

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 5th, 10:00 AM - 10:15 AM

Fir Island farm: estuary restoration project: designing for climate change and uncertainty in shoreline flood risk reduction and ecosystem restoration projects

David Cline Shannon and Wilson Inc., United States, drc@shanwil.com

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Cline, David, "Fir Island farm: estuary restoration project: designing for climate change and uncertainty in shoreline flood risk reduction and ecosystem restoration projects" (2018). *Salish Sea Ecosystem Conference*. 127.

https://cedar.wwu.edu/ssec/2018ssec/allsessions/127

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Fir Island Farm – Estuary Restoration

Designing for Climate Change Uncertainty in Shoreline Flood Risk Reduction and Ecosystem Restoration Projects

David Cline, PE, CFM

Fir Island Farm – Project Overview

Fir Island Farm – Project Overview

FORKSKARD

Fir Island Farm

© 2014 Google

Fork Skagit

Conway WA

Google earth

Fir Island Farm – Project Overview

- Skagit River Delta
- 130 Acre Tidal Marsh Restoration
- 1-Mile Long Dike Setback
- Farm Drainage
 - 5-Acre Storage Pond
 - 9,000gpm Pump Station (Project Mitigation)
 - 5 Tidegates

Fir Island Farm – Key Uncertainties

- Subsurface Soils
 - Layering
 - <u>Settlement</u>
 - <u>Seepage</u>
- Hydrology
 - Surface Water
 - Groundwater
 - Farm Drainage Impacts
- Hydrodynamics
 - Tidal / River Interface
 - Tidal Tailwater Effect
 - Sea Level Rise
 - Extreme wind / tide events

- Other Uncertainties
 - Vegetation / invasives
 - Sedimentation
 - Natural LWD loading
 - Cultural resources
 - Hazardous materials
 - Contractor claims
 - 3rd Party / neighbor claims
 - Socio-political impacts
 - Long Term O&M Costs

Fir Island Farm – Key Design Uncertainties

- Levee / Dike Elevations
- Farm Drainage Tailwater / Seepage
- Wetland Vegetation and Large Woody Debris

Source: Jenga, 2017

Fir Island Farm – Instrumentation

- Subsurface Explorations
 - CPTs
 - Geoprobes
 - Borings
- Surface and Groundwater
 Data Loggers (LTC)
 - Tidal
 - Interior (Farm) Drainage
 - Paired Groundwater
- Settlement Plates

Dike Design Elevations Estimate of Maximum Water Level

- Extreme tide (η_{HAT})
- Storm surge (η_{surge})
- Wind Wave / Runup (ŋ_{wave})
- Sea level rise (η_{slr})
- Maximum water level (n_{max})
- Settlement (S) Need to consider

 $\eta_{max} = \eta_{tide} + \eta_{surge} + \eta_{wave} + \eta_{slr}$

Extreme Tide (η_{HAT})

Storm Surge (n_{surge})

Eye

Water on ocean-side flows away without raising sea level much

Storm motion

Wind-driven Surge

Pressure-driven Surge (5% of total)

As water approaches land it "piles up" creating storm surge

©The COMET Program

Wave Runup (n_{wave})

Sea Level Rise (n_{slr})

Settlement

Tide, Surge, Wave, Sea Level Rise

 $\eta_{\text{design}} = \eta_{\text{HAT}} + \eta_{\text{surge}} + \eta_{\text{wave}} + \eta_{\text{slr}}$

Dike Design Elevation	NAVD88-ft	MLLW-ft
Extreme tide (n _{HAT})	11.28ft	13.41ft
Surge (n _{surge})	2.20ft	2.20ft
Wave runup (ŋ _{wave})	0.54ft	0.54ft
Avg. Sea level rise @ Year 2063 (η_{slr}) +0.50ft	0.93ft	0.93ft
Target Design Elevations (n _{design})	14.95ft	17.08ft
Settlement (ft)*	~1.00ft	
Construction Design Elevations (ft)	15.5ft	17.6ft

MLLW to NAVD88 = MLLW – 2.13ft for Crescent Harbor Gage 9447952

* Indicates total estimated settlement

Levee Design Elevations & Widths

Fir Island Farm – Design Features

Drainage Design Fir Island Farm – Modeling & Calibration

- Soils

- Two primary layers
- ~ Homogeneous
- Hydrology
 - Unique Tidal Signature
 - Narrow Tidegate
 Operating Range
 - Establish seasonal groundwater levels

Fir Island Farm – Modeling & Calibration

Modeled Water Tidal Elevations in No-Name Slough

Fir Island Farm – Hydrodynamic Impacts

 Tidal tailwater rise up to 1.0ft could impact 100 to 300 farm acres w/ gravity drainage only

LEVEE

Project Hydrodynamic Effect + Sea Level Rise Effects

Fir Island Farm – Drainage Design

Tidegates

Fir Island Farm - Performance Monitoring

Fir Island Farm - Performance Monitoring

SHANNON & WILSON, INC.

Marsh Elevations Erosion Protection, Vegetation & Wood

Fir Island – March 2016 Storm

Tidal Storm Surge Peak Elevation 13.5ft (NAVD88)

Fir Island Farm – Large Woody Debris

Construction Contingency Contractor Change Order for Debris Management

Fir Island Farm Tools to Address Design Uncertainties

- Site Characterization -Baseline
- Monitoring
 Instrumentation
- Numerical Modeling
- Flexible Designs
- Peer & Constructability
 Review
- Contingency Planning
- Adaptive Management
- Plan for Changes / Variability

Fir Island Farm – Estuary Restoration

– Thank you.

