April 2018

Differentiation of pseudo-nitzschia species (Baccillariophyceae) in seawater samples from the Salish Sea using the compound microscope

Nicola Haigh
Microthalassia Consultants, Inc., Canada, nicky@microthalassia.ca

Devan Johnson
Microthalassia Consultants Inc., Canada, devan.johnson@microthalassia.ca

Tamara Brown
Microthalassia Consultants Inc., Canada, tamara.brown@microthalassia.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Haigh, Nicola; Johnson, Devan; and Brown, Tamara, "Differentiation of pseudo-nitzschia species (Baccillariophyceae) in seawater samples from the Salish Sea using the compound microscope" (2018). *Salish Sea Ecosystem Conference*. 101.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
DIFFERENTIATION OF PSEUDO-NITZSCHIA SPECIES IN SEAWATER SAMPLES FROM THE SALISH SEA USING THE COMPOUND MICROSCOPE

NICOLA HAIGH, DEVAN JOHNSON, AND TAMARA BROWN

SALISH SEA ECOSYSTEM CONFERENCE, Seattle, WA, April 4 – 6, 2018
OVERVIEW

- WHY
- HOW
- KEY
Routine phytoplankton sample analysis for monitoring programs is still done with the compound microscope.

There is a perception that differentiating between different *Pseudo-nitzschia* species using the light microscope is “impossible.”

Grouping *Pseudo-nitzschia* into a few easily-differentiated groups increases useful data from routine monitoring.

However: most *Pseudo-nitzschia* keys start with presence/absence of central interspace, which requires acid-cleaned material.
HOW: KEY FEATURES

- Cell size: cell length and width
- Cell shape
- Cell overlap in chains
- Visibility of interstriae ("stripes")
- Cell end shape
HOW: KEY FEATURES

- Cell size: cell length and width
HOW: KEY FEATURES

- Cell size: cell length and width
- Cell shape: valve view
HOW: KEY FEATURES

- Cell size: cell length and width
- Cell shape: valve view
- Cell overlap in chains
HOW: KEY FEATURES

- Cell size: cell length and width
- Cell shape: valve view
- Cell overlap in chains
- Visibility of interstriae (“stripes”)
HOW: KEY FEATURES

- Cell size: cell length and width
- Cell shape: valve view
- Cell overlap in chains
- Visibility of interstriae (“stripes”)
- Cell end shape
HOW: KEY SPECIES

- *Pseudo-nitzschia pungens* group
- *P. delicatissima* group
- *P. australis*
- *P. seriata*
- *P. heimii*
- *P. fraudulenta*
Salish Sea Pseudo-Nitzschia Species Flowchart

Cell length <80um, width < 3um, chain overlap 1/5 - 1/10

- NO
- YES
 - Cell asymmetrical in valve view
 - NO
 - P. pungens group
 - YES
 - P. australis / seriata group

- YES
 - P. delicatissima group
SIMPLE 3 GROUPS

SALISH SEA PSEUDO-NITZSCHIA SPECIES FLOWCHART

- **Cell length < 80um, width < 3um, chain overlap 1/5 - 1/10**
 - **NO**
 - **YES**: *P. delicatissima group*
- **Cell asymmetrical in valve view**
 - **NO**: *P. pungens group*
 - **YES**: *P. australis / seriata group*
KEY – SIMPLE 3 GROUPS

SALISH SEA PSEUDO-NITZSCHIA SPECIES FLOWCHART

Cell length < 80um, width < 3um, chain overlap 1/5 - 1/10

- Cell asymmetrical in valve view
 - NO
 - YES: P. delicatissima group

- P. pungens group
- P. australis / seriata group
KEY – A FEW MORE SPECIES

SALISH SEA PSEUDO-NITZSCHIA SPECIES FLOWCHART

- Cell length <80um, width < 3um, chain overlap 1/5 - 1/10
 - NO
 - YES
 - Cell asymmetrical in valve view
 - NO
 - YES
 - Interstriae visible @100X, chain overlap 1/3 - 1/4
 - YES
 - NO
 - Cell ends blunt and rostrate
 - NO
 - YES
 - P. australis
 - P. seriata
 - P. heimii
 - P. delicatissima group
 - P. fraudulenta
 - Interstriae visible @100X
 - Chain overlap 1/3 - 1/4, cell ends sharp
 - NO
 - YES
 - P. pungens group
 - Pseudo-nitzschia sp.
ACKNOWLEDGEMENTS

- Funding for Devan Johnson received through National Research Council IRAP Grant
- Funding for HAMP from BC salmon aquaculture companies: Cermaq Canada, Grieg Seafood Canada, Creative Salmon, and Marine Harvest Canada
- Thanks as always to HAMPsters past and present