Is local adaptation a factor in planning eelgrass restoration? Initial assessment of responses to temperature by eelgrass growing across a stressor gradient

Kate Buenau
Pacific Northwest National Laboratory (U.S.), kate.buenau@pnnl.gov

Celia Thurman
Pacific Northwest National Laboratory (U.S.), ck.thurman@gmail.com

John Vavrinec
Pacific Northwest National Laboratory (U.S.), john.vavrinec@pnnl.gov

A. B. (Amy B.) Borde
Pacific Northwest National Laboratory (U.S.), amy.borde@pnnl.gov

Ronald M. Thom
Pacific Northwest National Laboratory (U.S.), ron.thom@pnnl.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Buenau, Kate; Thurman, Celia; Vavrinec, John; Borde, A. B. (Amy B.); and Thom, Ronald M., "Is local adaptation a factor in planning eelgrass restoration? Initial assessment of responses to temperature by eelgrass growing across a stressor gradient" (2018). Salish Sea Ecosystem Conference. 325.
https://cedar.wwu.edu/ssec/2018ssec/allsessions/325

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Is local adaptation a factor in planning eelgrass restoration?

Kate Buenau, Celia Thurman, John Vavrinec, Amy Borde and Ronald Thom

Salish Sea Ecosystem Conference
Seattle, WA

April 5, 2018
Acknowledgments

Jeff Gaeckle (WA DNR)

Many interns: Celia Thurman, Hannah Lea, Ethan Whattam, Nicolle Ho, Allie Simpson, Brandon Payne
Information for restoration planning

- Monitoring
- Modeling
- Stressor evaluations
- Site visits
- Site-specific water quality data

Thom et al. 2018
Restoration Ecology
Information for restoration planning

Thom et al. 2018
Restoration Ecology

Monitoring

Modeling

Stressor evaluations

Site visits

Site-specific water quality data
Data collected at PNNL Marine Science Laboratory (Sequim)
Physiological data collection

Graph 1: GPP(30)/GPP(x) vs. Salinity (psu)

Graph 2: GPP (mol C/mol C day) vs. Temperature (C)

Graph 3: Respiration (mol C/(mol C hr)) vs. Temperature (C)

Graph 4: GPP (mol C/mol C day) vs. Light (mol/m² day)
Range of water temp. at Port Angeles 2005-2012
Morphological variability

Large morphs (Clinton Ferry Terminal)

Small morphs (Case Inlet)
Question

Do genotypic and/or phenotypic variation affect the response of eelgrass to temperature?

Does the relationship between temperature and production vary across environmentally and geographically distinct stocks?

Restoration implications:
- Site selection
- Transplant sources/methods
- Stressor abatement
- Restoration success
Collection sites

Sample site

NOAA buoy
Methods
Whole plants collected ~3 ft MLLW and stored in outdoor flowing seawater tanks

Light/dark measurements on 8 cm leaf segments for 3 sites x 2 temperatures per trial

12° and 20° (2x)
16° and 25° (3x)
20° and 25° (1x)

~2 hrs incubation for light jars, ~3 hrs for dark

No light limitation

Measured initial and final instantaneous oxygen flux and biomass (g dry wt)
Results

Net Primary Productivity

Temperature (°C)

NPP (mg C/gdw/hr)

Sequim Bay
South Sound
Hood Canal
Results

Net Primary Productivity

Respiration

Temperature (°C)

NPP (mg C/gdw/hr)

Respiration (mg C/gdw/hr)

Sequim Bay
South Sound
Hood Canal
Results

Sequim Bay

South Sound

Hood Canal
Preliminary Conclusions

- No significant difference in short-term productivity or respiration for plants from different temperature (and light) regimes.

- Lots of variation in results.

- Notable morphological and epiphyte differences between sites.
Next Steps

- More short-term data collection to address variability
- Additional sites
- Interaction of light limitation and temperature
- Mesocosm experiments—temperature treatments, light treatments