April 2018

Using metapopulation models to estimate the effects of pesticides and environmental stressors to Spring Chinook salmon in the Yakima River Basin, WA

Chelsea Mitchell
Washington State Univ., United States, chelsea.mitchell@wsu.edu

Valerie R. Chu
Western Washington Univ., United States, chuv@wwu.edu

Meagan J. Harris
Whatcom Conservation District, United States, mharris@whatcomcd.org

Wayne G. Landis
Western Washington Univ., United States, wayne.landis@wwu.edu

Katherine E. von Stackelberg
Harvard Ctr. for Risk Analysis, United States, kvon@hsph.harvard.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/commons/fresh-water-studies), [Marine Biology Commons](https://cedar.wwu.edu/commons/marine-biology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/commons/natural-resources-and-conservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/commons/terrestrial-and-aquatic-ecology)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Chelsea Mitchell, Valerie R. Chu, Meagan J. Harris, Wayne G. Landis, Katherine E. von Stackelberg, and John D. Stark

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/146
Using metapopulation models to estimate the effects of pesticides and environmental stressors to Chinook salmon in the Yakima River Basin, WA

Chelsea Mitchell and John Stark
Washington State University

Valerie Chu and Wayne Landis
Western Washington University

Katherine Von Stackelberg
Harvard T.H. Chan School of Public Health
Ecological Risk Assessment:

Previous study:
• Bayesian Network- Relative Risk Model (BN-RRM) (Landis et al.)
• **Endpoint**: Chinook salmon populations
• **Toxicants**: Organophosphate insecticides
• **Environmental stressors**: Water temperature & dissolved oxygen
• Single Chinook population models (Baldwin et al. 2009)

This study: uses site-specific metapopulation as endpoint
Salmon populations & toxicant exposure

• Salmon connected into **metapopulations** through straying

• **Local adaptation**
 • populations of the same species differ in rates of survival, reproduction, and dispersal

• Salmon habitat conditions change over time

Question 1: Does risk differ between subpopulations within the same metapopulation?

Question 2: Do seasonal changes in habitat impact risk?
Case Study: Yakima River Basin (YRB)

- Spring Chinook salmon
- Lower Yakima
 - dense agriculture
 - Habitat use
 - Juveniles rearing and outmigration
 - Adults returning to spawn
- OPs applied throughout Lower Yakima
- This study: Malathion and diazinon
Metapopulation modeling

• Developed age-structure matrix models
 • American, Naches, Upper Yakima, CESRF
 • Stochastic survival, reproduction, and dispersal parameters
• Ran simulations in RAMAS Metapop©
 • survival reductions to exposed life stages
• Incorporated outputs into Bayesian Network
Bayesian Network-Relative Risk Model

Risk

• No net loss of Chinook (Puget Sound Partnership)

• Initial abundance = 500,000 fish/population

• Risk of declining from initial abundance of 500,000
Risk by population (year 20)

- **American**: 94, 95, 97
- **Naches**: 64, 74
- **Upper Yakima**: 19, 30
- **CESRF**: 19, 30

Legend
- Yellow: No stressors
- Teal: Only environmental stressors
- Purple: OPs and environmental stressors

Risk (% probability) for populations with different categories of stressors.
Risk by population (year 20)

- American: 94, Naches Population: 64, Upper Yakima: 1, CESRF: 30
Risk by population and season (year 20)

- Summer: 64.7% probability that water temperature will be 18-25°C
- Core summer salmonid habitat criteria = 16 °C

Single population risk from Chu et al.
OPs and environ. Stressors
Environ. Stressors only
Conclusions

Question 1: Does risk differ between subpopulations within the same metapopulation?

- Yes, risk is greater in wild populations
- Differences driven by differences in vital rates, and lower dispersal of wild populations

Question 2: Do seasonal changes in habitat impact risk?

- Yes, high temperatures in summer increase risk compared with winter.
- Environmental stressors make a greater contribution to risk than organophosphates
- Measured concentrations of OPs in Lower Yakima still increase risk
Thank you!

Thanks and acknowledgements:
EPA STAR Grant & research team
Julann Spromberg, NOAA
Abigail Nickelson, WA Dept. Agriculture
Cathy Laetz, NOAA
Erin Rechisky, Kintama Research Services
Andy Dittman, NOAA
Phil Roni, Cramer Fish Sciences