

2015; Kodavanti et al., 2001). Because of the various compositions of these mixtures, it is 

difficult to compare studies in which different vials were used (Burgin et al., 2001; Kodavanti et 

al., 2001; LeRoy et al., 2006).  

Future Directions 

Survival, the rate of metamorphosis, feeding efficiency, and the rate of growth in the PCB 2 fish 

were at odds with observations of fish from the other treatments (Tables 3, 8, and 12; Figs. 2, 3, 

and 6). This suggests that there may have been a dosing error when setting up the PCB 2 
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treatment. We suspect that PCB dosage has a significant effect on post-metamorphic growth (i.e., 

that the PCB 2 results may be in error) but cannot conclude that this is accurate without 

replicating at least some aspects of this study. Currently, the methanol and PCB 2 treatments of 

this experiment are being replicated by two undergraduates (Luke Ghallahorne and Marshall 

Lenhart) under the supervision of Megan Moma and Jim Cooper. The findings of this ongoing 

study will allow us to determine how to move forward with publishing our combined findings.  

If exposure to Aroclor 1254 does affect the growth of post-metamorphic fishes, then this 

strengthens the case for expanding the scope of PCB toxicology studies. Such work has heavily 

emphasized testing for the effects of PCB exposure using data from early developmental stages 

(Foekema et al., 2012). By failing to examine the effects of sub-lethal PCB doses on late 

development (late larval and juvenile stages) these studies may have overlooked important 

aspects of how these pollutants impact wild populations. Through additional studies we can 

create better management plans in order to conserve these ecosystems and the organisms 

inhabiting them.  
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TABLES 

Table 1. Results of Cox Proportional Hazard Analyses of Survival Data. The estimated 

effects of PCB concentration and population density on survival are reported. COEF: Estimated 

Coefficient, quantifies the effect of each covariate on the Hazard Ratio (HR), EXP(COEF): HR, 

SE(COEF): Standard Error of COEF, Z: Assesses statistical significance of the COEF, PR(>|Z|): 

p-value.  

 COEF EXP(COEF) SE(COEF) Z PR(>|Z|) 

PCB 4.870e+00 1.304e+02 2.817e-01 17.29 <2e-16 

POPULATION 4.457e-02 1.046e+00 1.181e-03 37.73 <2e-16 

 

Table 2. Results of a Mixed Effects Cox Proportional Hazard Analyses of Metamorphosis 

Data (with and without population density taken into account). The estimated effects of PCB 

concentration and population density on the timing of metamorphosis are reported. COEF: 

Estimated Coefficient, quantifies the effect of each covariate on the Hazard Ratio (HR), 

EXP(COEF): HR, SE(COEF): Standard Error of COEF, Z: Assesses statistical significance of 

the COEF, PR(>|Z|): p-value.  

 COEF EXP(COEF) SE(COEF) Z PR(>|Z|) 

WITHOUT ACCOUNTING 

FOR POPULATION DENSITY 

 

PCB -3.454 0.0316 1.7701 -1.95 0.051 

POPULATION 0.2658 1.3045 0.0193 13.77 0.000 

      

WITH ACCOUNTING FOR 

POPULATION DENSITY 

 

PCB 1.483e+01 3.621e-07 3.612e+00 -

4.106 

4.02e-

05 

POPULATION NA NA 0 NA NA 

 

Table 3. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data (15 dpf). FDR-corrected 

p-values are provided for each comparison.   

  PCB 1 PCB 2 PCB 3 PCB 4 

PCB 2 0.0870 - - - 

PCB 3 1.0000 0.1170 - - 

PCB 4 0.7255 0.0311 0.6585 - 

METHANOL 0.0067 0.6247 0.0099 0.0028 
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Table 4. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data (25 dpf). FDR-corrected 

p-values are provided for each comparison. All values > 0.05 therefore no significant difference 

in feeding efficiency.  

  PCB 1 PCB 2 PCB 3 PCB 4 

PCB 2 0.3429 - - - 

PCB 3 0.8026 0.7142 - - 

PCB 4 0.1516 0.5048 0.2979 - 

METHANOL 0.8174 0.6247 1.0000 0.2533 

 

Table 5. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data (35 dpf). FDR -corrected 

p-values are provided for each comparison. PCB 4 was excluded as no individuals from this 

treatment lived to 35 dpf. 

  PCB 1 PCB 2 PCB 3 

PCB 2 0.7376 - - 

PCB 3 0.3770 0.6247 - 

METHANOL 0.8174 1.0000 0.5803 

 

Table 6. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data from the Methanol 

Treatment Across Feeding Trials. FDR-corrected p-values are provided for each comparison.  
 

METHANOL 15 DPF METHANOL 25 DPF 

METHANOL 25 DPF 0.0003 - 

METHANOL 35 DPF 0.0003 1.0000 

 

Table 7. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data from the PCB 1 

Treatment Across Feeding Trials. FDR-corrected p-values are provided for each comparison.  

  PCB 1 (15 DPF) PCB 1 (25 DPF) 

PCB 1 (25 DPF) <0.0001 - 

PCB 1 (35 DPF) <0.0001 1.0000 

 

Table 8. Table 8. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data from the PCB 

2 Treatment Across Feeding Trials. FDR-corrected p-values are provided for each comparison.  

  PCB 2 (15 DPF) PCB 2 (25 DPF) 

PCB 2 (25 DPF) 0.0003 - 

PCB 2 (35 DPF) <0.0001 0.6585 
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Table 9. Results of ‘Emmeans’ Analyses of Feeding Efficiency Data from the PCB 3 

Treatment Across Feeding Trials. FDR-corrected p-values are provided for each comparison. 

  PCB 3 (15 DPF) PCB 3 (25 DPF) 

PCB 3 (25 DPF) <0.0001 - 

PCB 3 (35 DPF) 0.0003 0.6432 

 

Table 10. Results of ‘Emmeans’ Analyses of Length Data from the Methanol Treatment. 

FDR-corrected p-values are provided for each comparison.  
 

METHANOL 5 DPF METHANOL 15 DPF METHANOL 25 DPF 

METHANOL 15 DPF 0.0561 -  

METHANOL 25 DPF <0.001 <0.001 - 

METHANOL 35 DPF <0.001 <0.001 <0.001 

 

Table 11. Results of ‘Emmeans’ Analyses of Length Data from the PCB 1 Treatment. FDR-

corrected p-values are provided for each comparison. 
 

PCB 1 (5 DPF) PCB 1 (15 DPF) PCB 1 (25 DPF) 

PCB 1 (15 DPF) 0.0072 -  

PCB 1 (25 DPF) <0.001 <0.001 - 

PCB 1 (35 DPF) <0.001 <0.001 0.0874 

 

Table 12. Results of ‘Emmeans’ Analyses of Length Data from the PCB 2 Treatment. FDR-

corrected p-values are provided for each comparison.  
 

PCB 2 (5 DPF) PCB 2 (15 DPF) PCB 2 (25 DPF) 

PCB 2 (15 DPF) 0.0048 -  

PCB 2 (25 DPF) <0.001 <0.001 - 

PCB 2 (35 DPF) <0.001 <0.001 <0.001 

 

Table 13. Results of ‘Emmeans’ Analyses of Length Data from the PCB 3 Treatment. FDR-

corrected p-values are provided for each comparison.  
 

PCB 3 (5 DPF)  PCB 3 (15 DPF) PCB 3 (25 DPF) 

PCB 3 (15 DPF) 0.0031 -  

PCB 3 (25 DPF) <0.001 <0.001 - 

PCB 3 (35 DPF) <0.001 <0.001 0.8503 

 

 

 



28 

 

Table 14. Results of ‘Emmeans’ Analyses of Length Data from the PCB 4 Treatment. FDR-

corrected p-values are provided for each comparison.  
 

PCB 4 (5 DPF) PCB 4 (15 DPF) PCB 4 (25 DPF) 

PCB 4 (15 DPF) 0.1124 -  

PCB 4 (25 DPF) <0.001 <0.001 -  

 

 

 

  



29 

 

FIGURES 

 

Figure 1. Representative Image of a Zebrafish that has Entered Metamorphosis (image 

from McMenamin & Parichy, 2013; fish 8.6 mm in length). The appearance of two lateral black 

stripes bounding a patch of iridophores (white/reflective) behind the head was considered 

diagnostic of metamorphosing fish. 

Figure 2. Kaplan Meier Survival Plot Detailing Fish Survival in this Study. Horizontal hash 

marks at 35 dpf denote individuals that did not die because of PCB exposure but were sacrificed 

at the end of the experiment.  
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Figure 3. Metamorphosis Across Treatments. 

Figure 4. Comparative Feeding Efficiencies of Treatments at 15-, 25-, and 35-Days Post 

Fertilization (DPF). No PCB 4 fish survived until 35 DPF. 
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Figure 5. Comparative Feeding Efficiencies within Treatments and Across Development.  

(* No PCB 4 fish survived until 35 Days Post Fertilization (DPF).  
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Figure 6. Comparative Average Lengths Across Treatments. No PCB 4 fish survived until 35 

Days Post Fertilization (DPF). (* PCB 3 was significantly shorter than other treatments at 35 

DPF). See Figure S1 for individual treatment length distributions.  
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SUPPLEMENTARY MATERIALS 

Table S1. Results of ‘Emmeans’ Analyses of Survival Data. BH-corrected p-values are 

provided for each comparison. 

  0.125 MG/L 0.25 MG/L 0.35 MG/L 0.40 MG/L CONTROL 

0.25 MG/L 0.00242 - - - - 

0.35 MG/L 0.96507 0.00069 - - - 

0.40 MG/L 1.80E-12 < 2E-16 < 2E-16 - - 

CONTROL 0.00012 0.39763 2.90E-05 <2E-16 - 

METHANOL 0.00069 0.89072 9.10E-05 <2E-16 0.49195 

 

Table S2. Results of a Mixed Effects Cox Proportional Hazard Analyses of Survival. The 

estimated effects of PCB concentration and population density on survival are reported. Random 

effects Tank/Jar were not found to be significant (Random Effects: Std Dev. = 1.4153, Variance= 

2.0032). COEF: Estimated Coefficient, quantifies the effect of each covariate on the Hazard 

Ratio (HR), EXP(COEF): HR, SE(COEF): Standard Error of COEF, Z: Assesses statistical 

significance of the COEF, PR(>|Z|): p-value.  

 COEF EXP(COEF) SE(COEF) Z PR(>|Z|) 

PCB 9.49222 13256.2 2.23390 4.25 2.1e-05 

POP 0.07610 1.07901 0.00202 37.66 0.0+00 
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Table S3. Results (Full) of ‘Emmeans’ Analyses of Feeding Efficiency Data. FDR-corrected 

p-values are provided for each comparison. PCB 4 was excluded from 35 DPF as there were no 

individuals alive. 

TREATMENT DPF CONTRAST ESTIMATE SE DF Z-RATIO P-VALUE 

Methanol - DPF15-DPF25 -0.7782 0.193 INF -4.023 0.0003 

Methanol - DPF15-DPF35 -0.7903 0.193 INF -4.087 0.0003 

Methanol - DPF25-DPF35 -0.0120 0.184 INF -0.065 1.0000 

PCB 1 - DPF15-DPF25 -1.5664 0.209 INF -7.491 <0.0001 

PCB 1 - DPF15-DPF35 -1.5855 0.228 INF -6.954 <0.0001 

PCB 1 - DPF25-DPF35 -0.0190 0.204 INF -0.093 1.0000 

PCB 2 - DPF15-DPF25 -0.8073 0.199 INF -4.063 0.0003 

PCB 2 - DPF15-DPF35 -0.9605 0.197 INF -4.865 <0.0001 

PCB 2 - DPF25-DPF35 -0.1531 0.186 INF -0.824 0.6585 

PCB 3 - DPF15-DPF25 -1.4155 0.228 INF -6.201 <0.0001 

PCB 3 - DPF15-DPF35 -1.1642 0.283 INF -4.109 0.0003 

PCB 3 - DPF25-DPF35 0.2513 0.281 INF 0.893 0.6432 

PCB 4 - DPF15-DPF25 -1.0498 0.402 INF -2.613 0.0311 

- 15 Methanol- PCB 1 0.6931 0.218 INF 3.178 0.0067 

- 15 Methanol-PCB 2 0.2036 0.206 INF 0.988 0.6247 

- 15 Methanol-PCB 3 0.6587 0.217 INF 3.035 0.0099 

- 15 Methanol-PCB 4 0.8807 0.255 INF 6.450 0.0028 

- 15 PCB 1 – PCB 2 -0.4895 0.221 INF -2.211 0.0870 

- 15 PCB 1 – PCB 3 -0.0345 0.232 INF -0.149 1.0000 

- 15 PCB 1 – PCB 4 0.1876 0.268 INF 0.700 0.7255 

- 15 PCB 2 – PCB 3 0.4551 0.220 INF 2.064 0.1170 

- 15 PCB 2 – PCB 4 0.6771 0.258 INF 2.623 0.0311 

- 15 PCB 3 – PCB 4 0.2221 0.267 INF 0.832 0.6585 

- 25 Methanol-PCB 1 -0.0950 0.183 INF -0.519 0.8174 

- 25 Methanol-PCB 2 0.1745 0.186 INF 0.940 0.6247 

- 25 Methanol-PCB 3 0.0214 0.206 INF 0.104 1.0000 

- 25 Methanol-PCB 4 0.6092 0.366 INF 1.666 0.2535 

- 25 PCB 1 – PCB 2 0.2695 0.185 INF 1.458 0.3429 

- 25 PCB 1 – PCB 3 0.1164 0.205 INF 0.567 0.8026 

- 25 PCB 1 – PCB 4 0.7042 0.365 INF 1.928 0.1516 

- 25 PCB 2 – PCB 3 -0.1531 0.207 INF -0.738 0.7142 

- 25 PCB 2 – PCB 4 0.4347 0.366 INF 1.186 0.5048 

- 25 PCB 3 – PCB 4 0.5878 0.377 INF 1.558 0.2979 

- 35 Methanol-PCB 1 -0.1021 0.204 INF -0.499 0.8174 

- 35 Methanol-PCB 2 0.0334 0.184 INF 0.181 1.0000 

- 35 Methanol-PCB 3 0.2847 0.266 INF 1.072 0.5803 

- 35 PCB 1 – PCB 2  0.1355 0.205 INF 0.662 0.7376 

- 35 PCB 1 – PCB 3 0.3868 0.280 INF 1.380 0.3770 

- 35 PCB 2 – PCB 3 0.2513 0.266 INF 0.946 0.6247 
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Table S4. Results (Full) of ‘Emmeans’ Analyses of Length Data. FDR-corrected p-values are 

provided for each comparison. PCB 4 was excluded from 35 DPF as there were no individuals 

alive. 

TREATMENT DPF CONTRAST ESTIMATE SE DF T-RATIO P-VALUE 

Methanol . DPF5 - DPF15 -0.8046 0.313 14.8 -2.567 0.0561 

Methanol . DPF5 - DPF25 -3.2672 0.315 15.1 -10.359 <0.001 

Methanol . DPF5 - DPF35 -4.4178 0.338 19.5 -13.089 <0.001 

Methanol . DPF15 - DPF25 -2.4626 0.185 386.8 -13.319 <0.001 

Methanol . DPF15 - DPF35 -3.6132 0.221 398.2 -16.385 <0.001 

Methanol . DPF25 - DPF35 -1.1506 0.223 397.9 -5.156 <0.001 

PCB 1 . DPF5 - DPF15 -1.1344 0.313 14.8 -3.619 0.0072 

PCB 1  . DPF5 - DPF25 -3.5902 0.325 16.7 -11.034 <0.001 

PCB 1 . DPF5 - DPF35 -4.0744 0.339 18.9 -12.003 <0.001 

PCB 1 . DPF15 - DPF25 -2.4558 0.201 405.6 -12.191 <0.001 

PCB 1 . DPF15 - DPF35 -2.9400 0.223 401.8 -13.158 <0.001 

PCB 1 . DPF25 - DPF35 -0.4841 0.230 398.8 -2.102 0.0874 

PCB 2 . DPF5 - DPF15 -1.2051 0.313 14.8 -3.845 0.0048 

PCB 2 . DPF5 - DPF25 -3.1935 0.314 15.0 -10.157 <0.001 

PCB 2 . DPF5 - DPF35 -4.3493 0.321 16.1 -13.548 <0.001 

PCB 2 . DPF15 - DPF25 -1.9883 0.183 386.5 -10.854 <0.001 

PCB 2 . DPF15 - DPF35 -3.1442 0.194 394.3 -16.179 <0.001 

PCB 2 . DPF25 - DPF35 -1.1558 0.195 392.6 -5.913 <0.001 

PCB 3 . DPF5 - DPF15 -1.2809 0.317 15.3 -4.045 0.0031 

PCB 3 . DPF5 - DPF25 -3.2508 0.334 17.6 -9.740 <0.001 

PCB 3 . DPF5 - DPF35 -3.1019 0.372 21.3 -8.340 <0.001 

PCB 3 . DPF15 - DPF25 -1.9699 0.218 404.3 -9.057 <0.001 

PCB 3 . DPF15 - DPF35 -1.8210 0.272 250.3 -6.697 <0.001 

PCB 3 . DPF25 - DPF35 0.1489 0.280 321.6 0.532 0.8503 

PCB 4 . DPF5 - DPF15 -0.7693 0.369 21.9 -2.084 0.1124 

PCB 4 . DPF5 - DPF25 -3.7523 0.493 43.2 -7.617 <0.001 

PCB 4 . DPF15 - DPF25 -2.9830 0.433 376.9 -6.893 <0.001 

. 5 Methanol-PCB 1 0.1148 0.382 11.1 0.301 0.9737 

. 5 Methanol-PCB 2 0.0892 0.382 11.1 0.234 0.9892 

. 5 Methanol-PCB 3 0.1044 0.382 11.1 0.273 0.9737 

. 5 Methanol-PCB 4 0.2488 0.382 11.1 0.651 0.8035 

. 5 PCB 1-PCB 2 -0.0256 0.382 11.1 -0.067 1.0000 

. 5 PCB 1-PCB 3 -0.0104 0.382 11.1 -0.027 1.0000 

. 5 PCB 1-PCB 4 0.1340 0.382 11.1 0.351 0.9492 

. 5 PCB 2-PCB 3 0.0152 0.382 11.1 0.040 1.0000 

. 5 PCB 2-PCB 4 0.1596 0.382 11.1 0.418 0.9208 

. 5 PCB 3-PCB 4 0.1444 0.382 11.1 0.378 0.9410 

. 15 Methanol-PCB 1 -0.2150 0.225 47.5 -0.955 0.6026 

. 15 Methanol-PCB 2 -0.3113 0.225 47.5 -1.383 0.3366 

. 15 Methanol-PCB 3 -0.3719 0.230 50.5 -1.620 0.2364 

. 15 Methanol-PCB 4 0.2841 0.298 65.2 0.954 0.6026 

. 15 PCB 1-PCB 2 -0.0963 0.225 47.5 -0.428 0.9205 

. 15 PCB 1-PCB 3 -0.1569 0.230 50.5 -0.683 0.7737 

. 15 PCB 1- PCB 4 0.4991 0.298 65.2 1.676 0.2157 

. 15 PCB 2- PCB 3 -0.0606 0.230 50.5 -0.264 0.9737 

. 15 PCB 2- PCB 4 0.5955 0.298 65.2 1.999 0.1124 

. 15 PCB 3- PCB 4 0.6561 0.301 67.3 2.178 0.0823 

. 25 Methanol-PCB 1 -0.2083 0.244 58.6 -0.854 0.6613 

. 25 Methanol-PCB 2 0.1629 0.229 50.7 0.7110 0.7641 

. 25 Methanol-PCB 3 0.1208 0.255 60.4 0.474 0.8924 
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. 25 Methanol-PCB 4 -0.2363 0.443 105.1 -0.533 0.8503 

. 25 PCB 1-PCB 2 0.3712 0.243 57.5 1.530 0.2632 

. 25 PCB 1-PCB 3 0.3291 0.267 66.4 1.231 0.4211 

. 25 PCB 1-PCB 4 -0.0280 0.450 107.5 -0.062 1.0000 

. 25 PCB 2-PCB 3 -0.0421 0.254 59.3 -0.166 1.0000 

. 25 PCB 2-PCB 4 -0.3992 0.442 104.6 -0.902 0.6298 

. 25 PCB 3-PCB 4 -0.3570 0.456 106.9 -0.783 0.7092 

. 35 Methanol-PCB 1 0.4582 0.289 91.6 1.588 0.2385 

. 35 Methanol-PCB 2 0.1577 0.267 82.3 0.591 0.8281 

. 35 Methanol-PCB 3 1.4203 0.326 80.0 4.353 0.0001 

. 35 PCB 1-PCB 2 -0.3005 0.269 72.9 -1.117 0.4934 

. 35 PCB 1-PCB 3 0.9621 0.328 73.6 2.931 0.0121 

. 35 PCB 2-PCB 3 1.2626 0.309 66.6 4.084 0.0004 

 

Figure S1. Boxplots Depicting Length Across Treatments.  
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SCRIPTS 

Survival  

Read in data: Daily Mortality 

library(readxl) 

KaplanMeierDailyMortality <- read_excel("Thesis/Final Data/Mortality/KaplanMeierDailyMortality.xlsx") 

View(KaplanMeierDailyMortality) 

DTE1 <- KaplanMeierDailyMortality 

DTE1<-DTE1[which(DTE1$Treatment!=1),] 

Set up Quantiles 

DTE1$Quant<-NA 

DTE1$Quant[which(DTE1$Treatment==2)]<-0.0 

DTE1$Quant[which(DTE1$Treatment==3)]<-0.125 

DTE1$Quant[which(DTE1$Treatment==4)]<-0.25 

DTE1$Quant[which(DTE1$Treatment==5)]<-0.35 

Coxph Model: 

require(survival) 

s2<-coxph(Surv(DPF,Event)~ Quant + Pop, data=DTE1) 

summary(s2) 

Metamorphosis 

Read in Data: Metamorphosis 

library(readxl) 

KaplanMeierMetamorphosisNoPCB4 <- read_excel("F:/Data/Mortality/Metamorphosis/KaplanMeierMetamorphosisNoPCB4.xlsx") 

View(KaplanMeierMetamorphosisNoPCB4) 

DTE <- KaplanMeierMetamorphosisNoPCB4 

  DTE<-DTE[which(DTE$Treatment!=1),] 

DTE<-DTE[which(DTE$Treatment!=6),] 

DTE$Quant<-NA 

DTE$Quant[which(DTE$Treatment==2)]<-0.0 

DTE$Quant[which(DTE$Treatment==3)]<-0.125 

DTE$Quant[which(DTE$Treatment==4)]<-0.25 

DTE$Quant[which(DTE$Treatment==5)]<-0.35 

Coxph Model: 

require(survival) 

s2<-coxph(Surv(dpf,Event)~ Quant + pop + strata(pop), data=DTE) 

summary(s2) 

Coxme Model: 

require(coxme) 
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efit2<-coxme(Surv(dpf,Event) ~ Quant + pop + (1|Tank/Jar), data=DTE) 

summary(efit2) 

Feeding Efficiency  

Load Packages 

library(glmmTMB) 

library(lme4) 

library(MASS) 

library(magrittr) 

Read in Data: Feeding Efficiency  

library(readxl) 

FeedingTrialAll <- read_excel("Thesis/Final Data/Feeding/FeedingTrialAll.xlsx") 

Exclude Embryo Water, Set up Quantiles 

FeedingTrialAll <- FeedingTrialAll[which(FeedingTrialAll$Treatment!=1),] 

FeedingTrialAll$Quant<-NA 

FeedingTrialAll$Quant[which(FeedingTrialAll$Treatment==2)]<-0.0 

FeedingTrialAll$Quant[which(FeedingTrialAll$Treatment==3)]<-0.125 

FeedingTrialAll$Quant[which(FeedingTrialAll$Treatment==4)]<-0.25 

FeedingTrialAll$Quant[which(FeedingTrialAll$Treatment==5)]<-0.35 

FeedingTrialAll$Quant[which(FeedingTrialAll$Treatment==6)]<-0.4 

GLMM with a Negative Binomial Distribution 

FeedingTrial.nb <- glmer.nb(Count~ as.factor(DPF) *  as.factor(Treatment) + (1|Tank:Jar),data=FeedingTrialAll,theta=2) 

summary(FeedingTrial.nb) 

Run Pairwise Comparison 

library(emmeans) 

FeedingTrial.emm.nb <- emmeans(FeedingTrial.nb, c("Treatment","DPF")) 

Comparisons for each feeding trial and across treatments 

d.t2 <- pairs(emmeans(FeedingTrial.emm.nb, ~ DPF | Treatment)) 

t.d2 <- pairs(emmeans(FeedingTrial.emm.nb, ~ Treatment | DPF)) 

rbind(d.t2, t.d2, adjust = "mvt") 

update(d.t2 + t.d2, adjust = "fdr") 

Length  

Read In Data: Length 

library(readxl) 

Cleansed_Lengths <- read_excel("F:/Data/Length/Cleansed_Lengths.xlsx") 

View(Cleansed_Lengths) 

LengthAll <- Cleansed_Lengths 
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Exclude Embryo Water & PCB 4  

LengthAll <- LengthAll[which(LengthAll$Treatment!=1),] 

LengthAll <- LengthAll[which(LengthAll$Treatment!=6),] 

LengthAll$Length <- LengthAll$`Length (mm)` 

Set up Quantiles 

LengthAll$Quant<-NA 

LengthAll$Quant[which(LengthAll$Treatment==2)]<-0.0 

LengthAll$Quant[which(LengthAll$Treatment==3)]<-0.125 

LengthAll$Quant[which(LengthAll$Treatment==4)]<-0.25 

LengthAll$Quant[which(LengthAll$Treatment==5)]<-0.35 

LengthAll$Quant[which(LengthAll$Treatment==6)]<-0.4 

View(LengthAll) 

GLMM  

Length.a <-glmer(Length~ as.factor(DPF) *  as.factor(Treatment) + (1|Tank:Jar), data=LengthAll) 

summary(Length.a) 

Run Pairwise Comparison 

library(emmeans) 

Length.emm.a <- emmeans(Length.a, c("Treatment","DPF")) 

Comparisons at each time point and across each treatment 

d.t <- pairs(emmeans(Length.emm.a, ~ DPF | Treatment)) 

t.d <- pairs(emmeans(Length.emm.a, ~ Treatment | DPF)) 

rbind(d.t, t.d, adjust = "mvt") 

update(d.t + t.d, adjust = "fdr") 
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