Puget Sound shoreline inventory and assessment using boat-based lidar

George M. Kaminsky
Washington (State). Department of Ecology, gkam461@ecy.wa.gov

Alice Henderson
Washington (State). Department of Ecology, alhe461@ecy.wa.gov

Heather Weiner
Washington (State). Department of Ecology, hbar461@ecy.wa.gov

Hannah Drummond
Washington (State). Department of Ecology, hdru461@ecy.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Puget Sound shoreline inventory and assessment using boat-based lidar

Alice Henderson, Hannah Drummond, Heather M. Weiner, and George M. Kaminsky
Washington State Department of Ecology

Overview & Motivation

Boat-based lidar of Puget Sound shorelines collected by the Washington State Department of Ecology Coastal Monitoring & Analysis Program (CMAP) are developed to provide detailed, high-resolution mapping of topography, modifications, and habitat features for assessment of coastal conditions. Quantitative measurements determined from lidar point clouds and digital elevation models (DEMs) can be compared to DEM to quantify where and how much of the beach is covered. Vegetation width and height above the beach can be used to calculate solar incidence.

Shoreline Armoring

Accurate quantification and inventory of Puget Sound shoreline armor is crucial for assessment of impact and restoration opportunities. The high-resolution point clouds allow detailed mapping of shoreline armor attributes such as type, length, elevation, height, slope, and condition within the context of shoreform and beach morphology. The point cloud inventory of armor attributes allows for precise measurement and change detection that is accurately georeferenced in 3D map space.

Habitat Features

Shoreline armor is associated with reductions in riparian vegetation, large woody debris, wrack, and back beach width. Boat-based lidar maps each of these features, all of which provide critical habitat and nearshore ecosystem functions.

Overhanging Vegetation

Overhanging and fallen riparian trees provide organic matter and shade to the upper beach substrate, which moderates summer temperature and moisture important to surf smelt spawning. The extent of overhanging vegetation can be accurately delineated and intersected with the ground surface DEM to quantify where and how much of the beach is covered.

Large Woody Debris (LWD)

Large logs and downed trees provide invertebrate habitat, enhance local sediment deposition, and dissipate wave energy. The area of the beach covered by LWD can be quantified from boat-based lidar, as well as the size and quantity of individual logs and their location across the beach.

Beach Wrack

Wrack is stranded algae, seagrass, and terrestrial debris that can be mapped and quantified where it accumulates on the beach. Quantities can be compared to back beach width and relative encroachment of armor.

Back Beach Width

The back beach is the platform where wave energy dissipates, LWD, wrack, and sediment accumulate, and vegetation grows. It buffers the upland from erosion and provides nutrients, microhabitats, and services—refuge, foraging, spawning, roosting, and nesting. Boat-based lidar efficiently maps the variability in back beach width and features along natural and armored shorelines.

Acknowledgements

- Project work funded by Washington Department of Fish and Wildlife’s Estuary and Salmon Restoration Program
- Thanks to WCC IPs Michelle Gostic, Jaime Liljegren, & Kasey Bolles and Ecology CMAP’s Amanda Hacking and Diana McCandless for data collection & processing