Omega Oracle: forecasting estuarine carbonate weather

Cameron Allen
Oregon State Univ., United States, allencam@oregonstate.edu

George G. Waldbusser
Oregon State Univ., United States, waldbuss@coas.oregonstate.edu

Burke Hales
Oregon State Univ., United States, bhales@ceoas.oregonstate.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons], [Marine Biology Commons], [Natural Resources and Conservation Commons], and the [Terrestrial and Aquatic Ecology Commons]

Allen, Cameron; Waldbusser, George G.; and Hales, Burke, "Omega Oracle: forecasting estuarine carbonate weather" (2018). *Salish Sea Ecosystem Conference*. 350.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Omega Oracle: Forecasting estuarine carbonate weather

Cameron Allen¹; George Waldbusser¹, Burke Hales¹
Forecasting Ocean Carbonate Weather

Artificial Neural Networks

Early warning system for harmful seawater chemistry conditions
Model Design

Forecast of:
- Wind driven upwelling,
- Cloud-cover
And,
- Tide Tables
- Time of year

“Learns” about, for example:
- tidal transport of upwelled water;
- biological modification of water chemistry
 (which depends on biomass present, light + nutrient availability, etc.).

Prediction of Ω time-series
• Following the oyster seed crisis, monitoring of carbonate chemistry at Whiskey Creek Shellfish Hatchery, throughout Pacific coast.

• Mean aragonite saturation state (Ω) exposure matters, but so does variability.

Photo credit: E Brunner, G Waldbusser.
Note wave-like structures which appear to be tidal.

Due to the very regular daily structure this data can be well expressed in terms of only a few principal components.

So, regress how this structure reacts to physical, biological forcing using four years of monitoring record.
The tides are represented by the magnitude of the first three principal components of the days tide. This contributes three scalar values per day. Over the four year dataset they have these normalized distributions.
Now, add our upwelling index term.

This is represented by the daily northward wind-stress of the day of the forecast in a weighted sum with the preceding days.

The weighting emphasizes the forecast day most, and each day prior exponentially less significantly.

Raw upwelling index from Pierce and Barth
http://damp.coas.oregonstate.edu/windstress/index.html
This panel will show one day at a time of the model estimate from outside the training data.

The time-series is entirely determined by the value of the 4 scalars indicated by vertical lines, plus the day of year (not shown).
Model Results

Note the surprisingly complexity in these time series based on changes in the five input values.
Emergent character of daily dynamics
Emergent character of daily dynamics
Forecasting Carbonate Weather

Observed value, model estimate of Ω in Netarts Bay, Oregon.

Assuming prediction of inputs are as good as the training data....
Deployed to the web to provide real time information to shellfish growers.
Funding support from USDA-WRAC

Oregon State University
College of Earth, Ocean, and Atmospheric Sciences

Powered by NANOOS-NVS, Dark Sky, and X Tide

Thanks to Whiskey Creek Shellfish Hatchery, pandas, NumPy, SciPy, Keras, aiohttp, and D3.js
Summary

● We can build a skillful model of complex estuarine carbonate chemistry from atmospheric and tidal forcing. Given sufficient training data.
● The resulting regression model demonstrates emergent characteristics. Simple controls are able to describe seemingly more complex temporal dynamics.
● Capability to provide real-time forecasting to shellfish growers to help them make operational decisions.
Questions?
Model Skill

64 percent of observations within 0.2 units of model hindcast estimate.
\[v = \int_{-\infty}^{\text{now}} v_{\text{wind}}(t) \cdot w(t) \, dt \]
THIS IS YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.