April 2018

Eelgrass (Zostera marina) restoration in Puget Sound: restoration tools, successes and challenges

Jeff Gaeckle
Washington State Dept. of Natural Resources, United States, jeff.gaeckle@dnr.wa.gov

John Vavrinec
Pacific Northwest National Lab., United States, john.vavrinec@pnnl.gov

Kate Buenau
Pacific Northwest National Lab., United States, kate.buenau@pnnl.gov

Amy Borde
Pacific Northwest National Lab., United States, amy.borde@pnnl.gov

Lara Aston
Pacific Northwest National Lab., United States, lara.aston@pnnl.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Gaeckle, Jeff; Vavrinec, John; Buenau, Kate; Borde, Amy; Aston, Lara; Thom, Ron; and Shannon, Jim, “Eelgrass (Zostera marina) restoration in Puget Sound: restoration tools, successes and challenges” (2018). Salish Sea Ecosystem Conference. 168.

https://cedar.wwu.edu/ssec/2018ssec/allsessions/168

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Jeff Gaeckle, John Vavrinec, Kate Buenau, Amy Borde, Lara Aston, Ron Thom, and Jim Shannon

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/168
Eelgrass (*Zostera marina*) recovery in Puget Sound: restoration tools, successes and challenges

Jeff Gaeckle
Nearshore Habitat Program, Washington Department of Natural Resources

John Vavrinec, Kate Buenau, Amy Borde, Lara Aston, Ron Thom
Marine Sciences Lab, Pacific Northwest National Laboratory

Jim Shannon
Hart Crowser, Inc.
Restoration

- Eelgrass (*Zostera marina*) recovery goal established by the Puget Sound Partnership

- 20% more eelgrass by 2020

- Baseline – 22,000 ha
 - 4,400 ha

- Recovery Strategy
 - Stressor reduction
 - Restoration

- Multi-step adaptive process
 - model
 - test-transplants
 - evaluate
 - large-scale transplants
Test Transplants

• 5 x 5 m plots, 500 shoots
• Subtidal (-1.5 m, MLLW)

6 – 12 months
• 62% of the test sites had eelgrass
• Shoot survival ranged from 2 – 130%

After 12 months
• 44% of sites had eelgrass present
• Vegetative growth observed
Challenges

- Permits
- Bioturbating organisms
 - burrowing shrimp
- Grazers
 - snails
- Competition
 - macro algae
Restoration Sites 2013 - 2017

Large-scale Transplants

1. SHORT
2. SHORT - LONG
3. SHORT - LONG
4. SHORT - LONG
5. LONG

Shallow
Deep

Eelgrass Transplant Sites
- Large - Zm present
- Large - Zm absent
- Test - Zm present
- Test - Zm absent
- Test - Zm unknown
- Donor site
Shoot Density: Year 1

Shoot density (shoots m\(^{-2}\))

- **LONG SHOOTS**
 - 1: X=32.7, SE=4.6
 - 3: X=242.7, SE=44.1
 - 4: X=239.5, SE=21.5

- **SHORT SHOOTS**
 - 1: X=105.4, SE=20.3
 - 2: X=19.0, SE=7.2
 - 3: X=0, SE=0
 - 4: X=16.6, SE=4.2

Transect position (m)

- 10 m to 50 m
- Shallow: 0 m to 20 m
- Deep: 20 m to 50 m

 Shoot density (shoots m\(^{-2}\))

- **LONG SHOOTS**
 - 5: X=32.7, SE=4.6

- **SHORT SHOOTS**
 - 5: X=16.6, SE=4.2
Rebound: Year 2

2015
- 22,000 shoots
- 80 shoots m\(^{-2}\)
- 275 m\(^2\)

2016
- 13,500 shoots
- 96 shoots m\(^{-2}\)
- 140 m\(^2\)

2017
- 105,000 ± 31,500 shoots
- 270 ± 90 shoots m\(^{-2}\)
- 350 m\(^2\)
Disturbance Control: Burlap Strips

- Tortilla Method (Pickerell et al. 2012)
- 160 m² area
- 126 shoots m⁻²
- 20,160 shoots
Performance: Year 1

- 168 ± 9 shoots m$^{-2}$
- 26,880 ± 1,440 shoots
- Gaps coalescing
Modifications

- Method study
 - burlap
 - re-bar
 - washers
 - staples

- Evaluate efficiency of transplanting

- Evaluate success of each method
Future restoration work

• Monitor
 - test- & large-scale transplants
 - methods study

• Research
 - track transplants and environmental variables across a gradient of observed loss
 - assess genetically robust donor sources
 - improve model performance

• Data distribution
 - interactive restoration map
Acknowledgements

Nearshore Habitat Program colleagues

Aquatic Restoration Program and Aquatic Reserves Program
Puget Sound Marine and Nearshore Grant Program
Pacific Northwest National Laboratory
Hart Crowser, Inc.
U.S. Army Corps of Engineers
U.S. Fish and Wildlife Service

This project received funding from the EPA under an agreement with WDFW. The contents do not necessarily reflect the views and policies of the EPA. Mention of trade names or commercial products does not reflect endorsement.