April 2018

Some like it hot: using citizen science to identify marine bird hotspots in Puget Sound

Timothy Jones
Univ. of Washington, United States, timothy.t.jones@gmail.com

Scott Pearson
Washington Dept. of Fish and Wildlife, United States, Scott.Pearson@dfw.wa.gov

Julia Parrish
Univ. of Washington, United States, jparrish@uw.edu

Toby Ross
Seattle Audubon Society, United States, tobyr@seattleaudubon.org

Peter Hodum
Univ. of Puget Sound, United States, peter@oikonos.org

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Jones, Timothy; Pearson, Scott; Parrish, Julia; Ross, Toby; Hodum, Peter; Ward, Eric; Lang, Jennifer; and Sedgley, Adam, "Some like it hot: using citizen science to identify marine bird hotspots in Puget Sound" (2018). Salish Sea Ecosystem Conference. 24.
https://cedar.wwu.edu/ssec/2018ssec/allsessions/24

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Timothy Jones, Scott Pearson, Julia Parrish, Toby Ross, Peter Hodum, Eric Ward, Jennifer Lang, and Adam Sedgley

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/24
Some like it hot: 🌶️
Using citizen science to identify marine bird hotspots in Puget Sound

Timothy Jones¹, Julia Parrish¹, Scott Pearson², Peter Hodum⁴, Eric Ward⁵, Adam Sedgley⁶, Jennifer Lang³, Toby Ross³

¹ Univ. of Washington, ² Washington Dept. of Fish & Wildlife, ³ Seattle Audubon Society, ⁴ Univ. of Puget Sound, ⁵ Northwest Fisheries Science Ctr., ⁶ Conservation International

Photo © John Marshall
Puget Sound Seabird Survey (PSSS)

Documenting nearshore habitat use by wintering seabirds

- Survey season: Oct - Apr
- 200+ volunteers
- 121 active sites
- ~4,800 acres nearshore habitat
PSSS: How it’s done

• Teams of 2 - 5 surveyors
• Survey duration = 15 - 30 min
• All surveys conducted within 2 hours of high tide
• Identify and record all seabirds on the water within 300 m of shore
• Record survey conditions
Nearshore marine bird hotspot analyses

• Dr. Timothy Jones, University of Washington

• Hotspot = particular sites that harbor a high number or occurrence of seabirds

• Developed a suite of techniques related to hotspot identification
 • Building on Ward et al. 2015
Aims of the study

1. Determine which species display hotspot behavior
2. Identify hotspot locations
 a. Classify locations as stable, seasonal or intermittent hotspots, as well as coldspots
3. Group species by hotspot location similarities
Study area and site selection
Species selection

Cormorants
- Double-crested Cormorant
- Pelagic Cormorant

Grebes
- Horned Grebe
- Red-necked Grebe
- Western Grebe

Loons
- Common Loon

Scoters
- Surf Scoter
- White-winged Scoter

Ducks
- Bufflehead
- Common Goldeneye
- Harlequin Duck

Gulls
- Glaucous-winged Gull
- Mew Gull
- Pigeon Guillemot
- Rhinoceros Auklet
Hotspot Typologies

Uniform

<table>
<thead>
<tr>
<th>Hot</th>
<th>Cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.15</td>
<td>< 0.015</td>
</tr>
</tbody>
</table>
Hotspot Typologies

Uniform

Abundance
Hotspot Typologies

Uniform

Abundance

General
Hotspot Typologies

Seasonal

Western Grebe

<table>
<thead>
<tr>
<th>Month</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Hot** (≥ 0.28)
- **Neither**
- **Cold** (< 0.028)
Classifying hotspots

- **Stable hotspot**
- **Intermittent hotspot**
- **Seasonal hotspot**
- **Coldspot**

The chart shows the site-specific abundance over time from October to April, with different thresholds for hotspots and coldspots.
Grouping species based on hotspot locations
Looking ahead:
Project expansion and analysis opportunities
Thank you!

Jennifer Lang
Conservation Science Coordinator
Seattle Audubon Society
jenniferl@seattleaudubon.org
References

Distance sampling

• Bearing and distance are recorded for each bird on the water
 • Distance: # mm the bird is from visual horizon

• Distance of each bird is triangulated using:
 • Distance between observer & visual horizon in line with the bird’s bearing
 • Eye height & arm length of data collector
Distance sampling

Visual Horizon is the opposite shore for those sites where it exists (some may be obscured by stationary objects or weather)

Classification decision tree

\(P \) = list of site-specific monthly values of fitted abundance/occupancy
\(\tau_h \) = hotspot threshold, \(n_h \) = number of months where value \(\geq \tau_h \)
\(\tau_c \) = coldspot threshold, \(n_c \) = number of months where value \(\leq \tau_c \)
PSSS Data Potential

- Evaluate QAQC, exploring bias
- Improve aerial survey models for nearshore habitat
- Evaluate areas of different seabird aggregations
- Explore new collaborations

Winter 1993-99