Foraging opportunity: a method of monitoring shorebird migration and overwintering sites in a changing environment

James Rourke
Hemmera, Canada, jrouke@hemmera.com

Wendell Challenger
LGL, Canada, wchallenger@lgl.com

Ron Ydenberg
Simon Fraser Univ., Canada, ydenberg@sfu.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2018ssec/allsessions/82

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Foraging Opportunity
A Method of Monitoring Shorebird Migration and Overwintering Sites in a Changing Environment

By:
James Rourke, Hemmera
Wendell Challenger, LGL
Ron Ydenberg, Simon Fraser University

Date: April 4, 2018
Western Sandpiper (WESA) & Biofilm

- WESA = Small Calidrid shorebird
 - Winters: California-Peru
 - Breeds: Alaska

- Migration
 - Northward: Late April-May
 - ~5-6 Major Stopover sites
 - Fraser River Estuary – Roberts Bank

- Predation Danger
 - Peregrine Falcons
Dominant Theme in Migration

- Tight time and energy budgets drive migratory strategy

- Migratory Agenda:
 - Obtaining energy and nutrient reserves to fuel flights between successive stopover sites

- Models predict similar masses for migrant population at a given stage of their journey
 (Piersma & Jukema 1993)

- Landscape of Fear (LOF)
 - Perception of risk from predation alters animal behavior
 (Bleicher 2017)
Shorebird’s Response to LOF

- Food highest closest to shore
- Areas close to shore are closer to cover = riskier
- Shorebirds select for safer areas with less food
Foraging Opportunity

- Foraging opportunity considers both safety and abundance
- Quantifies prey relative to predation risk
- Safety = distance from cover (e.g., shoreline)

- A – High prey abundance, low safety
- B – Lower prey abundance, higher safety
Collected and analysed data over the entire FRE for:
 • Meiofauna, macrofauna, biofilm, shorebird usage
Presentation focus:
 • Roberts Bank
 • Biofilm and shorebirds

Fraser River Estuary (FRE)
Biofilm (Prey) Abundance

Biofilm

- Comprises 35-65% of WESA diet
- Collected/analyzed sediment samples
- Chlorophyll a abundance (mg/m2)

Biofilm Modeling

- Elevation
- Geomorphology model output:
 - Water column salinity
 - Wave height
- Distance to cover (e.g., marsh, causeway)
- Northward migration (April-May, 2012)
Western Sandpiper Usage

Dropping Densities
• WESA “poop” frequently
• Poop transects
• ~1,500, 15-m² plots sampled

Modeling Assumptions
• Chlorophyll a (mg/m²) = biofilm abundance
• Dropping density = foraging intensity
• Distance to cover is a good metric of safety
Biofilm and Sandpiper Distributions

Biofilm Abundance

Northward Migration

Chlorophyll a (mg/m²)

Shorebird Usage
(Dropping Density)
Visualizing Foraging Opportunity

- Study area was overlaid with a 1 ha grid
- Biofilm and shorebird usage were calculated for each cell
Visualizing Foraging Opportunity

- Opportunity can be represented in 3D by summing Food x Safety

- 2 peaks in opportunity surface
Visualizing Foraging Opportunity

3D Foraging Opportunity

2D Foraging Opportunity

- Lines represent contour lines similar to a topographic map.
Study Area

Canoe Passage

Intertidal
Foraging Opportunity and Usage

Safety Index (m)

Chlorophyll a Abundance (mg/m²)

- Peak abundance ~ 75 mg/m²
- 1,200 - 1,500 m from shore

- Peak abundance ~ 100 mg/m²
- < 500 m from shore
- Possessed $\sim 35\% >$ available prey biomass
Foraging Opportunity and Usage

Shorebird Usage (Green)
Usage largely followed opportunity

Canoe Passage
- Usage aligned with foraging opportunity
Foraging Opportunity and Usage

Usage largely followed opportunity

Canoe Passage
- Usage aligned with foraging opportunity

Intertidal Zone
- Peak usage shifted to > 500 m from shore

> Usage in Canoe Passage

Shorebirds select for safer areas with < food
Shorebird Monitoring

Understanding foraging opportunity of sites can help explain changes in shorebird distribution

- Scale
 - Local scale
 - Flyway

- Causes
 - Anthropogenic
 - Natural
 (e.g., climate change)
Climate Change

- Coastal Squeeze
 - Loss of intertidal habitat due to a fixed high water mark (dyke) as low the watermark migrates landward due to sea level rise (SLR).
 - SLR = +0.8 to 1.2 m by 2100
- SLR likely to affect:
 - Foraging opportunity of sites
 - How shorebirds use sites
Thank you

Contact Us

James Rourke, jrourke@hemmera.com

Hemmera, an Ausenco Company
18th Floor, 4730 Kingsway
Burnaby, BC
T: 250.889.2071