Does eelgrass act as an ocean acidification refuge for shellfish in the Salish Sea?

Bonnie Becker
Univ. of Washington Tacoma, United States, bjbecker@uw.edu

Michelle McCartha
Univ. of Washington Tacoma, United States, mmcc1234@uw.edu

Micah Horwith
Washington State Dept. of Natural Resources, United States, Micah.Horwith@dnr.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec
[Part of the](/collections) [Fresh Water Studies Commons](/collections/fresh-water-studies), [Marine Biology Commons](/collections/marine-biology), [Natural Resources and Conservation Commons](/collections/natural-resources-and-conservation), and the [Terrestrial and Aquatic Ecology Commons](/collections/terrestrial-aquatic-ecology)

Becker, Bonnie; McCartha, Michelle; and Horwith, Micah, "Does eelgrass act as an ocean acidification refuge for shellfish in the Salish Sea?" (2018). *Salish Sea Ecosystem Conference*. 129.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Does eelgrass act as an ocean acidification refuge for shellfish in the Salish Sea?

Bonnie J Becker
Michelle McCartha

Micah Horwith

WASHINGTON STATE DEPARTMENT OF Natural Resources
<table>
<thead>
<tr>
<th>Dark (pre-dawn)</th>
<th>Light (mid-morning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare x 3</td>
<td>Grass x 3</td>
</tr>
<tr>
<td>Grass x 3</td>
<td>Bare x 3</td>
</tr>
<tr>
<td>Bare x 3</td>
<td>Grass x 3</td>
</tr>
</tbody>
</table>

Summer 2015
Proportion of Larvae at Surface

Hypothesis

- **Dark**
 - Bare
 - Grass

- **Light**
 - Bare
 - Grass

Central area: Grass

Minor area: Bare
Pacific oyster (Crassostrea gigas)

Mussels (Mytilus spp.)

Olympia oyster (Ostrea lurida)

Large clams >251 μm length

Small clams <250 μm length

D-shaped veliger (mixed species)
Species by Site

Number of Larvae per Sample

- Olympia
- Pacific
- Mussel
- Small Clam
- Large Clam
- D-hinge
- Unknown

Locations:
- Willapa Bay
- Fidalgo Bay
- Port Gamble
- Case Inlet

Graph shows the number of larvae per sample across different species and sites.
Proportion of Larvae at Surface

Total Bivalves

- Bare
- Grass

Dark	Light
0 | 0.5 | 1
Proportion of Larvae at Surface

Olympia oysters

Mussels

Large Clams

D-hinge
Proportion of Larvae at Surface

Olympia oysters

Mussels

Large Clams

D-hinge
Preliminary Conclusions

• Seagrass could be a refuge from low pH for bivalve larvae, but...
 – Likely will be species-specific and size-dependent behaviors
 – Other ecological drivers are also present
Thank You!

Funding
Washington DNR
UW Tacoma School of IAS

Counting
Romina Centurion
Justin Drake
Stevie Collins
Suji Kim
Brianna Loucks
Grace McKenney
David Mullins
Sarah White

Technical Support
Steven Roberts
Brent Vadopalas
Sam White

Field and Other Support
Cinde Donoghue
Megan Hintz
Brenda Smithhisler
Alan Trimble
Katie Zentner
Time’s Up!

http://faculty.uw.edu/bjbecker

@pisastero

Becker Lab