April 2018

Response of Salish Sea circulation and water quality to climate change and sea level rise

Wenwei Xu
Pacific Northwest National Lab, United States, wenwei.xu@pnnl.gov

Tarang Khangaonkar
Pacific Northwest National Lab, United States, tarang.khangaonkar@pnnl.gov

Karthik Balaguru
Pacific Northwest National Lab, United States, Karthik.Balaguru@pnnl.gov

Ben Cope
U.S. Environmental Protection Agency, United States, cope.ben@epa.gov

Jeffrey Arnold
U.S. Army Corps of Engineers, United States, jeffrey.r.arnold@usace.army.mil

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/ssec/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/naturalresourcesconservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/terrestrialaquaticecology)

Xu, Wenwei; Khangaonkar, Tarang; Balaguru, Karthik; Cope, Ben; and Arnold, Jeffrey, "Response of Salish Sea circulation and water quality to climate change and sea level rise" (2018). Salish Sea Ecosystem Conference. 38.
https://cedar.wwu.edu/ssec/2018ssec/allsessions/38

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Response of Salish Sea Circulation and Water Quality to Climate Change and Sea Level Rise Perturbation

WENWEI XU, TARANG KHANGAONKAR, KARTHIK BALAGURU, BEN COPE, JEFF ARNOLD

*Pacific Northwest National Laboratory in collaboration with U.S. EPA & U.S. ACE

SSEC 2018
Study Area & Motivation

- How will nearshore estuarine environment be affected by climate change
 - Global predictions vs estuarine resolution

- **Objective**: Proof of concept level feasibility assessment for Salish Sea
 - Nearshore estuarine response simulation using downscaled global climate change predictions
 - Hydrology
 - Meteorology
 - Ocean boundary
 - Sea Level Rise

Example Global Climate Model output, 1.25°x0.9° (credit: NCAR)
- A fully-coupled, community, global climate model (NCAR)
 - Consists of five geophysical models: atmosphere, sea-ice, land, ocean, and land-ice, plus a coupler

Future Climate Simulations (based on future emissions scenarios)
- IPCC 5th Assessment Report (2014)
 - Representative Concentration Pathways (RCP)
 - RCP 8.5: High emissions scenario
- CESM Climate Scenarios
 - Future: RCP 8.5 2091-2100 ≈ Y2095
Sea Level Rise

- **USACE - Sea-Level Change Curve Calculator (2015.46)**

 [Huber and White (2015)]

- **Year 2095 SLR Prediction**
 - 1.5 m (Neah Bay)

http://www.corpsclimate.us/ccaceslcurves.cfm
Model Inputs – Historical Y2000 and Future RCP8.5 (Y2095) conditions

Ocean Boundary Condition
- T 2.4 °C ↑
- S 0.16 ↓
- Nutrient load ↑
 - 4% NH4 ↑
 - 9% NO3 ↑
 - 7% DON ↑
- 28% (1.7mg/l) DO ↓

Atmosphere (RESM - WRF – RCP8.5)
- Air Temperature ↑
 - T ↑ 3.5 °C
- Wind
- Radiation

Precipitation

River Loads – Based on Population Growth
- 44% increase in Nitrate

Salish Sea Model

WWTP nutrient loads ↑
(x 2 times NO23 for RCP 8.5)

Population Projection, Land Use Change

* All labeled numbers are annual averaged values.

May 22, 2018
Effect of SLR (1.5 m) and Future Hydrology on Estuarine Exchange flow

- $\Delta H \approx +1.3\%$
- $\Delta Q \approx -4.5\%$
- $\Delta S_{\text{obc}} = -0.16$ psu (ave)
 $= -0.5$ psu (surf)
Annual mean sea surface T & S Difference

RCP 8.5 (2095) - Historical (2000)

RCP 8.5 (2095) - Historical (2000)
Salish Sea-wide impact: Algae species change

Salish Sea-wide Chlorophyll a concentration time series.

- Algae species change - Historical (2000) vs and RCP8.5 Future (2095)
Salish Sea-wide Impact: pH

Historical (2000) - RCP8.5 Future (2095)
- Salish Sea-wide future pH reduction = \textbf{0.13} units

Salish Sea-wide mean pH
Salish Sea-wide impact: DO

Historical (2000) - RCP8.5

Future (2095)

- Boundary DO reduction = 1.7 mg/L
- Salish Sea-wide DO reduction = 0.7 mg/L

Average DO depletion ≈1.5 mg/l in late summer
Salish Sea Hypoxia Zones (Bottom DO < 2 mg/l)

Hypoxic Zone: increase from 0.6% (Historical) to 16.9% (RCP8.5) of Salish Sea Area
Intertidal response in Snohomish Estuary

Number of days with mean temperature above 13 °C
Intertidal response in Snohomish Estuary

Number of days with maximum salinity above 5 psu

- Historical
- RCP 8.5
Summary

- Strong vertical circulation mitigates climate change impacts in *Salish Sea*
- Overall circulation is relatively unaffected
 - Effect of SLR counteracted by reduction in salinity gradient
- Overall warming of *Salish Sea* expected
 - $\Delta T = 1.8 \, ^\circ\text{C}$, dominated by global ocean warming
- Higher temperatures will cause algal species shift
 - dinoflagellates increase of 108% ↑; diatom 16% ↓.
- DO depletion in the future (RCP8.5 - Y2095):
 - Mean DO is expected to decrease by 0.7 mg/l
 - Maximum area of hypoxia (DO<2mg/l) can reach 17% of Salish Sea
- pH level decrease (acidification) in the future
 - Mean pH reduction of 0.13 units
- Intertidal habitat shifts
 - Mean surface temperature increases up to 3 °C
 - Salinity intrusion extend to RM 11 (versus RM 4 in Historical – Y2000)