ESA-listed Puget Sound rockfish: How did we get here and how do we assess progress towards recovery planning goals?

Kelly Andrews
Northwest Fisheries Science Ctr., United States, kelly.andrews@noaa.gov

Krista M. Nichols
Northwest Fisheries Science Ctr., United States, krista.nichols@noaa.gov

Jason Cope
Northwest Fisheries Science Ctr., United States, jason.cope@noaa.gov

Nick Tolimieri
Northwest Fisheries Science Ctr., United States, Nick.Tolimieri@noaa.gov

Dan Tonnes
NOAA's West Coast Regional Office, United States, dan.tonnes@noaa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Andrews, Kelly; Nichols, Krista M.; Cope, Jason; Tolimieri, Nick; Tonnes, Dan; Lowry, Dayv; and Pacunski, Robert, 'ESA-listed Puget Sound rockfish: How did we get here and how do we assess progress towards recovery planning goals?' (2018). Salish Sea Ecosystem Conference. 60.

https://cedar.wwu.edu/ssec/2018ssec/allsessions/60

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Kelly Andrews, Krista M. Nichols, Jason Cope, Nick Tolimieri, Dan Tonnes, Dayv Lowry, and Robert Pacunski

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/60
ESA-LISTED ROCKFISH IN PUGET SOUND: HOW WE GOT HERE AND HOW DO WE ASSESS RECOVERY?

Kelly Andrews, Krista Nichols, Jason Cope, Anna Elz, Nick Tolimieri, Chris Harvey, Dan Tonnes, Dayv Lowry, Bob Pacunski, & Lynne Yamanaka
3 ROCKFISH SPECIES IN PUGET SOUND LISTED UNDER THE ESA

Yelloweye rockfish

Canary rockfish

Threatened

Bocaccio

Endangered
2 CRITERIA FOR ESA LISTINGS

1. Are these populations “distinct”?
2 CRITERIA FOR ESA LISTINGS

1. Are these populations “distinct”?
 - Must be markedly different from other populations of the same species
 - Physical
 - Physiological
 - Ecological
 - Behavioral
 - Morphological
 - Genetic
Yelloweye in “inside” waters of Canada show slight evidence of being distinct from yelloweye in “outside” waters (Yamanaka et al. 2006, Siegle et al. 2013).

Copper, Brown and Quillback rockfish in Puget Sound are genetically distinct from coastal populations (Seeb 1998, Buonaccorsi et al. 2002, 2005).
2 CRITERIA FOR ESA LISTINGS

2. Level of extinction risk
 • Endangered or Threatened or Not at Risk?
 • Relative or absolute abundance
 • Trends in abundance
 • Environmental and Anthropogenic pressures
 • Threats to genetic integrity
 • Size frequency distributions
ROCKFISH POPULATIONS IN PUGET SOUND HAVE DECLINED

~70%

~3% decline/year

Drake et. al 2010

2015 5-year ESA review
PRIORITIES FOR RECOVERY

Recovery Plan (October 2017):

- Fisheries Management
- Cooperative research
- Derelict fishing gear removal
- Education and outreach
- Habitat mapping
- Historic rockfish abundance
COOPERATIVE RESEARCH
ARE YELLOWEYE ROCKFISH GENETICALLY DISTINCT?

7405 RAD loci

Andrews et al In Press
ARE YELLOWEYE ROCKFISH GENETICALLY DISTINCT?

Three distinct clusters of genetic variation:

1) CA, OR & WA coast, Strait of Juan de Fuca and Canadian outside waters.
2) San Juan Islands, Central Puget Sound and Canadian inside waters.
3) Hood Canal isolated.

Six fish (of 151) defy the inside/outside pattern.

7405 RAD loci

3 other analyses support this same conclusion

Andrews et al In Press
ARE YELLOWEYE ROCKFISH GENETICALLY DISTINCT?

Three distinct clusters of genetic variation:

1) CA, OR & WA coast, Strait of Juan de Fuca and Canadian outside waters.
2) San Juan Islands, Central Puget Sound and Canadian inside waters.
3) Hood Canal isolated.

Six fish (of 151) defy the inside/outside pattern.

3 other analyses support this same conclusion.

Andrews et al In Press
ARE YELLOWEYE ROCKFISH GENETICALLY DISTINCT?

Three distinct clusters of genetic variation:

1) CA, OR & WA coast, Strait of Juan de Fuca and Canadian outside waters.
2) San Juan Islands, Central Puget Sound and Canadian inside waters.
3) Hood Canal isolated.

Six fish (of 151) defy the inside/outside pattern.

7405 RAD loci

3 other analyses support this same conclusion.

Andrews et al In Press
YELOWEYE ROCKFISH DPS IS SUPPORTED, BUT...
ARE CANARY ROCKFISH GENETICALLY DISTINCT?

Andrews et al. In Press
ARE CANARY ROCKFISH GENETICALLY DISTINCT?

No genetic structure observed.

3 other analyses support this same conclusion

Andrews et al. In Press
CANARY ROCKFISH WERE DELISTED ON MARCH 24, 2017

First marine fish species delisted
ARE BOCACCIO GENETICALLY DISTINCT?

• DUNNO!

• Only 3 samples collected in >100 days of fishing within the DPS

• Opportunistic sampling
 • Fin clip kits to charter captains
 • They have caught one so far!
ASSESS RECOVERY:
STEP ONE – COUNT RARE FISH

- Monitoring population abundance with ROV survey by WDFW in U.S. and Canadian portions of DPS

Provides estimates of abundance and length frequency composition every 5 years.
STEP TWO – QUANTIFY LENGTH-BASED SPAWNING POTENTIAL RATIO RATIO

Fit to data

Lengths from ROV survey

Requirements:
1) Length composition,
2) Life history parameters (M/k ratio & Maturity)
3) Selectivity
(Hordyk et al. 2015, 2016)

Maturity/Selectivity

Life-history parameters

• Provide an indicator of relative stock status
• SPR compared to target reference points
• SPR measured over time as delisting indicator
STEP THREE – COMPARE LB-SPR TO CRITERIA FOR DELISTING

<table>
<thead>
<tr>
<th>Yelloweye rockfish</th>
<th>LB-SPR (or some other future decided upon metric)</th>
<th>Minimum Time at Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario A</td>
<td>15% (and increasing after first sampling event finds 15%)</td>
<td>25 years, (no less than five systematic sampling events with 80% probability)</td>
</tr>
<tr>
<td>Scenario B</td>
<td>20 to 24%</td>
<td>15 years, (no less than four systematic sampling events with 80% probability)</td>
</tr>
<tr>
<td>Scenario C</td>
<td>>25%</td>
<td>10 years, (no less than three systematic sampling events with 80% probability)</td>
</tr>
</tbody>
</table>
THREATS-BASED CRITERIA: FISHERIES BYCATCH

Can we reduce rockfish bycatch in the PS lingcod fishery?
THREATS-BASED CRITERIA: ENVIRONMENTAL PRESSURES

Monitoring horizontal and vertical movement of yelloweye in Hood Canal

Do movements correlate with changes in environmental covariates (e.g. dissolved oxygen)?
QUESTIONS?
FOLLOW-UP RESEARCH

• Why are yelloweye rockfish genetically different but canary rockfish are not?
 • Larval dispersal?
 • Adult movement?
FOLLOW-UP RESEARCH

- Why are yelloweye rockfish genetically different but canary rockfish are not?
 - Larval dispersal?
 - Adult movement?

- What alleles are different between Hood Canal yelloweye from the rest of DPS?
 - Environmental influence on alleles (Seascape genetics)?
Yelloweye rockfish sample locations

San Juan Islands
Neah Bay
Sekiu
Central Sound
WA coast
SE Alaska
Vancouver Island
Gordon Channel
Upper Johnstone Strait
Desolation Sound
Mittlenatch Island
Neah Bay
Sekiu
Saltspring Island
San Juan Islands
Central Sound
Hood Canal
WA coast
LENGTH FREQUENCIES

a) Yelloweye

Frequency

Fork length (cm)

[Graph showing frequency distribution of fork length for Yelloweye fish]
LENGTH FREQUENCIES
BAROTRAUMA
“WHERE CAN I GET ONE OF THOSE!?"
Canary rockfish STRUCTURE

Q for K = 2

Q for K = 3

Q for K = 4

Q for K = 5

WA coast Neah Bay Sekiu Hood Canal Central Puget Sound San Juan Islands
Yelloweye rockfish STRUCTURE

Q for K = 2

Q for K = 3

Q for K = 4

Q for K = 5

A, VI, GC, WA coast, Neha, Sekiu, Hood Canal, CPS, San Juan Islands, SSI, MI, DS, UJS, OR coast, CA
canary histogram of pairwise genomic relationship values
yelloweye histogram of pairwise genomic relationship values