April 2018

LiveOcean: a daily forecast model of biogeochemistry in Washington marine waters

Parker MacCready
Univ. of Washington, United States, p.maccready@gmail.com

Samantha A. Siedlecki
Univ. of Connecticut, United States, samantha.siedlecki@uconn.edu

Ryan M. McCabe
Univ. of Washington, United States, rmccabe.ocean@gmail.com

Follow this and additional works at: https://cedar.wwu.edu/sssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/cco/FreshWaterStudies), [Marine Biology Commons](https://cedar.wwu.edu/cco/MarineBiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/cco/NaturalResourcesConservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/cco/TerrestrialAndAquaticEcology)

https://cedar.wwu.edu/sssec/2018sssec/allsessions/338

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
LiveOcean: A Daily Forecast Model of Biogeochemistry in Washington Marine Waters

- Parker MacCready
- Samantha Siedlecki
- Ryan McCabe
- Neil Banas
LiveOcean: Overview

• **GOAL 1:** Short-term forecasts of Aragonite saturation state & pH of waters entering shellfish growing areas

• **GOAL 2:** Short-term forecasts of Phytoplankton Blooms and Surface Water Advection from known Pseudo-nitzschia HAB Hotspots.

• **MODEL:** ROMS, 1.5 km grid, realistic tides, rivers, atmospheric forcing, and open ocean state

• **RESULTS:**
 - 3-day forecasts of currents, temperature, salinity & biogeochemistry, including carbon (DIC, Alkalinity)
 - Forecasts available daily: NANOOS NVS
 - Automated Particle Tracking for HAB Bulletin
 - Validation 2013-present
LiveOcean Workflow

3-Day forecast appears daily on NANOOS NVS

WRF Winds and Heating

HYCOM Ocean Fields

USGS Rivers

TPXO Tides

ROMS
Model-Observation Comparison (Barth, Durski)
Mid-shelf, Heceta Bank mooring: T, S, Dissolved Oxygen

- **Temperature**
 - Corr. coef = 0.81
 - RMS diff. = 0.68
 - Bias (M-O) = 0.06

- **Salinity**
 - Corr. coef = 0.71
 - RMS diff. = 0.19
 - Bias (M-O) = -0.11

- **Dissolved Oxygen**
 - Corr. coef = 0.63
 - RMS diff. = 0.96
 - Bias (M-O) = -0.50
Chemical Validation: NOAA Casts 2016
May

Surface Ω_{arag}

Bottom Ω_{arag}

200 m
2000 m

0.1 Pa
Windstress

2017-05-15
12:00 UTC

0.5 ms^{-1}
July

Surface Ω_{arag}

Latitude

Longitude

Bottom Ω_{arag}

200 m
2000 m

0.1 Pa
Windstress

2017-07-15
12:00 UTC

cascadia_base_obio5
Conclusions

• pH and Aragonite Saturation State on the shelf have a dramatic annual cycle
• During the spring and summer upwelling brings corrosive water onto the shelf (and into the Salish Sea)
• Remineralization on the shelf makes the bottom water on the shelf more corrosive
• The same pattern exists for hypoxia