Input of PBDE exposure in juvenile Chinook salmon along their out-migrant pathway through the Snohomish River, WA

Andrea J. Carey
Washington (State). Department of Fish and Wildlife, andrea.carey@dfw.wa.gov

James E. West
Washington (State). Department of Fish and Wildlife, James.West@dfw.wa.gov

Robert J. Fisk
Washington (State). Department of Fish and Wildlife, robert.fisk@dfw.wa.gov

Mariko M. Langness
Washington (State). Department of Fish and Wildlife, mariko.langness@dfw.wa.gov

Gina Maria Ylitalo
United States. National Oceanic and Atmospheric Association, gina.ylitalo@noaa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/collections/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/collections/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/collections/naturalresources), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/collections/terrestrialaquaticecology)

Carey, Andrea J.; West, James E.; Fisk, Robert J.; Langness, Mariko M.; Ylitalo, Gina Maria; and O'Neill, Sandra M., "Input of PBDE exposure in juvenile Chinook salmon along their out-migrant pathway through the Snohomish River, WA" (2018). *Salish Sea Ecosystem Conference*. 355.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Andrea J. Carey, James E. West, Robert J. Fisk, Mariko M. Langness, Gina Maria Ylitalo, and Sandra M. O’Neill

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/355
Input of PBDE exposure in juvenile Chinook salmon along their out-migrant pathway through the Snohomish River, WA

Andrea Carey¹, James West¹, Robert Fisk¹, Mariko Langness¹, Gina Ylitalo² and Sandra O’Neill¹

¹TBiOS, Washington Department of Fish and Wildlife
²NOAA, Northwest Fisheries Science Center
Acknowledgments

WDFW
Lance Campbell
Anna Hildebrandt
Andrew Claiborne
Jeff Grimm
John Sneva
Tracey Scalici
Kelly Kiyohara
Joe Anderson
Pete Topping
Josh Weinheimer
Clayton Kinsel
Val Tribble
Canada DFO
Crew of the Ricker

Long Live the Kings
Iris Kemp
Michael Schmidt

Lummi Nation
Skagit River System Cooperative
Stillaguamish Tribe
Tulalip Tribe
Snohomish County
Puyallup Tribe
Nisqually Tribe
Skokomish Tribe
Port Gamble S’Klallam Tribe
Jamestown S’Klallam Tribe
Lower Elwha Klallam Tribe
Squaxin Tribe
Muckleshoot Tribe
Coastal Watershed Institute
NWIFC

NOAA NWFSC
Sean Sol
Dan Lomax
Julann Spromberg
Maryjean Willis
Cathy Laetz
Penny Swanson
Casey Rice
Josh Chamberlin
David Baldwin
Jason Hall
Mark Meyers
David Baldwin
Lyndal Johnson

Environmental Chemistry staff
WA Dept of Ecology
Other
Jason Toft
Madilyn Gamble
Steve Damm
Juvenile Chinook Contaminant Surveys

Purpose 1:
Measure contaminant exposure in juvenile Chinook from the Puget Sound evolutionary significant unit (ESU)
- Status and Trend: River Deltas (Estuaries) Habitat

Purpose 2:
Determine where in out-migrant pathway Chinook salmon are exposed to and accumulate contaminants.
- Geographic Extent/Magnitude; Multi-Habitat Focus Study
2016 Survey

Status and Trends
• 11 deltas + Lake Washington

Focus Studies
• Stillaguamish
• Snohomish
• # Chinook collected = 1,157
• # composite wholes body samples = 152
 • chemistry, stable isotopes, lipids

Persistent Organic Pollutants (POPs)
• Polychlorinated biphenyls (PCBs)
• Polybrominated diphenyl ethers (PBDEs)
• Dichlorodiphenyltrichloroethane (DDTs)
• Organochlorine pesticides
PBDEs in Juvenile Chinook Salmon
Based on wet weight concentrations

Critical tissue level for salmon health/Recovery Target

PBDEs (ng/g ww ± 95% CI)

Nooksack -
Skagit -
Stillaguamish -
Elwha -
Dungeness -
Duckabush -
Skokomish -
Snohomish -
Lk Washington -
Duwamish -
Puyallup -
Nisqually -
PBDE Adverse Effects in Juvenile Chinook Salmon

Based on wet weight concentrations

PBDE Critical Tissue Level

(Arkoosh et al. 2010, 2013)

• Increased disease susceptibility

18%
Questions:
• Where are juvenile Chinook exposed to and accumulating PBDEs?
• What is the “source” of PBDE inputs?

Hypothesis 1:
Salmon are exposed to higher levels of PBDEs in the Mainstem – Lower Delta.

Hypothesis 2:
WWTP/CSO outfalls in the Mainstem – Lower Delta are the major input of PBDEs
PBDE Concentrations by Region

PBDE concentration is significantly elevated in wild Chinook from Mainstem – Lower Delta.
PBDE Concentrations by Region

PBDE concentrations are elevated in wild Chinook from Langus Pier and Deadwater sites.
Location of Sampling Sites and Outfalls

- WWTP Outfalls
- CSO Outfalls
- Fish Collections
PBDE Body Burdens

PBDE body burdens increase dramatically in wild Chinook from Langus Pier and Deadwater sites.
Major pathway of PBDEs to Snohomish wild Chinook is in the Mainstem – Lower Delta.
PBDEs in Juvenile Chinook Salmon

Based on wet weight concentrations

Predicted PBDE adverse effects
(Arkoosh et al. 2010, 2013)

- Increased disease susceptibility

Only WILD fish exceeded the threshold
Source Identification Using Contaminant Fingerprints

Aquatic environments have distinct patterns of persistent organic pollutants (POPs) based on inputs & environmental attributes.

Biota foraging in regions with distinct POPs patterns accumulate specific POPs in proportion to their availability.
Higher accumulation of PBDEs compared to PCBs and DDTs in wild fish in the lower mainstem suggests a wastewater input ("source").
Conclusions

• Wild origin Chinook salmon are exposed to higher levels of PBDEs in the Mainstem - Lower Delta
 • Wild Chinook have elevated PBDE concentrations & body burdens
 • Wild Chinook reside in delta longer than hatchery origin Chinook

• Wastewater in the Mainstem – Lower Delta are possible inputs (i.e. pathways) of PBDEs to salmon
 • Distinct contaminant fingerprints were observed in wild Chinook from the Mainstem – Lower Delta
 • Fingerprints with higher proportions of PBDEs are consistent with input from wastewater
 • Likely wastewater inputs include WWTP effluent & CSO outfalls
PBDEs in Juvenile Chinook Salmon

Based on lipid normalized concentrations

Salmon health effects threshold/recovery goal

PBDEs (ng/g lipid ± 95% CI)
Predicted PBDE Adverse effects
(Arkoosh et al. 2010, 2013)

• Increased disease susceptibility
• Altered thyroid function
PBDEs in Juvenile Chinook Salmon
(hatchery and wild origin fish)

Predicted PBDE Adverse effects
(Arkoosh et al. 2010, 2013)

• Increased disease susceptibility
• Altered thyroid function
PBDEs - 2013 vs 2016

- Nearshore 2 - H
- Nearshore 1 - H
- Estuary - W
- Outside Main, Lower Delta - W
- Outside Main, Lower Delta - H
- Main Low Delta - W
- Main Low Delta - H
- Main Upper Delta - W
- Main Upper Delta - H
- Above Mainstem - W

PBDEs (ng/g wet weight)
POP Fingerprints in Juvenile Chinook salmon

Small mean fish size 48 and 46 mm
Region x Origin ‘Means Plot’
(Based on Results of Anosim Comparisons)