Source, transport, and age of sediment from Cascade volcano watersheds to the nearshore: insights for contaminant and ecological studies

Renee Takesue
USGS, United States, rtakesue@usgs.gov

Kathy Conn
USGS, United States, kconn@usgs.gov

Margaret Dutch
Washington State Dept. of Ecology, United States, Margaret.Dutch@ecy.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/allsessions/346), [Marine Biology Commons](https://cedar.wwu.edu/ssec/allsessions/346), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/allsessions/346), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/allsessions/346)

Takesue, Renee; Conn, Kathy; and Dutch, Margaret, "Source, transport, and age of sediment from Cascade volcano watersheds to the nearshore: insights for contaminant and ecological studies" (2018). *Salish Sea Ecosystem Conference*. 346.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Source, transport, and age of sediment from Cascade volcano watersheds to the nearshore: insights for monitoring studies

Renee Takesue, Kathy Conn, and Margaret Dutch
1. Background and geochemical approach

North Cascade Volcanoes

➢ YOUNG, ACTIVE volcanoes
➢ Near large population centers
➢ Volcanism + snow → lahar (ash flow)
1. Background and geochemical approach

Geochemical sourcing, aging

- **Geology of watersheds**
 - Rocks + weathering = Soil + transport = SEDIMENT
 - Rock types have distinct chemical compositions

- **Age of sediment**
 - Rates of radiometric decay of atmospheric particles delivered to the earth’s SURFACE
 - High affinity for sediment, OM
 - Erosion, transport to depositional envir.
 - ^7Be (up to 5 mo.)
 - ^{210}Pb (3 yr - 100 yr)
Mt. Rainier → Puyallup River → Commencement Bay

Comm. Bay

65 km (40 mi.) from Tacoma
2,460 sq. km (948 sq. mi.)
Puyallup River / Commencement Bay

- What is the fate of fluvial sediment (and contaminants) in CB?
 - Sediment sourcing RIVER vs. BLUFF
 - PAHs, wastewater ind., hormones, PCBs, PBDEs

- Can recent sedimentation (and contaminants) be distinguished from pre-existing?
 - Sediment aging (7Be)

- What are the implications for biota?
 - Forage fish spawning beaches
2. Mt Rainier → Puyallup River → Commencement Bay

Sourcing: % River v. Lowland

Upper 0-2 cm seabed sediment
Aging: Recent deposition (winter, historical)

2. Mt Rainier → Puyallup River → Commencement Bay

7Be (last 5 months)

210Pb (last 100 yr)

Upper 0-8 cm seabed sediment
Contaminant patterns in CB

- Higher in BAY than river;
- Higher in WINTER than summer;
- PAHs, waste ind., PCBs, (metals) highest at SOUTH shore/Tacoma waterfront;
- Only 1 higher on the north shore;
- Forage fish spawning beaches

Upper 0-2 cm seabed sediment
Summary (Puyallup/Comm Bay)

- River source >> Bluff source in CB
 North shore > south shore

- Sediment aging was essential:
 North shore > south shore

- Contaminants
 South shore (Tacoma) > north shore
 Pre-existing contaminant sources predominate
 Winter > summer (Climate change?)

- Forage fish spawning site / river / fewer cont.
Mt. Baker → Nooksack River → Bellingham Bay

154 km (96 mi.) from Bellingham
230 km (143 mi.) from Vancouver
2,036 sq. km, 786 sq. mi.
Questions:

➢ Can NF, MF, SF sediment be distinguished?

➢ How is terrestrial (river) sediment and OM distributed in Bellingham Bay?
 ○ Sediment sourcing RIVER vs. LOWLAND

➢ Are terrestrial input and contaminants related?
 ○ Collaboration with WA ECY Urban Bays proj.
3. Mt. Baker → Nooksack River → Bellingham Bay

Geochemical signatures (Rare Earth Elements)

★ River = Lowland (glacial deposits)

★ Lowland = Bellingham Bay

∴ River = Bellingham Bay

★ North Fork sig. = Middle Fork sig.

≠ South Fork sig.

★ Summer runoff
Bulk $d^{13}C_{SOM}$

- Terrestrial $d^{13}C$ values closer to shore

- River influence decreases with distance offshore
Contaminant patterns in Bellingham Bay

➢ Biomass/Emission PAHs (left), summed PAHs (right), anthr. metals

➢ No association between river influence and PAHs, metals
Summary (Nooksack/Bellingham):

- River = Lowland = Bellingham Bay in summer could not be distinguished geochemically

- River discharge not a big source of PAHs, metals
 - Agricultural compounds?

- South Fork sediment was distinct from North, Middle
Implications

In the face of changing climate and human pressures, sediment sourcing and aging can:

★ Show the role of large rivers, urban centers as sources of sediment, OM, and contaminants;

★ Distinguish new inputs from pre-existing;

★ Show transport pathways

→ Improve understanding from long-term monitoring about changing processes that structure ecosystems.
Acknowledgments

Funding:
USGS Coastal & Marine Geology Program
USGS Ecosystems Mission Area

Assistance:
James Foreman, USGS, Commencement Bay sampling
Rich Sheibley, USGS, Puyallup River sampling
Colin Smith, USGS, forage fish egg survey
Cordell Johnson, USGS, radionuclide analyses
Valerie Partridge, WA Dep. Ecology, Bellingham Bay sampling
Sandra Weakland, WA Dep. Ecology, Bellingham Bay PAH data