April 2018

Application of Salish Sea model: water quality improvement through anthropogenic nutrient reductions

Anise Ahmed

Washington State Dept. of Ecology, United States, aahm461@ecy.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2018ssec/allsessions/29

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Application of Salish Sea Model

Linking Water Quality Improvement to Anthropogenic Nutrient reductions

Anise Ahmed
Washington State Department of Ecology
Dissolved Oxygen (DO) standards

(A) Numeric criteria

(B) If natural conditions are below the standard, anthropogenic sources cannot reduce natural DO by more than 0.2 mg/L
Application of Salish Sea Model:
Dissolved Oxygen (DO) improvement through Anthropogenic Nutrient Reduction

- What is the current state of Dissolved Oxygen (DO) in Salish Sea?
 - Are DO standards currently being met?
 - Are DO standards met under reference conditions?
 - What is the net anthropogenic DO impact?
 - Is there inter-annual variability in anthropogenic DO impact?
- What would happen to DO if we did nothing?
- How much DO can be improved from anthropogenic nutrient reductions?
Anthropogenic depletion of dissolved oxygen, 2006
Anthropogenic depletion of dissolved oxygen, 2014.
Consider interannual variability in DO depletions

- Lower freshwater flows
 - Increase residence times (i.e. how long it takes to flush water out of a region)
 - Buildup of pollutant concentrations
 - Increased productivity and depletion of nutrients
 - Promotes oxidation of ammonia to nitrate
 - Promotes decomposition of organic carbon

Residence Time index for Central Basin (Courtesy, Skip Albertson, 2015 PSEM report)
Application of Salish Sea Model:

DO improvement through Anthropogenic Nutrient Reduction Strategies (multiple year analysis)

• What is the maximum improvement in DO with BNR at WWTPs?
• What is the maximum improvement in DO from nutrient reductions in watersheds?
• What would DO be under status quo?

Bounding Scenarios

• Impact of BNR at selected WWTPs?
• Impact of different nutrient reduction levels in watersheds?
• Combination of BNR and watershed reductions?

Strategic Scenarios through collaborative process
Application of Salish Sea Model:

Bounding scenario: WWTP at BNR?

BNR levels for ammonia and nitrate set by 2011 Puget Sound WWTP report*

- Use only dry weather treatment (May – Oct)
- DIN (ammonia + nitrate) = 8 mg/L (NH₃ = 0.25 mg/L, NO₃ = 7.75 mg/L)

LOTT has already achieved levels of DIN = 3 mg/L

Application of Salish Sea Model:

Bounding scenario: WWTP at BNR?

\[\text{NH}_3 \rightarrow \text{NO}_3 \rightarrow \text{N}_2 \]

Nitrification

Denitrification

A WWTP in Salish Sea
Application of Salish Sea Model:

- Strategic Scenarios through collaborative process

- Multiple scenarios of point and nonpoint source reductions will be evaluated
- Final solution set includes regulatory requirements and considers costs, feasibility, priority, and sequencing
Questions:

- Bounding Scenarios Draft Report: end of 2018
- Scenarios for Nutrient Management Strategy >= 2019

Anise Ahmed (aahm461@ecy.wa.gov)