Using ferry monitoring data to explore the importance of isotherms on the winter survival of Northern anchovy in Puget Sound

Suzan Pool
Washington State Dept. of Ecology, United States, suzan.pool@ecy.wa.gov

Christopher Krembs
Washington State Dept. of Ecology, United States, ckre461@ecy.wa.gov

Julia Bos
Washington State Dept. of Ecology, United States, julia.bos@ecy.wa.gov

Skip Albertson
Washington State Dept. of Ecology, United States, salb461@ecy.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Pool, Suzan; Krembs, Christopher; Bos, Julia; and Albertson, Skip, "Using ferry monitoring data to explore the importance of isotherms on the winter survival of Northern anchovy in Puget Sound" (2018). *Salish Sea Ecosystem Conference*. 271.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Using ferry monitoring data to explore the importance of isotherms on the winter survival of Northern anchovy in Puget Sound

Suzan S. Pool*, Christopher Krembs, Julia Bos, and Skip Albertson
Washington State Department of Ecology, * suzan.pool@ecy.wa.gov

Introduction

The Salish Sea displays strong seasonality in water temperature which can impose physiological limits on temperature sensitive species. Using a ferry vessel is one mode of measuring near-surface water temperature. With monitoring equipment on the Victoria Clipper IV passenger ferry, we collected several years of geo-referenced and high-frequency water temperature measurements between Seattle, WA and Victoria, B.C. The ferry-based monitoring data can be used to identify when conditions are potentially favorable for temperature sensitive species such as Northern anchovy (Engraulis mordax). This forage fish species can survive in water between 8 and 25 °C and has a temperature threshold of 8-9 °C. In British Columbia, Northern anchovies prefer to spawn in 13 to 18 °C water and in July and August (Fisheries and Oceans Canada 2016). In Puget Sound, Northern anchovies spawn throughout the basin (Penttila 2007). With winter survival and successful spawning, Northern anchovies can potentially exploit the spring plankton blooms that occur between April and May. We examine near-surface isothermal patterns to describe when Northern anchovies may survive winter conditions in the Salish Sea.

Results and Discussion

- Mean gridded water temperature ranged from 5.3 °C to 21.0 °C for the entire time period (Fig. 3).
- Near-surface water temperatures show seasonal patterns with coldest waters in winter and warmest waters in summer.
- The coldest water that occurs in winter, generally from December to April, could affect winter survival of Northern anchovy. Winters of 2014-2015 and 2015-2016 had temperatures above the minimum threshold for Northern anchovy.
- For spawning of Northern anchovy, the favorable water temperature occur from July to September and in the southern area of Puget Sound.
- Between the Admiralty Sill and Seattle, plankton blooms occur in late spring, mid-summer, and late summer (Pool et al. 2015). Anchovies prey on plankton, including euphausiids, copepods, and decapod larvae (Whitehead et al. 1988). Thus, anchovies have the potential to exploit plankton blooms, particularly upon winter survival in cold water conditions.
- Heat maps are an effective and realistic representation of data without obscuring days of no data such as in a contour plot.
- Isotherms can also be applied to other temperature sensitive species such as Pacific herring, oysters, and phytoplankton species which produce harmful algal blooms.

Acknowledgments

We would like to thank Clipper Vacations for the successful partnership over the past several years, NANOOS for grant support, and Brandon Sackmann for his ingenious monitoring system design and continued support. We also thank Sandy Weakland for the study area map.

References

The poster was presented at the Salish Sea Ecosystem Conference on April 5, 2018 in Seattle, Washington.