Assessment of fecal glucocorticoid metabolites of cortisol and corticosterone in captive sea otters, Enhydra lutris

Amy Olsen
Seattle Aquarium, United States, a.olsen@seattleaquarium.org

Shawn Larson
Seattle Aquarium, United States, s.larson@seattleaquarium.org

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2018ssec/allsessions/275

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
ABSTRACT:
- The adrenal glucocorticoid hormones, cortisol and corticosterone, are frequently measured in serum as indicators of the vertebrate stress response.
- Sea otters (*Enhydra lutris*), common in zoos and aquariums, have been documented to secrete both cortisol and corticosterone from adrenal glands. These hormones are secreted, metabolized, and excreted in feces.
- The goal of this study was to validate the use of non-invasively collected fecal samples to determine baseline metabolite levels for individual sea otters based on sex and age class.
- At the Seattle Aquarium, hormone metabolite groups were measured using commercially available ELISA kits, and validation was achieved by standard parallelism and accuracy tests.
- Differences between animals indicated individual responses to stimuli and peaks above baseline for each animal indicated specific adrenal responses to external stressors.
- Monitoring baseline adrenal hormone levels and events that cause peak values may provide insight for the husbandry management of captive animals to mitigate elevated baseline stress levels and unnecessary external stressors to improve the overall welfare of these marine mammals.

METHODS:
- Methanol extracted sea otter fecal samples from the Seattle Aquarium: Three female northern sea otters, *Enhydra lutris kenyoni*
 - One male northern sea otter, *Enhydra lutris kenyoni*
- Commercially available ELISA kits for cortisol and corticosterone (Enzo Life Sciences Inc., New York, USA).
- Validation
 - ACTH challenge (Wasser et al., 2000)
 - Parallelism
 - Accuracy

RESULTS:
- Sea otter cortisol parallelism Assayed 02-25-17
- Sea otter corticosterone parallelism Assayed 03-6-17

<table>
<thead>
<tr>
<th>Sample</th>
<th>GCs</th>
<th>Sample</th>
<th>GCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>53.4</td>
<td>F2</td>
<td>22.50</td>
</tr>
<tr>
<td>F3</td>
<td>14.22</td>
<td>M1</td>
<td>69.96</td>
</tr>
</tbody>
</table>

DISCUSSION:
- Commercially available ELISA kits were validated for cortisol and corticosterone hormone metabolites in sea otter fecal samples.
- There was variation between individuals, indicating differences in individual stress response to stimuli (baseline levels of cortisol ranged from 12 to 48 ng/gr and corticosterone ranged from 30 to 78 ng/gr).
- All three females showed significantly different baseline levels of cortisol and corticosterone, while the male had the same baseline value for both glucocorticoid metabolites.
- Archived husbandry notes from biologists did not correlate to all hormone peaks, so future work should focus on diligent and detailed behavioral and environmental notes to provide a continuous record to better match hormone spikes to stimulatory events.

ACKNOWLEDGEMENTS:
We would like to thank the staff and volunteers at the Seattle Aquarium who participated in the collection of fecal samples and behavioral data for this study. Special thanks go for their support and assistance. This research was funded by the Seattle Aquarium.