Apr 5th, 11:00 AM - 11:15 AM

Results from the Baynes Sound Environmental Intelligence Collaboration (BaSEIC)

Wiley Evans
Hakai Institute, Canada, wiley.evans@hakai.org

Darlene Winterburn
BC Shellfish Grower's Association, Canada, darlene@bcsga.ca

Katie Pocock
Hakai Institute, Canada, katie.pocock@hakai.org

Carrie Weekes
Hakai Institute, Canada, carrie.weekes@hakai.org

Alex Hare
Hakai Institute, Canada, alex.hare@hakai.org

Follow this and additional works at: https://cedar.wwu.edu/sssec

👩‍🔬 Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/sssec/fresh_water_studies), [Marine Biology Commons](https://cedar.wwu.edu/sssec/marine_biology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/sssec/natural_resources_and_conservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/sssec/terrestrial_and_aquatic Ecology)

Evans, Wiley; Winterburn, Darlene; Pocock, Katie; Weekes, Carrie; and Hare, Alex, "Results from the Baynes Sound Environmental Intelligence Collaboration (BaSEIC)" (2018). _Salish Sea Ecosystem Conference_. 169.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Results from the Baynes Sound Environmental Intelligence Collaborative (BaSEIC)

Wiley Evans1, Darlene Winterburn2, Katie Pocock1, Carrie Weekes1, Alex Hare1
1Hakai Institute, 2British Columbia Shellfish Growers Association

Salish Sea Ecosystem Conference, Seattle WA, April 5 2018
Data poor in regions where industry operates

Color is month of the year
Data: Surface Ocean CO₂ Atlas v5

Baynes Sound:
40 km x 3.5 km; max depth 80 m
68% of total BC harvest in 2016
54% of total BC wholesale value (~57M/yr)
The BCSGA Burke-o-Lator
Thank you to the Province of British Columbia Ministry of Agriculture
Meet the Burke-o-Lator

A new instrument tracks ocean acidification in real time.

April 28, 2016 By Josh Silberg

Ocean acidification, resulting from increased carbon dioxide in the atmosphere, is a growing threat to the world’s oceans. Creatures that live in calcium carbonate homes like corals and shellfish are some of the most vulnerable. But to track ocean acidification requires more than merely dipping a piece of litmus paper in the sea. A tiny, seaside shed in British Columbia now houses one of the world’s most innovative systems to measure this phenomenon. Meet the Burke-o-Lator.

“This is a really exciting piece of equipment. It’s the first of its kind in Canada,” says chemical oceanographer Wiley Evans, who leads ocean acidification research at the Hakai Institute.

Standing next to Wiley in the instrumentation hut—a shed only slightly larger than your average bathroom perched a dozen meters above the high tide line—is the inventor of the Burke-o-Lator, Oregon State University professor Burke Hales. A pioneer in the field of ocean carbon cycles, Hales has come to Hakai’s Quadra Island Field Station to help install his namesake machine, part of a

VISIT: www.hakai.org/blog
What do we mean by “Environmental Intelligence”?

- Decision support: plan of action
- Smart Sampling
- Trend/performance/gap analysis
- Assess responsiveness to stakeholder needs
Measurement sites in northern Salish Sea & Baynes Sound

2016

2017
Large and coherent seasonal cycle:

Quadra Island Field Station (QIFS), Sentry Shoal, Sawmill Bay Shellfish

Ω_{arag} Depth (m)

Corrosive

QU39

Corrosive
Robust northern Salish Sea TA-S relationship:

$$TA = S \times 60.75 + 254.82$$
$$\text{RMSE} = 22.35 \ \mu\text{mol} \ \text{kg}^{-1}$$
$$N = 1436$$
Near Surface Data: March 7, 2017 – April 2, 2018

Seasonal cycle punctuated by large short-term variability
Seasonally dependent offsets between surface and 8 m data
Calcite undersaturation events lag the neap tide
Is calcite undersaturation “normal” for the Northern Salish Sea?

QU39 is our baseline

dots = mean; bars = range
Is calcite undersaturation “normal” for the Northern Salish Sea?

Add in northern BS PSF station

dots = mean; bars = range
2016 & 2017 PSF data
Is calcite undersaturation “normal” for the Northern Salish Sea?

Add in southern BS PSF station

dots = mean; bars = range
2016 & 2017 PSF data
Is calcite undersaturation “normal” for the Northern Salish Sea?

Add in Fanny Bay continuous data

Broad ranges with tendency toward higher pCO₂ / lower pH & Ω

Corrosive
What we’ve learned:

(1) Evidence points to Baynes Sound as a region with high respiratory CO₂

*summertime neap tide related corrosive events

*wintertime corrosivity

*average conditions more corrosive than in main basin

Implications are tendency toward higher Revelle Factors; more sensitive to anthropogenic CO₂ invasion

(2) North/south difference in corrosivity with conditions magnified in the north where exchange in presumed to be more restricted

Acknowledgement: Fanny Bay Oysters, Mac’s Oysters, Sawmill Bay Shellfish, Island Scallops, VIU Deep Bay Field Station, Kieran Cox, Pacific Salmon Foundation Citizen Science Program, BC Shellfish Grower’s Association, Province of British Columbia, Tula Foundation