Development and application of LC/MS based analysis for marine algal toxins in Hood Canal

Sang Seon Yun
Skokomish Indian Tribe, United States, ss516yun@gmail.com

Aaron Bentson-Royal
Skokomish Indian Tribe, United States, aaronbentsonroyal@gmail.com

Kenneth Collins
Skokomish Indian Tribe, United States, kenneth.a.collins.jr@gmail.com

Seth Book
Skokomish Indian Tribe, United States, sbook@skokomish.org

Ron Figlar-Barnes
Skokomish Indian Tribe, United States, rbarnes@skokomish.org

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/collection/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/collection/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/collection/naturalresourcesandconservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/collection/terrestrialandaquaticecology)

Yun, Sang Seon; Bentson-Royal, Aaron; Collins, Kenneth; Book, Seth; and Figlar-Barnes, Ron, "Development and application of LC/MS based analysis for marine algal toxins in Hood Canal" (2018). Salish Sea Ecosystem Conference. 110.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Development and application of LC/MS based analysis for marine algal toxins in Hood Canal

Sang Seon Yun, Seth Book, Ron Figlar-Barnes, Lisa Belleveau, Aaron Bentson-Royal, and Kenneth Collins

Department of Natural Resources, Skokomish Indian Tribe
Overview

• Background
• Methods
• Results
• Discussion
• Future studies
• Acknowledgements
Background: Marine algal toxins

- Hydrophilic toxins
 - Domoic acid (ASP)+
 - Saxitoxin (PSP)+
 - Gonyautoxin (PSP)+
 - Neosaxitoxins (PSP)+

- Lipophilic toxins
 - Okadaic acid (DSP)-
 - Dinophysistoxins (DSP)-
 - Pectenotoxins (DSP)+
 - Yessotoxin-
Background: Marine algal toxin analysis

• Climate change and harmful algal blooms in Hood Canal?
 • Increasing surface water temperature
 • Increasing weather events
 • Increasing nutrient input
• Skokomish Tribe’s initiative to establish an early warning system for marine algal toxins in Hood Canal
 • Focusing on water and phytoplankton samples
• BIA funded algal toxin monitoring program launched

• Analytical methods
 • Mouse bioassay (MBA)
 • ELISA
 • Receptor binding assay
 • Chemical analysis
 • HPLC
 • LC/MS
Background: LC/MS based analysis

• Combines LC separation with mass spectrometric detection
• Individual compounds can be identified and quantified
• Offers very sensitive detection
• Enable detection and quantitation of multiple compounds in one run
• Requires costly equipment
Methods: Solid Phase extraction

Lipophilic Toxins
- Oasis HLB
- Methanol
- 250 ml seawater
- Oasis HLB
- Methanol

Hydrophilic Toxins
- Envi Carb-graphitized carbon
- 20% acetonitrile
- Up to 12 ml
- DI water
- 40% acetonitrile
Methods: LC/MS analysis

<table>
<thead>
<tr>
<th>LC parameters</th>
<th>Mass spectrometric parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
</tr>
<tr>
<td>• Luna C18 (50 x 2.1 mm)</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
</tr>
<tr>
<td>• A: DI water with 2 mM ammonium formate + 50 mM formic acid</td>
<td></td>
</tr>
<tr>
<td>• B: 95% Acetonitrile with 2 mM ammonium formate + 50 mM formic acid</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td></td>
</tr>
<tr>
<td>• Negative mode: 10 min gradient</td>
<td></td>
</tr>
<tr>
<td>• Positive mode: 9 min gradient</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q3</th>
<th>Dwell (msec)</th>
<th>CE</th>
<th>CXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803.607</td>
<td>255.20</td>
<td>150</td>
<td>-64</td>
<td>-23</td>
</tr>
<tr>
<td>803.607</td>
<td>113.20</td>
<td>150</td>
<td>-82</td>
<td>-13</td>
</tr>
<tr>
<td>DTX-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803.598</td>
<td>255.100</td>
<td>150</td>
<td>-60</td>
<td>-15</td>
</tr>
<tr>
<td>803.598</td>
<td>113.200</td>
<td>150</td>
<td>-82</td>
<td>-11</td>
</tr>
<tr>
<td>DTX-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>817.603</td>
<td>255.200</td>
<td>150</td>
<td>-64</td>
<td>-23</td>
</tr>
<tr>
<td>817.603</td>
<td>113.100</td>
<td>150</td>
<td>-82</td>
<td>-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q3</th>
<th>Dwell (msec)</th>
<th>CE</th>
<th>CXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.292</td>
<td>266.300</td>
<td>150</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>312.292</td>
<td>161.100</td>
<td>150</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>PTX-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>876.414</td>
<td>85.200</td>
<td>150</td>
<td>109</td>
<td>18</td>
</tr>
<tr>
<td>876.414</td>
<td>95.200</td>
<td>150</td>
<td>105</td>
<td>14</td>
</tr>
</tbody>
</table>

Analytical toxin standards were obtained from NRC CRM (Canada) and used for method development and quantitation.

References: McCarron et al., 2014; Silver et al., 2010; Wang et al., 2007
Methods: Hood Canal monitoring sites

• Sampling sites
 • Sequim Bay (SB)-a reference point
 • Hood Canal Bridge (HC)
 • Quilcene (QC)
 • Pointe Whitney (PW)
 • Triton State Park (TS)
 • Ayock (AY)
 • Glen Ayr (GA)
 • Lilliwaup (LW)
 • Dewatto Beach (DB)
 • Rensland (RS)
 • Union Dock (UD)
 • Hood Sport (HS)
 • Port of Allyn (PA)

• Sampling and monitoring period
 • June 1 – September 30, 2017
Results: Separation and Detection of toxins

Negative mode detection
OA eluting at 4.29 min Detection limits: 4 ng/L
DTX-2 eluting at 4.50 min Detection limits: 4 ng/L
DTX-1 eluting at 5.04 min Detection limits: 4 ng/L

Positive mode detection
DA eluting at 3.41 min Detection limits: 40 ng/L
PTX-2 eluting at 5.19 min Detection limits: 4 ng/L
Results: Toxin monitoring in Hood Canal

Domoic acid

• DA is present throughout the monitoring period in HC
• DA surged at the 13th week (Aug 25th) peaking at the 14th week (Sept 1)
• Some sites observed over 2 µg/L DA concentrations - NOAA’s recommended risk limits
• DA levels subsided after the 15th week
• No phytoplankton and toxicity data available
Results: Toxin monitoring in Hood Canal
Dinophysistoxin-1

- Low levels of DTX-1 was observed in Hood Canal, while higher concentrations in Sequim Bay
- Slight variation in DTX-1 concentrations over sampling sites and sampling period in Hood Canal
- Sequim Bay maintained higher concentrations over time—although toxicity is not known
Results: Toxin monitoring in Hood Canal
Pectenotoxin-2

- Low levels of PTX-2 were present during the monitoring period (below 100 ng/L) in Hood Canal
- Sequim Bay exhibited fluctuating concentrations over the sampling period
- In Sequim Bay, PTX-2 reached a peak over 2.5 µg/L
- No toxicity information arising from this toxin is known
Results: Method development for saxitoxin

- Porous graphitized carbon (PGC) cartridges tested
- Sigma’s Envi carb cartridge works best
- zHILIC column found most reliable
- A 10 min gradient program developed
- Due to the limitation of volume that can be extracted, the detection limits of this method will be over 1 µg/L
- Further refinement may need

References: Amstrong, 2017; Brag et al., 2015; Halme et al., 2012
Conclusions

• Sensitive analytical methods for 5 toxins using LC/MS were developed
• Pilot monitoring study conducted on 13 sampling sites demonstrated that the LC/MS analysis can provide reliable measurements of 5 toxins in water and phytoplankton samples
• SPE and LC/MS methods for hydrophilic toxins have been worked out and will be deployed to monitor in 2018
• Current chemistry data need to be combined with phytoplankton abundance and shellfish toxicity data
• Further collaborations with DOH and Sound Toxins
• Further refinement of analytical protocols
Further Studies

- Deployment of LC/MS analysis for hydrophilic toxins (STX, GTX)
- Phytoplankton analysis: identification and abundance
- Environmental fate studies for algal toxins
- Dynamics of toxins in foodwebs
- Preparation for future accreditation
- Open to collaborations
Acknowledgements

• Skokomish Indian Tribe Council for their general support
• EPA for their support for the Skokomish Tribe’s water quality lab.
• BIA for funding this project

Thanks for listening