Latitudinal variation in seagrass wasting disease from Puget Sound to Alaska

Olivia Graham
Cornell Univ., United States, ojgraham@mac.com

Corinne Klohmann
Cornell Univ., United States, cak268@cornell.edu

Emily Adamczyk
Univ. of British Columbia, Canada, emilyadamczyk@gmail.com

Margot Hessing-Lewis
Hakai Institute, Canada, margot@hakai.org

Angeleen Olson
Hakai Institute, Canada, angeleenolson@gmail.com

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Graham, Olivia; Klohmann, Corinne; Adamczyk, Emily; Hessing-Lewis, Margot; Olson, Angeleen; Tolimieri, Nick; Stephens, Tiff; Burge, Colleen Amy; and Harvell, Drew, "Latitudinal variation in seagrass wasting disease from Puget Sound to Alaska" (2018). *Salish Sea Ecosystem Conference*. 125. https://cedar.wwu.edu/ssec/2018ssec/allsessions/125

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Olivia Graham, Corinne Klohmamn, Emily Adamczyk, Margot Hessing-Lewis, Angeleen Olson, Nick Tolimieri, Tiff Stephens, Colleen Amy Burge, and Drew Harvell

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/125
Latitudinal Variation in Seagrass Wasting Disease from Puget Sound to Alaska

Olivia Graham, Corinne Klohmann, Emily Adamczyk, Margot Hessing-Lewis, Angeleen Olsen, Nick Tolimieri, Tiff Stephens, Colleen Burge, Drew Harvell

Salish Sea Ecosystem Conference
April 5, 2018
Eelgrass (Zostera marina)

• Cover less than 0.2% all oceans (Duarte et al. 2005)
• But a triple win for marine sustainability
 • Mitigate effects of global climate change
 • Create essential marine habitat
 • Offset coastal pollution
Seagrass Wasting Disease (SWD)

• Caused by marine protist
 • *L. zosterae*

• Caused historic eelgrass die-offs (Muehlstein 1989)

• Threatens eelgrass

• Facilitated by:
 • Temperature (Bull *et al.* 2010, Dawkins *et al.*, *in prep*)
 • Salinity (McKone and Tanner 2009)
Subtidal: Disease Refuge?

• Little known about *subtidal* disease
• Subtidal beds in Sweden
 • Had reduced disease at depth and low salinity (Jakobsson-Thor *et al.* 2018)
• Subtidal beds in San Juans, 2016
 • Had lower SWD in subtidal beds
Exploring Large-Scale Disease Patterns

• Research questions
 • How does SWD vary across large latitudinal gradient?
 • How do environmental factors (temperature, salinity) influence SWD?

• Hypotheses
 • **Lower** SWD at **higher** latitudes with **cooler** temperatures
 • **Higher** SWD at **lower** latitudes with **warmer** temps
Field Methods—Summer 2017

• Subtidal* and intertidal SWD surveys
 • 60 subtidal blades/site
 • 120 intertidal blades/site
• Measure site-specific data
 • Temperature
 • Salinity
 • Density, canopy height
• Collected eelgrass

Photo: flickr.com
Lab Methods

- Scan eelgrass
- Measure distinctive lesions
- qPCR
 - Eisenlord: “Tipping the balance: the impact of eelgrass wasting disease in a changing ocean”
Disease Survey Sites:

• Alaska
• Calvert Island, BC
• San Juan Islands, WA
• Puget Sound, WA

4 regions
19 sites
1136 subtidal blades
The graph shows the relationship between disease prevalence (%) and subtidal water temperature (F) for different regions: Puget Sound, Alaska, San Juans, and British Columbia. The coefficient of determination, R^2, is 0.3298.
1. Temperature seems to be an important driver of subtidal disease.
2. Found considerable local variation in disease.
3. Subtidal may serve as a refuge against SWD.
Looking Ahead

• Analyze 2017 intertidal eelgrass scans
• Continue to monitor subtidal and intertidal disease
 • Repeat regional surveys in 2018
Broader Impacts

• Has relevance to regional and global eelgrass
 • Provides key snapshots of eelgrass health

• Can directly inform PNW eelgrass conservation and management efforts
 • Which need protection? Are declining? At risk?

• Provides greater understanding of the processes that drive and shape marine environments
Acknowledgements

Harvell Lab
- Drew Harvell, Joleah Lamb, Allison Tracy, Morgan Eisenlord, Corinne Klohmann, Phoebe Dawkins, Miranda Winningham

Collaborators
- Mary O’Connor & Emily Adamczyk (UBC)
- Margot Hessing-Lewis & Angeleen Olsen (Hakai)
- Nick Tolimieri (NOAA)
- Tiff Stephens (U.Alaska)

Dive support
- Tanya Prinzing, John Cristiani, Chris Wells, Alex Lowe, Julia Kobelt, NOAA Team (Nick, Greg, Ole)

Financial support
- Atkinson Center Sustainable Biodiversity Fund
- Women Diver’s Hall of Fame
- FHL Student Scholarship
- Mellon Grant
Questions?

@o_jgraham
Next Steps

• Analyze images for severity
• Developing lesion ID application, EELISA (Gomes & Rappazzo)
 • More consistent, efficient way to measure lesions
 • Potential for increased scope of surveys
Introduction