Inventory methods for sea asparagus in the Salish Sea: working with indigenous communities to integrate UAV technology and aquatic plant management

Jessica Holden
The Firelight Group, Canada, jessica.holden@thefirelightgroup.com

Carolyn Whittaker
The Firelight Group, Canada, carolyn.whittaker@thefirelightgroup.com

Cydne Potter
The Firelight Group, Canada, cydpotter@gmail.com

Cory Frank
K’ómoks First Nation, Canada, cory.frank@komoks.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Holden, Jessica; Whittaker, Carolyn; Potter, Cydne; and Frank, Cory. "Inventory methods for sea asparagus in the Salish Sea: working with indigenous communities to integrate UAV technology and aquatic plant management" (2018). *Salish Sea Ecosystem Conference*. 208.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Inventory methods for sea asparagus in the Salish Sea: Working with Indigenous communities to integrate UAV technology and aquatic plant management

Holden JJ, Whittaker C, Potter C, and the Firelight Group with K’ómoks First Nation Guardian Watchmen Department
1 Firelight Research Inc. (The Firelight Group) 2 K’ómoks First Nation Guardian Watchmen Department

INTRODUCTION

• Licences for the harvesting of sea asparagus (Salicornia maritima, Salicornia rubra, and Sarcocornia pacifica) are issued annually on the west coast of British Columbia.
• Traditional inventory methods are too expensive to employ throughout the Salish Sea.
• We developed and tested a cost-effective approach using:
 1. predictive habitat mapping;
 2. ground surveys; and
 3. small unmanned aerial vehicle (UAV) technology.

BACKGROUND

• Sea asparagus is a salt tolerant plant common to saltwater marshes.
• Marketed as ‘sea asparagus’ ‘sea beans’ or ‘samphire greens’, these salty succulents have become a popular culinary product.
• Previous inventories of sea asparagus distribution and biomass have been conducted in Boundary Bay and Cowichan Bay, but are lacking for the rest of Vancouver Island.

OBJECTIVES

• Develop a sound and cost-effective methodology to inventory the biomass, density, and distribution of sea asparagus;
• Test this inventory methodology between Union Bay and Qualicum Bay; a location of interest on the east coast of Vancouver Island with no previous inventory data;
• Produce a final report documenting the methodology as well as field inventory findings for the pilot area.

METHODS

1. Predictive habitat mapping
 • The Canadian Wetland Inventory (CWI) was used to identify saltwater marsh sites in the pilot area (Figure 1).
2. Ground verification surveys
 • Sea asparagus % cover and biomass was recorded in at least 15 quadrats per site.
3. UAV surveys
 • The UAV was flown at an altitude of ±50 m in parallel transects.
 • An orthomosaic and a digital surface model were produced from the aerial photos.
 • Field data and orthomosaics were used to verify supervised ground classifications, mapping the distribution of sea asparagus (Figure 2).
 • Total sea asparagus biomass was estimated by multiplying the total area of sea asparagus by the average biomass from field surveys.

RESULTS

• Sea asparagus covered a total estimated area of 285,178 m², with an estimated biomass of 1,056.4 tonnes (Table 1).
• Sea asparagus biomass varied greatly among and within sites.
• Some sea asparagus was observed on very sheltered shorelines outside of the saltwater marsh habitat identified by the CWI.

Table 1. Sea asparagus area and biomass estimates across the five inventory sites. (SD = standard deviation)

<table>
<thead>
<tr>
<th>Site</th>
<th>No. of field quadrats</th>
<th>Total area (m²)</th>
<th>Biomass (g) per 0.01 m²</th>
<th>Total biomass (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Bay 1</td>
<td>26</td>
<td>82,478.80</td>
<td>40.1 ± 24.3 SD</td>
<td>330.7</td>
</tr>
<tr>
<td>Deep Bay 2</td>
<td>15</td>
<td>44,806.85</td>
<td>31.7 ± 21.4 SD</td>
<td>142.0</td>
</tr>
<tr>
<td>Mud Bay</td>
<td>22</td>
<td>71,547.56</td>
<td>38.9 ± 32.5 SD</td>
<td>278.3</td>
</tr>
<tr>
<td>Fanny Bay 1</td>
<td>15</td>
<td>49,688.43</td>
<td>27.6 ± 19.3 SD</td>
<td>137.1</td>
</tr>
<tr>
<td>Fanny Bay 2</td>
<td>25</td>
<td>36,656.40</td>
<td>45.9 ± 40.1 SD</td>
<td>168.3</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>285,178.04</td>
<td>-</td>
<td>1,056.4</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS

• Management of sea asparagus should be precautionary. Expansion of the field inventory areas to include sheltered shorelines would provide a more complete inventory of sea asparagus biomass.
• Multi-year contracts would support planning, earlier initiation of inventory work, and promote consistency across years.
• Future work should incorporate Indigenous ecological knowledge.

REFERENCES