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Abstract 

The microbiota of hydrothermal vents has been widely implicated in the dynamics of 

oceanic biogeochemical cycling. Lithotrophic organisms utilize reduced chemicals in the vent 

effluent for energy, which fuels carbon fixation, and their metabolic byproducts can then support 

higher trophic levels and high-biomass ecosystems. However, despite the important role these 

microorganisms play in our oceans, they are difficult to study. Most are resistant to culturing in a 

lab setting, so culture-independent methods are necessary to examine community composition. 

Targeted amplicon surveying, in which a marker gene is selected for DNA amplification, has 

become the standard practice for assessing the structure and diversity of hydrothermal vent 

microbial communities. The most commonly used marker gene is the small subunit ribosomal 

RNA (SSU rRNA) gene, due to its ubiquity across all cellular organisms and the presence of both 

conserved and variable regions. Here, the performance of primer pairs targeting the V3V4 and 

V4V5 variable regions of the SSU rRNA gene were assessed using environmental samples from 

microbial mats surrounding iron-dominated hydrothermal vents. Using the amplicon sequence 

variant (ASV) approach to taxonomic identification, the structure and diversity of microbial 

communities at Kamaʻehuakanaloa Seamount were elucidated in detail. Both primer pairs 

generated robust data and comparable alpha diversity profiles. However, several distinct 

differences in community composition were identified between primer sets, including differential 

relative abundances of both bacterial and archaeal phyla. The primer choice was determined to be 

a significant driver of variation among the taxonomic profiles generated. Based on the higher 

quality of the raw sequences generated and on the breadth of abundant taxa found using the V4V5 

primer set, it is determined as the most efficacious primer pair for whole-community surveys of 

microbial mats at iron-dominated hydrothermal vents. 
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Introduction 

 Targeted amplicon surveys of the small subunit ribosomal RNA gene (SSU rRNA gene) 

are a fast and cost-effective culture-independent approach for microbial ecology studies. Since the 

SSU rRNA gene contains both variable and conserved regions it allows for robust taxonomic 

identification (McNichol et al., 2021). Additionally, this approach provides relative abundance 

data that distinguishes both rare and abundant taxa, which can be used to build a picture of 

community structure and diversity (Pascoal, Costa and Magalhães, 2021). Researchers must 

choose only short sections of the SSU gene to target and amplify for their analyses. The choice of 

PCR primers may result in over- or underrepresentation of some groups of taxa in the final dataset, 

and may lead to inaccurate interpretations or conclusions (Baker, Smith and Cowan, 2003; 

Hamady and Knight, 2009; Wang and Qian, 2009; Walters et al., 2015; Bahram et al., 2019; 

Abellan-Schneyder et al., 2021). The design and selection of optimal SSU PCR primers has been 

an ongoing concern and challenge. 

Two of the most commonly used primer sets target either the V3V4 region or V4V5 region 

of the SSU rRNA gene. A suite of primers was evaluated in silico for amplification efficiency and 

341F/785R, targeting the V3V4 region, was recommended as the most efficacious pair despite a 

noted tendency for overrepresentation of Alphaproteobacteria and underrepresentation of both 

Bacteroidetes and the important SAR11 clade of pelagic bacteria (e.g., order Pelagibacterales; 

Klindworth et al., 2013). In 2016, the same strong bias against Pelagibacterales was noted when 

using the primers adopted by a large-scale sequencing project, the Earth Microbiome Project 

(EMP), as well as the underrepresentation of two archaeal phyla (Parada, Needham and Fuhrman, 

2016). The EMP primers (515F/806R) only amplify the V4 region of the SSU gene, as they were 

designed at a time when Illumina amplicon length was constrained to 2 x 75-100 bp (Caporaso et 
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al., 2011). To increase amplification efficiency in both Bacteria and Archaea, a different 

previously-validated reverse primer was selected, and a new degeneracy was added to the forward 

primer (Quince et al., 2011; Parada, Needham and Fuhrman, 2016). The new primers, referred to 

as 515F-Y/926R, amplify the V4V5 region of the SSU rRNA gene. Testing against marine 

samples, the V4V5 primers strongly amplified Pelagibacterales and recovered multiple additional 

taxa not covered by the V4 primers. The V4V5 primers were tested against mock communities 

and produced community profiles that much more closely matched the expected composition than 

those generated by the V4 primers in both even and staggered trials (Parada, Needham and 

Fuhrman, 2016). 

Mock communities are small synthetic constructs of curated taxa (typically 10-20 

representatives) with known clonal abundances, so they generate quantifiable outcomes in high-

throughput sequencing comparison studies (Shakya et al., 2013). Studies have shown the 

importance of comparison to environmental samples rather than simply relying on mock 

community data when evaluating the accuracy of primer performance (Wear et al., 2018; Abellan-

Schneyder et al. 2021). This was demonstrated during the development of the V4V5 primers: the 

differential abundance of Pelagibacterales detected by V4V5 was less than twofold that detected 

by the V4 primers in mock analysis, while in the environmental samples it was between 4- and 10-

fold higher (Parada, Needham and Fuhrman, 2016). Established microbial mat communities can 

be highly complex (Vander Roost, Thorseth and Dahle, 2017), and with increasing community 

complexity challenges exist for evaluating differences in community composition between primers 

because the community composition is unknown. A comparison of primer performance between 

several mock communities, saliva samples, and soil samples indicated that the degree of difference 

between community profiles generated by different primers may scale with increasing community 
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complexity (Soriano-Lerma et al., 2020). For this reason, the assessment of primers for use on 

highly complex communities, like those found in microbial mats, should be conducted directly on 

environmental samples. 

Hydrothermal vent systems represent a gradient at the interface between the oceanic crust 

and the deep-sea water column, presenting an ideal habitat for lithotrophic microorganisms driven 

by an abundance of dissolved reduced compounds. Iron, the most abundant element in the Earth, 

is a limiting micronutrient for marine phototrophic primary production (Boyd et al., 2007). Ferrous 

iron is rapidly oxidized abiotically, drawing it out of solution and dramatically reducing its 

bioavailability. However, analysis of plumes from high temperature focused venting shows that 

more iron than expected stays dissolved in the water column, and can be transported in the plume 

for great distances into the upper ocean (Neuholz et al., 2020; Resing et al., 2015). Microbes at 

the vent orifices may play a direct role in iron transport and iron speciation (H. Wang et al., 2021). 

Recent studies support these hypotheses in the dynamics of iron transport at a diffuse vent system 

as well, and when comparing iron speciation from different types of vents, diffuse vent flow hosts 

the highest proportion of labile iron complexed with organic material (Lough et al., 2019; W. 

Wang et al., 2021). Therefore, diffuse vent systems that host microbial mats and release fluid high 

in dissolved iron, like those observed at Kamaʻehuakanaloa Seamount, are of particular importance 

(Wheat et al., 2000; Glazer and Rouxel, 2009). The vast majority of the organisms living in the 

microbial mats surrounding the vents are not yet culturable, so culture-independent methods are 

necessary to study these communities and elucidate their impact on global biogeochemical cycles 

(Emerson and Moyer, 2010; Duchinski et al., 2019).  

Researchers commonly choose either the V3V4 or V4V5 region to amplify in hydrothermal 

vent-associated microbial mat diversity surveys (Hager et al., 2017; Scott, Glazer and Emerson, 
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2017; Duchinski et al., 2019; Ramírez et al., 2021; Speth et al., 2022; Stromecki et al., 2022; 

Astorch-Cardona et al., 2023). In this study, primer pairs for the V3V4 region (Klindworth et al., 

2013) and the V4V5 region (Parada, Needham and Fuhrman, 2016), were used to amplify the SSU 

rRNA gene from microbial mats around the iron-dominated diffuse hydrothermal vents at 

Kamaʻehuakanaloa Seamount to determine if significant differences in community composition or 

structure would result. A deep sequencing effort of these complex communities was undertaken 

for both primer sets. Upon analysis, several distinct differences in composition between datasets 

were revealed in both the Bacterial and Archaeal domains. A comparison of overall taxonomic 

profiles and relative abundance data reveals that both primer sets generate robust data, but that 

primer choice is significant in differences among the datasets associated with iron-dominated 

microbial mat sequencing. 
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Methods 

Sample Collection 

Samples were collected from Kamaʻehuakanaloa Seamount (formerly known as Lōʻihi 

Seamount), an active undersea volcano at the leading edge of the Hawaiian hot spot (Clague et al., 

2019). Four locations around the seamount were selected for sampling: Pohaku, at the 

southernmost edge of the caldera; Lohiau, on a small outcrop on the northern lip of the caldera; 

Hiolo North, on the eastern lip of the caldera; and Hiolo South, just south of Hiolo North (Table 

1). At each of the four locations, two suction samples were collected. All venting locations emitted 

fluid that ranged from 20-48ºC and all were surrounded by abundant microbial mat (Fullerton et 

al., 2017; Scott, Glazer and Emerson, 2017). 

Microbial mats were collected in March 2013 on the R/V Thomas G. Thompson cruise 

TN293 with ROV Jason II. Eight bulk mat samples were collected with an impeller-driven suction 

device into chambers using a double layer 202 µm Nytex catchment barrier. Samples were 

homogenized and then aseptically transferred to sterile 50ml centrifuge tubes inside a cold room, 

preserved in RNAlater (ThermoFisher Scientific, Waltham, MA), and stored at -80°C until DNA 

extractions. 

DNA extraction, Amplification, and Sequencing 

Genomic DNA was extracted from each sample in triplicate using the FastDNA SPIN Kit 

for Soil (MP Biomedicals, Santa Ana, CA) after fluid removal, as previously described (Jesser et 

al., 2015; Hager et al., 2017). Extracted DNA was quantified using a Qubit 2.0 fluorometer 

(ThermoFisher Scientific, Waltham, MA).  

Each sample collection was PCR amplified in quintuplicate using each primer set, for 

sixteen pooled amplicon sets across the eight sample collections. The V3V4 region of the SSU 
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rRNA gene was amplified using 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-

GGACTACHVGGGTATCTAATCC-3’), and the V4V5 region was amplified using 515F-Y (5’-

GTGYCAGCMGCCGCGGTAA-3’) and 926R (5’-CCGYCAATTYMTTTRAGTTT-3’), then 

amplicons were cleaned and indexed according to Illumina MiSeq best-practices (Illumina, 2013). 

Amplicon libraries were quantified with a Qubit 2.0 fluorometer. Sequencing was performed at 

Western Washington University on an Illumina MiSeq using manufacturer protocol (Illumina, 

Inc.), generating 2 x 300 bp paired-end reads. 

Sequence Processing 

Raw FASTQ files were first primer-trimmed with Cutadapt (Martin, 2011) using the 

linked-adapter protocol with the complete primer sequences; untrimmed sequences were 

discarded. Trimmed FASTQ files were then imported to R and each primer set was run 

independently using the DADA2 analysis pipeline, following established best practices as 

previously described (Callahan et al., 2016). After evaluation of the read quality plots, ideal 

positions for truncating the reverse primers were determined to be at the 20-quality score threshold, 

based on maximal retention of subsequent merged reads. The core inference algorithm was applied 

using pseudopooling. Taxonomy was assigned to the genus level using the DECIPHER R package 

with the IDTAXA command (Quast et al., 2013; Murali, Bhargava and Wright, 2018), aligning to 

the SILVA reference database v138 (Yilmaz et al., 2014). Finally, ASVs assigned to the class 

Zetaproteobacteria were analyzed by ZetaHunter (https://github.com/mooreryan/ZetaHunter) for 

classification to previously defined Zetaproteobacterial OTUs (e.g. zOTUs; McAllister, Moore 

and Chan, 2018).  

ASVs from each primer pair that were unidentified at the domain level were removed from 

analysis. To combine the two datasets, ASVs identified to at least the domain level were then 
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iteratively clustered down to the genus level such that ASVs binned inside a single genus were 

condensed into a single entry in the taxonomic table, ASVs that were unclassified at the genus 

level were clustered by family, and so on. Abundances of each ASV in each cluster were also 

condensed per sample. This compressed taxonomy is subsequently referred to as the “condensed 

taxa” and allowed for direct comparisons between primer sets. 

Diversity and Statistical Analysis 

Rarefactions were plotted for the non-condensed ASV data per primer set using tidyverse 

(Wickham et al., 2019). Alpha diversity metrics (Chao1 Richness, Shannon Diversity, Simpson 

Evenness) were calculated for non-condensed ASV data in each sample using the microbiome 

package (Lahti and Shetty, 2012). Prior to analysis, data in each metric were checked for normal 

distribution using the Shapiro-Wilke test. Differences between primer set were assessed for 

statistical significance in each metric for the combined sample data: Analysis of Variance was used 

for Shannon Diversity and Chao1 Richness and Kruskal-Wallis was used for Simpson Evenness.  

The condensed taxa sample data matrices were read into R using phyloseq (McMurdie and 

Holmes, 2013) and then normalized using variance stabilizing transformation (VST) with package 

DESeq2 (Love, Huber and Anders, 2014). Plots were drawn using ggplot2 (Wickham, 2016). 

Since VST-normalized data contain negative values, the Euclidean distance matrix was calculated 

for the normalized data. Normalized data were PCoA plotted. The vegan package was used to 

analyze the distance matrix; first, beta dispersion by primer choice was validated as non-significant 

using betadisper2, then PERMANOVA via adonis2 was performed using primer choice as the 

variable (Oksanen et al., 2022). PERMANOVA to assess location as a driver of variation between 

primer sets could not be conducted because the beta dispersion homogeneity assumption was not 

met for that variable.  
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Results 

Sequence Processing 

The chosen sequencing approach resulted in sixteen community profiles representing eight 

collections each, divided by the two primer pairs. Amplicon processing through the DADA2 

pipeline generated a total of 7,506 ASVs in 1,952,073 reads from the eight communities amplified 

by the V3V4 primers. This output represents a net loss of 63.08% of the total input reads, with 

54.61% to 75.11% of reads lost from a single community (Supplemental Table 1). After removing 

ASVs that were unclassified at the domain level, the V3V4 dataset comprised 4,140 ASVs in 

1,558,201 reads, meaning that 44.8% of sequences could not be identified to at least the domain 

level. DADA2 processing of the eight communities amplified by the V4V5 primers generated a 

total of 5,130 ASVs in 2,950,958 reads. This translates to a net loss of 52.17% of the total input 

reads, ranging from 48.43% to 57.27% of reads lost from a single community (Supplemental Table 

2). After removing ASVs that were unclassified at the domain level, the V4V5 dataset comprised 

3,288 ASVs in 2,227,954 reads, meaning that 35.9% of reads could be not identified to at least the 

domain level. 

Community Profiling 

In constructing the rarefaction curves for the V3V4 primer set, mean depth was 244,009 

reads per community with a minimum of 130,311 and a maximum of 323,532. The V4V5 

rarefaction curves had a mean depth of 335,119 reads per community with a minimum of 316,860 

and a maximum of 365,477. Plateau was reached in all communities from both primer sets 

(Supplemental Figure 1). 

After calculating alpha diversity metrics, no significant differences between primer sets in 

Chao1 Richness was found using Kruskal-Wallis and no significant difference in Shannon 
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Diversity or Simpson Evenness were found using Analysis of Variance (Figure 1). However, 

PERMANOVA analysis confirmed that primer set was a significant driver of the differences 

observed among the taxonomic profiles (R2=0.25, P=0.001). PCoA of the normalized data 

explained 51.6% of total variance in both principal coordinates and showed distinct clusters 

associated with each primer set at the 95% confidence interval (Figure 2). No significant clustering 

was associated with location. 

Domain Archaea 

The V3V4 primer set generated 62 Archaeal ASVs spread over six phyla plus another 

group that was unclassified except at the domain level. Twenty-six ASVs were identified as 

Crenarchaeota, 13 as Thermoplasmatota, eight each as Hydrothermarchaeota and Halobacterota, 

three as Nanoarchaeota, three were unclassified at the phylum level, and a single ASV identified 

as Euryarchaeota. Phylum Asgardarchaeota was unrepresented in the V3V4 dataset (Figure 3a). 

By relative abundance in domain Archaea, Thermoplasmatota was the most abundant phylum with 

41.79% of reads, followed by Crenarchaeota with 22.81% and Hydrothermarchaeota with 20.49% 

(Figure 3b). 

The V4V5 primer set generated approximately two-thirds again as many Archaeal ASVs 

as the V3V4 primer set, with 103 ASVs spread over six phyla plus another group that was 

unclassified except at the domain level. Crenarchaeota was the dominant phylum in terms of both 

number of representative ASVs (53) and in relative abundance within domain Archaea (63.42% 

of archaeal reads; Figures 3a and 3c). Phylum Thermoplasmatota was represented by 19 ASVs, 11 

were classified as Nanoarchaeota (the next greatest by relative abundance, with 10.26% of reads), 

seven as Hydrothermarchaeota, four as Halobacterota, and three unclassified at the phylum level. 

All but Crenarchaeota and Nanoarchaeota composed less than 10% of total archaeal reads (Figure 
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3c). In contrast to the V3V4 samples, phylum Asgardarchaeota was represented by seven ASVs 

and phylum Euryarchaeota was unrepresented (Figure 3a).  

Of the eight identified divisions in domain Archaea (inclusive of unclassified phyla), six 

differed by at least one order of magnitude in relative abundance between primer sets. 

Halobacterota and Crenarchaeota abundances were within the same order of magnitude between 

primers, although V4V5 had more than three times as many reads identified as Crenarchaeota than 

did V3V4. While both primers detected one phylum unique to each dataset, phylum Euryarchaeota 

in V3V4 was represented by a single ASV that accounted for 0.06% relative abundance and 

phylum Asgardarchaeota in V4V5 was represented by 7 ASVs that accounted for 0.95% relative 

abundance (Figures 3a, 3b, 3c). Only Halobacterota abundances were similar between primer sets, 

despite differences in representative ASVs (Figures 3a, 3b, 3c). 

Domain Bacteria 

 There were 4,078 ASVs recovered from the V3V4 primer set that classified to domain 

Bacteria, belonging to 49 phyla (Figure 4a, some data not shown). Of those, 85.1% (3,471 ASVs) 

belonged to phyla that represented greater than 1% relative abundance, and a further 527 ASVs 

belonged to phyla that represented less than 1% but greater than 0.1% relative abundance. The 

phyla with the greatest number of ASVs were Proteobacteria with 1,322, followed by 

Planctomycetota (498 ASVs), Bacteroidota (262), Patescibacteria (sometimes called Candidate 

Phyla Radiation, or CPR; 206), Verrucomicrobiota (146), and Chloroflexi (135). There were 709 

ASVs that remained unclassified below the domain level. By relative abundance, 12 phyla made 

up at least 1% of the reads, respectively (Figure 4b). Proteobacteria made up fully half of the 

bacterial reads (50.73%), with the next most abundant phyla being Planctomycetota (8.11%), 

Bacteroidota (7.17%), Patescibacteria (6.32%), and the uncharacterized DTB120 (4.83%). Phyla 
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with relative abundance between 0.99% and 0.1%, were led by Gemmatimonadota, 

Acidobacteriota, Zixibacteria, Verrucomicrobiota, and Bdellovibrionota. The lowest relative 

abundance phyla (those under 0.1% abundance) were the most numerous, with 22 different 

representatives, but their 77 ASVs altogether accounted for just 0.28% of total bacterial reads. 

 The V4V5 primer set generated 3,185 ASVs classified to domain Bacteria, representing 55 

phyla (Figure 4a, some data not shown). Phyla that made up a least 1% relative abundance, 

respectively, accounted for 2,443 of those ASVs (76.7% of bacterial ASVs), while phyla between 

0.99% and 0.1% relative abundance accounted for a further 629 ASVs. The phyla with the most 

representative ASVs were Proteobacteria with 979, followed by Planctomycetota (447 ASVs), 

Bacteroidota (289), Chloroflexi (128), and Verrucomicrobiota (121). There were 393 ASVs 

unclassified below domain level. By relative abundance, eight phyla contributed greater than 1%, 

respectively (Figure 4c). Proteobacteria made up more than half of all reads (58.44%), followed 

by Bacteroidota (9.80%), Planctomycetota (5.61%), Nitrospirota (5.42%), and DTB120 (4.77%). 

The top five most abundant phyla between 0.1% and 1% relative abundance were MBNT15, 

Gemmatimonadota, Zixibacteria, Patescibacteria, and Bdellovibrionota. There were 28 phyla with 

relative abundances below 0.1%, whose 103 ASVs comprised 0.37% of total bacterial reads.  

 There were several dissimilarities between the two bacterial taxonomic profiles. Two phyla 

were unique to the V3V4 dataset (GAL15 and Poribacteria) and eight phyla were unique to the 

V4V5 dataset (Caldatribacteriota, CK-2C2-2, Deferrisomatota, Edwardsbacteria, Elusimicrobiota, 

FCPU426, Latescibacterota, and TA06). Four phyla with greater than 0.1% relative abundance in 

at least one primer differed in that abundance by at least one order of magnitude: Patescibacteria 

(V3V4: 6.32%, V4V5: 0.50%), Campylobacterota (V3V4: 2.19%, V4V5: 0.33%), Acetothermia 

(V3V4: 0.34%, V4V5: 0.03%), and Deinococcota (V3V4: 0.002%, V4V5: 0.16%) (some data not 
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shown). Patescibacteria and Campylobacterota also differed more than any other taxa in numbers 

of representative ASVs between primer sets, with V3V4 having 3.5-fold more Patescibacteria 

ASVs and 3-fold more Campylobacterota ASVs. There were two additional taxonomic groupings 

with notable variation in ASVs between primers: phylum Proteobacteria and taxa unclassified 

below domain ranking (Figure 4a). While those two groupings contained 659 ASVs unique to the 

V3V4 dataset (approximately 75% of the total number of ASVs unique to V3V4), all the unique 

ASVs were likely present in very low abundance (Figures 4b and 4c). However, four out of the 

top five most abundant phyla in each primer set were the same and their numbers of representative 

ASVs were within the same order of magnitude. 

Phyla Proteobacteria and Campylobacterota  

The V3V4 primer set generated 1,322 ASVs identified to phylum Proteobacteria and 83 

phylum Campylobacterota ASVs. Within the two phyla, class Zetaproteobacteria was represented 

by 266 ASVs and made up 61.18% of total reads (Figures 5a and 5b). In contrast, class 

Gammaproteobacteria was the most diverse with 623 ASVs, but accounted for just 21.39% of total 

reads. Next greatest by abundance was class Alphaproteobacteria with 350 ASVs constituting 

13.14% of reads, followed by a mere 0.16% of reads consisting of 83 ASVs unclassified below 

phylum level in Proteobacteria (Figure 5a). All Campylobacterota ASVs were also classified as 

class Campylobacteria and composed 4.13% of reads.  

Phylum Proteobacteria had 979 ASVs in the V4V5 dataset and phylum Campylobacterota 

had just 27 ASVs (all of which were also identified as class Campylobacteria). Class 

Zetaproteobacteria repeated the trend observed in the V3V4 dataset but to an even greater extent: 

by relative abundance, Zetaproteobacteria were in the definitive majority with 74.98% of total 

reads but were represented by only 89 ASVs (Figures 5a and 5c). Gammaproteobacteria profiles 
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were also similar to V3V4, with an extensive collection of 531 ASVs comprising only 15.54% of 

total reads within the two phyla. Class Alphaproteobacteria had nearly the same number of ASVs 

as were present in the V3V4 dataset but they made up only about two-thirds as much of the V3V4 

relative abundance. Only 26 ASVs remained unclassified below the phylum level in Proteobacteria 

and they accounted for 0.35% of total reads. Class Campylobacteria made up only 0.56% of total 

reads. 

Two interesting differences among the taxonomic profiles within these data are the relative 

abundances of both Campylobacteria and Zetaproteobacteria. The relative abundances of class 

Campylobacteria differed by an order of magnitude, with V3V4 having the greater representation. 

Zetaproteobacteria abundances differed to a lesser degree, with V4V5 containing approximately 

15% relatively more Zetaproteobacteria reads. The relative discrepancy of Zetaproteobacteria 

reads at the class level translated to a difference of more than 10% in the relative abundance of 

Zetaproteobacteria between the two datasets as a whole; Zetaproteobacteria accounted for 32.28% 

of total identified reads in V3V4 and 45.54% of total identified reads in V4V5. 

Class Zetaproteobacteria 

 There were 26 previously-established Zetaproteobacteria OTUs (zOTUs) found with the 

V3V4 primer set (Figure 6a). By far the most abundant was zOTU2, with 56.46% of the total 

zOTU reads (Figure 6b). zOTU1 followed with 15.76%, then zOTU4 (8.20%), zOTU10 (7.11%), 

and zOTU14 (2.09%). The majority of the remaining zOTUs were represented by less than 1% of 

the zOTU reads (Figure 6c). Additionally, 75 sequences were classified as “NewZetaOTUs”, all 

of which were found in very low abundance (fewer than 20 total reads each). 

 The V4V5 primers retrieved 24 previously-established zOTUs (Figure 6a). As with the 

V3V4 dataset, zOTU2 was the most dominant taxon with 55.99% of the zOTU reads (Figure 6d). 
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zOTU1 was next in abundance with 9.45%, then zOTU14 (9.56%), zOTU10 (6.41%), and zOTU4 

(4.63%). Similar to the V3V4 dataset, the majority of identified zOTUs were present in less than 

1% relative abundance (Figure 6e). Only 16 “NewZetaOTUs” were found by the V4V5 primers, 

all in very low abundance. 

 The V4V5 primers retrieved nearly twice as many total Zetaproteobacteria reads as did 

V3V4 (990,865 in V4V5 compared to 502,938 in V3V4). Both V3V4 and V4V5 identified the 

same eight zOTUs as most abundant and although the absolute number of reads in each zOTU, 

respectively, differed by up to nine-fold (zOTU14, Figure 6a), when comparing the data by relative 

abundance the profiles are quite similar. This trend in absolute versus relative abundance is also 

observed in the lower abundance zOTUs (Figures 6a, 6c, and 6e). However, there are several 

exceptions to the similarities in the lower abundance zOTUs. Two zOTUs differed by at least one 

order of magnitude in relative abundance: zOTU18 (V3V4: 0.074%, V4V5: 1.047%) and zOTU26 

(V3V4: 0.029%, V4V5: 0.001%). Additionally, there were zOTUs present in one dataset that were 

completely absent in the other: zOTU54 and zOTU12 were not found using the V3V4 primers, 

while zOTUs 52, 31, 23, and 40 were missing from the V4V5 data. All unique zOTUs, regardless 

of dataset, were represented by less than 1% relative abundance, and all but two (zOTU52 in V3V4 

and zOTU54 in V4V5) were represented by less than 0.1% relative abundance (Figures 6d and 

6e).  
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Discussion 

 Primer selection has previously been evaluated as a source of potential bias in microbial 

ecology studies of various complex communities. Primer selection has been determined to be 

significant as a driver of variation among the datasets generated from studies on the human 

microbiome, soils, terrestrial mineral deposits, the pelagic water column, marine subsurface 

sediment, and sea ice (Walters et al., 2015; Pollock et al., 2018; Bahram et al., 2019; Rajeev et al., 

2020; Fadeev et al., 2021; Hathaway et al., 2021; McNichol et al., 2021; Nearing, Comeau and 

Langille, 2021). Targeted amplicon surveys of iron-dominated microbial mats have been an 

important analytical tool for assessing diversity and community structure, but as yet there is no 

consensus on the optimal primer pair to use for such surveys. The V4V5 primers used here show 

greater promise than the V3V4 primers for analysis of hydrothermal vent-associated iron-

dominated microbial mats, and these results have implications for the study of other complex 

microbial communities. 

 The protocols used in this study were chosen after careful review of current methodological 

literature. A recent study undertook a thorough comparison of various ASV amplicon pipeline 

step-wise processes and highlighted both the downstream influence of forward and reverse 

sequence truncation before merging and the impact that reference database has on taxonomic 

identification (Abellan-Schneyder et al., 2021). Based on that research, forward and reverse reads 

for this study were custom trimmed after repeated testing to remove low-quality bases while 

maintaining maximal retention of subsequent merged reads for further processing. The per-base 

quality of the input sequences varied between primer sets, with the V3V4 reverse sequences 

showing an abrupt drop in quality around position 250. That drop in quality was not seen in the 

corresponding V4V5 reverse sequences. The low-quality bases in the V3V4 sequences 
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necessitated much more liberal trimming to maintain acceptable quality scores. This V3V4 

trimming may be a situation where “the baby was thrown out with the bathwater”; effectively, 

because the V4V5 sequences were of higher initial quality, more material remained to be analyzed 

by the pipeline. This concept is expanded when considering the ratios of completely unclassified 

taxa between the two primer sets; while the V3V4 primers produced more ASVs, a greater 

proportion were unidentifiable than those in the V4V5 dataset. While it is possible that 

improvements to available reference databases may ameliorate this discrepancy in the future, the 

use of the up-to-date SILVA curated database for taxonomic assignment ensured as comprehensive 

a community profile as possible at this time (Abellan-Schneyder et al., 2021). Sequencing depth 

has been shown to influence measures of alpha diversity in microbial ecology studies, both in 

terms of richness and evenness (Reese and Dunn, 2018; Ramakodi, 2021; Kleine Bardenhorst et 

al., 2022). In undertaking a deep sequencing effort, biases in alpha diversity measures have been 

minimized, therefore assuring the robustness of the generated datasets. The lack of statistically 

significant differences in alpha diversity profiles between primer sets confirms the suitability of 

downstream comparisons of taxonomic profiles. 

 Differences in taxonomic profiles were apparent at each ranking examined, which is 

consistent with the findings of other studies that compared these two primer pairs using 

environmental samples. Primer choice exhibited a strongly detectible effect in a study of terrestrial 

soil microbial communities at both the phylum and genus levels, with the difference between 

V3V4 and V4V5 more pronounced than when comparing V4V5 to other regions (Soriano-Lerma 

et al., 2020). In that same study, V4V5 was also able to detect variation in composition across the 

broadest range of community complexity as measured by soil development, compared to other 

hypervariable regions. However, when they compared the less complex microbial community of 
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human saliva, the effect of primer choice was weaker. In an examination of various arctic microbial 

communities, taxa at both the class and family level were differentially abundant based on V3V4 

or V4V5 primer choice (Fadeev et al., 2021). The differences among community profiles increased 

in amplitude with increasing community complexity, with the greatest differential present in the 

marine sediment community. Interestingly, even though 14% of the total lineages found with 

V3V4 in that study were absent from the V4V5 profile, those lineages accounted for less than 1% 

of the total sequences in the V3V4 dataset. This same trend was observed in the current study: 

while V3V4 produced a greater number of taxa, those taxa that were unique to V3V4 were almost 

exclusively of very low abundance. The trend is continued when the synthesis of ASVs per taxon 

and the relative abundance of those taxa are compared between primer sets. Despite the relative 

abundance data looking similar for each primer set, that abundance is divided into more ASVs in 

the V3V4 dataset; there are more ASVs sharing each piece of the pie, indicating that there are 

fewer representatives per taxon than in the V4V5 dataset. Moreover, the relative abundance data 

are validated as independent of sequencing effort by the plateaus reached in the rarefaction curves, 

which show that increased sequencing depth would not reveal additional diversity. 

 The high-resolution taxonomic analysis of class Zetaproteobacteria, a clade of iron-

oxidizing bacteria, is of particular importance with regard to the study of biogeochemistry at iron-

dominated diffuse hydrothermal vents. An alignment and analysis of the sequences generated by 

both primer sets should be undertaken to determine the loci of variations that convey taxonomic 

identity, to determine if the few zOTU holes in the V4V5 dataset can be filled. As part of their iron 

metabolism, Zetaproteobacteria produce extracellular structures composed of Fe(III) waste 

product complexed with carboxyl-rich polysaccharides (Chan et al., 2011). Iron that has been 

complexed with organic components remains in the dissolved fraction of total iron in the water 
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column much more efficiently than iron complexed with inorganic colloids, and spectral and 

micro-X-ray fluorescence analysis of diffuse plume-associated iron-bearing particles revealed 

them to be rich in Fe(III), carbon, and oxygen (Lough et al., 2019). This profile is consistent with 

that of the biomineral stalks produced by Zetaproteobacteria (Chan et al., 2011). Iron complexation 

with exopolysaccharides has been shown to enhance bioavailability to marine phytoplankton, 

which have been estimated to contribute approximately half of planetary primary production (Field 

et al., 1998; Hassler et al., 2011, 2015). The ability to accurately catalog the Zetaproteobacterial 

diversity at diffuse vents is a necessary step in the evaluation of how microbial activity in these 

systems may be shaping primary productivity in the surrounding oceans. 

 When assessing experimental methodologies, the question at hand must always be the 

greatest consideration. Across the breadth of taxonomic rankings, the V4V5 primer set tested here 

revealed the greatest range of the most abundant taxa present in the study system, particularly due 

to the inclusion of a much broader assortment of domain Archaea. The V3V4 primer set presented 

a slightly different picture, with often significantly fewer representatives of a larger overall 

community. However, caveats exist for both primer sets. The underrepresentation of archaea is 

quite a large hindrance in the use of V3V4 to survey microbial communities as a whole. While 

examining performance of primers targeting archaea specifically, the V3V4 region has been shown 

to have a high incidence of non-specific amplification (Fischer et al., 2016); the greater loss of 

reads through processing observed here is consistent with those results. Conversely, the 

underrepresentation of the class Campylobacteria in the V4V5 dataset may be problematic for 

some research questions, particularly in ecosystems rich in sulfur (Dick, 2019). A recent study 

used the V3V4 primers in an examination of the potential effects of climate change on the 

composition and ecological function of salt marsh microbial mats; the analysis presented here may 
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suggest a reassessment of the completeness of their evaluations (Mazière et al., 2023). The impact 

of environmental factors on hydrothermal microbial community development in the sulfur-rich 

Guaymas Basin field was recently assessed using V4V5 primers (Ramírez et al., 2021); the current 

study suggests that the use of those primers might limit their findings.  

Choosing PCR primers for environmental surveys can be difficult. While employing 

multiple sequencing efforts using different primers to capture the diversity of different taxa may 

be practicable, the cost-effectiveness of using a single primer pair to capture as much diversity as 

possible is desirable. The V4V5 primers detected a greater number of archaeal taxa and a greater 

range of bacterial phyla. Given that the V4V5 primers were able to amplify some of the 

underrepresented taxa rather than missing them entirely, reevaluating the existing 515F-Y and 

926R primers for possible additional degeneracies seems the more plausible scenario for bridging 

the taxonomic gaps between the two primer sets. Particular attention should be given to 

determining the cause of the “blind spots” within the spectrum of zOTUs captured by V4V5. A 

novel protocol was recently developed for validating primer combinations against reference 

databases to select oligonucleotide mixtures representing only variants identified within the 

reference database or in the natural environment, preserving PCR efficiency as much as possible 

(McNichol et al., 2021). Additionally, using a combination of metagenomic and amplicon 

approaches, several loci in the V4V5 forward primer have already been identified where added 

degeneracies would resolve the majority of missing Patescibacteria, the one exception to the shared 

top five most abundant taxa between the two primer sets (McNichol et al., 2021). Work to improve 

the V4V5 primers evaluated here should continue along this trajectory. 
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Conclusions 

Based on the initial higher quality of the raw sequences and the composition of the 

taxonomic profiles produced by this study, the V4V5 region of the SSU rRNA gene is the more 

efficacious area for targeted amplicon surveys of iron-dominated microbial mats. However, the 

results of this study apply particularly to this study system. The high specificity of microbiota per 

environment may preclude direct between-environment comparisons of primer performance. It is 

only through repeated per-environment examinations of primer performance that sturdy 

foundations for future studies can be built. Furthermore, sequence analysis is only as good as the 

reference databases used, so continued expansion of high-quality curated reference sequence 

databases is crucial. As reference databases improve, PCR primer design will improve. As primer 

design improves, not only do the established amplicon protocols improve, but developing 

methodologies like hybrid amplicon-shotgun metagenomic surveys gain greater rigor. 
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Table 1. Sample metadata. 

Collection ID 
Sample 

Name 
Primer Location Latitude Longitude Depth (m) 

J2-674-Green 
Bact674Green V3V4 

Pohaku 18.90134 -155.2582 1179 
Uni674Green V4V5 

J2-674-Blue 
Bact674Blue V3V4 

Pohaku 18.90155 -155.2582 1182 
Uni674Blue V4V5 

J2-677-Black 
Bact677Black V3V4 Hiolo 

South 
18.90554 -155.257 1270 

Uni677Black V4V5 

J2-675-Black 
Bact675Black V3V4 Hiolo 

South 
18.9056 -155.257 1272 

Uni675Black V4V5 

J2-677-Green 
Bact677Green V3V4 Hiolo 

North 
18.90645 -155.257 1300 

Uni677Green V4V5 

J2-677-Blue 
Bact677Blue V3V4 Hiolo 

North 
18.90645 -155.2569 1300 

Uni677Blue V4V5 

J2-676-Black 
Bact676Black V3V4 

Lohiau 18.90886 -155.2577 1175 
Uni676Black V4V5 

J2-676-Green 
Bact676Green V3V4 

Lohiau 18.90887 -155.2577 1175 
Uni676Green V4V5 
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Figure 1. Alpha diversity per primer set. (A) Chao1 Richness, (B) Shannon Diversity, and (C) 

Simpson Evenness estimates for each microbial mat community. Different primer sets represented 

by different colors; different locations represented by different shapes. NB: the differences in y-

axis values are reflected for each diversity index. Significance was assessed using analysis of 

variance for normally distributed data (Shannon and Chao1) or Kruskal-Wallis for non-normally 

distributed data (Simpson).  
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Figure 2. Principal coordinate analysis of microbial mat communities by primer set, with ellipses 

indicative of 95% confidence interval.  

  



29 

 

 

Figure 3. (A) Diversity in domain Archaea captured by each primer set as described via ASVs per 

phylum and as described via phylum relative abundance for (B) primer set V3V4 and (C) primer 

set V4V5. In (B) and (C) legend, † denotes taxa present in V4V5 but absent in V3V4, ‡ denotes 

taxa present in V3V4 but absent in V4V5,  denotes taxa that differ in relative abundance by at 

least one order of magnitude between primer sets. NB: in (B), the non-visible 0.06% slice 

represents the phylum Euryarchaeota.  
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Figure 4. (A) Diversity in domain Bacteria captured by each primer set as described via ASVs per 

phylum for phyla representing greater than 1% relative abundance in either primer set and via 

phylum relative abundance for (B) primer set V3V4 and (C) primer set V4V5. In (B) and (C) 

legend,  denotes taxa that differ in relative abundance by at least one order of magnitude between 

primers. 
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Figure 5. (A) Diversity in phylum Proteobacteria captured by each primer set as described via 

ASVs per class and via class relative abundance for (B) primer set V3V4 and (C) primer set V4V5. 

In (B) and (C) legend,  denotes taxa that differ in relative abundance by at least one order of 

magnitude between primers. NB: Class Campylobacteria in Phylum Campylobacterota is included 

in analysis of phylum Proteobacteria here since it was formerly class Epsilonproteobacteria. 
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Figure 6. (A) Diversity in class Zetaproteobacteria captured by each primer set as described via 

reads per zOTU designation, NB: the break in the y-axis represents a change in scale with respect 

to reads per zOTU. Zetaproteobacteria diversity is also described per primer set via relative 

abundance of both high-abundance, (i.e., greater than 104 reads per taxon for B and C), and low-

abundance, (i.e., fewer than 104 reads per taxon for D and E). In (D) and (E) legend, † denotes taxa 

present in V4V5 but absent in V3V4, ‡ denotes taxa present in V3V4 but absent in V4V5, and  

denotes taxa that differed in relative abundance by at least one order of magnitude between primer 

sets. 
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Supplemental Table 1. Read tracking through the DADA2 pipeline for the V3V4 samples. 

 

  

V3V4 Sample input filtered denoised merged nonchim

Bact674Green

(Pohaku)
536524

312116

41.83% reads lost from previous step

41.83% reads lost total

305827

2.01% reads lost from previous step

43.00% reads lost total

287901

5.86% reads lost from previous step

46.34% reads lost total

224147

22.14% reads lost from previous step

58.22% reads lost total

Bact674Blue

(Pohaku)
704150

425615

39.56% reads lost from previous step

39.56% reads lost total

418378

1.70% reads lost from previous step

40.58% reads lost total

396312

5.27% reads lost from previous step

43.72% reads lost total

319630

19.35% reads lost from previous step

54.61% reads lost total

Bact677Black

(Hiolo South)
671908

352141

47.59% reads lost from previous step

47.59% reads lost total

332288

5.64% reads lost from previous step

50.55% reads lost total

289586

12.85% reads lost from previous step

56.90% reads lost total

226794

21.68% reads lost from previous step

66.25% reads lost total

Bact675Black

(Hiolo South)
764345

430823

43.64% reads lost from previous step

43.64% reads lost total

415302

3.60% reads lost from previous step

45.67% reads lost total

381774

8.07% reads lost from previous step

50.05% reads lost total

323532

15.26% reads lost from previous step

57.67% reads lost total

Bact677Green

(Hiolo North)
710932

343559

51.67% reads lost from previous step

51.67% reads lost total

326062

5.09% reads lost from previous step

54.14% reads lost total

290176

11.01% reads lost from previous step

59.18% reads lost total

239881

17.33% reads lost from previous step

66.26% reads lost total

Bact677Blue

(Hiolo North)
678461

346545

48.92% reads lost from previous step

48.92% reads lost total

327689

5.44% reads lost from previous step

51.70% reads lost total

295553

9.81% reads lost from previous step

56.44% reads lost total

255559

13.53% reads lost from previous step

62.33% reads lost total

Bact676Black

(Lohiau)
697317

381310

45.32% reads lost from previous step

45.32% reads lost total

358161

6.07% reads lost from previous step

48.64% reads lost total

315104

12.02% reads lost from previous step

54.81% reads lost total

232219

26.30% reads lost from previous step

66.70% reads lost total

Bact676Green

(Lohiau)
523552

237707

54.60% reads lost from previous step

54.60% reads lost total

217428

8.53% reads lost from previous step

58.47% reads lost total

183625

15.55% reads lost from previous step

64.93% reads lost total

130311

29.03% reads lost from previous step

75.11% reads lost total
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Supplemental Table 2. Read tracking through the DADA2 pipeline for the V4V5 samples. 

 

 

 

 

V4V5 Sample input filtered denoised merged nonchim

Uni674Green

(Pohaku)
631884

354032

43.97% reads lost from previous step

43.97% reads lost total

351996

0.58% reads lost from previous step

44.29% reads lost total

345154

1.94% reads lost from previous step

45.38% reads lost total

316986

8.16% reads lost from previous step

49.83% reads lost total

Uni674Blue

(Pohaku)
676630

390580

42.28% reads lost from previous step

42.28% reads lost total

387773

0.72% reads lost from previous step

42.69% reads lost total

378857

2.30% reads lost from previous step

44.01% reads lost total

348909

7.91% reads lost from previous step

48.43% reads lost total

Uni677Black

(Hiolo South)
731706

400832

45.22% reads lost from previous step

45.22% reads lost total

390065

2.69% reads lost from previous step

46.69% reads lost total

360354

7.62% reads lost from previous step

50.75% reads lost total

316860

12.07% reads lost from previous step

56.70% reads lost total

Uni675Black

(Hiolo South)
713753

387859

45.66% reads lost from previous step

45.66% reads lost total

384187

0.95% reads lost from previous step

46.17% reads lost total

374436

2.54% reads lost from previous step

47.54% reads lost total

365477

2.39% reads lost from previous step

48.80% reads lost total

Uni677Green

(Hiolo North)
739724

395620

46.52% reads lost from previous step

46.52% reads lost total

388541

1.80% reads lost from previous step

47.47% reads lost total

369874

4.80% reads lost from previous step

50.0% reads lost total

342737

7.34% reads lost from previous step

53.67% reads lost total

Uni677Blue

(Hiolo North)
765667

390372

49.02% reads lost from previous step

49.02% reads lost total

379535

2.78% reads lost from previous step

50.43% reads lost total

354440

6.61% reads lost from previous step

53.71% reads lost total

327206

7.68% reads lost from previous step

57.27% reads lost total

Uni676Black

(Lohiau)
684834

359354

47.53% reads lost from previous step

47.53% reads lost total

354785

1.27% reads lost from previous step

48.19% reads lost total

339673

4.26% reads lost from previous step

50.4% reads lost total

320145

4.99% reads lost from previous step

53.25% reads lost total

Uni676Green

(Lohiau)
711945

400198

43.79% reads lost from previous step

43.79% reads lost total

392078

2.03% reads lost from previous step

44.93% reads lost total

372252

5.06% reads lost from previous step

47.71% reads lost total

342638

7.96% reads lost from previous step

51.87% reads lost total
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Supplemental Figure 1. Rarefaction curves for each microbial mat community, colored by sample 

location, for each primer set. Vertical lines denote the minimum read depth. 
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