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ABSTRACT 

 

 
Diatoms are ubiquitous in marine planktonic and benthic environments and are common in 

diets for many lower-trophic organisms. Certain species of diatoms produce polyunsaturated 

aldehydes (PUAs) that can exist in particulate and dissolved forms. Diatom PUAs are known for 

negatively affecting the fecundity of their primary consumers, including invertebrate grazers like 

copepods and echinoderms. However, little is known about the effects of diatom PUAs on 

vertebrates that may be exposed to dissolved or ingested PUAs due to overlapping distribution with 

diatom populations. The purpose of this study was to test whether dissolved diatom PUAs affect the 

early life stages of a model fish, Danio rerio (zebrafish). To test this, zebrafish embryos and larvae 

were exposed to proportionally increasing mixtures of the dissolved diatom PUAs 2E,4E-

decadienal, 2E,4E-octadienal and 2E,4E-heptadienal. Under PUA exposure three metrics of 

fitness were assessed: embryo heart rate, larval size at hatch, and pre-feeding rate of mortality. In 

the embryo heart rate experiment, embryos exposed at 24 hours post fertilization (hpf) experienced 

decreased average heart rate after 2 days of PUA exposure. Embryos 24 hpf exposed to PUA 

mixtures for 6 days showed a reduction in size in comparison to embryos from controls. Embryos 

exposed to PUAs from 2 hpf until death showed lower survivorship compared to larvae in controls. 

The results of this study suggest that larval fish that are sympatric with PUA producing diatoms 

during their embryonic and larval stages may be susceptible to detrimental effects from PUA 

exposure.  
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INTRODUCTION 

 

 

Diatoms are a lineage of microscopic algal phytoplankton that are an important group in 

marine ecosystems because of their basal trophic position as primary producers and their 

prominent role in global biogeochemical cycles. Diatoms produce more oxygen than all of the 

world’s rainforests combined, support global fisheries, and contribute to the biological carbon 

pump by sequestering atmospheric carbon dioxide in their bodies, which sink to depth upon cell 

death (Field et al., 1998; Smetacek, 1999; Tréguer et al., 2017). They can be especially abundant 

in coastal waters due to the increased presence of nutrients from terrestrial environments and 

from seasonal upwelling (Malviya et al., 2016). This high biomass of diatoms in coastal 

environments means strong competition pressure for resources within diatom communities and 

from other primary producer functional groups (Zhou et al., 2017).  

To gain a competitive advantage for resources, some diatoms produce and emit bioactive 

chemicals that can have effects across trophic levels (Pohnert, 2005; Franz�́� et al., 2018). These 

chemicals can lead to reduced herbivore grazing and decreased growth of co-occurring 

phytoplankton populations (Ribalet et al., 2007a; Romano et al., 1999). Oxylipins, a compound 

within this array of diatom-produced chemicals, are a product of the lipoxidation of 

polyunsaturated fatty acids (PUFAs). Oxylipins have displayed high bioactivity in plants, algae, 

and animals (Barbosa et al., 2016; Prost et al., 2005; Tourdot et al., 2014). Some diatoms, upon 

damage to the diatom cell wall, intracellularly produce oxylipins called polyunsaturated 

aldehydes (PUAs), biomolecules composed of a chain lipid with an attached oxygen atom 

(Caldwell et al., 2009; Fontana et al., 2007). The length of the lipid chain determines the 

bioactivity of the molecule, with longer chained molecules being associated with increased 
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bioactive effects on other organisms (Adolph et al., 2003; Ceballos & Ianora, 2003). While these 

molecules can confer fitness benefits to diatoms, the full extent of each unique PUA’s effects and 

range of biological targets is still being explored (Galasso et al., 2020; Ruocco et al., 2020).  

Bioactivity studies on diatom PUAs have historically focused on the invertebrate 

predators of diatoms, such as pelagic copepods and sea urchin larvae (Ianora et al., 2011; Koski 

et al., 2008; Lettieri et al., 2015; Ribalet et al., 2007; Ribalet et al., 2014; Romano et al., 2010; 

Ruocco et al., 2019; Varella et al., 2014; Wolfram et al., 2014). A consistent observation in these 

studies is that PUAs negatively affect grazer fecundity (Caldwell, 2009; Miralto et al., 1999). In 

a pioneering study on the effects of PUAs on copepod grazers, three specific diatom PUAs were 

identified as the compounds responsible for these deleterious effects: 2E,4Z,7Z-decatrienal, 

2E,4Z,6Z-decatrienal, and 2E,4E-decadienal (Miralto et al., 1999). This study also highlighted a 

negative correlation between in situ diatom biomass and copepod reproductive success in the 

Adriatic Sea, suggesting that increased consumption of diatom PUAs negatively affected 

fecundity.  

Since the identification of those three PUAs as a causative agent for reduced grazer 

fecundity, additional diatom PUAs have been isolated, identified, and explored for negative 

bioactive effects. Ianora et al. (2010) reviewed the effects of a range of diatoms on copepod 

fecundity and showed that, of the 21 species tested, all 21 produced negative effects on at least 

one of four different copepod reproductive criteria (egg production rate, hatching success, 

morphologically abnormal larvae, and development from naupliar stages through adulthood). In 

addition to the negative effects of diatom PUAs on copepod fecundity and offspring survival, 

antiproliferative effects on other invertebrates have also been explored. Larvae of the chordate 

invertebrate filter-feeder, Ciona intestinalis, developed malformed bodies in response to 
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dissolved PUAs (Lettieri et al., 2015). Paracentrotus lividus (sea urchin) embryos in the 

presence of 2E,4E-decadienal displayed an increased number of abnormalities and deformations 

as larvae (Romano et al., 2010). Furthermore, 2E,4E-decadienal caused larval development to 

stop at the gastrula stage and induced considerable numbers of dead or prematurely hatched 

urchin young.  

PUAs can also have toxic effects on vertebrate cells, including cancerous cells (Martinez 

Andrade et al., 2018). For example, PUAs exhibited anti-proliferative activity and activated 

programmed cell death (apoptosis) for cancer cells originating from human adenocarcinoma 

colon and lung cell lines (Sansone et al., 2014). 2E,4E-decadienal also caused the mitochondria 

of rat liver cells to experience dysfunction and oxidative stress (Sigolo et al., 2008). These 

observed negative effects of PUAs on vertebrate cells suggest that PUAs may also interact with 

the developing planktonic offspring of marine vertebrates (Falkowksi, 2002; Nelson et al., 1995). 

Marine forage fishes are a critically important vertebrate group in many marine 

ecosystems. They are indicators of ecosystem health, and every life history stage serves as a 

resource for higher-order trophic levels (Pikitch et al., 2014). Many species of forage fish spawn 

in nearshore environments, and their larval stages use the nearshore environment as a nursery 

ground to feed and develop (Pentilla, 2007). As such, they spend a good portion of their early 

development sympatric with nearshore diatoms, including both benthic and pelagic forms 

(Blaxter & Halliday, 1963; Loosanoff, 1938). Forage fishes are planktivorous throughout life, 

which makes them a vital link in the upward transport of nutrients in marine food chains (Cury et 

al. 2000, 2003; Freon et al. 2005; Bakun et al. 2010). Forage fishes are a primary food source for 

many different marine organisms, from sea birds and larger predatory fishes to marine mammals 

(Butler et al. 2010; Crawford & Dyer 1995; Jahncke et al. 2004; Logan et al. 2011; Magnussen 
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2011; Pauly et al. 1998; Thompson et al. 1996; Weise & Harvey 2008). Economically, forage 

fish fisheries generate billions of dollars in revenue and are an important resource for subsistence 

populations in low-income regions (Palmer et al., 2018; Steiner et al., 2019).  

Juvenile stages of forage fishes may be vulnerable to diatom PUAs at several points in 

their development. During spawning, forage fish females attach their eggs to nearshore substrates 

that can be heavily populated by diatoms, such as eel grass and macroalgae, moist gravel, and 

sand (Prazukin et al., 2022, Jewson et al., 2006; Jewson et al., 2006; Smigielski et al., 1984; 

Quinn et al., 2012). This spawning behavior places embryos in close proximity to benthic 

diatoms, providing opportunities for interaction between PUAs, developing embryos, and 

eventually larvae (Figure 1). The possibility for interaction with diatom PUAs is further 

supported by evidence that benthic diatoms are capable of PUA production at similar 

concentrations to that of their pelagic counterparts (Pezzolesi et al., 2017). In addition to the 

potential for early exposure to PUAs via benthic diatoms, another route of exposure may occur 

post hatch, when larvae can readily ingest pelagic phytoplankton as first-feeding larvae (Lebour, 

1921; Blaxter, 1965; Purcell & Grover, 1990; Spittler et al., 1990; Friedenberg et al., 2012).  

Determining whether PUAs affect the embryogenesis, development, and survival of early 

life-history stages of fishes is a logical next step in understanding the role of PUAs in aquatic 

ecosystems. As a first step toward achieving this objective, in this study I tested for the effects of 

PUAs on the development of a model vertebrate, the zebrafish, Danio rerio. Important 

advantages of using this model organism are the breadth of information available, their high 

fecundity, the ease with which they may be bred in the lab, and their rapid development 

(Urushibata, 2021). Although they are a tropical, freshwater fish, methods for examining 

zebrafish embryogenesis under toxicity are well-established (Brannen et al., 2010). 
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Toxicological study of zebrafish provides a straightforward way to estimate how diatom-derived 

PUAs may affect marine forage fish development. 
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METHODS 

 

Overview 

 

In order to test for effects of PUAs on a model aquatic vertebrate, zebrafish were exposed 

to a range of dissolved PUA concentrations and assessed for effects on the biometrics that I 

describe below. I tested hypotheses based on the following questions. 

 

1. Will dissolved PUAs have a negative effect on physiological processes in zebrafish larvae?  

𝑯𝟏: The average heart rate (beats per minute) of zebrafish embryos will be lower in PUA 

treatments when compared to a control. 

𝑯𝟎: The average heart rate (beats per minute) of zebrafish embryos in PUA treatments will not be 

different when compared to controls. 

 

2. Will dissolved PUAs have a negative effect on overall zebrafish standard length, depth, and 

myotome height at the anus? 

𝑯𝟐: Exposure of embryonic zebrafish to dissolved PUAs will result in reductions in larval length, 

depth, and myotome height at the anus. 

𝑯𝟎: Exposure of embryonic zebrafish to dissolved PUAs will not result in reductions in larval 

length, depth, and myotome height at the anus. 

 

3. Will dissolved PUA exposure cause increased larval zebrafish mortality?  

𝑯𝟑: Exposure of embryonic and larval zebrafish to dissolved PUAs will result in a lower 

probability of pre-feeding larval survival. 
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𝑯𝟎: Exposure of embryonic and larval zebrafish to dissolved PUAs will not result in a lower 

probability of survival for pre-feeding larvae. 

 

Animal care 

 

AB wildtype zebrafish were maintained and bred in the lab of Dr. James Cooper at 

Western Washington University’s (WWU) Department of Biology. The animal care protocol for 

this study was approved by WWU's Institutional Animal Welfare and Use Committee (IACUC), 

Bellingham, USA, in June of 2021.  

 

PUA treatments 

 

Mixtures of three PUAs, 2E,4E-decadienal (C10H16O, Cas No. 25152-84-5), 2E,4E-

octadienal (C8H12O, Cas No. 30361-28-5; 5577-44-6), and 2E,4E-heptadienal (C7H10O, Cas No. 

4313-03-5) were used to explore the effects of PUAs on zebrafish. The decision to use 

proportional and increasingly concentrated mixtures of these PUAs, which are heretofore 

referred to as heptadienal, octadienal, and decadienal, was respectively based on Ruocco et al. 

(2019). They found that the effects of binary and ternary combinations of these three PUAs on 

the development of Paracentrotus lividus urchin embryos to be synergistic, with negative effects 

increasing in exposures to combined rather than individual PUAs (Ruocco et al., 2019). This 

fact, and the knowledge that these three PUAs commonly co-occur in situ, led to the decision to 

use these mixtures rather than individual PUAs (Bartual et al., 2020; Vidoudez et al., 2011).  

PUA mixtures were dissolved in methanol, which increases the miscibility of lipid chains 

(Ribalet et al., 2007; Varella et al., 2014), and homogenized in zebrafish embryo water. While 
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methanol is a known toxin for vertebrates at various concentrations, it has been found to be less 

toxic for zebrafish at low concentrations than dimethyl sulfoxide (DMSO), another solvent 

commonly used in toxicological and developmental work with zebrafish (Christou et al., 2020). 

Methanol showed no toxicity up to 1% concentration, whereas DMSO showed toxicity at or 

above 0.3% (Christou et al., 2020). Methanol was therefore favored over DMSO for use in this 

study.  

Dissolved PUA mixture proportions within the range of those shown to be effective at 

causing developmental difficulties for urchin larvae in Ruocco et al. were used for a preliminary 

experiment with 24 hours post-fertilization (hpf) zebrafish embryos (decadienal 0.5 μM, 

heptadienal 1.0 μM, octadienal 1.5 μM; 2019) (Table 1). The proportion of decadienal added to 

the most concentrated mixture (high) was also within the range of decadienal concentrations 

shown to compromise the reproduction of the chordate invertebrate Ciona intestinalis (0.35, 0.4, 

0.45 µg/ml; Lettieri et al., 2015). No change in mortality or morphology of zebrafish larvae was 

observed at any preliminary concentration after 6-days of exposure. As such, PUA mixture 

concentrations were increased to levels where these quantifiable effects could be observed (Table 

1). 

 

Data collection and statistical analysis 

 

Embryonic heartrate 

 

Embryos were assessed for heartrate changes after exposure to a range of PUA 

concentrations (H1) (Table 1). Zebrafish embryos (25) at 24 hpf were placed in plastic petri 
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dishes and constantly exposed to high, middle, and low concentrations of dissolved PUA 

mixtures in triplicate for 2 days (Table 1; Figure 2). Water changes were done on both days to 

account for PUA evaporation and to keep zebrafish waste products and bacterial and fungal 

levels down. For post-hoc detection of potential methanol effects, a 1% methanol control was 

added in addition to the embryo water control. Incubation temperatures were set at 28°C, a 

temperature commonly used for zebrafish rearing (Urushibata et al., 2021). At three days post-

fertilization (dpf), ten randomly chosen embryos from each petri dish were video recorded for 

ten seconds through an Olympus SZ-CTV dissecting microscope mounted with a FLIR Blackfly 

USB3 Vision camera running the Micro-Manager 2.0.0 program. Heart rate beats per minute 

(bpm) for each embryo were determined by visually assessing contractions of the heart through 

the translucent chorion and epidermis. Post-measurement, live embryos were humanely 

euthanized via a ten-minute submersion in 0°C water before proper disposal. 

To account for variance within treatments, a linear mixed model (LMM) was employed 

and run using R programming version 4.2.2 (lme4 and MuMin packages) to predict heart bpm 

under PUA treatments. REML was used to make unbiased estimates of variance and covariance 

parameters and nlminb optimizer to optimize a function with multiple arguments. The model also 

included variance introduced from petri dish replicates within treatments as a random effect. To 

assist with model fit, the highly variable dishes were also weighted using the varIdent function, 

which led to an improvement based on compared Akaike information criterion (AIC) values. For 

this and following morphometric LMMs, standardized parameters were obtained by fitting the 

model on a standardized version of the dataset. Confidence Intervals (95%) and p-values were 

computed using a Wald t-distribution approximation. 
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Larval morphometrics 

 

To test hypothesis H2, the same experimental setup was revisited, this time exposing 

embryos and larvae for 6 days (Table 1; Figure 2). This time frame allowed for 100% hatching. 

After a 6-day PUA incubation, larvae were humanely euthanized as described above and used in 

morphometric analyses. For photography, larvae were positioned laterally under a dissecting 

microscope in a dilute glycerol solution using LAS V4.13 from the Leica Application Suite. 

ImageJ was used to measure the standard length (the tip of the snout to the end of the spine), and 

two different dimensions of depth (deepest point of belly and myotome height at anus) of each 

larval photograph (Figure 3).  

For statistical analysis, morphometric responses were first evaluated on an individual 

basis using the same R packages as for the heart rate experiment before being combined for a 

multivariate approach. The strength and significance of changes in each distance was determined 

using similar LMMs appropriate for nested designs. Following that, a principal components 

analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) were used 

to assess differences in approximate larval size between PUA treatments (R, vegan and MVN 

packages). The PERMANOVA was used due to the data’s departure from assumptions of 

multivariate normality and homogeneity (Anderson, 2017). To visualize how the approximate 

size of the larvae changed with each PUA increase, a PCA was performed. 

Because all morphometric data were collected in one experiment, identical LMMs were 

used to describe all morphometric measurements (Figure 3). Also, because it had the same 

design as the heart rate experiment, the same LMM formula addressed the nested design and 
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variance needs of the data, with models containing petri dishes as a random effect, and weighted 

dishes leading to improved model fit based on compared AIC values (lme4 and MuMIn 

packages).  

 

Pre-feeding larval survival 

 

To test H3, that pre-feeding larval survival will be reduced by PUA exposure, zebrafish 

embryos were treated with PUAs at 2 hpf. The setup mirrors the previous experiments, with the 

exceptions that increased numbers of replicates and embryos were included for the sake of 

statistical power, and total PUA concentrations were decreased for younger embryos (Table 1). 

Here, four replicate petri dishes were used per treatment with 30 embryos each. Throughout the 

experiment, larval mortalities were recorded daily until 100% mortality.  

Survival probability was assessed using a Kaplan-Meier survival analysis (Jager et al., 

2008). The Kaplan-Meier method is a non-parametric survival analysis also called the “time to 

event” approach. Here it was used to create survival probability curves for zebrafish larvae in 

PUAs (Di Paolo Ksenia, 2015; Jager et al., 2008). This analysis shows the probability of an event 

(death) at each time interval (experimental day). The calculations for each survival curve were 

based on the following equation, which recalibrates the probability of the event of interest at 

each time interval based on past occurrences (LaMorte, 2016): 
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 S𝑡+1 =  𝑆𝑡 ∗ (
𝑁𝑡 + 1 − 𝐷𝑡 + 1

𝑁𝑡
+ 1) 

 

S𝑡+1 = the cumulative probability of surviving beyond time interval t, 

𝑁𝑡 = the number of subjects at risk at time interval t, 

𝐷𝑡 = the number of deaths during time interval t 

 

The following analyses were carried out using the survminer package in R. First, the 

Kaplan-Meier equation calculated the survival probability of the zebrafish larvae in each 

treatment group for each day of the survival experiment, and corresponding survival curves were 

then generated. A log-rank test for significant differences between curves was implemented, 

followed by value-adjusted pairwise comparisons to clarify the significant differences between 

curves. 
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RESULTS 

 

 

 

Heart rate analysis 

 

The intercept for the linear mixed model of heart rate compared to all other treatments, 

set to the embryo water control treatment, averaged 121.2 bpm. Average larval heart rate 

decreased significantly by 44 bpm, a 47% reduction, in the high PUA treatment compared to the 

embryo water control (Table 2). The methanol control and low PUA treatments decreased 

average larval bpm by 14 and 15 bpm, respectively, but neither difference was found to be 

statistically different from the control. The explanatory power of the model without random 

effects, or the proportion of variance explained by the fixed effects relative to the overall 

variance, was 0.562 (marginal R2), and was 0.949 when accounting for random effects 

(conditional R2) (Figure 4; Table 2). This addition produced a 41% increase in the goodness of 

fit of the model as indicated by R2. 

 

Effects of PUAs on larval zebrafish morphometrics  

 

Standard length  

 

 The model intercept, or average larval length from the control treatment, was 3.39 mm. 

The effect of low PUA concentration on larval length was statistically similar to the embryo 

water control, with an average 0.03 mm decrease in length compared to the embryo water 

control. This was similar to the 0.03 mm decrease in larval length observed in the methanol only 



 

14 

control (Figure 5). Using this model, the effects of high and moderate PUA treatments were 

negative and statistically significant. The average standard length of larvae in the high treatment 

was 2.75 mm, 19% percent smaller than those in the embryo water control (p = 0.003). The 

larvae in the mid PUA treatment were 17% smaller than the control, with an average length of 

2.83 mm (p = 0.006). When applied to standard length, the total explanatory power of the LMM 

was 0.88 (conditional R2), while fixed effects alone, the PUA levels without varying dishes 

included (marginal R2) explained 58% of the variation in the data (Table 3). Adding dishes as a 

random intercept improved the R2 fit from 0.58 to 0.88.  

 

Deepest vertical distance  

 

The average depths of larvae in the embryo water and methanol control were 0.45 and 

0.43 mm, respectively. The effect of the low PUA concentration was non-significant in 

comparison to the control. The larvae reared in the mid PUA treatment were 23% shallower than 

control larvae, with an average depth of 0.35 mm (Figure 6). The average depth of larvae in the 

high PUA treatment was 0.32 mm, 29% percent lower than those in the embryo water control. 

When applied to deepest vertical distance, the total explanatory power of the LMM was 0.70 

(conditional R2), and the fixed effects alone (marginal R2) explained 0.48 of the variation in the 

data (Table 4). Adding dish variation as a random effect improved the R2 measure of fit by 0.12. 

Within this model, the effects of high and moderate PUA treatments were negative and 

statistically significant (p = 0.001; p = 0.006).  
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Myotome height at anus  

 

The intercept of the model, set as average myotome height at the anus in the embryo 

water treatment, was 0.14 mm. The larvae in the high and mid PUA treatments were 0.15 mm on 

average, 8% percent larger than fish from the embryo water control. The effect of low PUA 

concentrations was the same as methanol, and non-significant when compared to the control 

(Table 5). The total explanatory power of the LMM was 0.51 (conditional R2), and the fixed 

effects alone (marginal R2) explained 11% of the variation in the data (Table 5). Adding dishes 

as a random intercept improved the R2 fit by 0.40, indicating high variation within treatments. 

However, unlike the results for length and deepest vertical distance, the effects of high and 

moderate PUAs on myotome height were not significantly different when compared to the 

embryo water and methanol control treatments (Figure 7).  

 

 

Multivariate analysis of larval morphometrics 

 

PUA concentrations caused significant differences in larval sizes and were responsible 

for 65% of the overall size variation between treatment concentrations (PERMANOVA, F4,322, p 

= < 0.001, R2 = 0.65). Pairwise comparisons showed seven significantly different groups. The 

difference in larval sizes between the embryo water control and the methanol treated larvae was 

significant, indicating that 1% methanol may have a small yet statistically significant negative 

effect on larval zebrafish growth (Table 6). The effect of low PUAs on size was not significantly 

different to the effect of methanol alone. The larvae from the high and mid PUA concentrations 



 

16 

were significantly different in size compared to both the low PUA and methanol treatments (p = 

0.01), but not significantly different from each other. Therefore, although methanol had a small 

effect on size (p = 0.01), the effects must be partially due to PUAs because larvae in the mid and 

high PUA treatments were significantly different in size to those in the methanol treatment. 

A PCA of the multivariate dataset calculated 1st and 2nd principal components that 

accounted for 93% of the total variation in the data (~59% and ~34%, respectively) (Table 7). 

Ordination of PCs 1 and 2 shows the size differences between treatment groups of larvae based 

on the three morphological measurements used in the analysis (Figure 8). Larvae from the 

control, methanol, and low PUA treatments grouped closely on PC1, indicating similarity in 

overall size (Figure 8). Larvae from the mid and high PUA treatments were also closely 

associated, but spaced farther apart in length and depth, showing that not all larvae in these 

higher concentrations were uniformly affected. Additionally, a non-metric dimensional scaling 

analysis confirmed the strength of the group patterns and their positioning by converging on a 

similar solution after 20 iterations, with an acceptable stress value of 0.05. 

 

Pre-feeding survival  

 

Some larvae in the embryo water and methanol treatment had survivors until day 15, 

while larvae in low and mid PUA treatments did not live beyond day 12. Over 75% of larvae in 

the high PUA treatment died after 1 day of exposure, and nearly 100% had expired by day 5 

(Figure 9). None of the larvae in high PUAs survived to the transition stage where yolk 

absorption changes to exogenous feeding (~8 dpf). A log-rank test of the survival curves 

indicated that significant differences in survival probabilities between the PUA treatments (p = < 

0.001). Bonferroni-adjusted pairwise comparisons showed that the two control groups survived 
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at similar rates (Figure 9; Table 8). The survival probability for fish in low PUAs was 

significantly different when compared to either control, while the difference between fish in the 

low and mid PUA concentrations were statistically non-significant. In the medium treatment, the 

survival probability was significantly different compared to both controls and to the high 

treatment. The highest PUA treatment had a survival probability that was significantly different 

from all other treatments. 
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DISCUSSION 

 

This study is the first to show that diatom specific PUAs can negatively affect the 

embryonic and larval development of a fish species. I found that PUAs reduced the heart rate, 

overall size, and pre-feeding survival of embryonic zebrafish. Findings presented here suggest 

that diatom derived PUAs are likely to impair the development of marine forage fishes. In the 

following sections I will discuss the implications of these findings on zebrafish, and assuming 

that observations are transferable to forage fishes, I will discuss the implications for the fitness of 

marine fishes exposed to PUAs during development. 

 

Heart Rate  

 

Zebrafish embryos exposed to higher PUA concentrations had lower heart rates 

than those in control treatments (Figure 4; Table 2). Embryonic fish hearts are 

particularly vulnerable to environmental toxins, such as PUAs, due to their highly 

permeable epithelia and the absence of organs responsible for blood filtration (e.g., liver 

and kidneys) that have yet to develop (Incardona & Scholz, 2017). Vertebrates exposed 

to oxylipins, such as PUAs, are known to develop atherosclerosis, experience problems 

with platelet aggregation and vascular constriction, and to be prone to cardiac injury 

(Caligiuri et al., 2017; Nayeem, 2018). Embryonic zebrafish hearts should be especially 

susceptible to the effects of PUA toxicity due to the ease with which these toxins can 

reach heart tissues and the lack of compensatory mechanisms that will arise in later 
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development. Therefore, it is reasonable to assume that PUAs will have similar effects on 

embryonic fishes and their cardiac health when they are exposed to PUAs in nature.  

The consequences of early cardiac injury in fishes can be catastrophic. For example, the 

lake trout, Salvelinus namaycush, (Artedi et al., 1792) population of the Great Lakes collapsed 

because of heart-related issues caused by the exposure of trout embryos to the industrial pollutant 

dioxin (Cook et al., 2003). Chemical exposure to dioxin in lake trout caused symptoms similar to 

those that were seen in zebrafish exposed to PUAs. For lake trout, stress from dioxin presents 

first as pre-hatch heart abnormalities before progressing into problems with circulatory 

dysregulation, anemia, and hypoxia, eventually resulting in premature death from attendant 

lesions in the brain, retina, liver, and other organs (Spitsbergen et al., 1991). This circulatory 

dysregulation was also shown to cause yolk sac edema and impair swim bladder development 

(Guiney et al., 1997; Lanhametal et al., 2014; Spitsbergen et al., 1991). I observed anecdotally 

that zebrafish treated with PUAs frequently exhibited cardiac edema and underdeveloped swim 

bladders, which suggests that these fish may have experienced circulatory dysregulation 

symptoms beyond decreased heart rate. If the embryonic and larval stages of forage fishes are 

exposed to the PUA concentrations used in this study, then it is plausible that they would 

experience similar, life-threatening disruptions to circulatory development. 

 

Morphometrics 

 

 PUA exposure affected the morphological development of zebrafish by reducing body 

length, body depth, and overall size (Figure 5-8; Table 3-6). If the mechanisms which retard 

zebrafish growth after PUA exposure are similar in forage fishes, then PUA exposure may affect 
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forage fish fitness through multiple pathways. For example, larval fish survival is coupled with 

larval body size, with smaller larvae experiencing higher rates of predation (Cowan et al., 1996; 

Paradis, 1996). For any planktonic organism the risk of predation is significant, and this is also 

true for forage fishes, where predation is one of the most important causes of mortality (Miller et 

al., 1988; Bailey & Houde, 1989; Paradis, 1996; Peterson & Wroblewski, 1984). As such, high 

selective pressure exists on planktonic organisms, including forage fishes, to grow rapidly. If 

through PUA exposure causes forage fishes to grow at a slower rate, then this increases their 

exposure to predation which can eventually affect recruitment success (Houde, 2008). 

Smaller fishes also tend to have slower swimming speeds and lower feeding efficiencies 

in comparison to larger conspecifics (Houde, 2008; Gleason & Bangston., 1996; Houde & 

Schekter, 1980; Hare & Cowen, 1997). In bay anchovies (Anchoa mitchilli; Valenciennes, 1848) 

feeding efficiency has been shown to increase with size (Gleason & Bangston., 1996; Houde & 

Schekter, 1980). In bluefish (Pomatomus saltatrix; Linnaeus, 1766) larger size was correlated 

with higher survival rates from yolk-sac-stage embryos to first-feeding larvae (Hare & Cowen, 

1997). Raventos and MacPherson (2005) also found that larval size was an accurate predictor of 

post-settlement survival for two species of reef fishes, the five-spotted wrasse (Symphodus 

roissali; Risso, 1810) and the ocellated wrasse (Symphodus ocellatus; Linnaeus, 1758). 

The observation that fish larvae experience slower swimming speeds and reduced feeding 

efficiencies relative to later life stages is likely a result of the relationship between larval size and 

fluid dynamics (Van Leeuwen et al., 2015; Voesenek et al., 2018). After hatching most larval 

fishes continue to develop by way of yolk and lipid reserves provided by their mothers (Kamler, 

2008). They quickly develop functional mouth parts, allowing them to feed and acquire energy 

exogenously (Yúfera & Darias, 2007).  
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Larval stages of fishes, including forage fishes, encompass a size range that places them 

in an intermediate hydrodynamic regime between laminar (viscous) and turbulent (inertial) flow 

(Voesenek et al., 2018). The relative dominance of viscous and inertial forces is estimated by 

calculating the Reynolds number (Van Leeuwen et al., 2015). Larval sizes < 5mm, which 

encompasses the sizes of zebrafish measured here, and those of most larval forage fishes, places 

them in a low Reynolds number environment in which viscous forces dominate (Van Leeuwen et 

al., 2015). Because movement through more viscous fluids requires a higher cost of transport 

(Schmidt-Nielson, 1972), and because higher viscosities lower maximum swimming speeds and 

reduce a larvae’s ability to avoid predators, prolonging the time that young fishes spend in a low 

Reynolds number environment can greatly reduce survival (Voesenek et al., 2018). Further, it is 

a taxation on endogenous energy reserves. If these reserves are exhausted before transition to 

exogenous feeding, starvation is likely to result (Yin & Blaxter, 1987). 

Existing in a high viscosity environment also requires small larval fishes to employ 

higher forces (relative to body size) when suction feeding, which is usually the only feeding 

strategy available for them (China & Holzman, 2014; Cooper et al., 2020). The ratio of energy 

expended to energy acquired during feeding will therefore be higher for smaller fishes. 

Additionally, the movement required by small fish larvae in viscous environments requires the 

beating of their tails at a high frequency, which in turn is dependent on the use of fast-twitch 

muscles. These muscles are fueled by mitochondria-dense fibers with a high ATP demand and 

energy reserves (Huriaux et al., 1996; Van Leeuwen et al., 2016). Prolonged residence in a high-

viscosity environment increases the likelihood of starvation for larval fishes, which is already the 

largest source of mortality for most larval fishes (Hjort, 1914; Houde, 2002). 
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Pre-feeding survival 

 

In experiments where pre-feeding larvae were exposed to PUAs and reared until 

starvation, PUA exposure accelerated rates of larval mortality in comparison to control treatment 

larvae (Figure 9; Table 8). Most specimens exposed to high PUA concentrations did not survive 

until they would otherwise have begun to feed exogenously, and mortality rates were higher for 

fish from the low and medium PUA treatments in comparison to the controls (Figure 9; Table 8). 

The inference that PUAs impose general stress to developing fishes resulting in reductions in 

survival is supported by my finding that PUAs affected zebrafish embryonic heart rates, and by 

extension circulatory dysregulation and the associated damaging effects (Caligiuri et al., 2017; 

Nayeem, 2018). The implications of this finding are significant for the ecology of forage fish 

larvae. The added physiological stress imposed by PUA exposure may exacerbate starvation 

stress and reduce survival in larval forage fishes.  

 

Conclusions and future directions 

 

This study provides the first evidence that diatom derived PUAs can negatively affect the 

development of fishes. This is also the first study to explore the effects of PUAs on a vertebrate. 

Given the sympatry of diatoms with embryonic and larval stages of forage fishes in most 

temperate marine ecosystems, and the clear effects of PUAs on a larval fish, the likelihood that 

PUAs will negatively affect the fitness of forages fishes seems high. If true, then this pathway 

represents an unexplored mechanism that might explain some of the variation in interannual 

variability in forage fish population dynamics. My findings also suggest that there are pathways 
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for diatom-derived PUAs to affect marine food webs and marine secondary production beyond 

the diatom-copepod link. 

While not quantified in this study, zebrafish embryos in the size and mortality 

experiments tended to hatch later if they had been exposed to high PUA concentrations, and 

many needed assistance (manually rupturing the chorion) in order to be released from their eggs. 

These observations suggest that the hatching success of embryos born in areas of high diatom 

density might be compromised. As such, hatching success might be a useful metric for 

quantifying the effects of PUAs on the development of fish species. My findings also suggest 

that future experiments could include other meaningful markers of PUA stress on fitness like the 

number of edematous larvae, swim bladder development, and later life history stages. Given the 

clear potential presented here for negative interactions between PUAs and developing fish, 

especially forage fishes, further exploration of the effects caused by PUA exposure will likely 

add to our current understanding of the nearshore environmental ecology of forage fishes and 

diatom PUAs and its implications. 
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Figure 1. Pathways for embryonic and larval forage fish interactions with PUAs. A) A forage 

fish nearshore spawning event where eggs are deposited on substrate harboring benthic diatoms. 

B) Embryos experiencing PUA exposure from benthic diatoms releasing PUAs upon grazing-

induced damage to diatom cell walls. C) Early-stage larval forage fish maturing near hatch 

location with continued exposure to dissolved PUAs. D) First-feeding larval forage fish 

experiencing PUA exposure indirectly through pelagic zooplankton grazing and directly via 

ingestion of diatoms and zooplankton. 
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Table 1. Total PUA mixture concentrations (µg/ml) and individual PUA proportions (amount 

added) for all experiments (Total = total PUAs in µg/ml).  

 

PUA Mixture Concentrations and Composition (µg/ml) 

Preliminary Experiment  PUA Low Mid High 

Amount added: Octadienal 0.12 0.56 1.12 

 Heptadienal 0.06 0.33 0.66 

 Decadienal 0.04 0.19 0.38 

 Total 0.22 1.08 

 

2.16 

     

Morphometrics and Heart 

Rate Experiments 

PUA Low Mid High 

 Octadienal 1.12 5.59 11.18 

  Heptadienal 0.66 3.30 6.61 

 Decadienal 0.38 1.90 3.81  
Total 2.16 10.80 21.59 

     

Survival Experiment  Octadienal 1.12 2.24 3.36 

  Heptadienal 0.66 1.32 1.98 

  Decadienal 0.38 0.76 1.14  
Total 2.16 3.24 6.48 

 

 

 

 

 

 

 



 

26 

 
 

Figure 2. Design for 3 nested developmental experiments to test for PUA effects on zebrafish 

larvae. Blue circles represent petri dishes housed in an environmental incubator. Control = 

embryo water control; Methanol = embryo water plus methanol solvent. Larval morphometrics, 

25 embryos per plate, top right; Heart rate, 25 embryos per plate, top left (red * = dish expired 

before recording); Survival, 30 embryos per plate, bottom. 

 

 
 

Figure 3. The three dimensions measured for larval fish morphometrics: Line 1 = standard 

length; Line 2 = deepest vertical point; Line 3 = myotome height at anus (Image Credit: Lizzy 

Griffiths) 
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Table 2. Linear mixed model results for heart rate in beats per minute (Bpm) of 3 dpf zebrafish 

larvae after constant PUA exposure at 2 different concentrations (Table 1). (Intercept) = Control 

treatment (R, lme4, sjPlot and MuMIn packages). Bolded values indicate statistically significant 

p-values. 

 

  Bpm 

Predictors Estimates             CI        p 

[Control] (Intercept) 121.20 106.83 – 135.57 <0.001 

Treatment [Methanol] -15.00 -39.22 – 9.22 0.187 

Treatment [Low] -14.20 -38.42 – 10.02 0.208 

Treatment [High] -44.10 -71.18 – -17.02 0.006 

Random Effects 

σ2 141.71 

τ00 DishNumber 143.26 

N DishNumber 11 

Observations 110 

Marginal R2 / Conditional R2 0.562 / 0.949 
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Figure 4. Larval heart beats per minute under PUA exposure. PUA treatments are differentiated 

by color. Petri dishes are labeled 1-3 on the x-axis and have letters and numbers representing 

their treatments and replicates (Figure 2). Blue bars indicate treatment averages and black bars 

represent dish averages. Dishes A1-3 and plate B3 expired on day 1 and data are not available.  
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Figure 5. Larval standard length under PUA exposure. PUA concentrations are differentiated by 

color. Length is in mm on the y-axis. Individual replicate petri dishes for each treatment are 

labeled A1-E3 on the x-axis with letters representing concentration (A = High, B = Mid, C = 

Low, D = Methanol, E = Control). Blue bars indicate treatment averages and black bars within 

dish averages.  
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Table 3. Linear mixed model results for standard length (Length) of zebrafish 7 dpf larvae after 6 

days of constant PUA exposure at 3 different concentrations (Table 1). All groups were 

compared to the intercept, which in this model is the average from the control treatment. Bolded 

values indicate statistically significant p-values (R, lme4, sjPlot and MuMIn packages).  

 

 Length 

Predictors Estimates          CI       P 

[Control] (Intercept) 3.39 3.16 – 3.62 <0.001 

Treatment [Methanol] -0.03 -0.40 – 0.33 0.841 

Treatment [Low] -0.03 -0.40 – 0.33 0.851 

Treatment [Mid] -0.57 -0.93 – -0.20 0.006 

Treatment [High] -0.64 -1.00 – -0.27 0.003 

Random Effects 

σ2 0.02 

τ00 DishNumber 0.04 

ICC 0.71 

N DishNumber 15 

Observations 326 

Marginal R2 / Conditional R2 0.585 / 0.879 
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Figure 6. Deepest vertical point (Figure 3; Depth 2) for zebrafish larvae exposed to PUAs. PUA 

concentrations are differentiated by color. Depth is in mm on the y-axis. Petri dishes are labeled 

A1-E3 on the x-axis and have letters and numbers representing their concentration and replicates 

(A = High, B = Mid, C = Low, D = Methanol, E = Control). Blue bars indicate group averages 

and black bars within dish averages. 
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Table 4. Linear mixed model results for deepest vertical distance (Depth 2) of 7 dpf zebrafish 

larvae after constant PUA exposure at 3 different levels (Table 1). All groups were compared to 

the intercept, which in this model the control treatment (R, lme4, sjPlot and MuMIn packages).  

 

 

  Depth 2 

Predictors Estimates          CI      P 

[Control] (Intercept) 0.45 0.41 – 0.49 <0.001 

Treatment [Methanol] -0.02 -0.08 – 0.04 0.463 

Treatment [Low] -0.02 -0.08 – 0.04 0.471 

Treatment [Mid] -0.10 -0.16 – -0.04 0.006 

Treatment [High] -0.13 -0.19 – -0.06 0.001 

Random Effects 

σ2 0.00 

τ00 DishNumber 0.00 

ICC 0.43 

N DishNumber 15 

Observations 326 

Marginal R2 / Conditional R2 0.477 / 0.701 
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Figure 7. Myotome height at the anus (Depth 3). PUA levels are differentiated by color. 

Measurements are in mm on the y-axis. Petri dishes are labeled A1-E3 on the x-axis. Letters and 

numbers represent concentration and replicate (A = High, B = Mid, C = Low, D = Methanol, E = 

Control). Blue bars indicate group average and black bars within dish average. 
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Table 5. Linear mixed model results for myotome height at the anus (Depth 3) of 7 dpf zebrafish 

larvae after constant PUA exposure at 3 different concentration levels (Table 1). All groups were 

compared to the intercept, which in this model is the control treatment. Bolded values indicate 

statistically significant p-values (R, lme4, sjPlot and MuMIn packages).  

 

 

  Depth 3 

Predictors Estimates            CI       p 

Control (Intercept) 0.14 0.12 – 0.15 <0.001 

Treatment [Methanol] -0.01 -0.04 – 0.02 0.402 

Treatment [Low] -0.01 -0.03 – 0.02 0.671 

Treatment [Mid] 0.01 -0.02 – 0.03 0.466 

Treatment [High] 0.01 -0.02 – 0.03 0.526 

Random Effects 

σ2 0.00 

τ00 DishNumber 0.00 

ICC 0.45 

N DishNumber 15 

Observations 326 

Marginal R2 / Conditional R2 0.110 / 0.506 

 

 

 

 

 

 

 

 

 

 



 

35 

Table 6. PERMANOVA pairwise comparisons with non-adjusted and Bon Ferroni adjusted p-

values. Sig = p < 0.05 (R, pairwiseAdonis and vegan packages). 

 

Pair Df SS F Model R2 p-value p-adjusted Sig 

High vs Mid 1.000 0.009 2.674 0.022 0.083 0.830 
 

High vs Low 1.000 0.349 186.363 0.593 0.001 0.010 * 

High vs Methanol 1.000 0.343 184.448 0.596 0.001 0.010 * 

High vs Control 1.000 0.393 221.308 0.634 0.001 0.010 * 

Mid vs Low 1.000 0.243 134.487 0.512 0.001 0.010 * 

Mid vs Methanol 1.000 0.237 132.489 0.515 0.001 0.010 * 

Mid vs Control 1.000 0.279 163.046 0.560 0.001 0.010 * 

Low vs Methanol 1.000 0.000 0.288 0.002 0.755 1.000 
 

Low vs Control 1.000 0.002 5.014 0.035 0.011 0.110 
 

Methanol vs Control 1.000 0.003 9.461 0.065 0.001 0.010 * 

 

Table 7. Standard deviation, proportion of variance, and cumulative proportion explained by 

principal components 1 (PC1), 2 (PC2) and 3 (PC3). 

 

 PC1 PC2 PC3 

Standard deviation     1.3302 1.0062 0.467 

Proportion of Variance    0.5898 0.3375 0.0727 

Cumulative Proportion    0.5898 0.9273 1.0000 
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Figure 8. PCA of the variation in size of fish larvae based on PC1 and PC2. Vectors in blue show 

the influence of the variable on the position of larvae. PC1 increases with Length (standard 

length) and Depth 2 (deepest point) vectors. Depth 3 (myotome height at anus) increased on 

PC2. Larger larvae are located toward the top and right and smaller to the bottom left (R, plotly 

package).  
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Figure 9. Kaplan-Meier survival probability curves. The y-axis shows the probability of survival 

as a ratio from 0-1. Three increasing concentrations of PUAs are shown by color, with 2 controls 

(Control = untreated embryo water; Methanol = 1% methanol solvent).  

 

 

Table 8. P-values from Bonferroni adjusted pairwise comparisons of 5 different treatment group 

survival curves in the Kaplan-Meier analysis. 

 

PUA Low Mid High Control 

Mid 0.1742 - - - 

High <0.0001 <0.0001 - - 

Control 0.0028 <0.0001 <0.0001 - 

Methanol 0.0076 <0.0001 <0.0001 0.5976 
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