Which factors influence Manila clam survival on Lummi Nation tidal flats?

Andrés J. Quesada
Northwest Indian College, aquesada@nwic.edu

Andrew Thurber
Oregon State University, athurber@coas.oregonstate.edu

Misty Peacock
Northwest Indian College, United States, mdbpeacock@gmail.com

Rosa Hunter
Northwest Indian College, rmhunter@nwic.edu

Marco Hatch
Western Washington Univ., United States, marco.hatch@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Quesada, Andrés J.; Thurber, Andrew; Peacock, Misty; Hunter, Rosa; and Hatch, Marco, "Which factors influence Manila clam survival on Lummi Nation tidal flats?" (2018). _Salish Sea Ecosystem Conference_. 143.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Which factors influence Manila clam survival on Lummi Nation tidal flats?

Marco Hatch, Andrew Thurber, Misty Peacock, Rosa Hunter

Andrés J. Quesada
Associate Director
Salish Sea Research Center
Northwest Indian College
aquesada@nwic.edu
Manila clam, Japanese littleneck
Venerupis philippinarum
Potential causes for population decline:

- Unreported or unregulated harvesting
- Winter freezing
- Hydrogen sulfide in sediments
- Changes in diet and food availability
6 months later...
The graph shows the comparison of clam sizes at different locations:

- **Sandy Point**: n=103
- **Middle Lummi**: n=414
- **East Lummi**: n=107
- **Brant Island**: n=1237

The Y-axis represents clam size in mm.
Brant Island (▼) had the lowest and most variable salinity.

Brant Island (▼) and Sandy Point (▲) had highest inputs of terrestrial POM.
Brant Island (▼) had the lowest $\delta^{13}C$ throughout the year, except for January.
Next steps:

• Fatty acid analyses
• Analyze phytoplankton samples
Acknowledgements

NIFA Grants
• 2015-38424-24030
• 2015-38424-24032

Students
Amy Irons, Josephine Kamkoff, Stimmy Lee, Jefferson Emm

United States Department of Agriculture
National Institute of Food and Agriculture

NORTHWEST INDIAN COLLEGE
Xwlemi Elh>Tal>Nexw Squl