Dispersion and removal of two toxic trace metals (Ag and Cd) in the Strait of Georgia

Cheng Kuang
Univ. of British Columbia, Canada, ckuang@eoas.ubc.ca

Bertha Iselle Flores Ruiz
Univ. of British Columbia, Canada, iflores@eoas.ubc.ca

Samuel Stevens
Univ. of British Columbia, Canada, sstevens@eoas.ubc.ca

Maria Maldonado
Univ. of British Columbia, Canada, mmaldonado@eos.ubc.ca

Roger Francois
Univ. of British Columbia, Canada, rfrancoi@eoas.ubc.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec
[Part of the](https://cedar.wwu.edu/ssec) [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Kuang, Cheng; Flores Ruiz, Bertha Iselle; Stevens, Samuel; Maldonado, Maria; and Francois, Roger, 'Dispersion and removal of two toxic trace metals (Ag and Cd) in the Strait of Georgia' (2018). *Salish Sea Ecosystem Conference*. 233.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Dispersion and removal of two toxic trace metals (Ag & Cd) in the Strait of Georgia

Cheng Kuang, Iselle Flores Ruiz, Samuel Stevens, Maria T. Maldonado, Roger Francois
Department of Earth, Ocean, and Atmospheric Sciences

1. Introduction

Research questions
- What are the main sources of Ag and Cd to the Strait of Georgia (SoG)?
- Do dissolved and particulate concentrations of Ag and Cd in the SoG vary temporarily and spatially?

Figure 1. Mean Fraser River plume over the years 2003-2015, illustrated by satellite-derived suspended particle concentration (Pawlowicz et al., 2017). Station 2 at the South of Bowen Island was our sampling station in 2015. Station S4-1.5, which is outside of the Fraser plume, is our current study site for time-series measurements.

2. Methods

Analytical method for seawater samples
For determination of dissolved concentrations of Ag and Cd in the pico-molar range, an automated sample introduction and preconcentration system (seaFAST) is used.

Analysis of discharged wastewater samples
Sewage samples from the Iona Wastewater Treatment Plant (WWTP) are digested with a mixture of concentrated mineral acids, and then analyzed using ICPMS.

Box model of the Salish Sea
To assess the spatiotemporal fluxes of Ag and Cd throughout the Salish Sea, a box model approach, first described in Wang (2015) is employed.

3. Sources of Ag and Cd to the SoG

| Table 1. Dissolved concentrations of Ag and Cd in the Fraser River, Iona Wastewater Treatment Plant, and the Pacific Ocean. |
|-------------|------------|----------------|-------------|
| Dissolved concentrations (pM) | Fraser River | Iona Island WWTP | Pacific Ocean |
| Ag | 16.0 | 735 | 10.0 |
| Cd | 129 | 423 | 700 |

| Table 2. Dissolved fluxes of Ag and Cd in the Iona Wastewater Treatment Plant relative to the Fraser River loading. |
|-------------|------------|-------------|-------------|
| Dissolved fluxes (g/d) | Fraser River | Iona Island WWTP | Iona/Fraser |
| Ag | 649 | 38 | 5.9 |
| Cd | 5451 | 23 | 0.4 |

4. Dissolved Ag in the SoG

Figure 2. Box model outputs for dissolved Ag in the Strait of Georgia, Haro Strait, and Juan de Fuca Strait, with inputs from the Fraser, the Pacific, and the Iona outfall. Modelled concentrations of Ag vary very little in the Salish Sea (10.2-11.2 pM).

Figure 3. Depth profile of Ag at station S4-1.5 in September 2017. Error bars represent 95% confidence interval. Precision is ~10% due to unexpected low concentrations. Replicates and seawater CRM will be analyzed.

5. Dissolved Cd in the SoG

Figure 4. Depth profiles of measured and salinity normalized Cd at station 2 in December 2015 (upper figure). Change in Cd concentration relative to 5 m (bottom figure).

6. Modelled vs measured [Cd]

Figure 5. Box model outputs for dissolved Cd in the Salish Sea with inputs from the Fraser, the Pacific, and the Iona outfall. All model points fall on a line, suggesting that the Iona outfall does not significantly enhance the Cd concentrations in the system. Measured Cd concentrations at station 2 are lower than modelled in the upper 100 m.

7. Conclusions

- The Iona WWTP is NOT a significant point source for dissolved Ag or Cd.
- Need to improve the precision of analysis in order to confirm such low concentrations of Ag in the SoG.
- The Fraser River dilutes dissolved Cd concentrations in the SoG, relative to the upwelled Pacific water.

References

Acknowledgement
I would like to thank the crew members on board the CCGH Siyay for their help in sampling. Mr. Soares and C. Payne provided great assistance in gathering field data. Special thanks to Dr. Jay Cullen for kindly offering access to the SeaFAST system for seawater analysis.