Monitoring and adaptation management of revegetation in the former Elwha Reservoirs

Joshua Chenoweth
Olympic National Park, United States, joshua_chenoweth@nps.gov

Mike McHenry
Lower Elwha Klallam Tribe, United States, mike.mchenry@elwha.nsn.us

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Elwha River Revegetation Project

Monitoring and adaptive management of revegetation in the former Elwha Reservoirs

Joshua Chenoweth

April 4, 2018
Surface 1: Fine sediments
- Up to 14 m deep
- 0.3 - 2 meters

Surface 2: Coarse, delta sediments
- 2 - 10 m
- Up to 14 m deep

Floodplain
Terraces
Valley Wall
Forest
Surface 1: Fine sediments
- Up to 14 m deep
- 2-10 m

Surface 2: Coarse, delta sediments
- 0.3 - 2 meters

High density and diversity of seed rain
- 150 feet

Density and diversity of seed declines with distance
- 1,300 ft (0.25 miles)

Floodplain
- Valley Wall
- Terraces

Forest
Revegetation Project Overview

- Project goals:
 - Minimize invasive species populations
 - Restore ecosystem processes
 - Accelerate forest development
Revegetation Project Overview

- Adaptively manage the project.
 - Planting phased over 7 years
 - Allow natural regeneration wherever possible!
 - Plant lightly during dam removal
 - Permanent plots to monitor revegetation
Mean bare ground: 75%

Mean bare ground: 83%

Fine Sediment Plot (unplanted): 2012

Coarse Sediment Plot (planted): 2012
Mean bare ground: 29%

Fine Sediment Plot (unplanted): 2013

Mean bare ground: 90%

Coarse Sediment Plot (planted): 2013
Mean bare ground: 6%

3.67 stems per meter square
36,700 per hectare
(14,854 per acre)

Mean bare ground: 83%

0.32 stems per meter square
3,200 per hectare
(1,294 per acre)

Fine Sediment Plot (unplanted): 2014

Coarse Sediment Plot (planted): 2014
Fine Sediment Plots

Mean bare ground: 6%

Unplanted Plot

2014

Planted Plot

Coarse Sediment Plots

Unseeded mean bare ground: 88%

Seeded mean bare ground: 80%

Seeded Plot
Unplanted Plot

Mean bare ground: 1.5%

Unseeded mean bare ground: 81%

Seeded mean bare ground: 58%

Fine Sediment Plots

Coarse Sediment Plots

2015

Planted Plot

Seeded Plot
Fine Sediment Plots

- Mean bare ground: 0.6%

Coarse Sediment Plots

- Unseeded mean bare ground: 69%
- Seeded mean bare ground: 40%

2016

- Unplanted Plot
- Planted Plot
- Seeded Plot
Fine Sediment Plots
Mean bare ground: 0.6%

Coarse Sediment Plots
Unseeded mean bare ground: 69%
Seeded mean bare ground: 40%

Unplanted Plot

2017

Planted Plot

Seeded Plot
The primary message after 6 years...

- **Sediment texture effects:**
 - Rate of vegetation development
 - Species composition
 - Woody species richness and abundance
The impacts of planting and seeding...

- **Seeding affected:**
 - Bare ground reduction in the coarse sediments
 - Species composition

- **Planting affected:**
 - Woody species composition and richness in both textures
 - Stem densities in the coarse sediment
Questions?