The effects of diluted bitumen (dilbit) exposure during embryonic development on the future swimming performance and metabolic and ionic recovery post-exercise in sockeye salmon (Oncorhynchus nerka)

Feng Lin
Simon Fraser Univ., Canada, fla44@sfu.ca

Chris Kennedy
Simon Fraser Univ., Canada, c kennedy@sfu.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
The effects of diluted bitumen on the embryonic development and swimming performance of sockeye salmon (*Oncorhynchus nerka*)

Feng Lin and Chris Kennedy
Simon Fraser University, British Columbia, Canada
30th Salish Sea Ecosystem Conference, April 4-6, 2018
Background
Knowledge gap about dilbit toxicity

- Dilbit, a non-conventional crude oil
 - ↓ BTEX
 - ↓ Total polycyclic aromatic hydrocarbons (PAHs)
 - ↑ 3~5 ringed PAHs in proportions
 - Most toxic and bioavailable to aquatic life

- Different environmental behaviour when spilled
 - High density and viscosity
 - High potential of sinking
Knowledge gap about dilbit toxicity

- Dilbit toxicity to fish species remains unclear
 - Very few studies on dilbit toxicity
 - Not enough empirical data

- Studies using other crude oil blend or its components (e.g. BTEX, PAHs)
 - Generalization of risk?
Study objectives

- Acute and sublethal toxicity of dilbit on early life stage (ELS) Pacific salmonids
 - Mortality
 - % Deformity
 - Swimming ability
 - Biochemistry
- Latent effect in formally exposed survivors?
- Environmentally relevant exposure method
Exposure apparatus

- Generate water soluble fractions (WSFs) of dilbit
- Initial spike of total PAHs at 3.5, 16.4, 66.7 µg/L
- Beads re-soaked every 21 days
Experiment part 1

- Fertilized sockeye salmon embryos exposed to 3 concentrations of WSFs
 - 3.5, 16.4, 66.7 µg/L total PAHs
 - Control at 0.002 µg/L

- At 50% yolk sac absorption
 - Deformity assessment

- At swim-up stage
 - Burst swimming ability
 - Body biochemistry
Results

Values are means ± s.e.m (n = 960). One-factor ANOVA and Tukey HSD test (p<0.05).

The stacked cumulative mortality (%) of fish across treatments (n = 960) at three different developmental stages.
<table>
<thead>
<tr>
<th>Deformity (%)</th>
<th>Control</th>
<th>3.5 µg/L</th>
<th>16.4 µg/L</th>
<th>66.7 µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yolk sac edema</td>
<td>2.0 ± 1.0 c</td>
<td>6.0 ± 1.0 b</td>
<td>15.0 ± 4.0 a</td>
<td>12.0 ± 2.0 a</td>
</tr>
<tr>
<td>Pericardiac edema</td>
<td>1.0 ± 0</td>
<td>0</td>
<td>4.0 ± 2.0</td>
<td>1.0 ± 0</td>
</tr>
<tr>
<td>Craniofacial</td>
<td>1.0 ± 0</td>
<td>3.0 ± 2.0</td>
<td>3.0 ± 1.0</td>
<td>5.0 ± 2.0</td>
</tr>
<tr>
<td>Skeletal</td>
<td>0</td>
<td>1.0 ± 0</td>
<td>1.0 ± 0</td>
<td>1.0 ± 0</td>
</tr>
<tr>
<td>Finfold</td>
<td>0</td>
<td>1.0 ± 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fish with at least 1 type of deformity</td>
<td>2.0 ± 1.0 c</td>
<td>8.0 ± 1.0 b</td>
<td>20.0 ± 2.0 a</td>
<td>17.5 ± 0.5 a</td>
</tr>
</tbody>
</table>

Values are means ± s.e.m (n = 200). One-factor ANOVA and Tukey HSD test (p<0.05)
Results

Vals are means ± 95% confidence interval (n = 20). One-factor ANOVA and Tukey HSD test (p<0.05).
Results

Values are means ± 95% confidence interval (n = 20). One-factor ANOVA and Tukey HSD test (p<0.05).

- Unchanged carbohydrate storage
- Increased lipid storage
- Decreased soluble protein
U_{burst} swimming speed --- measure of burst ability

- Involved in food capture and predation avoidance

Loligo swimming tunnel used for U_{burst} test

Values are means ± 95% confidence interval (n = 12). One-factor ANOVA and Tukey HSD test (p<0.05).
Reared in clean water for 8 months. U_{burst} swimming speed tested at 1, 3, 6, or 8 months in clean water.
Exposed swim-up fry

Yearling parr

Pre-smolt stage

Month(s) reared in clean water

Values are means ± 95% confidence interval (n = 12). Two-factor ANOVA and Tukey HSD test (p<0.05).
Pre- and post-exercise biochemistry

- **Plasma cortisol**
 - Pre-exercise range: 0–20 ng/mL
 - Post-exercise range: 20–60 ng/mL

- **Plasma glucose**
 - Pre-exercise range: 0–5 mM
 - Post-exercise range: 5–15 mM

- **Plasma lactate**
 - Pre-exercise range: 0–5 mM
 - Post-exercise range: 5–15 mM

Indicators of stress level
- Spikes in circulating cortisol, [glucose], [lactate] after exhaustive exercise

Values are means ± 95% confidence interval (n = 12). One-factor ANOVA and Tukey HSD test (p<0.05).
Pre- and post- exercise biochemistry

- Indicators of water-ion homeostasis

- Reduction in circulating plasma [Na\(^+\)] and [Cl\(^-\)] after exhaustive exercise

Values are means ± 95% confidence interval (n = 12). One-factor ANOVA and Tukey HSD test (p<0.05).
Conclusions
Exposure to WSFs of dilbit:

- Latent effect
- Signs of recovery after 8M?

- ↑ Mortality
- ↑ % Deformity
- ↓ U_{burst} swimming speed
- Altered biochemistry
Experiment part 2 (ongoing)

- Exposed juvenile sockeye salmon exposed to 3 concentrations of WSFs
 - 3 exposure length: 24h, 96h, or 14d

- U_{burst} and body biochemistry
 - Exercise recovery ability
 - Stress response
Thank you for listening!

Acknowledgements:

Funding support by the National Contaminant Advisory Group

Supervision by Dr. Chris Kennedy
Animal care staff at SFU for extensive fish care
Water accommodated fractions (WAFs)